(54) Title: KEY DISTRIBUTION ACROSS NETWORKS

(57) Abstract: Systems and methods are provided for managing and distributing keys between routers (100) using protocol exchange messages between routers as key distribution vehicles. According to one embodiment of the invention, a router of an autonomous system uses its private key to send cryptographic information associated with another router to a peer router as part of its protocol exchange messages. The peer router is able to extract the cryptographic information and store it in a look-up table. Such protocol exchange messages may occur as part of an Interior Gateway Protocol or an Exterior Gateway Protocol. According to another embodiment of the invention, a chain authentication system is created as boundary routers of autonomous systems having a trust relationship share cryptographic information for other autonomous systems as part of protocol exchange messages for the exterior gateway protocol.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
KEY DISTRIBUTION ACROSS NETWORKS

FIELD OF THE INVENTION

[01] This invention relates generally to telecommunications networks. More particularly, the invention concerns systems and methods for distributing cryptographic keys across networks.

BACKGROUND OF THE INVENTION

[02] Network routers typically forward data packets based on the destination address of the packet. Routers determine the next hop for forwarding each packet based on routing look-up tables determined by routing protocols. Routers controlled by the same administrative authority are part of an autonomous system (AS) and thereby share common routing strategies, policies and protocols. Interior Gateway Protocols (IGPs) are routing protocols used within an AS to provide local routing information to local routers. This information is communicated in various messages between routers and is used to update the look-up tables. Examples of IGPs include Routing Information Protocols (RIP), the Open Shortest Path First protocol (OSPF), and Intermediate System-to-Intermediate System Routing Protocol (IS-IS).

[03] Exterior Gateway Protocols (EGP) are routing protocols that are used for exchanging information about routes between AS's and boundary routers. One type of EGP is the protocol commonly found on the backbone of the Internet known as the Border Gateway Protocol (BGP). Boundary routers using BGP typically communicate with
other routers using UPDATE messages. BGP uses the TCP/IP protocol for communications between routers and includes a number of security features for these communications. For example, it includes incorporating digital signatures for communications between boundary routers.

[04] Conventional systems for using these security features are often inefficient, which can discourage their widespread use. For example, in the context of a Public Key Infrastructure (PKI), secure routing using PKI may involve repeated communications with trusted third parties for key transfer or require multiple encryption/decryption steps. These additional steps are generally inefficient for high speed routing within the Internet. Another example is use of the Host Identity Protocol (HIP). As with PKI, HIP has not been put into widespread practice for Internet routing due to associated changes required in the Internet infrastructure.

[05] Other conventional mechanisms for providing security features in the Internet include the Internet Engineering Task Force (IETF) Internet Key Exchange (IKE) protocol and the Internet Protocol Security protocol (IPSec). IPSec permits two endpoints to negotiate and establish a security association (SA) between each other to permit secure transmissions, such as via tunneling. The deployment and adoption of IPSec, however, is slow and requires lots of processing elements. Further, with IPSec, users cannot validate certificates and they are not sure whether they are communicating with the actual desired endpoint. IKE is used in conjunction with IPSec for key establishment and management; however, it is complicated and has numerous options that make it difficult to use for normal operation.
Without such systems, however, security vulnerabilities for packets traveling through the Internet are frequently exploited. For example, denial of service attacks, worms, and viruses exploit various weaknesses in the Internet infrastructure. Thus, a need exists for efficient mechanisms for managing and distributing keys among network components using existing infrastructure.

SUMMARY OF THE INVENTION

In order to overcome the above-described problems and other problems that will become apparent when reading this specification, the present invention provides efficient systems and methods for managing and distributing keys between routers and other network components using existing Internet infrastructure. In particular, systems and methods of the present invention may use protocol exchange messages between routers as a vehicle to securely distribute and manage public keys or certificates between AS's and within AS's. Such methods provide efficient, secure, and scalable systems for distributing keys among peers that do not require significant changes to the Internet infrastructure. Further, such methods and systems avoid common security problems, such as key revocation difficulties.

According to one embodiment of the invention, a router of an autonomous system uses its private key to send cryptographic information associated with another router to a peer router as part of its protocol exchange messages. The peer router is able to extract the cryptographic information and store it in a look-up table. Such protocol exchange messages may occur in accordance with an IGP or an EGP. According to another embodiment of the invention, a secure communication system referred to
herein as a "chain authentication system" is created as boundary routers of a first set of AS’s having an established trust relationship share with each other, using protocol exchange messages, security information they each have for communicating with other AS’s. Thus, the secure communication system grows beyond the first set of AS’s in a chained fashion.

[09] In other embodiments of the invention, computer-executable instructions for implementing the disclosed methods are stored on computer-readable media. Other features and advantages of the invention will become apparent with reference to the following detailed description and figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[10] The invention will be described in detail in the following description of preferred embodiments with reference to the following figures wherein:

[11] FIG. 1 shows an architecture that supports systems and methods for secure transmissions according to embodiments of the invention;

[12] FIG. 2 shows a sample router of the system of Fig. 1;

[13] FIG. 3 shows sample routing look-up tables for the router of Fig. 2; and

[14] FIG. 4 shows steps in a method of creating a chained authentication system using the architecture of Fig. 1 according to an embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION

[15] The invention may be embodied in various forms. Referring now to Fig. 1, an example network architecture 10 is shown that supports systems and methods in accordance with embodiments of the invention. The architecture generally includes interconnected autonomous systems AS1 12, AS2 14, AS3 16, AS4 18 and AS5 20. Autonomous systems (AS’s) as used herein generally refer to a group of routers controlled by the same administrative authority and that share common routing strategies and protocols. Architecture 10 is a simple example architecture that does not differentiate between hosts and routers, packet switches and terminals, subnets and links, etc. Each router is identified by its address, which is simply represented here as IGP-xx or BGP-xx. In the present example, links are symmetric; however, they are not required to be symmetric.

[16] As shown, AS1 and AS2 are stub AS’s (i.e. connected to only one other AS), and AS3, AS4 and AS5 are transit AS’s (connected to more than one AS and may be used as a conduit for traffic between other AS’s). Further, AS3 is operated by Internet Service Provider (ISP) 1, AS4 is operated by ISP 2, and AS5 is operated by ISP 3. Each AS runs its own Interior Gateway Protocol (IGP) between its interior routers. Interior routers within each AS run only their IGP, and boundary routers, which also communicate with external routers, run an Exterior Gateway Protocol (EGP) along with the IGP for their AS. For example, the following routers run only the respective IGP for their AS: IGP-11 22, IGP-21 24, IGP-31 26, IGP-32 28, IGP-41 30, IGP-42 32 and IGP-51 33. The following boundary routers run both the respective IGP for
their AS and the appropriate EGP: BGP-11 34, BGP-21 36, BGP-31 38, BGP-32 40, BGP-41 42, BGP-42 43 and BGP-51 44. The boundary routers cooperate with their neighboring peers via the EGP and cooperate with routers within the same AS via their IGP.

[17] In general, routing protocols allow a router to gain information about routes and other routers. They do this by exchanging messages with other routers and updating their routing lookup tables based on information received in the messages and based on various algorithms. Examples of IGPs include the Routing Information Protocol (RIP), the Open Shortest Path First protocol (OSPF), and Intermediate System-to-Intermediate System Routing Protocol (IS-IS). One type of EGP is the protocol commonly found on the backbone of the Internet known as the Border Gateway Protocol (BGP). BGP uses the TCP/IP protocol for communications between routers and includes a number of security features for these communications. For example, it may incorporate digital signatures for communications between boundary routers. A version of BGP known as iBGP may be used for exchanging BGP information within a transit AS, such as AS3, to each of the boundary routers within the AS (e.g. BGP-31 and BGP-32). Hence, a packet arriving at BGP-31 destined for AS5 may be transmitted across the network to boundary router BGP-32 using iBGP tables, metrics and policies.

[18] AS1, AS2 and AS 4 of architecture 10 have a peering relationship with AS3. As such, the boundary routers of AS1, AS2 and AS4 may send protocol exchange messages to respective boundary routers of AS3 that include routing information.
Similarly, routers within the same AS also have peering relationships with each other and exchange messages that include intra-AS routing information. For example, AS1 boundary router BGP-11 sends and receives protocol exchange messages, such as BGP UPDATE messages, to and from BGP-31. Also, IGP-11 broadcasts protocol exchange messages to BGP-11.

[19] According to one embodiment of the invention, protocol exchange messages may act as vehicles for managing cryptographic information, such as certificates and keys, for respective AS's. For example, using an asymmetric public-key cryptography scheme, public keys for routers of particular AS's may be securely transferred using protocol exchange messages. Thus, each AS may learn about public keys for other AS's via trusted communications occurring as part of the protocol exchange messages. As the public key information is shared among trusted AS's, a secure authentication and communication system is expanded in a chain-like fashion. Thus, a chained authentication system is created through which packets may be securely and efficiently routed. The extent of the chained authentication system (e.g. number of AS's involved) may be limited according to policies established between the AS's (e.g. as part of service level agreements).

[20] A chained authentication system according to the present invention may provide many benefits. It can take advantage of existing routing infrastructures to securely distribute public keys among trusted AS's. Due to self-stabilization properties inherent in routing protocols (e.g. frequent periodic updates), key revocation is minimized as a problem with such a system. For example, routers repeatedly update
each other with regard to routing information such as the state of links, routes and
other routers using protocol exchange messages. If a link becomes unavailable, that
information is quickly communicated to other routers. Likewise, if a key is revoked,
such information may be quickly communicated to routers of a chained authentication
system using protocol exchange messages.

[21] As a further benefit, such a system avoids reliance on external certificate authorities
(CAs), which act as repositories of keys, and inefficiencies and security issues that
may be related therewith. Methods for establishing a chained authentication system
and aspects thereof according to the invention are discussed below with regard to Fig.
4. Once established, packets may be routed through a path including the chained
authentication system, for example, from AS1 to AS5 (via AS3 and AS4), in a secure
and efficient manner.

[22] As a general example illustrating secure transmissions through such a system, suppose
that IGP-11 in AS1 is a home agent routing messages to and from a mobile node
(MN) 46. Suppose also that a correspondent node (CN) 48 contains content being
received by MN 46 and that router IGP-51 is forwarding messages to and from CN
48. Suppose further that MN 46 needs to register a care-of-address with CN 48 as
part of a handover procedure known in the art of mobile communication devices. As
such, a Binding Update (BU) message is generated at MN 46 and sent to CN 48.
BGP-11 intercepts the BU message before it leaves AS1 and authenticates it. BGP-11
then forwards it to AS5 via AS3 and AS4. AS5 can use the public key of AS1 as
provided through the chained authentication system of the present invention and thereby validate the source of the message.

[23] Referring now to Fig. 2, an example router 100 according to one embodiment of the invention is shown. The router 100 generally includes a processor 102 connected to memory 104 and a plurality of communication interfaces 106, 108, 110 and 112. Stored in the memory 104 of router 100 is routing software 114, routing look-up tables 116, 118, and public Key Infrastructure (PKI) software 120. Routing software 114 includes programs written in a computer language, such as the language known as C, for making routing decisions and forwarding packets. PKI software 120 includes programs for encrypting and decrypting messages using public/private keys. In one embodiment router 100 operates on a UNIX® operating system, such as systems known as Berkeley System Distribution UNIX (BSD), Free BSD, or embedded real time operating system.

[24] Referring now to Fig. 3, sample routing look-up tables 116, 118 are shown for router 100. Suppose that router 100 represents router BGP-32. As such, router 100 maintains a routing table 116 containing path reach-ability information (e.g. link states, costs, path vectors, etc.) related to border router BGP-41 that is updated according to the BGP. Additionally, router 100 maintains a routing table 118 containing path reach-ability information related to routers within AS3 that is updated according to an IGP such as RIP. Although shown as logically separate tables, a single table or database may alternatively be maintained containing relevant routing information. Entries within tables 116, 118 generally include path reach-ability
information associated with other routers that are identified by the address of the particular router.

[25] According to one embodiment of the invention, public key information is also maintained in tables 116, 118 for each router. For example, a public key 117, 119 associated with each router is stored in tables 116, 118. Although shown here as public key information, other security information such as secret-keys (used with symmetric cryptography), certificate information and authentication information may be stored in the tables 116, 118. Embodiments of the present invention discussed herein generally include the use of asymmetric public-key cryptography (i.e. public/private key cryptography); however, it is understood that the present invention is applicable to other secure communications mechanisms, such as symmetric key cryptography.

[26] Referring now to Fig. 4 along with Fig. 1, a method 200 for creating a chained authentication system according to an embodiment of the invention is shown. Initially, a trust relationship is established 202 between a pair of adjacent AS’s, such as a peering relationship between two Internet Service Providers (ISPs). Peering between ISPs generally refers to a relationship between adjacent ISPs where the ISPs have a service level agreement (SLA) in which they agree to peer with each other at certain locations (routers / AS’s) and to exchange routing table information there between. A SLA may include information such as cost, traffic characteristics, and peering point(s) in the case of multi-homing (i.e. multiple connections to the Internet).
[27] Suppose as an example that ISP 1 operating AS3 and ISP 2 operating AS4 have entered into an SLA. As part of the agreement, they exchange 204 their public keys (or certificates) with each other. Such public key transfer could be, for example, via a manual transfer of the public keys on paper, on a CD-ROM or floppy disk, or via digital transfer from a third party such as a certificate authority storing the public key information in the form of a certificate. In any event, the ISP’s establish trust relationships between two transit AS’s, such as AS3 and AS4, and exchange cryptographic information, such as public keys. The cryptographic information may be added to the look-up tables of boundary routers in various ways, such as via manual entry, reading the cryptographic information from a computer-readable medium such as a CD-ROM, or transferred electronically.

[28] The public key information for each AS of the SLA is stored 206 in each boundary router BGP-31, BGP-32, BGP-41 and BGP-42. For example, routing tables 116, 118 in router 100 include public key information for router 100 (e.g. BGP-32), for routers within the same AS (e.g. IGP-31, IGP-32 and BGP-31), and for neighboring external routers (e.g. BGP-41). When boundary routers BGP-32 and BGP-41 are started, they begin exchanging protocol information as peers based on this information stored in their respective routing tables 116, 118.

[29] Suppose that ISP2 and ISP3 also enter a SLA agreement in which they exchange public keys for their respective AS’s, AS4 and AS5. As such, they have a peering agreement and are able to maintain secure communications. With peering agreements and public key exchange between AS3 and AS4, as well as between AS4 and AS5,
messages may securely travel between AS3 and AS5 via AS4. However, multiple encryption/de-encryption steps would be required because routers in AS5 do not have the public keys of routers in AS3. With a chained authentication system that includes AS3, AS4 and AS5, messages may securely travel between AS5 and AS3 via AS4 without multiple encryption/de-encryption steps.

[30] To set-up such a system, AS4 configures 208 its boundary routers, BGP-41 and BGP-42, with the public key for AS5. As part of protocol exchange messages between BGP-41 and BGP-32, BGP-41 encrypts 210 AS5’s certificate containing its public key (or the public key itself) using AS3’s public key and forwards it to BGP-32 of AS3. AS3 then decrypts 212 this message and extracts the public key for AS5.

[31] As AS1 and AS2 have peering relationships with AS3, the process of exchanging public key information occurs repeatedly as part of encrypted protocol exchange messages. Eventually, AS1, AS2, AS3, AS4 and AS5 will each have stored within their boundary routers the public keys for each of the other AS’s. As such, a chained authentication system is created in which, for example, MN 46 and CN 48 may securely communicate without encryption and decryption steps occurring between each AS or without requesting certificates from external certificate authorities. Further, each AS may notify its neighbor of changes to its public key(s), and the neighbor can update its neighbor as part of protocol exchange messages. Thus, the problem of key revocation is minimized.
[32] One of skill in the art recognizes that public keys and certificates may be populated within a particular AS in various ways. For example, a hash function may be used to authenticate the transfer this information within a particular AS. The hash function algorithm known as MD-5 may be used with IGP's like OSPF, RIP and IS-IS. In an alternative embodiment, the authentication mechanism known as SHA1 may be used. For routers that do not have SHA1 implementation, SHA1 may be used for intra-AS key exchanges with the bits for SHA1 being truncated and fed as a key using MD5, because SHA1 uses a 160-bit message authentication code (MAC) and MD5 produces a 128-bit output.

[33] In other embodiments within particular AS’s, a policy server (not shown) may exist within each AS that acts as a local certificate authority. When a particular boundary router is started up, it can request updated certificate information from the policy server (not shown). Alternatively, other boundary routers may act as a certificate authority to update necessary certificate information for the AS.

[34] The use of interior keys for communications within each AS, combined with secure communications between AS’s via the chained authentication system, provides an overall secure infrastructure. If desired, public keys for network elements within each AS may be kept hidden and only the public key for the AS, or for a respective boundary router, may be broadcast. For example, with regard to communications between MN 46 and CN 48, IGP-11 may encrypt the binding update (BU) message from MN 46 using its private key and send it to BGP-11. BGP-11 may decrypt it using IGP-11’s public key and then encrypt it using AS1’s private key or AS1 can
perform proxy authentication. When it arrives at AS5, BGP-51 may decrypt it using the public key for AS1, and then encrypt it for transmission to IGP-51.

[35] Using such a key distribution system, signaling traffic generated between any two nodes on the Internet may be authenticated. As such, the path of a packet may be verified using public keys for AS’s in the path. For instance, when a packet travels from one AS to another AS, the signaling traffic, such as binding updates, can be signed off at each AS border router with its private key. When the packet reaches the destination AS (e.g. AS5), it can recursively check the public keys of each AS in the packet to ensure the path. Accordingly, only public keys for each AS need to be shared in BGP protocol exchange messages. Yet, the combination of internal AS and external AS encryption mechanisms provides efficient communications with a high level of security.

[36] While the present invention has been described in connection with the illustrated embodiments, it will be appreciated and understood that modifications may be made without departing from the true spirit and scope of the invention. In particular, the invention applies to almost any type of network and to a variety of different routing protocols and cryptography systems.
I claim:

1. A method of exchanging cryptographic keys comprising:
 encrypting at a first router a second key associated with a second network entity, the
 step of encrypting being performed using a first key associated with the first router; and
 transmitting to a third router a routing protocol exchange message comprising the
 encrypted second key.

2. The method of claim 1, wherein the step of encrypting comprises digitally
 signing a certificate comprising the second key using the first key.

3. The method of claim 1, further comprising the step of extracting the second
 key from a look-up table corresponding to the first router.

4. The method of claim 3, further comprising the steps of:
 receiving from the third router a protocol exchange message comprising a fourth key
 encrypted using a third key associated with the third router, the fourth key being associated
 with a fourth network entity;
 extracting the fourth key from the protocol exchange message; and
 storing the fourth key in the look-up table.

5. The method of claim 1, wherein for the step of encrypting at a first router, the
 first router comprises a router located in an autonomous system, and for the step of
transmitting to a third router, the third router comprises a router located in the autonomous system.

6. The method of claim 5, wherein the step of transmitting to a third router occurs as part of operations in accordance with an Interior Gateway Protocol.

8. The method of claim 1, wherein for the step of encrypting at a first router, the first router comprises a router located in a first autonomous system, and for the step of transmitting to a third router, the third router comprises a router located in a second autonomous system.

9. The method of claim 8, wherein the step of transmitting to a third router occurs as part of operations in accordance with an Exterior Gateway Protocol.

11. A method of creating a chained authentication system, the chained authentication system comprising more than two autonomous systems wherein each autonomous system has a trust relationship with at least one of the other autonomous systems and each autonomous system shares cryptographic information related to its trust relationships with other trusted autonomous systems, the method comprising the steps of:

at a first router located in a first autonomous system, receiving cryptographic information for securely communicating with a second router located in a second autonomous system;

receiving at the first router cryptographic information for securely communicating with a third router located in a third autonomous system; and

sending a routing protocol exchange message to the second router comprising the cryptographic information for the third router.

12. The method of claim 11, further comprising the step of sending a routing protocol exchange message to the third router comprising the cryptographic information for the second router.

13. The method of claim 11, wherein for the step of receiving cryptographic information for securely communicating with a second router, the cryptographic information comprises a public key associated with the second router, and for the step of receiving at the first router cryptographic information for securely communicating with a third router, the cryptographic information comprises a public key associated with the third router.
14. The method of claim 11, wherein the step of sending further comprises the step of encrypting the cryptographic information for the third router using a private key associated with the first router.

15. The method of claim 11, further comprising the step of storing received cryptographic information in a look-up table corresponding to the first router.

16. The method of claim 11, wherein the steps of receiving cryptographic information each comprise the step of reading the respective cryptographic information from a computer-readable medium.

17. The method of claim 11, wherein the steps of receiving cryptographic information each comprise the steps of:

requesting the respective cryptographic information from a certificate authority; and receiving the respective cryptographic information from the certificate authority.

18. The method of claim 11, wherein one of the steps of receiving cryptographic information occurs as part of operations in accordance with the interior Border Gateway Protocol.

19. A first router adapted to forward data packets, the router comprising:

a communications interface;
a memory having computer-readable instructions stored therein; and
a processor for performing steps according to the instructions stored in the memory, the steps comprising:

encrypting a second key associated with a second network entity using a first key associated with the first router; and

transmitting to a third router a routing protocol exchange message comprising the encrypted second key.

20. The first router of claim 19, wherein the processor performs further steps comprising:

receiving from the third router a protocol exchange message comprising a fourth key encrypted using a third key associated with the third router, the fourth key being associated with a fourth network entity;

extracting the fourth key from the protocol exchange message; and

storing the fourth key in a look-up table stored in the memory.

21. The first router of claim 19, wherein the step of encrypting comprises digitally signing a certificate comprising the second key using the first key.

22. The first router of claim 19, wherein the processor performs the further step comprising extracting the second key from a look-up table stored in the memory.

23. A computer-readable medium storing computer readable instructions for performing steps on a first router, the steps comprising:
encrypting a second key associated with a second network entity using a first key associated with the first router; and

transmitting to a third router a routing protocol exchange message comprising the encrypted second key.

24. The computer-readable medium of claim 23, the computer-readable instructions for performing further steps comprising:

receiving from the third router a protocol exchange message comprising a fourth key encrypted using a third key associated with the third router, the fourth key being associated with a fourth network entity;

extracting the fourth key from the protocol exchange message; and

storing the fourth key in a look-up table stored in the memory.

25. The computer-readable medium of claim 23, wherein the step of encrypting comprises digitally signing a certificate comprising the second key using the first key.

26. The computer-readable medium of claim 23, the computer-readable instructions for performing steps further comprising extracting the second key from a look-up table stored in the memory.
Establish a trust relationship between a first AS and a second AS

200

Exchange public key or certificate information between the first and second AS

202

Store public key information for the first and second AS in their boundary routers

204

Repeat steps 202-206 for the second AS and a third AS

206

Encrypt a certificate containing the public key for the third AS on a boundary router of the second AS using the public key for the first AS and forward it to a boundary router of the first AS

208

The boundary router of the first AS decrypts the message and extracts the public key of the third AS

210

212
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : H04L 9/00
 US CL : 713/153; 380/283,284,285
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 713/153; 380/283,284,285

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y, P</td>
<td>US 6643706 B1 (MARQUES et al.) 04 November 2003 (04.11.2003), lines 34-44 of column 1.</td>
<td>6, 7, 9, 10, and 18</td>
</tr>
<tr>
<td>X</td>
<td>US 6240514 B1 (INOUE et al.) 29 May 2001 (29.05.2001), lines 36-41 of column 12, figures 9A, 9B.</td>
<td>1, 3, 5, 8, 11, 12, 15-17, 19, 22, 23, and 26</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2, 6, 7, 9, 10, 18, 21, and 25</td>
</tr>
<tr>
<td>A</td>
<td>US 6041123 (COLVIN, SR.) 21 March 2000 (21.03.2000), claims 1 and 10, line 26 of column 3 to line 62 of column 4.</td>
<td>1-26</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
 23 February 2004 (23.02.2004)

Date of mailing of the international search report
 06 APR 2004

Name and mailing address of the ISA/US
 Mail Stop PCT, Attn: ISA/US Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer
 Gregory A. Moses
 Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)