

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/095857 A1

(43) International Publication Date

8 June 2017 (08.06.2017)

WIPO | PCT

(51) International Patent Classification:

G01R 29/24 (2006.01) G01R 15/16 (2006.01)

(21) International Application Number:

PCT/US2016/064100

(22) International Filing Date:

30 November 2016 (30.11.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/262,638 3 December 2015 (03.12.2015) US

(71) Applicant: CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Corning, New York 14831 (US).

(72) Inventors: AGNELLO, Gabriel Pierce; 19 Maynard St., Corning, New York 14830 (US). KNOWLES, Peter; 857 Grove Street, Elmira, New York 14901 (US). USTANIK, Correy Robert; 41 Hemlock Lane, Painted Post, New York 14870 (US).

(74) Agent: HARDEE, Ryan T.; Corning Incorporated, Intellectual Property Department, SP-TI-03-1, Corning, New York 14831 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR MEASURING ELECTROSTATIC CHARGE OF A SUBSTRATE

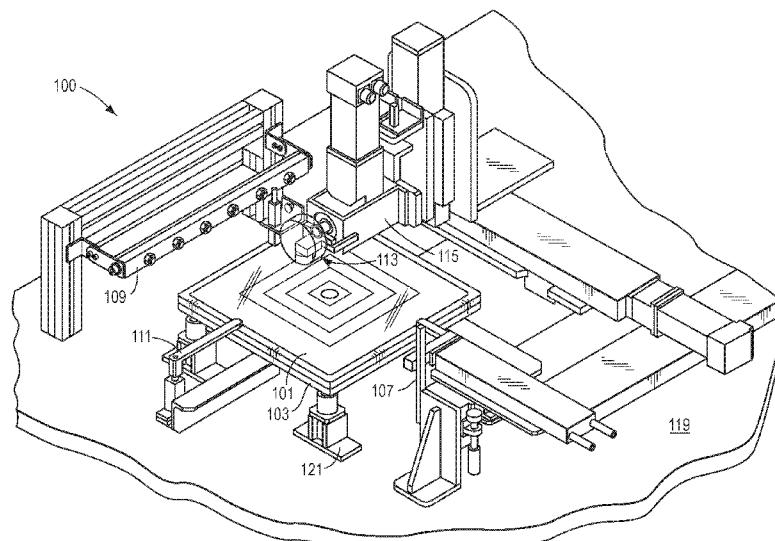


FIG. 2

(57) Abstract: Disclosed herein are apparatuses and methods for measuring electrostatic charge on a surface of a substrate. The apparatuses comprise a substrate mounting platform, a substrate contacting component, and at least one voltage sensor, wherein the apparatus is programmed to independently control the rotational and translation velocity of a roller and/or to measure a voltage of the substrate at multiple points to produce a two-dimensional map of voltage for at least a portion of the substrate.

WO 2017/095857 A1

METHOD AND APPARATUS FOR MEASURING ELECTROSTATIC CHARGE OF A SUBSTRATE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Serial No. 62/262638 filed on December 3, 2015, the content of which is relied upon and incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The disclosure relates generally to an apparatus and method for measuring electrostatic charge on a surface of a substrate and more particularly to an apparatus for generating and measuring electrostatic charge on a glass substrate under a variety of operating conditions.

BACKGROUND

[0003] After production, substrates are often subjected to downstream processing and handling steps that may generate electrostatic charge (“ESC”). For example, a glass substrate may be subjected to various conveyance and/or positioning processes during which the contact of the substrate with one or more components may cause undesirable ESC build-up on either the surface in contact with the component (“B surface” or “conveyance surface”) and/or the reverse surface (“A surface” or “fabrication surface”) of the substrate. Excessive ESC on either the A surface or the B surface can be undesirable, and potential differences on the A surface of the substrate may pose serious issues during fabrication leading to significant losses in yield, particularly in the case of fabrication of electronic devices, including without limitation fabrication of thin film electronic devices as may be employed during the manufacture of display devices.

[0004] During the fabrication process, a conveyance system may be used to transport the substrate from one process station to another. Generally, conveyance systems can comprise a number of small rollers, which may be free-rolling and/or driven. Contact between the B surface of the substrate and the rollers can itself result in ESC build-up on the A and/or B surface. Further, if one or more roller is moving at a different speed than the rest of the rollers in the conveyance

system, e.g., a free-rolling or driven roller that is not sufficiently lubricated, the ESC build-up can be further increased.

[0005] Another ESC generating process can include vacuum processes, e.g., vacuum chucking, during which the substrate is held in place by a vacuum on a contact surface. The pulling of the substrate by the vacuum can impart charge to the substrate through friction between the substrate and the contact surface area surrounding the vacuum port, as well as through intimate contact between the substrate and the contact surface, during which time charge may be exchanged through van der Waals interactions. ESC build-up can also result from contact between the substrate and other surfaces during the fabrication process, e.g., by rubbing and/or friction.

[0006] Current methods and apparatuses for measuring and simulating ESC generating activities are limited, either by poor range of movement, the inability to test more than one type of ESC generating activity, and/or by the inability to evaluate ESC generation as a function of location on the substrate surface. One method for generating and measuring ESC on a substrate is the rolling sphere test, in which a circular rolling ball is contacted with a substrate. However, the use of a circular rolling ball may provide a limited motion profile and may not accurately simulate roller conveyance. In particular, the contacting of a stationary substrate with a rolling ball or the contacting of a moving substrate with a stationary roller ball is not substantially similar to an actual roller conveyance process in which a moving substrate contacts a spinning or rotating roller, e.g., when the roller rotational velocity and the substrate translation velocity may be independent of one another. Moreover, the rolling sphere test provides no information with respect to ESC generation due to vacuum lift and/or frictive contact. Finally, the rolling sphere test provides no method by which all or a portion of the surface of the substrate can be mapped and evaluated in terms of ESC build-up.

[0007] Accordingly, it would be advantageous to provide an improved methods and apparatuses for generating and measuring ESC on a surface of a substrate. It would also be advantageous to provide methods and apparatuses which can more accurately simulate one or more types of ESC generating activities.

SUMMARY

[0008] The disclosure relates, in various embodiments, to apparatuses for measuring electrostatic charge, the apparatuses comprising a substrate mounting platform; an interchangeable contacting component removably mounted to a multi-axis actuating component; and at least one voltage sensor; wherein the apparatus is programmed to contact the substrate with the interchangeable contacting component to generate an electrostatic charge; and wherein the at least one voltage sensor is configured to measure a voltage of the substrate at multiple points to produce a two-dimensional map of voltage for at least a portion of the substrate.

[0009] Also disclosed herein are apparatuses for measuring electrostatic charge, the apparatuses comprising a substrate mounting platform; a substrate contacting component comprising at least one roller component; and at least one voltage sensor; wherein the apparatus is programmed to (a) rotate the roller component at a rotational velocity, (b) contact the substrate with the at least one rotating roller component to generate an electrostatic charge; and (c) translate the substrate and the at least one rotating roller component relative to each other in a first direction at a translation velocity; and wherein the rotational velocity is controlled independently from the translation velocity.

[0010] Further disclosed herein are methods for measuring electrostatic charge, the methods comprising positioning a substrate in the apparatuses disclosed herein and measuring the voltage of at least one location on a surface of the substrate during or after contact with the surface contacting component. In some embodiments, the methods can comprise positioning a substrate on a substrate mounting platform of an apparatus, wherein the apparatus further comprises at least one voltage sensor and a contacting component comprising at least one roller component; rotating the at least one roller component at a rotational velocity; contacting the substrate with the at least one roller component to generate an electrostatic charge; translating the substrate and the at least one roller component relative to each other in a first direction at a translation velocity; and measuring a voltage of at least one location on a surface of the substrate during or after contact with the at least one roller component, wherein the rotational velocity is controlled independently from the translation velocity. In additional embodiments, the methods can further comprise neutralizing at least a portion of a surface of the substrate prior

to or after contact with the contacting component. According to further embodiments, the substrate may comprise a glass sheet.

[0011] Additional features and advantages of the disclosure will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the methods as described herein, including the detailed description which follows, the claims, as well as the appended drawings.

[0012] It is to be understood that both the foregoing general description and the following detailed description present various embodiments of the disclosure, and are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the disclosure and together with the description serve to explain the principles and operations of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The following detailed description can be further understood when read in conjunction with the following drawings.

[0014] **FIGS. 1A-C** illustrate various ESC generating activities such as roller conveyance, vacuum chucking, and frictive contact;

[0015] **FIG. 2** illustrates an ESC measuring apparatus according to certain embodiments of the disclosure;

[0016] **FIG. 3** illustrates a bottom view of the ESC measuring apparatus depicted in **FIG. 2**; and

[0017] **FIGS. 4A-B** illustrate substrate contacting components according to various embodiments of the disclosure.

DETAILED DESCRIPTION

Apparatuses

[0018] Disclosed herein are apparatuses for measuring electrostatic charge, the apparatuses comprising a substrate mounting platform; a substrate contacting component comprising at least one roller component; and at least one voltage sensor; wherein the apparatus is programmed to (a) rotate the roller

component at a rotational velocity, (b) contact the substrate with the at least one rotating roller component to generate an electrostatic charge; and (c) translate the substrate and the at least one rotating roller component relative to each other in a first direction at a translation velocity; and wherein the rotational velocity is controlled independently from the translation velocity.

[0019] Also disclosed herein are apparatuses for measuring electrostatic charge, the apparatuses comprising a substrate mounting platform; an interchangeable contacting component removably mounted to a multi-axis actuating component; and at least one voltage sensor; wherein the apparatus is programmed to contact the substrate with the interchangeable contacting component to generate an electrostatic charge; and wherein the at least one voltage sensor is configured to measure a voltage of the substrate at multiple points to produce a two-dimensional map of voltage for at least a portion of the substrate.

[0020] **FIGS. 1A-C** illustrate various contact scenarios that can generate ESC on one or more surfaces of a substrate. For example, roller conveyance is illustrated in **FIG. 1A**, in which a substrate **S** is conveyed in a first direction (indicated by the dashed arrow) using a plurality of rollers **R** rotating in a second direction (indicated by the solid arrows). Vacuum chucking is illustrated in **FIG. 1B**, in which substrate **S** is pulled in a first direction (indicated by the solid arrows) and brought into contact with a contact surface **C**. Finally, frictive contact is illustrated in **FIG. 1C**, in which substrate **S** is rubbed against contact surface **C**. As used herein, frictive contact is intended to denote the generation of friction between a substrate and another surface, e.g., by translating **S** and **C** relative to each other in opposing directions (as shown by the dashed arrows in **FIG. 1C**) or in the same direction, e.g., at different speeds (not shown), or moving one of **S** and **C** with respect to the other (not shown). As used herein, the phrase “translated relative to each other” is intended to denote that at least one of the substrate and/or substrate contacting component are moving with respect to the other, e.g., a moving substrate and stationary component, moving component and stationary substrate, or a moving substrate and a moving component.

[0021] Referring to **FIG. 2**, which depicts an exemplary ESC measuring system **100**, a substrate **101** can be positioned on a substrate mounting platform **103**. The substrate can be chosen from any material capable of generating an electrostatic charge, including but not limited to glass substrates, plastic substrates,

metal substrates, ceramic substrates, and other similar substrates. In one embodiment, the substrate **101** is a glass substrate, e.g., a glass sheet. After positioning the substrate **101** on the substrate mounting platform **103**, the substrate **101** can optionally undergo a neutralization step in which it is treated to reduce ESC build-up. In some embodiments, carrying out a neutralization step may result in increased accuracy of the subsequent ESC measuring step discussed below.

[0022] During the neutralization step, the substrate **101** may be lifted or otherwise positioned in proximity to a neutralization device **109**, e.g., above the substrate mounting platform **103**. For example, as illustrated in **FIG. 3**, the substrate **101** may be lifted using mounting pins **105** and aligned with neutralization device **109**. Neutralization device **109** can neutralize one or more surfaces of substrate **101**, such as the top and bottom surfaces (not labeled), or a portion thereof. The neutralization device **109** may provide a flow of ionized air over one or more surfaces of the substrate **101**. The neutralization device **109** may, in certain embodiments, be a high current ionizer operating with an inert gas source, e.g., Ar or N₂.

[0023] With reference to **FIG. 2**, in some embodiments, a static feedback sensor **107** can be positioned proximate the substrate (e.g., above the substrate) before and/or during neutralization of the substrate **101**. The static feedback sensor **107** can measure the voltage of the substrate **101** during neutralization. Once a predetermined voltage indicative of a desired level of substrate neutralization is reached (e.g., < ~ 5 V), the neutralization process may be discontinued. The feedback sensor **107** may then be retracted, the mounting pins **105** may be lowered, and/or the substrate **101** may be repositioned or brought back into contact with the substrate mounting platform **103**.

[0024] The substrate **101** may be secured to the substrate mounting platform **103** using any suitable fastening mechanism, e.g., clamps **111**, vacuum chucking, and other similar components or methods, or combination thereof. Once the substrate **101** is secured to the substrate mounting platform **103** and optionally neutralized, a contacting step can be initiated using a substrate contacting component **113**, which can be programmed or designed to simulate one or more desired ESC generating activities.

[0025] One non-limiting embodiment of an interchangeable contacting component is illustrated in **FIG. 4A**, in which the contacting component is a roller component **113a**. Such a contacting component may be programmed or designed to

simulate the passing of a substrate over a roller conveyor (e.g., the motion illustrated in **FIG. 1A**). The roller component **113a** can, in some embodiments, be removably secured to a multi-axis actuated component **115**, which can be used to position the roller **113a** at various locations on the substrate **101**. The multi-axis actuated component **115** can be actuated to move the roller component **113a** along four axes or in four directions, e.g., x, y, z, and θ , as depicted in **FIG. 4A**. Directions x and y can represent two-dimensional motion parallel to the plane of the substrate, whereas direction z can represent one-dimensional motion perpendicular to the plane of the substrate. Further, θ can represent the rotational motion of the roller component **113a**.

[0026] In another embodiment, as illustrated in **FIG. 4B**, the interchangeable contacting component can be a surface component **113b**, which can be programmed or designed to simulate frictive or non-frictive contact of the substrate with another surface (e.g., the frictive motion illustrated in **FIG. 1C**). As used herein, “non-frictive” contact is intended to denote contact between the substrate and another surface in which neither the substrate nor the other surface are moved in relation to one another. For example, a substrate resting on a stationary work surface can be described as being in non-frictive contact with the work surface. In an alternative embodiment, the substrate contacting component may also include a vacuum element (not illustrated), for example, a vacuum may be drawn between the substrate **101** and the surface component **113b**, which can simulate vacuum chucking, lifting, or otherwise conveying a substrate (e.g., the motion illustrated in **FIG. 1B**). A “vacuum component” as used herein is intended to refer to a surface contacting component equipped with a vacuum element. The surface component **113b** and/or the vacuum component can, in some embodiments, be secured to a multi-axis actuated component **115**, which can be used to position the surface component **113b** at various locations on the substrate **101**.

[0027] Referring again to **FIG. 2**, the electrostatic measurement apparatus can further comprise an assembly platform **119** and load cells **121**, which can be used to position the substrate mounting platform **103**, multi-axis actuated component **115**, neutralizing device **109**, and/or sensors (e.g., static feedback sensor **107** or voltage sensor **117**) in various positions relative to each other. The assembly platform **109** can also be equipped with a heating element and/or vacuum device (not illustrated). The heating element can be used, for example, to raise the

temperature of the substrate to a desired temperature for testing (e.g., from about 50°C to about 200°C). The vacuum device can be used to draw a vacuum between the substrate **101** and the platform **103** to secure the substrate in place for testing. Clamps **111** may also be used for securing the substrate **111** and may be adjustable for different substrate sizes.

[0028] The electrostatic measurement apparatus can further include one or more voltage probes or sensors. As illustrated in **FIGS. 4A-B**, voltage sensors **117** can be attached to the multi-axis actuated component **115** or otherwise positioned proximate to or in contact with the top surface of substrate **101**. Alternatively, as illustrated in **FIG. 3**, a voltage sensor **117b** can be positioned underneath the substrate **101** to measure the electrostatic charge of the bottom surface of substrate **101**. The voltage sensor **117b** may be positioned proximate to or in contact with the bottom surface of substrate **101** via a hole or other opening **123** in the mounting platform **103**. It is noted that voltage sensor **117** can be distinct from feedback sensor **107**, which measures voltage during the optional neutralization step.

[0029] The substrate contacting component **113** can, in some embodiments, be removably secured to a multi-axis actuated component **115**. The multi-axis actuated component **115** can be positioned proximate (e.g., above) the substrate mounting platform **103** and actuated to provide motion in the x, y, z, and/or θ directions. The multi-axis actuated component **115** can, for instance, include a servomotor (not shown) comprising at least one motor and a positioning sensor. The multi-axis actuated component **115** can further include programming for carrying out desired motions or sequences. The motor can be used to power the movement of the multi-axis actuated component **115** based on the programming selected for a given substrate **101** and substrate contacting component **113**. In certain embodiments, a separate rotary motor may be used when a roller component **113a** is employed, and this second motor can be used to power the spinning of the roller component.

[0030] According to various embodiments, the different substrate contacting components **113** can be used interchangeably with the multi-axis actuating component **115**. For example, the interchangeable contacting components **113** may be configured to allow for ease of installation and removal such that one contacting component can be switched out for another to take several different measurements for a given substrate. The servomotor of the multi-axis actuating

component **115** can be programmed by the user to operate the apparatus differently depending on which substrate contacting component **113** is installed.

[0031] As shown in **FIGS. 4A-B**, one or more voltage sensors **117** can be mounted to the multi-axis actuated component **115**, e.g., proximate or adjacent to the substrate contacting component **113**. The voltage sensor can be chosen, in some embodiments, from a high voltage or low voltage electrostatic voltmeter or a high voltage field meter. As would be readily understood by a person having ordinary skill in the art, the particular type of voltage sensor can be chosen based on the particular application. Similar to the substrate contacting component **113**, the voltage sensor **117** can be moved by the multi-axis actuated component **115** in the x, y, and z directions. The movement of the voltage sensor **117** can vary based on the particular substrate contacting component **113** and measurement protocol. In certain embodiments, the voltage sensor **117** can be mounted to the multi-axis actuated component **115** via a pneumatic cylinder (not shown), which can also be controlled, e.g., by the servomotor. The pneumatic cylinder may allow the voltage sensor **117** to be moved along the z-axis, e.g., moved toward and away from the substrate surface. The voltage sensor **117** and/or ECS measurement apparatus can also include a memory drive, which may be used to record voltage measurements.

[0032] Measurements can be taken once or more than once, and can be taken before, during, and/or after contacting the substrate with the substrate contacting component **113**. For example, a single measurement can be made before, during, and/or after contact, intermittent measurements may be made during movement of the substrate contacting component **113**, or continuous measurements may be made during movement of the substrate contacting component **113**. As such, in various embodiments, the electrostatic charge across a substrate can be measured or mapped relative to location on a surface, such as a single location measurement, multiple location measurements, one-dimensional mapping, or two-dimensional mapping.

[0033] It is to be understood that the embodiments disclosed in **FIGS. 2-4** are exemplary only and are not intended to be limiting on the claims in any manner, for example, in terms of orientation, scale, relative positioning of components, and so on. Solely for illustrative purposes, various aspects of each component are described in more detail below.

[0034] The substrate mounting platform **103** is not limited to any particular size, but may, for example, have at least one dimension (e.g., length and/or width) ranging from about 10 cm to about 100 cm, e.g., from about 30 cm to about 60 cm. Lift pins **105** can be used, in some embodiments, to lift substrate **101** off the mounting platform **103**, e.g., into proximity with the neutralizing device **109**. The lift pins **105** can, for example, lift substrate **101** to a distance ranging from about 0.5 cm to about 5 cm, such as from about 1 cm to about 2.5 cm. The multi-axis actuated component **115** can be configured to translate any given distance in the x, y, and z directions, and to rotate a roller at any given speed in the Θ direction. For example, the multi-axis actuated component **115** can travel a distance in the x and/or y direction ranging from about 10 cm to about 100 cm, e.g., from about 25 cm to about 50 cm, and a distance in the z direction ranging from about 1 cm to about 10 cm, such as from about 2.5 cm to about 5 cm.

[0035] In certain embodiments, the roller **113a** can have a diameter ranging from about 1 cm to about 10 cm, such as from about 2.5 cm to about 5 cm. The roller **113a** can simultaneously spin in the Θ direction while traveling in the x, y, and/or z directions. According to various embodiments, the servomotor can be programmed to vary the phase of the roller component **113a** and therefore control the frictive contact between the roller component **113a** and the substrate **101**. As used herein, “phase” is intended to denote the +/- % value of the rotational speed of the roller relative to the linear speed of the roller with respect to the substrate (e.g., along the x axis), which can be related, for example, by the circumference of the roller. By independently controlling the rotational speed and/or translation speed, various measurement protocols can be developed for different rotation/friction ratios, thus providing a wide variety of simulations. The roller can be constructed of any material, e.g., materials with which a substrate may come into contact during end-use operations, such as glass, plastic, metal, ceramic, and the like.

[0036] According to additional embodiments, the surface component **113b** can have any given shape or size suitable for simulating and measuring electrostatic charge induced by vacuum, non-frictive surface contact, and/or frictional contact. In some embodiments, the surface component **113b** can comprise a block or puck of any given material, e.g., having a cross-section in the shape of a square, rectangle, circle, oval, or any other regular or irregular shape. According to additional embodiments, the surface component **113b** can be further equipped with a vacuum

component, such as a vacuum port. In some embodiments, the surface component **113b** can comprise a square cross-section including a length ranging from about 1 cm to about 10 cm, such as from about 2.5 cm to about 5 cm, or can have a circular cross section including a diameter ranging from about 0.5 cm to about 5 cm, such as from about 1 cm to about 2.5 cm. The surface component can be constructed of any material, e.g., materials with which a substrate may come into contact during end-use operations, such as glass, plastic, metal, ceramic, and the like.

Methods

[0037] Disclosed herein are methods for measuring an electrostatic charge on a substrate, the methods comprising positioning the substrate in the apparatuses disclosed herein and measuring the voltage of at least one location on a surface of the substrate during or after contact with the substrate contacting component, e.g., at least one roller component. Solely for illustrative purposes, various measurement techniques will now be described in detail below. It is to be understood that these measurement techniques are exemplary only and are not intended to be limiting on the claims in any manner, for example, in terms of sequence, positioning, optional steps, and so on. It is also to be understood that the disclosed methods can be used not only to measure ESC build-up on a surface, but also to measure ESC dissipation on a surface over time.

[0038] Methods for measuring electrostatic charge generated by contact between the substrate and a rotating body, such as a roller or plurality of rollers, will be discussed with reference to the apparatus depicted in **FIG. 4A**. A substrate **101** may be secured to a mounting platform **103** and optionally neutralized as previously described. After securing and optionally neutralizing the substrate, the test may be initiated by moving the multi-axis actuated component **115** equipped with roller **113a** along the z-axis toward the substrate surface. The multi-axis actuated component can be stopped at a specified “search” position, e.g., a few millimeters above the substrate surface. The search sequence can include moving the multi-axis actuated component down slowly in the z-direction toward the substrate surface while continuously monitoring the z-position stamped aggregate load cell signal (e.g., summation of all 4 load cells). The search sequence may be stopped once the load cell signal reaches or exceeds a user-defined target aggregate load cell set point. The multi-axis actuated component may then be repositioned to a point most closely

associated with the target aggregate load cell set point. In some embodiments, the search sequence does not include any motion along the x- or y-axis.

[0039] After the search sequence is complete, the z-axis motion can be switched to load servo control. Once in load servo control, the roller can dwell in contact with the substrate for a user-defined stabilization period. Motion along the x-axis can engage simultaneously with rotary motion in the Θ direction. The linear and rotational accelerations of the roller may be coordinated such that they reach their target speeds at the same time. The phase for this motion may correspond to the +/- % value of the rotational speed V_R of the roller relative to the translation speed along the x-axis V_x , e.g., phase = $(V_R/V_x)^{*}100$. The phase can be varied either by independently changing the rotational speed V_R or the translation speed V_x of the roller. As opposed to the rolling sphere test, the methods disclosed herein are capable of simultaneous and independent control of movement in the x and Θ directions to simulate roller conveyance. As such, the methods disclosed herein allow for the exploration of a wide array of rotation/friction ratios that can be controlled through phase adjustment.

[0040] Voltage sensor **117** can be secured to the multi-axis actuated component **115** proximate the roller **113a**. The voltage sensor **117** can measure the voltage at one or more points along the path traveled by the roller **113a** while the roller is in contact with substrate **101**. Measurements can be taken once or multiple times at a desired interval for a specified period of time using a user-defined stroke length. After a user-defined period is complete, the simultaneous spinning and translation of the roller **113a** may be discontinued. The multi-axis actuated component **115** can then raise the roller **113a** until it is no longer in contact with substrate **101**.

[0041] Methods for measuring electrostatic charge generated by contact between the substrate and a contact surface under vacuum, such as a vacuum chuck, will be discussed with reference to the apparatus depicted in **FIG. 4B**. Similar to the method described above, the substrate **101** may be secured to a mounting platform **103** and optionally neutralized. After securing and optionally neutralizing the substrate, search and stabilization sequences may also be carried out. Surface component **113b** (comprising a vacuum element, not shown) may then be brought into contact with the substrate **101**. Upon activation, the vacuum element can provide a predetermined suction force on the substrate **101** for a specified vacuum

pull time, after which it can be disengaged. The vacuum pull process can be carried out one or more times. If more than one pull is specified, the specified amount of time between pulls may be allowed to lapse before the vacuum is reapplied. The cycle may be repeated until the desired number of pulls has been achieved. Preferably, while activated, the vacuum element does not move along the x, y, or z axes.

[0042] Upon completion of the final vacuum pull, the multi-axis actuated component **115** can retract along the z-axis after a specified time period to a specified distance above the substrate surface. The specified distance may, for example, depend on the working distance of the pneumatic cylinder mounted to the voltage sensor **117**. The voltage sensor **117** can be positioned at a distance from the substrate surface of about 1 mm to about 5 mm for measurement. The multi-axis actuated component **115** can also move along the z- and y-axes to position the voltage sensor **117** over one or more areas charged by the vacuum pull. Measurements can be taken once or multiple times at a desired interval for a specified period of time. For example, a single point measurement can be taken at one location, a series of discrete single point measurements can be taken at specified x-y locations, or a continuous motion scan can be performed with x-y-z position stamping of measurements according to user-defined x-y start/stop/step positions. Stamping may include, for example, taking measurements along a defined raster over a predetermined surface or portion thereof. In some embodiments, the entire surface of the substrate **101** may be interrogated by voltage sensor **117** and mapped. Measurements can be carried out between one or more vacuum cycles if so specified by the user, or after the last vacuum cycle.

[0043] Methods for measuring electrostatic charge generated by contact between the substrate and a non-moving contact surface not under vacuum, such as resting on a work surface, will be discussed with reference to the apparatus depicted in **FIG. 4B**. Similar to the methods described above, the substrate **101** may be secured to a mounting platform **103** and optionally neutralized. After securing and optionally neutralizing the substrate, search and stabilization sequences may also be carried out. Surface component **113b** (not comprising a vacuum element) may then be brought into contact with the substrate **101**. After a user-specified dwell time in which surface component **113b** is in non-frictive contact with the substrate surface, the multi-axis actuated component **115** can retract along the z-axis to position the

voltage sensor **117** at a specified distance above the substrate surface. The multi-axis actuated component **115** can also move along the x- and y-axes to position the voltage sensor **117** over one or more areas charged by the surface contact. Measurements can be taken once or multiple times at a desired interval for a specified period of time, such as a single point measurement, discrete point measurements, or a continuous scan of at least a portion of the surface. Measurement and contact cycles can be repeated as desired.

[0044] Methods for measuring electrostatic charge generated by contact between the substrate and a frictive contact surface not under vacuum, such as conveyance along a non-rotating surface, will be discussed with reference to the apparatus depicted in **FIG. 4B**. Similar to the methods described above, the substrate **101** may be secured to a mounting platform **103** and optionally neutralized. After securing and optionally neutralizing the substrate, search and stabilization sequences may also be carried out. Surface component **113b** (not comprising a vacuum element) may then be brought into contact with the substrate **101** and moved along the x- and/or y-axes according to a defined sequence or pattern at a user-defined velocity, acceleration, and/or repetition rate.

[0045] After the last contact cycle (or in between contact cycles if so desired) during which surface component **113b** is in frictive contact with the substrate surface, the multi-axis actuated component **115** can retract along the z-axis to position the voltage sensor **117** at a specified distance above the substrate surface. The multi-axis actuated component **115** can also move along the x- and y-axes to position the voltage sensor **117** over one or more areas charged by the surface contact. Voltage measurements can be taken once or multiple times at a desired interval for a specified period of time, such as a single point measurement, discrete point measurements, or a continuous scan of at least a portion of the surface. Measurement and contact cycles can be repeated as desired.

[0046] In various embodiments, neutralization procedures may be carried out before measurement and/or after measurement. For example, pre-neutralization may improve the accuracy of the subsequent measurement, whereas post-neutralization may protect the voltage sensors from an unexpected voltage surge. Moreover, although the different substrate contacting components **113** and their respective methods are separately described above, it is noted that they can be used in combination on a single substrate **101**. For example, after the use of the roller

113a to generate and measure ESC of the substrate, the substrate can be neutralized and then contacted by another interchangeable component, such as a surface component **113b** or a vacuum component designed to simulate either frictive or non-frictive contact. Use of multiple interchangeable contacting components on a single substrate may provide increased ESC data which can be useful for downstream processing and handling of the substrate.

[0047] It will be appreciated that the various disclosed embodiments may involve particular features, elements or steps that are described in connection with that particular embodiment. It will also be appreciated that a particular feature, element or step, although described in relation to one particular embodiment, may be interchanged or combined with alternate embodiments in various non-illustrated combinations or permutations.

[0048] It is also to be understood that, as used herein the terms "the," "a," or "an," mean "at least one," and should not be limited to "only one" unless explicitly indicated to the contrary. Thus, for example, reference to "at least one sensor" includes examples having two or more such sensors unless the context clearly indicates otherwise.

[0049] Ranges can be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, examples include from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.

[0050] Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.

[0051] While various features, elements or steps of particular embodiments may be disclosed using the transitional phrase "comprising," it is to be understood that alternative embodiments, including those that may be described using the transitional phrases "consisting" or "consisting essentially of," are implied.

Thus, for example, implied alternative embodiments to a device that comprises A+B+C include embodiments where a device consists of A+B+C and embodiments where a device consists essentially of A+B+C.

[0052] It will be apparent to those skilled in the art that various modifications and variations can be made to the present disclosure without departing from the spirit and scope of the disclosure. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the disclosure may occur to persons skilled in the art, the disclosure should be construed to include everything within the scope of the appended claims and their equivalents.

WHAT IS CLAIMED IS:

1. A method for measuring electrostatic charge, the method comprising:
 - (a) positioning a substrate on a substrate mounting platform of an apparatus, wherein the apparatus further comprises at least one voltage sensor and a contacting component comprising at least one roller component;
 - (b) rotating the at least one roller component at a rotational velocity;
 - (c) contacting the substrate with the at least one roller component to generate an electrostatic charge;
 - (d) translating the substrate and the at least one roller component relative to each other in a first direction at a translation velocity; and
 - (e) measuring a voltage of at least one location on a surface of the substrate during or after contact with the at least one roller component, wherein the rotational velocity is controlled independently from the translation velocity.
2. The method of claim 1, further comprising neutralizing at least a portion of the surface of the substrate prior to or after contacting the substrate with the at least one roller component.
3. The method of claim 1, wherein the substrate contacting component is mounted to a multi-axis actuated component.
4. The method of claim 1, wherein the at least one voltage sensor is mounted to a multi-axis actuated component.
5. The method of claim 3, wherein the multi-axis actuated component further comprises a servomotor programmed to carry out steps (b)-(d).
6. The method of claim 1, wherein the voltage is measured at a single point on the surface of the substrate, at multiple points along a predetermined one-dimensional path, or at multiple points along a predetermined two-dimensional path.
7. The method of claim 1, wherein measuring the voltage comprises producing a

two-dimensional map of voltage for at least a portion of the substrate.

8. The method of claim 1, wherein the voltage is measured along a predetermined path of the at least one roller component while the at least one roller component is in contact with the substrate.
9. The method of claim 1, comprising contacting the surface with the at least one roller component and measuring the voltage of an opposing second surface of the substrate.
10. The method of claim 1, wherein the substrate is a glass sheet.
11. An apparatus for measuring electrostatic charge, the apparatus comprising:
 - a substrate mounting platform;
 - an interchangeable contacting component removably mounted to a multi-axis actuating component; and
 - at least one voltage sensor;wherein the apparatus is programmed to contact the substrate with the interchangeable contacting component to generate an electrostatic charge; and wherein the at least one voltage sensor is configured to measure a voltage of the substrate at multiple points to produce a two-dimensional map of voltage for at least a portion of the substrate.
12. The apparatus of claim 11, wherein the interchangeable contacting component is selected from a roller component, a vacuum component, a frictive surface component, or a non-frictive surface component.
13. The apparatus of claim 11, further comprising a neutralizing device for reducing electrostatic charge on the substrate prior to or after contacting the substrate with the interchangeable contacting component.
14. The apparatus of claim 11, wherein the at least one voltage sensor is mounted to the multi-axis actuating component.

15. The apparatus of claim 11, wherein the interchangeable contacting component contacts a first surface of the substrate and the at least one voltage sensor measures a voltage of an opposing second surface.
16. The apparatus of claim 12, wherein the multi-axis actuated component further comprises a servomotor programmed to (a) contact the vacuum component with the substrate and (b) draw a vacuum to generate an electrostatic charge.
17. The apparatus of claim 12, wherein the multi-axis actuated component further comprises a servomotor programmed to (a) rotate the roller component, (b) contact the rotating roller component with the substrate, and (c) to translate the rotating roller component and substrate relative to each other to generate an electrostatic charge.
18. The apparatus of claim 12, wherein the multi-axis actuated component further comprises a servomotor programmed to contact the frictive surface component with the substrate and to translate the frictive surface component and substrate relative to each other to generate an electrostatic charge.
19. The apparatus of claim 11, wherein the at least one voltage sensor is configured to measure a voltage of at least one location on a surface of the substrate during or after contact with the interchangeable contacting component.
20. A method for measuring an electrostatic charge, the method comprising positioning a substrate in the apparatus of claim 11 and measuring the voltage of at least one location on a surface of the substrate during or after contact with the interchangeable contacting component.
21. The method of claim 20, further comprising neutralizing at least a portion of a surface of the substrate prior to or after contacting the substrate with the interchangeable contacting component.
22. The method of claim 20, wherein the substrate is a glass sheet.

1/5

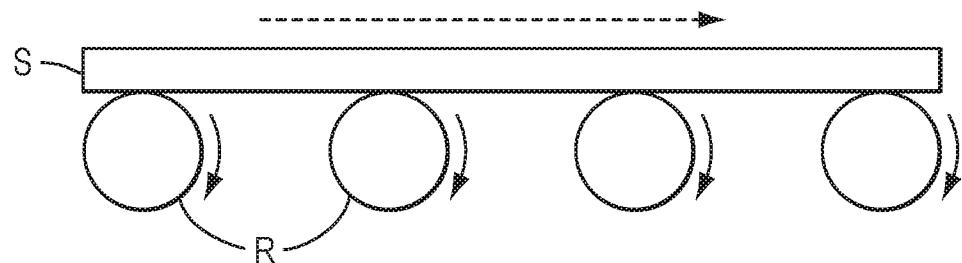


FIG. 1A

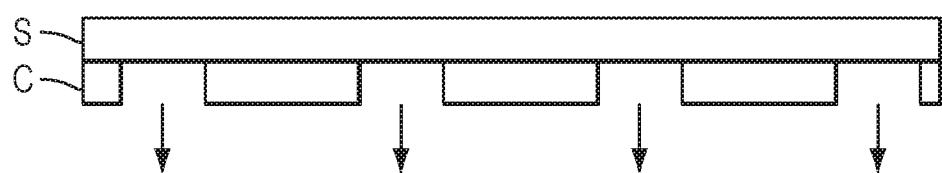


FIG. 1B

FIG. 1C

2/5

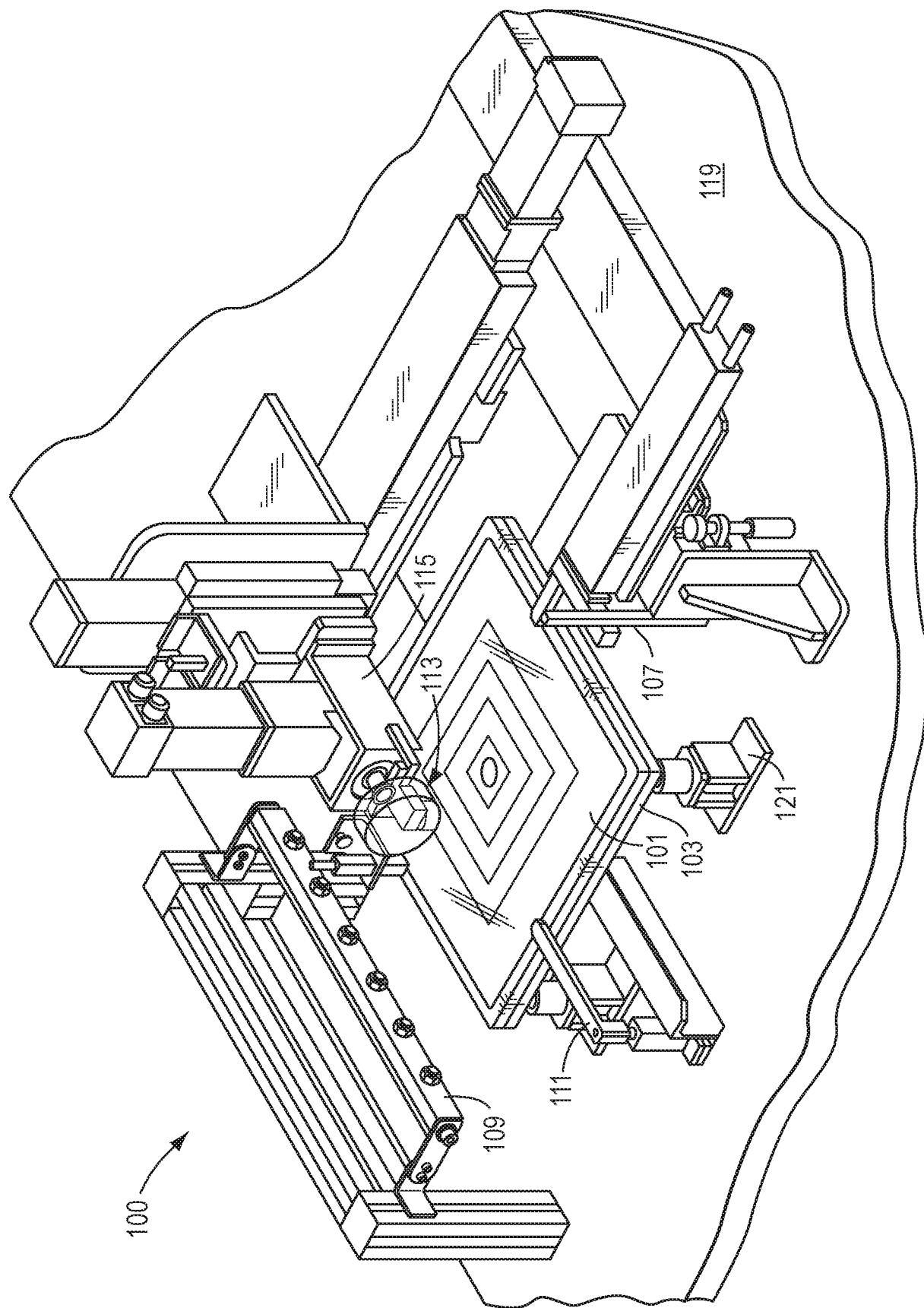


FIG. 2

3/5

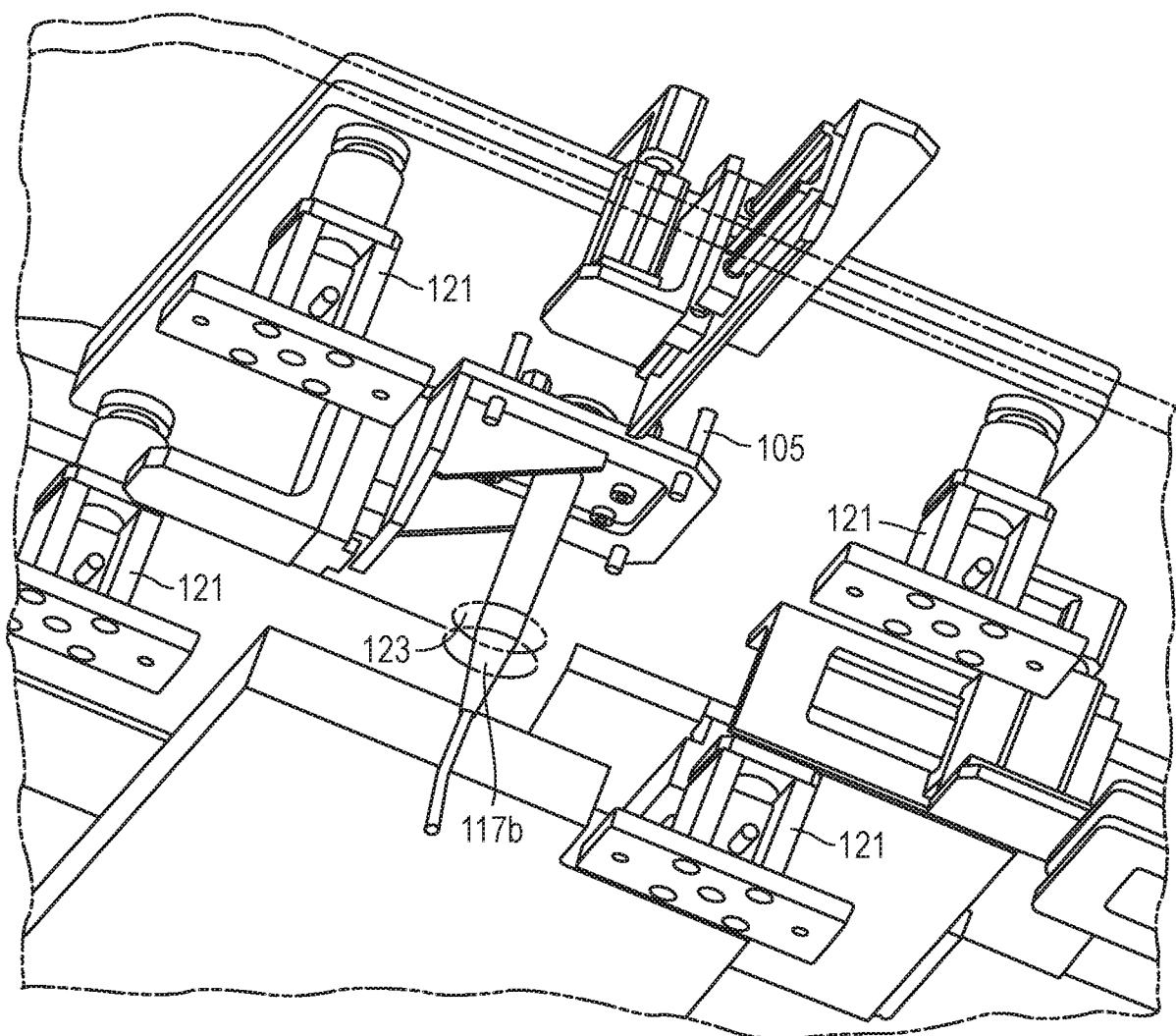


FIG. 3

4/5

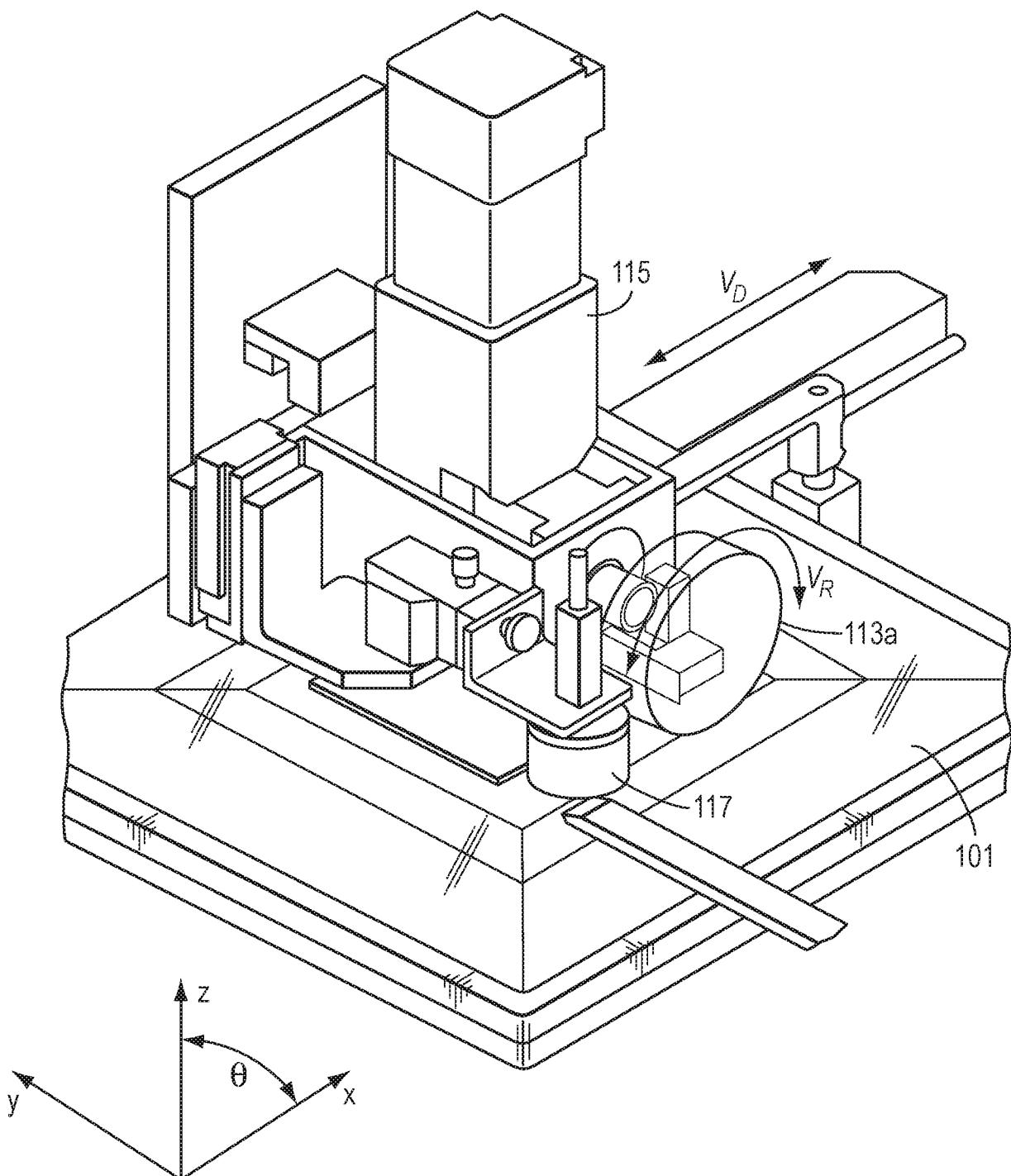


FIG. 4A

5/5

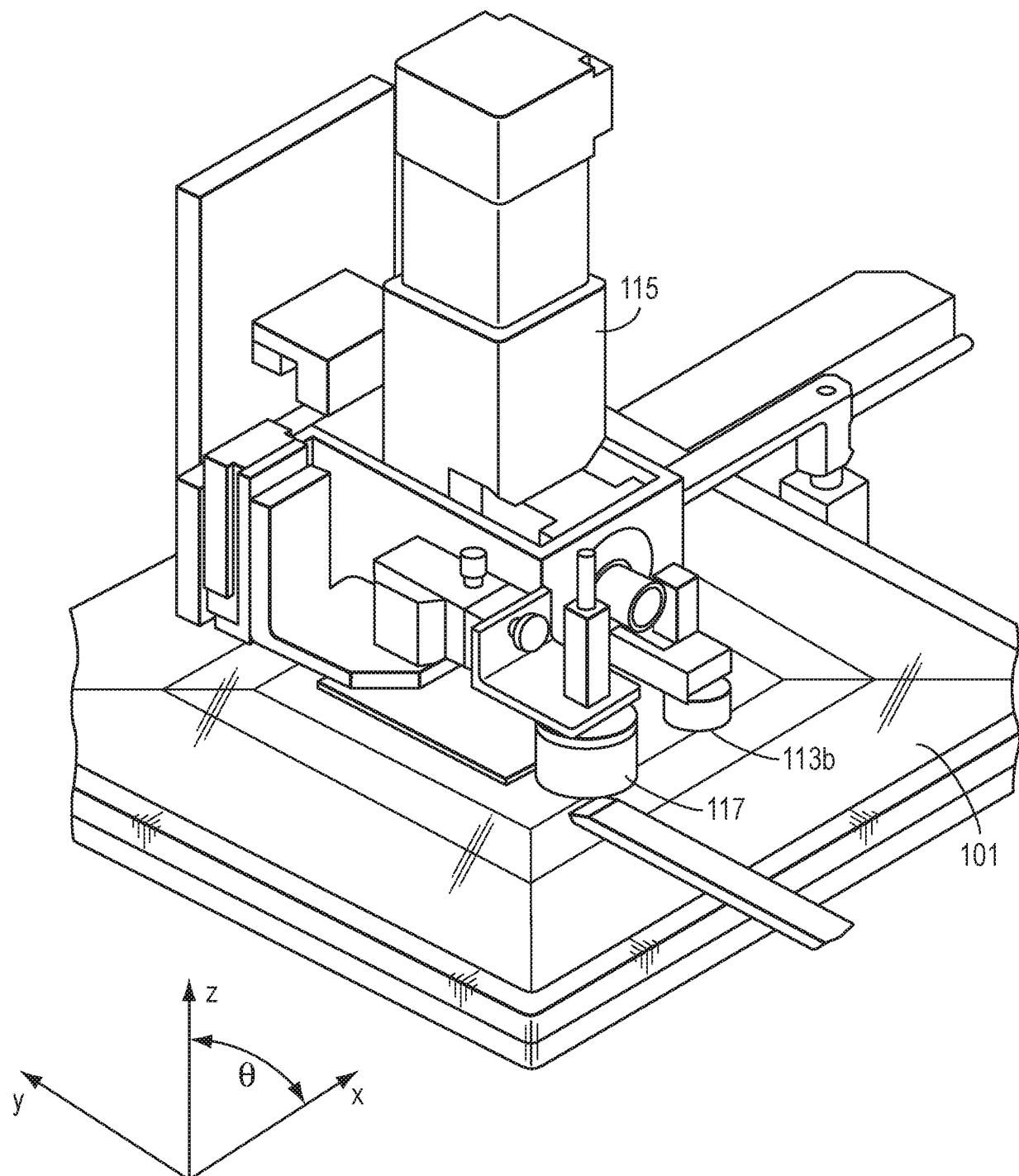


FIG. 4B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/064100

A. CLASSIFICATION OF SUBJECT MATTER

G01R 29/24(2006.01)i, G01R 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01R 29/24; G01R 31/28; G03G 15/02; G01R 1/02; G03G 15/00; G01R 15/16Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: measure, electristatic, charge, substrate, roller, voltage, sensor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2014-0253160 A1 (BRUNNER) 11 September 2014 See paragraphs [8]-[33] and claims 1-13.	1-22
A	JP 05-273835 A (RICOH CO., LTD.) 22 October 1993 See paragraphs [15]-[21], claim 4 and figure 4.	1-22
A	US 3876917 A (GAYNOR et al.) 08 April 1975 See claims 1-9 and figure 1.	1-22
A	US 8897675 B2 (XEROX CORPORATION) 25 November 2014 See claims 1-17 and figure 2A.	1-22
A	US 5461324 A (BOYETTE) 24 October 1995 See claims 1-20 and figure 4.	1-22

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
13 March 2017 (13.03.2017)Date of mailing of the international search report
14 March 2017 (14.03.2017)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer

KIM, Yeon Kyung

Telephone No. +82-42-481-3325

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2016/064100

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2014-0253160 A1	11/09/2014	CN 103890828 A KR 10-1671690 B1 KR 10-2014-0078755 A TW 201326796 A US 9366696 B2 WO 2013-056735 A1	25/06/2014 03/11/2016 25/06/2014 01/07/2013 14/06/2016 25/04/2013
JP 05-273835 A	22/10/1993	None	
US 03876917 A	08/04/1975	None	
US 8897675 B2	25/11/2014	JP 2014-191349 A US 2014-0294424 A1	06/10/2014 02/10/2014
US 05461324 A	24/10/1995	JP 08-166430 A JP 3110984 B2	25/06/1996 20/11/2000