I *I Innovation, Sciences et Innovation, Science and CA 2772746 C 2019/06/11

Déeveloppement economique Canada Economic Development Canada
Office de |la Propriete Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 772 746
(12 BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2010/08/26 (51) Cl.Int./Int.Cl. GO6F 16/24 (2019.01),
(87) Date publication PCT/PCT Publication Date: 2011/03/03 GO6F 16/22 (2019.01), GO6F 16/28 (2019.01)
2 1s , (72) Inventeurs/Inventors:
(45) Date de delivrance/lssue Date: 2019/06/11 BOURDONCLE. FRANCOIS. FR:
(85) Entree phase nationale/National Entry: 2012/02/29 DOUETTEAU, FLORIAN, FR:
(86) N° demande PCT/PCT Application No.: IB 2010/002102 BORDIER, JEREMIE, FR
(87) N° publication PCT/PCT Publication No.: 2011/024064 (73) Proprietaire/Owner:

DASSAULT SYSTEMES, FR

(30) Priorite/Priority: 2009/08/31 (US61/238,283)
(74) Agent: MCCARTHY TETRAULT LLP

(54) Titre : SYSTEME ET PROCEDE D'INTERROGATION SECURISEE
(54) Title: TRUSTED QUERY SYSTEM AND METHOD

100 110
120
| : Retrieve Data Tables Flattened datahase A
Database —» and (rows in an answer to a database query)
Flatten Database Tahles

A
%'/ —— 124
122

130 Index flattened Database A
database with g indexed by
search engine search

engine

140 , .
Extract suggestion —» Suggestion
list list B
126
150 Present input display
screen to user

160 Monitor user input

and propose nan
null queries

(57) Abrege/Abstract:
A method and system provides a search interface that permits a user to interrogate a structured database, and includes retrieving
database entries from one or more databases, flattening a plurality of database entries, indexing the plurality of flattened database

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada

CA 2772746 C 2019/06/11

anen 2 112 746
(13) C

(57) Abrege(suite)/Abstract(continued):

entries to form a search engine index, and prompting the user to enter an input. The system continuously monitors the user input
and each time an input Is entered by the user, the system computes a set of non-null partial queries In response to the input
entered by the user, associates a structured item to each non-null partial query, and allows the user to select one of the structured
items. If the user selects one of the structured items, the system replaces the user input by the non-null partial query associated to
the selected structured item. VWhen the user validates the Iinput, the system executes the input as a query. Finally, the system
provides documents to the user corresponding to the executed query.

woO 2011/024064 A3 Il IR 000 RW 011 00 RO RGO

CA 02772746 2012-02-29

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
3 March 2011 (03.03.2011)

(10) International Publication Number

WO 2011/024064 A3

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)
(75)

International Patent Classification:
GO6F 17/30 (2006.01)

International Application Number:
PCT/IB2010/002102

International Filing Date:
26 August 2010 (26.08.2010)

Filing Language: English
Publication Language: English
Priority Data:

61/238,283 31 August 2009 (31.08.2009) US

Applicant (for all designated States except US):
EXALEAD S.A. [FR/FR]; 10 Place de la Madelaine,
75008 Paris (FR).

Inventors; and

Inventors/Applicants (for US only). BOURDONCLE,
Francis [FR/FR]; C/O Exalead, 10 place de la Madeleine
(FR). DOUETTEAU, Florian [FR/FR]; 4 rue Froment,
F-75011 Paris (FR). BORDIER, Jeremie [FR/FR]; C/O
Exalead, 10 place de la Madeleine, F-75008 Paris (FR).

(54) Title: TRUSTED QUERY SYSTEM AND METHOD

100

T

\

120
AN

Retrieve Data Tables
and
Flatten Database Tahles

Flattened database A

Database (rows in an answer to a database query)

\._/
> ~ 124
122 <>
130 N Index flattened Database A
database with a » indexed by
search engine search
enging
140 ‘ <A
\~ Extract]sig?gestlon » Suggestion
- list B
S — \4.--"
126
150] Present input display
screen to user
4
160 N Monitor user input
and propose hon
null quenes
Figure 1

(74)

(81)

(84)

Agent: DEBAY, Yves; Cabmet Debay, 126 Elysee 2,
78170 La Celle St Cloud (FR).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, S8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(57) Abstract: A method and system provides a search in-
terface that permits a user to Interrogate a structured
database, and includes retrieving database entries from one
or more databases, flattening a plurality of database entries,
indexing the plurality of flattened database entries to form a
search engine index, and prompting the user to enter an in-
put. The system continuously monitors the user input and
cach time an mput 1s entered by the user, the system com-
putes a set of non-null partial queries i response to the n-
put entered by the user, associates a structured item to each
non-null partial query, and allows the user to select one of
the structured items. It the user selects one of the structured
items, the system replaces the user mput by the non-null
partial query associated to the selected structured item.
When the user validates the mput, the system executes the
iput as a query. Fimally, the system provides documents to
the user corresponding to the executed query.

CA 02772746 2012-02-29

wO 2011/024064 A3 |0 A0N 10 0 O R

Published: (88) Date of publication of the international search report:

— with international search report (Art. 21(3)) 19 May 2011

— before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

CA 2772746 2017-05-04

WO 2011/024064 PCT/1B2010/002102

TRUSTED QUERY SYSTEM AND METHOD

INVENTORS:

Francois Bourdoncle
Florian Douetteau
Jerémie Bordier

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority from Provisional Patent Application
Serial No. 61/238,283, filed on August 31, 2009, entitled Trusted Query System and Method.

COPYRIGHT NOTICE
[0002] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in the

Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights

whatsoever. The following notice applies to any software and data as described below and in

the drawings hereto: Copyright © 2010, Exalead, All Rights Reserved.

BACKGROUND OF THE INVENTION

]. Field of the Invention

[0003] This disclosure relates generally to data storage and retrieval. More particularly,
this disclosure refers to a system and method which allows a user to search for data accessible

with a structured query language.

2. Description of the Related Art.

[0004] A database consists of an organized collection of data for one or more multiple
uses. One way of classifying databases involves the type of content, for example,
bibliographic, full-text, numeric, image, and the like. Other classification methods examine

database models or database architectures, as explained below.

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102

[0005] The data in a database is structured by software according to a database model.
The relational database model is most commonly used. Other models, such as the hierarchical
model and the network model, use a more explicit structured representation of relationships.
A relational database matches data by using common characteristics found within the data
set. The resulting groups of data are structured in a way that is easier for many people to
understand. For example, a data set containing all the real-estate transactions in a town can be
grouped by the year the transaction occurred, by the sale price of the transaction, or by the
buyer's last name, and so on. Such a grouping uses the relational model (also referred to as
“schema”). Hence, such a database is called a "relational database.”

[0006] The software used to perform such structuring and grouping is called a relational
database management system (RDBMS). The term "relational database” often reters to this
type of software. Relational databases are currently the predominant choice used for storing
financial records, manufacturing and logistical information, personnel data, and much more.
Specifically, a relational database is a collection of relations, frequently referred to as tables.
Tables consist of rows of data values or keys in labeled and typed columns. Some database
management systems require that users identify themselves before posing queries, and some
rows or columns within a table, or full tables may or may not be visible to a given identified
user, depending on the access rights defined for that user.

[0007] A query on a database is an instantiation of a formula for requesting data from a
database that specifies conditions that must satisfied by the answers to the query. A structured
query is a query formulated according to a structured grammar. One such grammar Is
specified in the Structured Query Language (SQL), which is a widely used language for
accessing data in relational database management systems (RDBMS). A database retrieval
system is a software program or set of programs that process user queries Over one or more
databases.

[0008] Query processing means taking an instantiated user query as input, parsing the
query to understand what conditions are specified in the query, accessing the data from
database, and returning answers from the database that satisfy the conditions specified in the
query. A well structured query is a query that respects the grammar implemented in the
database retrieval system.

(0009] An instantiated query is a query that has at least one condition. Native database

functions are those operations that a database management system can perform on a database,

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102

including creating a database, modifying a database, and processing a query on a database,
The search result from a database query is usually a list of all the database elements that
fulfill the conditions specified in the query.

[0010] A search engine is a software program or set of programs that fetch pieces of
information, often called documents, from a variety of information sources, that index that
information and that provide means for accessing some representation of the original
information using those indexes in response to a query. The original information, or
document, may be a text document, such as web page, email, PDF file, an image tile, a video
file, an audio file, a row from a database, or any other piece of information that 1s subject to
analysis.

[0011] [Itis possible to index the content of a database by running a database query over a
database and treating every item in the result list as a document,

[0012] In addition to the indexing of the content of a database, it is possible to previously
flatten the content of the database. The “flattening” method consists in combining multiple
tables and multiples rows from the dafabase to create a document.

[0013] Search engines, for example, GOOGLE™, or YAHOO!™, usually have a unique
query box for entering a user query, as compared to a database interface, which might have
multiple search boxes, possibly one for every field in a table. Search engines often have a
very simple input grammar, for example, receiving as input a single word and returning all
indexed web pages containing that word. This is an example of free text search because the
word may appear anywhere in the resulting document. If the entire document fetched by the
search engine can be searched, then the search engine implements full text search.

[0014] Documents may also be divided into sections, which are recognized by the search
engine. Such sections include paragraphs sections, title section, or body section. Some search
engines allow a user to restrict a query to a specified section or field. The search result of a
search engine query is a list of documents that match the query. This list is usually ordered
according to a ranking strategy, such as ranking by document length (by presenting shorter
documents first) or by ranking that compares the density of the words in the query with the
words in each document,

[0015) While free text search formulates a valid query for the search engine, they usually
provide support for more sophisticated queries, For example, popular search engines, such as

GOOGLE, often support Boolean operators (e.g., Disney AND world) or operators

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102

configured to target specific parts of the document, such as “intitle: Disney,” which searches
for the term “Disney” only within the title of the document. Many other variations for
sectionalizing the documents are also possible.

(0016] Search engines often use an inverted index of all the terms that they have
extracted from the documents fetched. The inverted index indicates where, in what document,
a term is found. A list of terms extracted from this index allows a search engine to propose
auto-completion while a user is typing the query into a query box. Auto-completion is a
mechanism of indicating which indexed terms are possible completions of the string that a
user is currently typing. Auto-completion is performed by a process that monitors what the
user is typing, and may propose possible completions after every keystroke. Each proposed
completion in auto-completion might be an indexed term that could be used as a query in a
search engine, and for which the search engine knows that there exists a document
corresponding to this term.

[0017) Search engines often implement spell checking over user queries. [n spell
checking, for queries with few or no results, the search engine may propose other terms from
its inverted index that may be what the user intended to type.

[0018] In addition to spell checking, a search engine may also provide other search
mechanisms, for example, a search term, such as dogs, might be sfemmed or lemmatized so
that it also matches the term dog. Another example of search engine query syntax might be to
use a star (*) operator to match any number of characters, so that a search query dog™ would
also match the inverted index terms dog, dogs, dogged, dog-eared, etc, Use of the star
operator in this manner is called prefix match.

[0019] One might also define the use of quotes around a search query to turn off default
stemming to impose a perfect match. For example, “dogs” would only match the term dogs
in the inverted index but would not match the term dog. A search engine might also
implement a search using a lexical semantic structure, such as a thesaurus, so that a search on
the word dog might also retrieve documents containing the word pet, assuming that the
thesaurus indicates a relation between dog and pet and that this relation is activated during
query processing.

[0020] Building queries for both search engines retrieval and database retrieval that use

the syntactic possibilities may be difficult for the ordinary information seeker. Advanced

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102

N

query syntax is difficult to master and only a small percentage of information seekers can
master this syntax without sigmificant training.

[0021] Commercially available products exist that guide a user in the construction of
database queries, For example, DISCOVER™ from ORACLE™ of Redwood Shores,
California, includes a query generator that allows a user to construct a query by selecting
items from a drop down list of items displayed on the screen. The items may represent data
which are to be obtained from the database, or alternatively they may represent operations
that are to be performed on this data. Once the items have been selected, the query generator
generates a query, usually in SQL, which can then be sent to a database retrieval system for
execution,

[0022] In an article entitled 'Combining Free-word Search and Relational Databases', by
M. Hassan, R. Alhajj, and M.J. Rodley, the authors write: “Structured query languages are
rich to allow querying the contents and the structure of a relational database with well known
structure and characteristics. However, given a dynamic database, i.e., a database with a
varying or unknown structure makes the query formulation process a very difficult task.”

The above-mentioned authors propose a system for exploring the contents and structure of
databases by transforming a simple search-engine-like query into a series of database
requests, using Java Database Connectivity. Java Database Connectivity (JDBC) is a
technology that enables the Java program to manipulate data stored into the database, In an
“all levels” mode, once a query consisting of one or two words connected by a specified
Boolean connector is submitted, the JDBC database requests are sent to all visible databases,
and any database name, table name, column name, or value that matches the query, is
displayed.

[0023] Business Intelligence refers to computer-based techniques for gathering,
consolidating, modeling and delivering material and immaterial data of a company in
order to support better business decision-making and to provide to the executive
management an overview of the activity of the company. One main drawback of many
known business intelligence systems stems in that they often require the intervention of
one or more specialists able to handle complex structured query. For instance, whenever

an executive manager has a specific request, he or she will be obliged to express it to a

database specialist, whose role is to design a complex structured query in order to provide

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102

an appropriate answer satisfying the request. The dialog and the designing of the complex
structured query are time-consuming. This requirement thus represents a serious
constraint in the growth of business intelligence system. There is therefore a need for a
method and system for formulating a request using a comprehensive and intuitive tool,

such as a search engine, which implements free-text search with a certain level of trust.

BRIEF SUMMARY

[0024] The embodiments described in this document differ from the above methods in a
number of ways. In one embodiment of the invention, user input at every keystroke is
monitored and all possible completions of the user input are proposed. Other embodiments
describe structured queries that can be run over a given database using a search engine, rather
than running all possible queries. Some embodiments further use a copy of the information in
the databases rather than the database retrieval system themselves, which provide advantages
based on the speed and scalability of search engine technology. Search engines are generally
very fast and produce results in the sub-second range rather than in the multiple second or
minute range, which a database retrieval system might require to respond to a query. Some
embodiments further aid the user by producing only trusted queries, which have non-null
answers. Other embodiments further provide the user with the result counts of the proposed
trusted queries.

[0025] In one embodiment, the trusted query system provides a means for a user, who 1s
not necessarily skilled in the art of database construction and manipulation, to access the
contents of a database by iteratively producing trusted queries, i.e., structured queries that are

both valid on the database and that are known to have matching, instantiated records in the
database. A structured query resiricts the user query to certain values or certain fields over the
databases being queried. As referred to herein, the word query means a structured query
performed by a search engine. |

[0026) In one embodiment, the method for performing trusted queries on a database
includes retrieving database entries from one or more databases, flattening a plurality of
database entries, indexing the plurality of flattened database entries to form a search engine
index, and prompting the user to enter an input. The system continuously monitors the user
input and each time an input is entered by the user, the system computes a set of non-null

partial queries in response to the input entered by the user, associates a structured item to

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102

each non-null partial query, and allows the user to select one of the structured items. If the
user selects one of the structured items, the system replaces the user input by the non-null
partial query associated to the selected structured item. When the user validates the input, the
system executes the input as a query. Finally, the system provides documents to the user
corresponding to the executed query.

[0027] In another embodiment, a computer program product includes a computer useable
medium and computer readable code embodied on the computer useable medium for
performing trusted queries on a search engine, based on input from a user. The computer
readable code for execution by a processor when executed, causes the processor to retrieve
entries from one or more databases, flatten a plurality of database entries, index the plurality
of flattened database entries to form a search engine index, and prompts the user to enter
input. The computer program product continuously monitors the user input, and each time an
input is entered by the user, the processor computes a set of non-null partial queries in
response to the input entered by the use, associates a structured item to each non-null
partial query, and allows the user to select one of the structured items. If the user selects
one of the structured items, the processor replaces the user input by the non-null partial
query associated to the selected structured item. When the user validates the input, the

processor executes the input as a query, and provides documents to the user

corresponding to the executed query.

[0028] In a further embodiment, a system for performing trusted queries on a search
engine, based on input from a user, includes a processor configured to retrieve database
entries from one or more databases, a database flattening component configured to flatten the
database entries, a database indexing component configured to index the flattened database
entries to from a search engine index, and a display screen configured to prompt the user to
enter input. The processor continuously monitors the user input and processes the user input
entered by the user by computing a set of non-null partial queries in response to the input
entered by the user, associating a structured item to each non-null partial query, allowing the
user to select one of the structured items; and if the user selects one of the structured items,
replacing the user input by the non-null partial query associated to the selected structured
item. When the user validates the input, the processor executes the input as a query and

provides documents to the user corresponding to the executed query.

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102

[0029] Providing and generating trusted queries according to some embodiments
described herein are imporiant because using free-text to formulate queries is inherently
ambiguous, and such ambiguity may be a problem when result sets are used in the context of
decision making, for example, in the context of business intelligence applications when
drawing a pie-chart that counts certain items/categories in the results set. Therefore, there is a
need for a trusted query system and method that suggests an interpretation, that is, a
structured query process that anticipates what the user may have in mind when formulating a
free-text query. This is important in order to create a certain level of "trust" when using free
text to formulate queries. This is of particular importance in the context of business

intelligence.
BRIEF DESCRIPTION OF THE DRAWINGS

(0030] The system and method may be better understood with reference to the following
drawings along with the below description. The components in the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the principles of the invention.
Moreover, in the figures, like reference numerals designate corresponding parts throughout
the different views.

[0031] Figure 1 is a flowchart according to one embodiment of the invention showing the
steps that may be taken by the trusted query method and system;

(0032] Figure 2 is a flowchart showing the steps that may be taken to flattening a
database according to a specific embodiment;

[0033] Figure 3 is a flowchart showing the steps that may be taken to index a flattened
database table according to a specific embodiment;

[0034) Figure 4 is a flowchart according to a specific embodiment showing the steps that
may be taken for user input and monitoring;

[0035] Figure 5 is a flowchart according to a specific embodiment showing how trusted
queries are generated after every user keystroke;

[0036] Figure 6 is a block diagram of a computer system that can be used to implement
the method according to several embodiments of the invention;

[0037] Figure 7 is a pictorial drawing showing a typical database table according to one
e¢mbodiment of the invention;

[0038] Figure 8 shows how the database of Figure 7 can be represented in search engine;

[0039] Figures 9 and 10 are pictorial drawings showing instantiated examples of a
database and its flattened form, according to a specific embodiment; and
(0040] Figures 11-22 illustrate various screen displays of a trusted query interface

according to specific embodiments of the invention.

DETAILED DESCRIPTION

[0041] Figure 1 is a flowchart showing operation of the trusted query system, including
steps (100) that may be taken according to one embodiment of the trusted query system 110.
As an overview of the user process, and according to a specific embodiment, the user is
presented with an interface, such as a GUI or graphical user interface, to query a database
using a search engine. The user then begins typing his or her query into a query box of the
search engine. In a preferred embodiment, after each keystroke is typed, the system displays
versions of instantiated and partially instantiated queries that would return a non-null set of
records from the database,

[0042] At any time, the user can (i) click on query suggestions proposed by the system
110, (ii) enter more text in the displayed query box, or (iii) submit the current query to the
underlying search engine or database retrieval system. Alternatively, the user may use a
speech-to-text interface as data input to the system 110 rather than typing. In the following
description, it is assumed that the user is using a text entry interface.

[0043] One advantage of the trusted query method and system 110 is that the user never
formulates a query that would produce zero resuits. During the process described herein, the

user could enter text that could Jead to a zero result, but the trusted query method and system

110 first warns the user that such a query will return zero results before the user validates the
query. The system 110 may also suggest alternatives, for example, via spell checking at that
point.

(0044] Although it may be theoretically possible to generate all such queries producing
non-zero results before the user begins typing, the combinatorially large number of
possibilities would require storage space many orders of magnitude greater than the size of
the original database being queried by the search engine, and thus is not feasible or

economically viable. Using the embodiments as described herein, it is not necessary to

explicitly generate all the possible queries that could be run over the database since possible

CA 2772746 2018-10-05

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
10

non-null queries are generated in real-time or on the fly, as explained below, by rapid search
engine lookup.

[0045] Because the trusted query method and system 110 according to one embodiment
uses underlying search engine technology rather than native database functions, the system
110 provides full text search and other search engine capabilities that might not be present in

the underlying database system. For example, the trusted query method and system 110

provides:

« [.anguage detection

» Tokenization and normalization, with sentence boundary recognition (parsing
text into individual words and sentences, applying language-specific rules
regarding separators like white space and punctuation)

« Stemming (identification of words sharing the same stem, for example,
“engine” and “engines”)

+ Lemmatization, morphological and syntactic processing (identitication of not

only basic stems but of more complex variants, like “good” and “better,” and

applying language-specific knowledge of word and sentence construction

patterns)

[0046] In specific embodiments of the trusted query method and system, commercially
available software, such as a search engine, may be used to index the underlying database,
once flattened. Such commercially available search engines preferably include “SPLIT”
operator capability. The underlying database (or possibly more than one database) is first
fully indexed by a search engine to create a search engine index, and thus the search engine
then operates on the search engine index, rather than the original database. Thereaiter, based
on the user query, the search engine returns documents acquired from the search engine
index, and such results represent the rows of the original database, as explained below, Of
course, the search engine index may include many structures or sub-structures, as required for
memory efficiency and processing speed. Alternatively, indexing may be performed in
multiple “batches” to minimize memory usage and promote efficient processing. Thus, the
entire search engine index need not be resident in memory at one time,

[0047] Referring now to Figure 1, the steps 110 for performing the trusted query method
according to one embodiment is outlined in a high-level format. Selected high-level steps

described in this paragraph will be described in greater detail below. In a first step (20,

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
11

database tables are retrieved from a database (“A”) 122, and the tables are flattened and are
stored 1n a flattened database storage 124. This process is shown in greater detail in Figure 3.
Next, the flattened database 124 is indexed using a search engine or other suitable tool 130. A
suggestion [ist is then extracted 140 and saved in a suggestion list (“B) 126. An input dispiay
screen 1s then presented to the user 150 to permit the user to enter various search terms or
queries. Processing then continuously monitors the user input and proposes queries to the
user that result in non-null responses to the query 160. This step iteratively loops to provide
the trusted query processing to the user.
[0048] With respect to the flattening step 120 of Figure 1, a database table 700 shown in
Figure 7 is accessed, which is a simplified representation of a typical database table. The
database table 700 from a database is of type T (710) with name D (720), and is composed of
a plurality of database table columns 730 labeled CI, C2, ..., CN, and a plurality (M) of
database table rows 740 instantiated with values T11, T12, ... TIN, T21, T22, ... T2N, up to
TMI, ..., TMN. Note that in this description, the terms “column” and “field” will be used
interchangeably.
[0049] In step 120 of Figure 1, the database A may be flattened using known database
flattening techniques, and may be flattened into a specific format in which each row contains
information identifying the database table type, the database table name, the database column
names (field names) and the instantiated values in the database table rows. Any suitable
search engine may be used to flatten the database, such as the CLOUDVIEW™ search engine
available from Exalead S.A. of France. During step 120, a plurality of databases and a
plurality of tables in each database may be flattened and indexed, although for purposes of
illustration only, one such table is shown in Figure 7.
[0050] Figure 2 shows the steps taken for flattening a database in greater detail, and
correspond to step 120 of Figure 1. For example, database table of Figure 7 is shown
converted to a flattened form, which is shown 1n Figure 8. The flattened format shown in
Figure 8 replicates each database table row on a single line of text separated by colons 810,
commas 820 and semicolons, and show positions indicating the row numbers, the column
names, and the column values. For example, the value of the second column of the second
row, T22 of Figure 7, appears in Figure 8 as the line:

- ROW-2:T/D/C1, T21; T/D/C2, T22; ... ; T/D/CN, T2N

CA 02772746 2012-02-29

WO 2011/024064 PCT/1IB2010/002102
12

[0051] In this example as shown in Figure 8, the first field, ROW-2, 840 (separated by a
semicolon) indicates that this line corresponds to the second row of the table. This semicolon
is followed by N fields. The second of these fields contains two items separated by a comma,
namely T/D/C2 and T22. Because this field is the second field after the colon, it corresponds
to the second column in the table. The first item in this field gives a hierarchical
representation of the database type T (optional value), the database table name D, and the
field or column name, C2. Note that these separating conventions can be replaced by any
suitable or equivalent separating schemes, and a description of such suitable separating

schemes may be found at the following URL: http://en wikipedia.or wiki/Flat file database.

[0052] As shown in Figure 2, a query is performed on the database 202 using the search
engine, and a next row of the database query result is read or input into the system 204. If
processing does not encounter the end of the database query result 210, then for each column
216, a check is made to determine if the end of the row has been encountered 226. If the end
of the row has been encountered 226, an “end of row" separator symbol is written at the end
of that row 230, and processing transfers back to step 204 to read the next row.

[0053] If the end of the row has not been encountered 226, the column name followed by
the column name separator symbol is written into the file 250. Next, the column value
followed by the column separator symbol is written into the file 260. A check is then made to
determine if more columns exist in the file 270, If more columns exist, processing transfers
back to step 226 completely process a row. If no additional columns exist, processing
transfers to an exit point 280. In step 210, if the end of iile 1s encountered, the routine 1s
considered to be complete 290, processing transfers to the exit point 230. The flattening
process allows the search engine to search in all the columns names and field values at once,
thus allowing to build suggest list over all this data in one efficient query.

[0054] Referring back to Figure 1, in step 130, the flattened version of the database A 1S
indexed, along with all other databases that have been flattened in step 120. Flattening the

database may be performed using a commercially available or standard search engine that
allows for searching within sections of a document. Such a standard search engine receives a
document as input and places all the words in the documents in an inverted file data structure,

which can subsequently be processed to match user queries to documents containing the user

query terms. In the flattened database example given in Figure 8, sections of the document

are separated by a semicolon.

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
13

[0055] Figure 3 shows additional details regarding the indexing step shown in step 130 of
Figure 1. First, a check is made to determine if the commercially available search engine
provides a SPLIT operator capability 310. A SPLIT operator allows a user to search within a
section of the document. If no SPLIT operator is available 310, processing exits 314. If the
SPLIT operator is available, the flattened database table is indexed 320, and processing then
exits 314,

[0056] For example, the following search (T/D/C2 AND T22) SPLIT *;”” would return
the document ROW-2 in this example. Figure 9 shows an example of a table called “All
leads™ 900 extracted from a customer relations database, while Figure 10 shows its flattened
version 1000. This database table called “All Leads” in Figures 9 and 10, and similarly
processed database tables not shown here, will be used to illustrate the functioning of the
trusted query system and method described in greater detail below.

[0057] Next, referring back to Figure 1, a list of all the terms indexed during the indexing
step (130) is written into a word list “B,” as shown in step 140. This step may be optional.
The word list B may be created simultaneously with the indexing step 130, or may be created
after step 130, or not at all, The word list B may be used for spell-checking purposes and
other natural language processing, such as phonetic searching.

10058} The user is then presented with a display (150) or other interface in which the user
can enter text into a query box and/or click various selections using an input device, such as,

for example, a keyboard, pointing device, touch sensitive screen, voice input, etc. Suitable

commercially available voice recognition software and/or hardware may be used 1o
implement voice recognition and process voice commands issued by the user. Preferably, in
the initial display presented to the user, all indexed database tables are displayed, one per
line, with the number of indexed rows per table. An example of this presentation 1100 is
shown in Figure [1 in which three tables « All-Leads » 1110, « All-Contacts » 1120 and «
All-Accounts » 1130 are indexed with 97, 73 and 21 rows indexed, respectively.
[0059] In step 160 shown in Figure 1, any user input entered into the query box activates
an iterative process of trusted query suggestion generation. A trusted query is a query
fulfilling the following conditions:

(a) the query is a well-structured query for the search engine; and

(b) when executed on the search engine, the query returns a non-nul] plurality of

answers. Optionally, if user permissions are needed to access the database

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
14

contents, then when the trusted query is executed by the identified end-user,

the query will return a non-null plurality of answers for that 1dentified end-

USEer.
[0060] In step 160, after each lefter or phoneme is input by the user using the mput
device, a query is generated and executed over the search engine index, corresponding the
text entered by the user. The above process shown in steps 150 and 160 repeats iteratively to
perform the trusted database query process 100.
[0061] Figure 4 shows additional details of steps 150 and 160 of Figure 1. First, a user
interface showing a query box is presented to the user 150 so that the user may enter a query.
Step 150 is shown in this figure for continuity. As mentioned above, any suitable data entry
or request method may be used. Processing loops continuously 404 waiting for user input.
After the user has input his or her data or query, processing determines if the "enter" key has
been depressed 408. If the enter key has been depressed 408, the query entered (validated) by
the user is submitted to the search engine 410, the result page is processed for presentation to
the user 416, and processing branches back to displaying the user interface 150. In another
embodiment, the query entered by the user is mapped into the syntax of the one or more
original databases 122, the mapped queries are executed over the database(s), and database
search results are presented to the user 416.
[0062] If the user does not press the enter key 408, processing determines if the user has
clicked one of the proposed partial queries 420, If the user has not clicked one of the
proposed partial queries 420, processing determines if the user has entered keystrokes 430. If
the user has not entered keystrokes 430, processing determines if the user has clicked on an
outside suggestion 440, If the user has clicked on an outside suggestion 440, the suggestions
may be hidden to the user 446, and processing branches back to displaying the user interface
150. In one embodiment, the suggestions may be hidden because the user has clicked on an
area ouiside of the suggestions provided, and {hus it is assumed that the user is not focused or
interested in the search field.
[0063] If the user has clicked on one of the proposed partial queries 420, the selected
query is displayed in the input field of the query input box 460. Next, auto-completion
suggestions are obtained from the trusted query processing 470, which will be explained in
greater detail below with reference to Figure 5. After the auto completion suggestions are

obtained from the trusted query processing 470, the auto-completion suggestions are

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
15

processed for display to the user 480, and processing branches back to displaying the user
interface 150.

[0064] In step 430, if the user has entered keystrokes, the auto completion suggestions are
obtained from the trusted query processing 470. If processing determines that the user does
not clicked on the outside suggestions 440, processing branches back to displaying user
interface 150.

[0065] The process of obtaining the auto-completion suggestions shown in step 470 is
shown in greater detall in Figure 5, and such auto-completion suggestions displayed
correspond to the possible valid completion of terms found in the indexed flattened databases.
The process of auto-completion involves predicting a word or phrase that the user may want
to enter, but without requiring the user to actually type the word or phrase completely.

[0066] The auto-completion feature according to one embodiment illustrated with respect
to step 470 is particularly effective when it is easy to predict the word or phrase being typed
based on words or phrases already typed in by the user, such as when there are a limited
number of possible or commonly used words, as may be the case with e-mail programs, web
browsers, or command line interpreters, or when editing text written in a highly-structured,
easy-to-predict language, such as in source code editors, Auto-completion speeds up human-
computer interactions and improves the user satistaction.

[0067] Auto-completion in one embodiment of the trusted query system 110 allows the
user to auto-complete the table names in an SQL statement and column names of the tables
referenced in the SQL statement, As text is typed into the editor, the context of the cursor
within the SQL statement provides an indication of whether the user needs a table completion
or a table column completion. The table completion provides a list of tables available in the
database server to which the user is connected. The column completion provides a list of
columns for only tables referenced in the SQL statement.

[6068] Auto-completion processing in one embodiment of the trusted query system 110
may be similar to commercially available software programs, such as Aqua Data Studio,
release 7.5 from AquaFold, Inc.,, which provides, in addition to an SQL editor, auto-
completion tools for various queries in a database. In many word processing programs, auto-
completion decreases the amount of time spent typing repetitive words and phrases. The

source material for auto-completion may be gathered from the current document that the user

is working on, or from a list of common words defined by the user.

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
16

[0069] Currently, OpenOffice.org from Oracle Corp. of Redwood City, California,
StarOffice from Sun Microsystems, Inc., Micrasoft Office from Microsoft Corp, and KQOffice

from KDE corp., for example, include the above-described support for auto-completion, as do
advanced text editors, such as Emacs and Vim. In command line interpreters, such as Unix’s
sh or bash, or Microsoft Windows’s cmd.exe or PowerShell, or in similar command line
interfaces, auto-completion of command names and file names may be accomplished by

tracking of alf the possible names of things the user may access.

[0070] In some programs, auto-completion may be performed by pressing the Tab & key
after typing the first several letters of the word. For example, if the only file in a current
directory that starts with x is xLongFileName, the user may prefer to type X, and auto-
complete for the complete name. If another file name or command starting with x existed in
the same scope, the user would type additional letters or press the Tab key repeatedly to
select the appropriate text. In some embodiments of the trusted database query, a valid
completion may be any column name found in the original database, or any partial match of a
row value in the original database, Both column names and row values have been indexed in
some embodiments of the invention.

[0071] Figure 5 shows the auto-completion suggestions process of step 470 of Figure 4 in
greater detail. First, the contents of the query box are analyzed 506. If the query box is empty
510, then all the tables name and counts of rows in each table are fetched 520 as suggestions
from the search engine index, and are formatted 530.

[0072] If the query box contains text 510, the query is parsed 534. Parsing recognizes and
identifies the table names and column names in the query box (the structured chunks) and
recognizes full, free text entered by the user in order to generate structured suggestions.
[0073] After parsing 534, processing determines if full, free text has been recognized as a
result of the parsing 538. If full, free text has been parsed 538, processing branches to
determine whether a table name appears in the query box 544, At this point, processing
determines whether the new text follows a table name, If a table name does appear in the
query box 544, the columns names of the specified table are fetched and matched against all
table and column names 546, and then the structured query is built 564.

[0074] Queries over the flattened database are generated involving all the words and/or
field names already entered in the query box. Step 544 determines whether a table name has

been specified in the previous structured chunks. If so, a match of the full text against the

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
17

table column names (546) is performed. If a table name has not been specified (544) in the
previous structured chunks, a match against all table names and all table column names is
performed 548.

[0075) If there is no table name specified 544, then the full, free text is matched against
all table names and their column names 548 to generate suggestions. Whether the table name
is found 546 or is not found 548, the structured query is then built 564. This structured query
may be constructed by concatenating all the structure chunks in the query box (table names
and column names) with an AND operator, and adding the full text search on the detected
free text.

(0076] When the query partially or wholly matches the prefix of a column name of a
flattened database table (see step 548), the table name of the matched column is displayed in
a window on the user interface, and the partially or wholly matched column is also displayed
with the matching parts in bold or highlight 576. When the query partially or wholly matches
the value of a database table column, then the database table name where the value is found is
displayed in a window on the user interface. Also displayed is the column name where the
value is found, along with the value, which is displayed with its matching part in bold or
highlight 576. The number of instantiated rows corresponding the matched column name, or

matched column value with its column name is also displayed, for example, as a number in

parentheses.

[0077] The structured query constructed as described above 1s then sent to the search
engine 570. If this structured query has matching results (hits) in the search engine 572, the
suggestions are extracted from these results 574. Each of the extracted results may contain a
table name, a column name, and a value. The suggestions extracted correspond to values for a
given table and a given column, where the values correspond to the free text, either by perfect
match or match of a prefix of a word appearing in the value of the specified column of the
specified table.

[0078] Next, all the suggestions created in steps 546, 548 and 574 are gathered, and the
matching parts are highlighted 576. The highlighted suggestions are then formatted 530. In
the drawings, the highlighted portions are also shown in an increased font size for purposes of
illustration. However, any form of text emphasis may be used to easily point out to proposed
query to the user. If this structured query does not have matching results (hits) in the search

engine 572, then there are no suggestions to extract, and highlighting is performed 576.

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
18

Because highlighting is an iterative process for each query hit, if there are not hits, no
highlighting is performed.

[0079] The formatting process 530 iterates over the suggestions it receives and according
to the suggestion type of each suggestion, formats the displays according. If the suggestion
type is a table name 578, all table names are processed for display 580. If the suggestion type
is a column name 578, all column names are processed for display 582. Similarly, if the
suggestion type is a value 578, all column names and values are processed for display 584.
After the suggestion type is processed for display 580, 582, 584, the process suggestions are
returned 586, and made available for display. Processing then returns back to its subroutine
call point, as shown in step 470 of Figure 4. Examples of such formatted displays are shown
in at least Figures 11, 12, 16 and 17.

[0080] Returning back to step 538, if full, free text has not been parsed, processing
determines whether a table name has been specified 590. If a table name has not been
specified 590, processing branches so as to format the suggestions 530. If a table name has
been specified 590, the column names of the specified table are returned 592, and processing
branches so as to format the suggestions 530, Note that if full, free text is not available, a
“structured chunk® describing the table name will be available corresponding to the column
names of the specified table.

[0081] In a preferred embodiment, each row of the flattened database tables is indexed as
a separate document in which the table name appears, as well as the names of each column,
along with the values of each column formatted in such a way (for example as shown in
Figure 10) so that it is possible to distinguish database table names, column names and
column values, and to associate column values with their column names. Any other suitable
method of indexing documents that retains the distinction between database table names and
column names and column values, can be used. For example, one might separately index all
of the database table names and the table column names in one search engine index, and
separately index all of the database values in another search engine index.

[0082] In one embodiment, a simple or structured thesaurus or lexical semantic structure,
such as an ontology, may be used to map the actual values in the flattened database to a set of
alternative values at the time of indexing or at query time. An ontology is a formal
representation of a set of concepts within a domain and the relationships between those

concepts. An ontalogy may be used to reason about the properties of that domain, and may be

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
19

used to define the domain. In theory, an ontology is a ‘formal, explicit specification of a
shared conceptualization.”

[0083] An ontology provides a shared vocabulary, which can be used to model a domain,
that is, the type of objects and/or concepts that exist, and their properties and relations.
Ontologies are used in artificial intelligence, the Semantic Web, software engineering,
biomedical informatics, library science, and information architecture as a form of knowledge
representation about the world or some part of it. Most ontologies describe individuals
(instances), classes (concepts), atiributes, and relations. (see http://en.wikipedia.or
wiki/Ontology_(computer science) for additional detail).

[0084] For example, an ontology might specify that « dog » has an alternative value «

poodle ». In this case, the user query may match an ontology alternative to the column value,
and either the ontology alternative or the original query value, or both, can be displayed while
the user enters his or her query.

[0085] In another alternative embodiment, when the query matches a column name, and
that column name contains only numerical values in the original database, the column name
can be displayed in the user interface with an additional menu displaying symbols indicating
that the system will display the sum, or the average, or the count, etc., of all the column
values matching the query, rather than the individual values themselves.

[0086] Figure 12 shows an example of the results of these processes, once the user has
entered the three letters « nam » in the query box shown in Figure 11. These letters are a
partial match (shown in bold) of a column name (« name ») in the « All-Leads » table. They
are also a partial match on the content of a number of rows in the « All-Leads » table,
partially matching « Robert Namais » in the « name » column of eight rows, and partially
matching « Namibia » appearing in 18 rows in the « All-Leads » table. Similarly, the entered
string « nam » also matches column names (« name ») and row values in the flattened « All-
Contacts » table, The structured items can be displayed in a visually hierarchical fashion,
as shown in Figure 12, such as where the user sees that “Namibia” is a value in the
“country” field of the “All-leads” table, or that “name” is another field in this “All-leads™
table. The presented structured items help the user interpret the associated non-null partial
query. Each structured item provides explicit disambiguation of the search intent of the

user, and thus provides the user with a certain level of trust that their search is both being

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
20

correctly interpreted and fruitful. Such structured items may be presented in hierarchical
form ordered according to any suitable ordering criteria, for example, in alphabetical
order, based on popularity, or based on the number of occurrences found.
[0087] Once the user has entered some text, as shown in Figure 12, the user can decide
the following:
1. To enter more text (producing an output such as seen in Figure 12, with
values corresponding to the new strings entered);
2. To press the return key, and thus validating the query, which sends the
contents of the current text box as a query (see Figure 13); or
3. To click on one of the instantiated fields on the display.
(A) If the instantiated ficld contains a partial match in the content
part, then that match replaces the current text in the query box.
For example, if the user clicks on the box containing « Robert
Namias » in Figure 12, then the Figure 14 will be displayed to
the user. In this figure, we see that because the field clicked
upon « Robert Namias » appears in the « name » field of the «
All-leads » table, the table and the field name now appear in
the query box, replacing the text entered by the user. This
corresponds to the process 460 shown in Figure 4 (“display
selected query in input field™).
(B) If the user clicks on a partial match that corresponds to a field
name, such as the field name « name » in the « All-contacts »
section of Figure 12, then this column name appears in the
query box, as shown in Figure 15,
(C) In general, all the words in the free part of the query box
(following the structured part that contains table names and
column names or value), all such remaining words that match
either the table name, the column name, or the value of the
selected clicked-on suggestion, are removed from the free text

part and are replaced by a structured part.

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
21

[0088] If the query box is empty, as shown in Figure 11, and the user clicks on a table

name, then the column names of the table are displayed on the interface, as shown in Figure

16 which appears if the user clicks on the fable name « All-contacts » in Figure 11.

[0089] At this point, the user can enter free text, whose corresponding auto-completion
suggestions are then constrained to this database table, as shown in Figure 17, Alternatively,
the user can click on a field name, which causes this field name appear in the query box, as
shown in Figure 18, and thereafter, further text entry produces trusted queries restricted to
this field, as shown in Figure 19.

[0090] In Figure 20, the result when the user has selected one of the above-described
suggestions is shown, In Figure 21, an example of the result of typing text into the trusted
query of Figure 18 is shown, which text partially matches row content in some other column
of the results of the trusted query of Figure 18. The user can also press the return key to send
the current trusted query to the underlying search engine, as shown in Figure 22,

[0091) Referring now to Figure 6, a high-level hardware block diagram of one
embodiment of a system used to perform trusted query searching is shown. The trusted query
system may be embodied as a system cooperating with computer hardware components
and/or as computer-implemented methods. The trusted query system 110 may include a
plurality of software modules or subsystems. The modules or subsystems may be
implemented in hardware, software, firmware, or any combination of hardware, software, and
firmware, and may or may not reside within a single physical or logical space. For example,
the modules or subsystems referred to in this document and which may or may not be shown
in the drawings, may be remotely located from each other and may be coupled by a
communication network.

[0092] Furthermore, Figure 6 is a high-level hardware block diagram of a computer
system 600 that may be used to execute software or logic to implement the trusted query
processing, The computer 600 may be a personal computer and may include various
hardware components, such as RAM 614, ROM 616, hard disk storage 618, cache memory
620, database storage 622, and the like (also referred to as “memory subsystem 6277). The
computer 600 may include any suitable processing device 628, such as a computer,
microprocessor, RISC processor (reduced instruction set computer), CISC processor
(complex instruction set computer), mainframe computer, work station, single-chip computer,

distributed processor, server, controller, micro-controller, discrete logic computer, and the

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
22

like, as is known in the art. For example, the processing device 628 may be an Intel
Penttum® microprocessor, x86 compatible microprocessor, or equivalent device, and may be
incorporated into a server, a personal computer, or any suitable computing platform.

[0093] The memory subsystem 626 may include any suitable storage components, such
as RAM, EPROM (electrically programmable ROM), flash memory, dynamic memory, static
memory, FIFO (first-in, first-out) memory, LIFO (last-in, first-out) memory, circular
memory, semiconductor memory, bubble memory, buffer memory, disk memory, optical
memory, cache memory, and the like. Any suitable form of memory may be used, whether
fixed storage on a magnetic medium, storage in a semiconductor device, or remote storage
accessible through a communication link. A user or system interface 630 may be coupled to

the computer 600 and may include various input devices 636, such as switches selectable by

the system manager and/or a keyboard. The user interface also may include suitable output
devices 640, such as an LCD display, a CRT, various LED indicators, a printer, and/or a
speech output device, as is known in the art.

{0094] To facilitate communication between the computer 600 and external sources, a
communication interface 642 may be operatively coupled to the computer system. The
communication interface 642 may be, for example, a local area network, such as an Ethernet
network, intranet, Internet, or other suitable network 544, The communication interface 642
may also be connected to a public switched telephone network (PSTN) 646 or POTS (plain
old telephone system), which may facilitate communication via the Internet 644. Any suitable
commercially-available communication device or network may be used.

[0095] The logic, circuitry, and processing described above may be encoded or stored in
a machine-readable or computer-readable medium such as a compact disc read only memory
(CDROM), magnetic or optical disk, tlash memory, random access memory (RAM) or read
only memory (ROM), erasable programmable read only memory (EPROM) or other
machine-readable medium as, for example, instructions for execution by a processor,
controller, or other processing device.

[0096] The medium may be implemented as any device that contains, stores,
communicates, propagates, or transports executable instructions for use by or in connection
with an instruction executable system, apparatus, or device. Alternatively or additionally, the
logic may be implemented as analog or digital logic using hardware, such as one or more

integrated circuits, or one or more processors executing instructions; or In software in an

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
23

application programming interface (AP]) or in a Dynamic Link Library (DLL), functions
avatlable in a shared memory or defined as local or remote procedure calls; or as a
combination of hardware and sofiware.

{0097] In other implementations, the logic may be represented in a signal or a
propagated-signal medium. For example, the instructions that implement the logic of any
given program may take the form of an electronic, magnetic, optical, electromagnetic,
infrared, or other type of signal. The systems described above may receive such a signal at a
communication interface, such as an optical fiber interface, antenna, or other analog or digital
signal interface, recover the instructions from the signal, store them in a machine-readable
memory, and/or execute them with a processor.

[0098] The systems may include additional or different logic and may be implemented in
many different ways. A processor may be implemented as a controller, microprocessor,
microcontroller, application specific integrated circuit (ASIC), discrete logic, or a
combination of other types of circuits or logic. Similarly, memories may be DRAM, SRAM,
Flash, or other types of memory. Parameters (e.g., conditions and thresholds) and other data
structures may be separately stored and managed, may be incorporated info a single memory
or database, or may be logically and physically organized in many different ways. Programs
and instructions may be parts of a single program, separate programs, or distributed across
several memories and processors,

[0099] While various embodiments of the invention have been described, it will be
apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible within the scope of the invention. Accordingly, the invention is

not to be restricted except in light of the attached claims and their equivalents.

24

What Is Claimed Is:

1. A method for performing queries on a search engine,
based on input from a user, the method comprising:

retrieving database entries from one or more relational databases;

flattening the one or more relational databases with a plurality of the database entries;

indexing the plurality of flattened database entries to form a full-text search engine
index;

prompting the user to enter an input;

continuously monitoring the user input;

each time an input is entered by the user, processing the user input by:

computing a set of non-null partial queries in response to the input entered by the
user, the non-null partial queries each being both valid on the one or more relational
databases and having matching, instantiated records on the one or more relational databases
thereby always resulting in non-null responses;

associating a structured item to each non-null partial query;

allowing the user to select one of the structured items;

if the user selects one of the structured items, replacing the user input by the nonnull
partial query associated to the selected structured item;

when the user validates the input, executing the input as a query; and

providing documents to the user corresponding to the executed query.

2. The method according to claim 1, wherein the input is performed with a keyboard and/or

a pointing device.

CA 2772746 2018-04-27

25

3. The method of claim 1, wherein the input is performed with voice command.

4. The method according to claim 2, wherein the input entered by the user is processed after each
keystroke.

. The method according to claim 1, wherein the validated query is run against the search engine
index.

6. The method according to claim 1, wherein the validated query is mapped into a syntax of each of

the one or more databases, the mapped queries are executed against the databases, and the results are merged.

7. The method according to claim 1, wherein flattening the database entries generates
corresponding flattened entries, each flattened entry replicating each row of the database entry
as a single line of text containing information corresponding to a database table type, a

database table name, a database column name, and instantiated values in database table rows.

8. The method according to claim 1, wherein a search engine tlattens the database
entries, the search engine supporting a SPLIT operation, and is configured to search within

sections of a document contained in the database.

9. The method according to claim 7, wherein the search engine utilizes an inverted file

data structure.

10. The method according to claim 8, wherein the search engine performs the functions

selected from the group consisting of a speli-checking function, thesaurus function,

stemming function, lemmatizing function, tokenization function, and normalization function.

11. The method according to claim 1, wherein computing a set of non-null partial queries

in response to the input entered by the user includes auto-completion suggestions.

CA 2772746 2018-04-27

26

12. The method according to claim 1, wherein each structured item is presented with

highlighting corresponding to the user input.

13. The method according to claim 1, wherein each structured item is presented in a

hierarchical manner.

14. A non-transitory computer usable storage medium, comprising;:

computer readable instructions embodied on said computer usable medium for performing
queries on a search engine, based on input from a user, the computer readable instructions for execution

by a processor that when executed, causes the processor to:

retrieve database entries from one or more relational databases;

flatten the one or more relational databases with a plurality of the database entries; index the

plurality of flattened database entries to form a full-text search engine
index;

prompt the user to enter an input; continuously monitor the user input;

each time an input 1s entered by the user, processing the user input by:

computing a set of non-null partial queries in response to the input entered by

the user, the non-null partial queries each being both valid on the one or more databases and

having matching, instantiated records on the one or more relational databases thereby always

resulting in non-null responses;
associating a structured item to each non-null partial query;
allowing the user to select one of the structured items;

if the user selects one of the structured items, replacing the user input by the
non-null partial query associated to the selected structured item; '

when the user validates the input, execute the input as a query; and

provide documents to the user corresponding to the executed query.

CA 2772746 2018-04-27

27

15. The non-transitory computer usable medium according to claim 14, wherein the input is

performed with one of a keyboard and a pointing device.

16. The non-transitory computer usable medium according to claim 14, wherein the input 1s

performed with voice command.

17. The non-transitory computer usable medium according to claim 14, wherein the input

entered by the user is processed after each keystroke.

18. The non-transitory computer usable medium according to claim 14, wherein the validated

query is run against the search engine index.

19. The non-transitory computer usable medium according to claim 14, wherein the validated query

1s mapped into a syntax of each of the one or more databases, the mapped queries are executed against the

databases, and the results are merged.

20. The non-transitory computer usable medium according to claim 14, wherein flattening the
database entries generates corresponding flattened entries, each flattened entry replicating each row of
the database entry as a single line of text with delimiters separating row numbers, column

names, and column values, corresponding to the database entry.

21. The non-transitory computer usable medium according to claim 14, wherein the search engine

utilizes an inverted file data structure.

22. The non-transitory computer usable medium according to claim 14, wherein a search

engine flattens the database entries, the search engine supporting a SPLIT operation,

CA 2772746 2018-04-27

28

and 1s configured to search within sections of a document contained in the database.

23. The non-transitory computer usable medium according to claim 22, wherein the search engine
performs the functions selected from the group consisting of a spell-checking function,
thesaurus function, stemming function, lemmatizing function, tokenization function, and

normalization function.

24, The non-transitory computer usable medium according to claim 14, wherein computing a set of
non-null partial queries in response to the input entered by the user includes auto-completion
suggestions.

23. The non-transitory computer usable medium according to claim 14, wherein each structured

item is presented with highlighting corresponding to the user input.

26. The non-transitory computer usable medium according to claim 14, wherein each structured item

is presented in a hierarchical manner.

27, A system for performing queries on a search engine,

based on input from a user, comprising;

a processor configured to retrieve database entries from one or more relational

databases;

a database flattening component configured to flatten the one or more relational
databases with the database entries;

a database indexing component configured to index the flattened database entries to
form a full-text search engine index;

a display screen configured to prompt the user to enter input;

the processor continuously monitoring the user input and processing the user input

CA 2772746 2018-04-27

29

entered by the user by:

computing a set of non-null partial queries in response to the input entered by
the user, the non-null partial queries each being both valid on the one or more relational
databases and having matching, instantiated records on the one or more relational databases

thereby always resulting in non-null responses;

associating a structured item to each non-null partial query;
allowing the user to select one of the structured items; and
if the user selects one of the structured items, replacing the user input by the

non-null partial query associated to the selected structured item; and wherein when the user validates the
input, the processor executes the input as a query and provides documents to the user corresponding to

the executed query.

28. A method for performing queries on a search engine, based on input
from a user, the method comprising:
retrieving database entries from one or more relational databases;
flattening the one or more relational databases with a plurality of the database entries;
indexing the plurality of flattened database entries to form a full-text search engine
index;
prompting the user to enter an input;
continuously monitoring the user input;

each time an input is entered by the user, processing the user input by:

computing a set of non-null partial queries in response to the input entered by the
user, the non-null partial queries each being both valid on the one or more relational
databases and having matching, instantiated records on the one or more relational databases

thereby always resulting in non-null responses;

CA 2772746 2018-04-27

30

associating a structured item to each non-null partial query;

allowing the user to select one of the structured items;

if the user selects one of the structured items, replacing the user input by the nonnull
partial query associated to the selected structured item;

when the user validates the input, executing the input as a query; and

providing documents to the user corresponding to the executed query,

wherein flattening the database entries generates corresponding flattened entries, each

flattened entry replicating each row of the database entry as a single line of text containing

information corresponding to a database table type, a database table name, a database column name, and

instantiated values in database table rows

wherein the search engine performs the functions selected from the group consisting of a spell-
checking function, thesaurus function, stemming function, lemmatizing function, tokenization function,

and normalization function, and

wherein computing a set of non-null partial queries in response to the input entered by the user

includes auto-completion suggestions.

CA 2772746 2018-04-27

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
1/13
100 110
120
Retrieve Dadta Tables Flattened database A
Database an rows in an answer to a database que
A Flatten Database Tables (rows queny)

124
122

130 Index flattened Database A
database with a indexed by
search engine search

engine

>
Suggestion
list B

| 126

140

Extract suggestion
list

Present input display
screen o user

Monitor user input
and propose non
null queries

Figure 1

WO 2011/024064

120

Done

280

220

CA 02772746 2012-02-29

2/13

Start fiattening
Perform query on database
2

Read next row from
database query result
4

$

For each column in the row

ﬁ |
\ 226

Write column name
followed by column
name separator symbol

Write column value
followed by column
separator symbol

Figure 2

250

260

PCT/1IB2010/002102

|

|

|
Write end of row
separator symbol

230

WO 2011/024064

CA 02772746 2012-02-29

3/13

130

Start indexing

Does "SPLIT"
operator exist in
search engine

Y

Index the Flattened Database 320
Tables |

(—— R

i

PCT/1B2010/002102

CA 02772746 2012-02-29

PCT/1IB2010/002102

WO 2011/024064

4/13

09} '0G}

y 91nb1]

suonssbbns

14

abed)nsa;

Aejdsi(

N
07
{
13sn 3i} 0 suohsabbns
suonssbbins uonejdwod apISING I\
oine sjgejieAe Aeidsiq YOl
N
0ty
auibus Kianb psjsny S
ay) wol} suoysabbns SJoju3
uolajdwod ojne 189 A 155()
| N
174

09y

salenb

pjal} ndut ui ; _wtha
Kianb payosiss AejdsiQ T nwmomx%_o*mw wwo uo

SPiH

e 1441
auibua yoJess
0) xogq Aianb ui .
Alanb Jualind Jugnsg

Al

S ——— e —— - S e —————

xoq Atanb Buluieluod
aoeuIS)ul Jasn Aejdsig

indul sojuow pue
Aeidsip jussaid pelg

CA 02772746 2012-02-29

PCT/1B2010/002102

WO 2011/024064

/13

G 2inbi]
0.G
O

Buyybyubiy wuopad

suolsebbns

¥oeq puss _
S)IU LI0J) SaNjeA Joenxs

¥8S ¢85 | 08§
anjeA - SNEASE ", - (enjea ou) -
sleu uwnjo)) - 3WieU UWnjon - _couley 9)ael> v, -
N :Ae|dsip O} 1xa | :Aejdsip 0} x| Aejdsip 0} 1xa 1
045 auweu
UN|oo 2/G
aulbua yoseas Aanp
¢80k
uonsabbng
795 (1B} [N} + SYUNYD sweu a|qe}
paJmonis) Alanb
auibua yotess pjing 0£G 075

suoi}ssbbns
JBULIO]

SJUNOY pue sseu
B[qe] lB wnisy

'_).,4_-

SBLBU UWN[OD SaLel UWN|o9
35 5,918} puesigey | 8¥5 065
payoads jsusebe ||e Jsuiebe oo A —— 266
Xa} [N} YoJEN X8} |In} Yole SWBU SaLel ULINIoD LWMSH
olgel
1X8))|} JUSLING -
— SYUNYD PaInonys -
-Kianb asled A

ol Cms >

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
6/13

Computer System 00

- Memory Subsystem

RAM ROM
614 616

P Network |
s Interface/ Processing
T Communication Device
N Interface 628
646 642
Y User Interface
Internet z
644
]

o o ¢ | Database

Flattened N
Database A

Figure 6

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
7/13
710 720
Type T Database Table Named D 700
730
740
Figure 7
810 820 830
ROW-1 : T/DIC1, T11; T/DIC2, T12; ...; TIDICN, TiN
340 ROW-2 : T/D/C1, T21; T/D/C2, T22; ...; T/DICN, T2N
>810 ‘>830
ROW-N : T/D/C1, TM1; T/D/C2, TM2; ...; T/D/ICN, TMN

820

Figure 8

CA 02772746 2012-02-29

WO 2011/024064
8/13

PCT/1B2010/002102

Database Table Named “All Leads” 00

Name |Company
EMC, Inc
Annie Apple EMC, Software

Susie Topper Apple, Inc.

Figure 9

ROW-1 : All-Leads/Name, Robert Namais; All-Leads/Company, EMC Inc.;

1000

[e e

...} All-Leads/Country, US;

ROW-2 : All-Leads/Name, Annie Apple; All-Leads/Company, EMC Softwrae; . .. * All-l.eads/Country, France;

ROW-N : All-Leads/Name, Susie Topper; All-Leads/Company, Apple Inc.; ..

Figure 10

. 3 All-Leads/Country, Namibia;

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
9/13

\ 1100
n All leads —— 1110 (97)

All contacts — 120 (73)

All accounts —— 110 (21)

Figure 11

All leads

Robert Namias (8)

Figure 12

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
10/13

fam

Nam Inc
Country: India, ClO: Raman Tata

Eric Nam
Company: EMC, Title: CIO

Track & Trace
Company: Nam Inc, Amount: $200,000

Figure 13

All leads Name: Robert Namias [

Figure 14

Figure 15

CA 02772746 2012-02-29

WO 2011/024064 PCT/1B2010/002102
11/13

All contacts |

title

| contacts nam\
Naming Specialist (7)

Figure 17

Figure 18

CA 02772746 2012-02-29

WO 2011/024064 PCT/IB2010/002102
12/13

All contacts name | bro (

Robert Brown (2)
Richard Brownson

(1)
Broderick Enrst (4)

Figure 19

All contacts Name: Robert Brown |

Figure 20

All contacts Name: Robert Brown ital ‘
R

Figure 21

CA 02772746 2012-02-29

WO 2011/024064 PCT/1IB2010/002102
13/13

All contacts name: Robert Brown country: ltaly

Robert Brown
Company: EMC, Title: cl0, Country: ltaly

Figure 22

1 DO\“
120
O Retrieve Dadta Tablas
an
Dataliase ™™ Fiatien Databese Tables

-
-
o

|

Flattened database A
(rows In an answer to a database query)

122

130 N Index flattened

124

Database A

database with a
search engine

144 \ Extract suggestion

indexed by
search
enging

list

190 \ Present input display
screen to user

160 Monitor user input

and propose nan
null queries

—m Suggestion
list B

126

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - abstract drawing

