Abstract:
The present invention relates to methods for detecting the presence of Mcm5 in a subject, the method comprising preparing a sample from said subject by exposing the sample to a lysis buffer and performing an assay to determine the concentration of Mcm5 by exposing the sample to a first monoclonal antibody and/or a second monoclonal antibody and measuring the amount of Mcm5 that binds to the first monoclonal antibody and/or the second monoclonal antibody. The invention further relates to kits that can be used in the methods.
METHODS AND KITS

Field of the invention

The invention relates to methods for detecting the presence of a Mcm5 in a sample from a patient and for kits that may be used in such methods.

Background of the invention

Urological cancers (occasionally referred to as 'urinary system cancers') are a major and increasing epidemiological problem. Two of the most economically important urological cancers are bladder cancer and prostate cancer.

Prostate cancer is the second most common cancer in men after non-melanoma skin cancer, with over 35,000 new cases diagnosed each year in the UK; about 10,200 deaths annually are caused by prostate cancer. There are around 300,000 new cases in Europe, 190,000 in the US and 670,000 worldwide annually. Cancer Research UK report that a quarter of all new cases of cancer diagnosed in men in the UK are prostate cancers and 60% of new diagnoses are in men aged over 70 years. The most common form of the disease is adenocarcinoma. The 5-year survival rate is almost 80% in the UK. There is no known environmental cause but those with close relatives with prostate or breast cancer are more at risk of developing the disease. West African and Afro-Caribbean males have an increased risk of prostate cancer.

The symptoms of prostate cancer are similar to those caused by benign enlargement of the prostate gland, and include urgency to urinate, difficulty or pain in passing urine and rarely, blood in the urine or semen. However, in many men the disease remains symptomless until painful metastases form, predominantly in the bones.

Treatment depends on the stage and grade of the tumour and the patient's general health and age. Options include active surveillance, partial or radical prostatectomy, orchidectomy, hormone treatment, and radiotherapy such as brachytherapy. Orchidectomy and hormone treatment reduce or eliminate the production of testosterone, which is essential for tumour growth.
The definite diagnosis of prostate cancer requires a multi-faceted approach. The current gold standard diagnostic test for prostate cancer is the histological examination of biopsy material. The decision to biopsy is based on age-related serum (Prostate Specific Antigen) PSA level and/or an abnormal digital rectal examination (DRE). DRE, in which the gland is palpated trans-rectally to examine for abnormal morphology is also non-specific. Tumours that are too small to alter the morphology of the gland will not be detected, and abnormal morphology or enlargement is also caused by non-malignant conditions. This is a problem in the art. Samples of the prostate gland are commonly taken using TRUS (trans-rectal ultra sound)-guided needle biopsy. A number of needle cores are taken, typically up to 12, in order to maximize the area of the gland sampled. The procedure is carried out in the outpatients department under local anaesthesia by a urologist with the aid of a nurse or healthcare assistant. This procedure suffers from drawbacks including being somewhat painful for the patient, and exposing the patient to a risk of sepsis and/or bleeding. The tissue cores are microscopically examined in a laboratory for the presence of malignant cells, which has the problem of being labour intensive and requiring highly trained cytologists, as well as being vulnerable to human error.

It can be appreciated that biopsies are invasive and costly. There is a need in the art for a more cost-effective, reliable and/or non-invasive tool for the diagnosis and/or surveillance of urological cancer such as prostate cancer. Known alternate and/or less invasive diagnostic procedures for prostate cancer involve the analysis of specific biological markers ('biomarkers').

An example of a nucleic acid biomarker of prostate cancer is the PCA3 (prostate cancer gene 3) test. This urinary assay identifies non-coding mRNA from the PCA3 gene that is overexpressed in prostate cancer (Hessels & Schalken, The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol, 6, 255-61; 2009). The PCA3 test (Gen-Probe, Inc) relies on the analysis of a first-catch urine specimen produced after a defined form of prostate massage used to express prostatic secretions, which contain epithelial cells into the urethra. As a diagnostic for prostate cancer PCA3 has a ROC (receiver operating characteristic curve) value of 0.68 (Chun et al. Prostate Cancer Gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol; 2009 vol 56 p659-668) which is similar to that for the PSA test discussed below. However, the PCA3 test is costly and not amenable to point-of-care use, which are problems with this prior art technique.
An example of a protein biomarker, which is frequently used to indicate the presence of prostate cancer is PSA (Prostate Specific Antigen). Symptomatic patients presenting in primary care are typically given a serum PSA test and a DRE. However, PSA is not specific for prostate cancer. PSA is a constitutively expressed tissue specific intracellular enzyme. A low concentration of PSA is present in the serum of men with healthy prostate glands. A raised level of PSA in serum occurs due to leakage from the prostate gland and is an indication of the relative size of the gland. Raised PSA can occur in non-malignant conditions such as benign prostatic hyperplasia and prostatitis and also in prostate cancer.

As men grow older, the volume of the gland increases resulting in rising PSA levels in the absence of malignant disease. In a recent study it was found that 60 - 70% of 'positive' PSA tests (serum level of PSA greater than 4 ng/mL) were not associated with cancer (Kilpelainen et al., False-positive screening results in the Finnish prostate cancer screening trial, British Journal of Cancer. 102, 469-474; 2010). The high rate of false positive results leads to many unnecessary biopsy operations and renders the test inappropriate for population screening. In addition the PSA test fails to detect a significant number of cases of prostate cancer, particularly in younger men. The accuracy of the PSA test as measured in ROC (receiver operating characteristic) analysis is 0.678 (Thompson et al., Operating characteristics of a prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA, 294, 66-70; 2005). In the UK, PSA tests are usually carried out in hospital laboratories although rapid point-of-care assays are available.

Bladder cancer is the fourth most common cancer in men and the ninth most common cancer in women and results in significant morbidity and mortality (Jemal et al. CA Cancer J Clin. 2007. 57:43-66.). Most patients with bladder cancer receive the diagnosis after they present with gross or microscopic haematuria or with other irritative voiding symptoms, such as frequency and dysuria. At initial diagnosis, approximately 70% of patients have bladder cancers that are confined to the epithelium or subepithelial connective tissue. These cancers can be managed with endoscopic resection and intravesical therapy. The recurrence rate for these tumours ranges from 50% to 70% and 10% to 15% of cases progress to muscle invasion over a 5-year period (Shariat et al., 2008. Rev Urol. 10: 120-135). Recurrence may be seen locally and more rarely in the upper urinary tract even after several years, necessitating lifelong surveillance. The remaining 30% of patients have
muscle-invasive cancer at initial diagnosis. Of this population, 50% have distant metastasis within 2 years, and 60% die within 5 years despite treatment.

The definite diagnosis of bladder cancer requires a combination of procedures. Presently there are no methods to identify accurately and easily the presence of early bladder cancer. Screening for bladder cancer in patients who present to the urology clinic with appropriate symptoms is currently done with urinalysis, cystoscopy and a scanning procedure such as abdominal ultrasound, intravenous urogram, computed tomography or magnetic resonance imaging. Urine cytology, in which cells from urine samples are examined microscopically, is used occasionally. Cystoscopy, the mainstay for the detection of bladder cancer, is a relatively short, minimally traumatic procedure performed with local urethral anaesthesia, which identifies nearly all papillary and sessile lesions. Nevertheless, it is still invasive and a cause of discomfort and distress to the patient. In addition, cystoscopy may be inconclusive at times because of the grossly abnormal appearance of the bladder mucosa, especially in patients with an indwelling catheter or active inflammation, and it is unable to detect cancers within the ureters. Although considered the gold standard for diagnosis of bladder cancer because it allows direct visualization and biopsy of the bladder urothelium, cystoscopy has an appreciable false-negative rate either from operator error or from small areas of "carcinoma in situ", which may be difficult to detect. (van der Poel & Debruyne. Curr Opin Urol. 2001; 11:503-509; Herr. BJU Int. 1999; 84:1 102-1 103.)

In urine cytology for bladder cancer, exfoliated cells can be investigated for the presence of specific cell-surface antigens, nuclear morphology, gene expression or other biological markers. Urine cytology has a high sensitivity and specificity for the detection of high-grade bladder cancer, but it lacks the sensitivity to detect low grade tumours (Wiener et al. Acta Cytol. 1993;37:163-169). The accuracy of urine cytology in predicting bladder cancer recurrence may vary widely, in part because there is an element of subjectivity in the interpretation of the results. Hence, cytology is not ideal for screening for and surveillance of bladder cancer.

Mcm5 is a biomarker for cancer (WO99021014). A raised level of Mem proteins such as Mcm5 in urine sediment is associated with malignant changes in the prostate gland. Hence raised levels of these Mem proteins could be used to detect prostate cancer. Using DELFIA® (Dissociation-Enhanced Lanthanide Fluorometric Immunoassay) and anti-
Mcm5 monoclonal antibodies 4B4 and 12A7 in a double antibody assay, Dudderidge et al. (BJC, 103, 701 - 707; 2010) investigated the use of Mcm5 as a urinary biomarker for prostate cancer detection and concluded that it 'seems to be a simple, accurate and non-invasive method for identifying patients with prostate cancer'. Compared with the PSA test, which has a specificity of 30%, the specificity of Mcm5 was estimated at between 73% and 93%. Importantly, benign prostatic hyperplasia did not generate false positive results, which is a disadvantage of the PSA test.

A raised level of Mem proteins such as Mcm5 in urine sediment is associated with malignant changes in the prostate gland. Hence raised levels of these Mem proteins could be used to detect prostate cancer. Using DELFIA® (Dissociation-Enhanced Lanthanide Fluorometric Immunoassay) and anti-Mcm5 monoclonal antibodies in a double antibody assay, Dudderidge et al. (BJC, 103, 701 - 707; 2010) investigated the use of Mcm5 as a urinary biomarker for prostate cancer detection and concluded that it 'seems to be a simple, accurate and non-invasive method for identifying patients with prostate cancer'. Compared with the PSA test, which has a specificity of 30%, the specificity of Mcm5 was estimated at between 73% and 93%. Importantly, benign prostatic hyperplasia did not generate false positive results, which is a disadvantage of the PSA test. The assessment of Mcm5 and other Mem proteins currently requires a specialised laboratory with sophisticated instrumentation and highly skilled operatives, thus the assay is not suited to the pathology laboratory or point-of-care applications.

This is further compounded by the complicated methods which are used to prepare samples for analysis by detection of biomarkers. Since Mem proteins are present in cells, the Mem proteins must be released from cells in a sample such as a urine sample. A method for preparing such samples is disclosed in, Dudderidge et al. (BJC, 103, 701 - 707; 2010) which describes that the samples must be processed using a large number of steps including (1) centrifugation at 1500g for 5 min at 4°C, (2) discarding the supernatant, (3) washing the cell pellet three times with 500µl of PBS, (3) resuspending the cell pellets in 250µl or 500µl of processing buffer (PBS, 0.4% sodium dodecyl sulphate and 0.02% sodiumqzide), (4) incubating the resuspended samples at 95°C for 45 minutes, (5) shearing the DNA in the sample by passing the lysis through a 21-gauge needle, (6) digestion of the nucleic acids with DNase I and RNase A for 2 h at 37°C, and (7) centrifugation at 15000g for 10 min. This method is also seen in other documents such as Stoeber et al. 2002
This urine sample preparing method involves multiple steps using multiple reagents and is extremely time-consuming. Typically these methods take at least two hours. Thus, there is a need for a method to prepare urine samples which is considerably less onerous. Such a method would be more suited to pathology laboratory or point-of-care applications.

The present assays for detection of Mem proteins, particularly Mcm5, require the use of DELFIA technology which is complicated to use and involves expensive equipment and reagents. Thus, an assay based on DELFIA is not suitable for pathology laboratory or point-of-care applications and there is a need for an assay that is suitable for such applications.

Furthermore, there is no disclosure of sequences of antibodies that bind to Mcm5 in a highly specific manner and, therefore, are suitable for designing a high affinity assay for Mcm5.

Summary of the invention

The present invention provides methods, compositions and kits useful for the early detection of urological cancer such as prostate cancer without the need for invasive surgical procedures. The methods and compositions are suitable for use in the clinical laboratory and/or for point-of-care applications.

The present inventors have demonstrated that the complicated urine sample preparation methods described in the prior art are not required to release biomarkers such as Mcm5 from cells in samples such as urine samples. Rather, all that is required is to expose the sample to a lysis buffer which is capable of releasing the biomarker from cells in the sample. This is much simpler than the prior art methods. According to the present invention, in some embodiments the cells in a sample (such as a urine sample) may be prepared and lysed by the addition of a single lysate buffer.

The present inventors have also demonstrated that an Mem protein assay which does not use immunofluorescence can accurately detect whether a subject has a urological cancer. This is beneficial over prior art techniques which use Europium labels and DELFIA
detection. Such methods are expensive and complicated and thus unsuitable for use in pathology laboratory or point-of-care applications.

In addition, the present invention relates to antibodies which bind to biomarkers such as an Mem protein, for example Mcm5, in a highly specific manner. These antibodies are useful in detecting levels of the biomarker and the present inventors have demonstrated that these antibodies may be used in the methods of the invention. The inventors have demonstrated that these antibodies bind to Mcm5 from samples that have been exposed to a lysis buffer which is capable of releasing the biomarker from cells in the sample. The present invention relates to antibodies that bind to Mcm5 but bind to different epitopes to one another (12A7 binds to SEQ ID NO: 1 and 4B4 binds to SEQ ID NO: 2). Such antibodies are advantageous as they can be used in assays to detect Mcm5 (or similar Mem proteins containing these epitopes). In particular, these antibodies can be used in the methods of the invention, for example sandwich (two-site) assays.

However, in order for such an assay to be developed, two antibodies that bind to Mcm5 must be identified. Ideally, these two antibodies must bind to different epitopes to one another, but also the two different epitopes to which the two antibodies bind must be spatially positioned such that both antibodies may bind to Mcm5 at the same time (without substantial steric hindrance). The present inventors have developed two such antibodies (named 12A7 and 4B4). These two antibodies bind to SEQ ID NO: 1 and SEQ ID NO: 2 respectively. SEQ ID NO: 1 and SEQ ID NO: 2 represent two different Mcm5 epitopes which are spatially arranged on Mcm5 to allow the two antibodies to bind to Mcm5 at the same time. This is demonstrated in Examples 2 and 3. The present inventors are the first to determine two Mcm5 epitopes which are arranged such that antibodies to each epitope may bind simultaneously. Furthermore, the inventors are the first to provide sequences of two antibodies that can bind independently to Mcm5.

Accordingly in a first aspect of the invention there is provided a method for detecting the presence of Mcm5 in a sample from a subject, the method comprising:
(a) preparing a sample from said subject wherein preparing the sample comprises exposing the sample to a lysis buffer;
(b) performing an assay to determine the concentration of Mcm5 by exposing the sample to a first monoclonal antibody and/or a second monoclonal antibody and measuring the
amount of Mcm5 that binds to the first monoclonal antibody and/or the second monoclonal antibody; and
(c) comparing the concentration of Mcm5 determined in step (b) to reference values; wherein the first monoclonal antibody and the second monoclonal antibody bind to Mcm5.

In a second aspect of the invention there is provided a kit comprising a lysis buffer which is capable of releasing Mcm5 from cells in a sample, a first monoclonal antibody and a second monoclonal antibody wherein the first monoclonal antibody is an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 1;
(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that differs from SEQ ID NO:9 by a single amino acid substitution;
(b) 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that differs from SEQ ID NO: 11 by a single amino acid substitution;
(c) 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that differs from SEQ ID NO: 13 by a single amino acid substitution;
(d) 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that differs from SEQ ID NO:3 by a single amino acid substitution;
(e) 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that differs from SEQ ID NO:5 by a single amino acid substitution; and
(f) 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that differs from SEQ ID NO:7 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29;
(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27; or
(v) competes with the antibody of (i), (ii), (iii) or (iv);

and the second monoclonal antibody is an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 2;
(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO:21 by a single amino acid substitution;
(b) 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO:23 by a single amino acid substitution;

(c) 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO:25 by a single amino acid substitution;

(d) 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO:15 by a single amino acid substitution;

(e) 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO:17 by a single amino acid substitution; and

(f) 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO:19 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33;

(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31; or

(v) competes with the antibody of (i), (ii), (iii) or (iv).

Brief Description of the Drawings

Figure 1 shows a graph describing the absorbance at 450nm of different concentrations of Mcm5.

Figure 2 shows a diagram describing how to dilute the stock calibration solution.

Figure 3 shows a graph comparing the amount of Mcm5 released from urothelial carcinoma cells after exposure to 4 different lysis buffers (Uro LB "0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6), Cytobuster TM, Glolysis TM, and 0.1% SDS 50 mM Trizma pH 7.6, 150 mM NaC, ImM EDTA.

Figure 4 shows a graph comparing the amount of Mcm5 released from urothelial carcinoma cells after exposure to 4 different lysis buffers (Uro LB "0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6), Cytobuster TM, Glolysis TM, and 0.1% SDS 50 mM Trizma pH 7.6, 150 mM NaC, ImM EDTA.

Figure 5 shows a graph comparing CytoBuster, RIPA buffer and TBS-T Buffer prior to modification.

Figure 6 shows a graph comparing buffers based on TBST Buffer and comprising elements from RIPA buffer, Pre- & Post-Lysate Freeze-Thaw.
Figure 7 shows a graph comparing buffers based on RIPA buffer but having some RIPA buffer elements removed, Pre- & Post-Lysate Freeze-Thaw.

Figure 8 shows a graph comparing buffers having different concentrations of Tris and Triton X-100, using Fresh Lysates.

Figure 9 shows a graph comparing different buffer base formulations (TBS, PBS, Bicarbonate, MOPS & HEPES), using Fresh Lysates.

Figure 10 shows a graph comparing buffers having different concentrations of Tris (100mM - 350mM), using Fresh Lysates.

Figure 11 shows a graph comparing buffers based on TBS-T and RIPA buffers but having altered ionic strength, using Freeze-Thawed Lysates.

Figure 12 shows a graph comparing TBS-T buffers having altered NaCl strength, using Freeze-Thawed Lysates.

Figures 13A and 13B show graphs comparing TBS-T buffers which further comprise various stabilising agents.

Figure 14 shows a graph comparing TBST buffers comprising different concentrations of Stabilising Agents, after 6 Days Storage.

Figures 15A, 15B and 15C show graphs assessing the efficacy of TBST Buffer +/- 2.5% BSA in various cell lines.

Figure 16 shows a graph comparing TBST + 2.5% BSA buffers with or without ProClin950.

Figure 17 shows a graph comparing TBST + 2.5% BSA buffers with or without Sodium Azide (NaN3).

25 Detailed description

Methods for detecting the presence of a Mcm5 in a sample from a subject

The present invention provides a method for detecting the presence of Mcm5 indicative of a urological cancer in a subject, the method comprising:

(a) preparing a sample from said subject wherein preparing the sample comprises exposing the sample to a lysis buffer;

(b) performing an assay to determine the concentration of Mcm5 by exposing the sample to a first monoclonal antibody and/or a second monoclonal antibody and measuring the
amount of Mcm5 that binds to the first monoclonal antibody and/or the second monoclonal antibody; and
(c) comparing the concentration of Mcm5 determined in step (b) to reference values; wherein the first monoclonal antibody and the second monoclonal antibody bind to Mcm5.

In some embodiments the presence of higher than normal levels of Mcm5 in the sample is indicative of urological cancer. Whether or not the level of Mcm5 in the sample is higher than normal may be determined by comparing the amount detected with the amount detected in a reference sample. In some embodiments the method is a method for detection of a urological cancer.

Minichromosome Maintenance proteins (Mcm5)

Minichromosome maintenance (MCM) proteins have previously been used as diagnostic biomarkers for cervical cancer. Elevated levels of a minichromosome maintenance complex (MCM) family protein such as the nuclear protein Mcm5 can be used to detect bladder cancer cells in urine sediments as well as prostate cancer. The assessment of Mcm5 is often carried out in a specialised laboratory with sophisticated instrumentation and highly skilled operatives (Stoeber et al. JNCI. 2002: 94: 1071-1079) and this style of analysis can be expensive or impractical to carry out in the pathology laboratory or point-of-care applications. However, it is an advantage that the inventors of the instant application have succeeded in developing a modified double-antibody sandwich ELISA format using a pair of specific monoclonal antibodies that is suited to the pathology laboratory and point-of-care applications to measure accurately Mcm5 levels in urinary sediments. However, this preferred type of assay does not confine the analysis of Mcm5 to this mode, according to the invention Mcm5 may be assayed according to any suitable method known in the art.

MCM proteins 2 - 7 comprise part of the pre-replication complexes which form on chromatin and which are essential prerequisites, or licensing factors, for subsequent DNA replication. The MCM protein complexes act as replicative helicases and thus are core components of the DNA replication machinery. MCMs are upregulated in the transition from the G0 to Gl/S phase of the cell cycle and actively participate in cell cycle regulation. The MCM proteins form an annular structure around the chromatin.
The human Mcm5 gene maps to 22q13.1 and the mature Mcm5 protein consists of 734 amino acids (SEQ ID NO: 1; Figure 1: UNIPROT P33992: HUMAN DNA replication licensing factor MCM5). The term "Mcm5" refers to a polypeptide of SEQ ID NO: 35, a polypeptide 85%, 90%, 95%, 98% or 100% identity to SEQ ID NO: 35. Mcm5 may be encoded by a polynucleotide having a sequence 85%, 90%, 95%, 98% or 100% identical to SEQ ID NO: 36.

Preparing a sample from said subject

The method of the invention comprises a step of preparing a sample from the subject wherein preparing the sample comprises exposing the sample to a lysis buffer. The phrase "preparing the sample" refers to steps taken to release Mcm5 from cells within the sample in order to allow for step (b) of the invention (performing an assay to determine the concentration of Mcm5) to take place. This step comprises exposing the sample to a lysis buffer. Suitably the step of "preparing the sample" comprises a step of concentrating cells in the urine sample. Optionally the cells are concentrated by filtration or by centrifugation.

The term 'exposing the sample to a lysis buffer' can be considered to refer to manipulating the urine sample in such a way that the cells within the urine sample (or a substantial portion of these cells) are in contact with the lysis buffer. Preferably the sample is a urine sample. Suitably, the sample is centrifuged to provide a sample pellet, the supernatant is discarded and the sample pellet is re-suspended in the lysis buffer. Alternatively, for example, concentrated buffer components are added to a liquid urine sample to form a solution comprising the sample exposed to the lysis buffer.

Optionally the method of the invention comprises a step of "providing a sample from a subject". Preferably this step is non-invasive (not-surgical), for example collection of urine. The sample may comprise any biological fluid such as blood, serum, saliva, semen, urine or urinary sediment, or an extract prepared from one of such fluids. The sample is suitably urine.

Mcm5 is typically found in the nuclei of cells present in urine. Thus, suitably the sample comprises cells within the urine. More suitably, those cells may be concentrated by any
known technique common in the art, such as filtration or more suitably centrifugal collection of the cells from urine. Enriching the cells from the urine may increase the signal, and may facilitate detection. When testing for prostate cancer, most suitably the sample is first catch urine, such as may be obtained after massage of the prostate gland (when the subject is male). Even more suitably, the sample may comprise the first few milliliters of first catch urine. In other words, suitably the sample may comprise first pass urine, suitably first pass urine produced after massage of the prostate gland. Even more suitably, the sample may comprise urinary sediment such as sedimented cells collected from urine (such as from total urine, or from first catch urine as explained above).

In one embodiment a sample comprising cells is prepared using a process consisting of the following steps: a. centrifugation of the sample to provide a sample pellet; and b. resuspension of the pelleted cells from the sample in a lysis buffer.

Suitably the sample is centrifuged for between 1 minute and 30 minutes at between 500g and 5000g, for between 1 minute and 20 minutes at between 750g and 2500g, for between 3 minutes and 10 minutes at between 750g and 2000g, or for around 5 minutes at 1500g. Suitably the pellet is resuspended using an adjustable pipette with a disposable tip.

In one embodiment the method does not comprise incubation of the sample at a temperature greater than 90°C for around 45 minutes. Optionally the method does not comprise incubation of the sample at a high temperature. In one embodiment the high temperature is a temperature greater than 50°C, greater than 60°C, greater than 70°C, greater than 80°C, greater than 90°C, between 50°C and 120°C, between 60°C and 110°C, between 70°C and 100°C, or between 80°C and 100°C. Optionally the method does not comprise incubation of the sample at a high temperature for more than 30 minutes, more than 35 minutes, more than 40 minutes, more than 45 minutes, between 30 minutes and 2 hours, between 35 minutes and 2 hours, or between 40 minutes and 2 hours.

In a further embodiment the method does not comprise shearing the nucleic acids by passing the sample through a 21 gauge needle. In a further embodiment the method does not comprise exposing the sample to mechanical shearing.
Optionally the method does not comprise incubation of the urine sample at a temperature greater than 90°C for greater than 45 minutes, shearing nucleic acids in the urine sample by passing the urine sample through a 21 gauge needle, digesting the nucleic acids by exposing the urine sample to DNase I or RNase A, centrifuging the sample at 15,000 g for 10 minutes, wherein the lysis buffer is not PBS containing 0.4% sodium deoxycholate and 0.02% sodium azide.

In a further embodiment the method does not comprise digesting the nucleic acids by exposing the sample to DNase I or RNase A.

The phrase ‘does not comprise digesting the nucleic acids by exposing the urine sample to DNase I or RNase A’ means the sample should not be exposed to a concentration of DNase I or RNase A that is effective to cause significant digestion of the nucleic acids in the sample. Preferably the sample is not exposed to more than 20U/ml DNase I or more than \(^g/mL\) RNase A. Suitably the sample is not exposed to more than 1U/ml, more than 5U/ml, more than 10U/ml, more than 15U/ml, between 1U/ml and 500U/ml, between 5U/ml and 250U/ml, between 10U/ml and 100U/mL or between 15U/ml and 100U/ml of DNase I. Suitably the sample is not exposed to more than 0.1g/mL, more than 0.5g/mL, more than 1g/mL, more than 5g/mL, between 0.1g/mL and 100μg/ml, between 0.5g/mL and 50μg/mL or between 1g/mL and 25μg/mL of RNase A.

In a further embodiment the method does not comprise centrifuging the sample at 15,000 g for ten minutes. In a further embodiment the method does not comprise centrifuging the sample. In a further embodiment the method does not comprise centrifuging the sample at more than 10,000 g, more than 12,000 g, more than 14,000 g or more than 14,500 g. In a further embodiment the method does not comprise centrifuging the sample for more than 2 minutes, more than 5 minutes, more than 7 minutes or more than 8 minutes.

Lysis buffers

Lysis buffers are generally buffers which are used for the purpose of lysing cells. The lysis buffer is preferably compatible with the method used for subsequent analysis. For example, where the analysis method is double-antibody sandwich ELISA, the lysis buffer must not degrade the capture antibody bound to the surface of the microtitre plate. Lysis buffers
generally but not exclusively comprise one or more detergents (also known as surfactants), one or more salts and a buffering agent. The concentrations of these components affect the efficacy of the lysis buffer. Preferably the lysis buffer is capable of releasing Mcm5 from cells in the sample.

In a preferred embodiment of the invention the lysis buffer is capable of releasing a biomarker such as Mcm5 from cells in the sample. A lysis buffer will be considered to be "capable of releasing a biomarker such as Mcm5 from cells in the sample" if the amount of the biomarker such as Mcm5 released is greater than 40%, 50%, 60%, 70%, or 80% the amount released when a buffer containing 0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6 is used. In an embodiment a lysis buffer will be considered to be "capable of releasing a biomarker such as Mcm5 from cells in the sample" if the amount of a biomarker such as Mcm5 released is greater than 40%, 50%, 60%, 70%, or 80%, the amount released when a buffer containing 10mM Tris (pH 7.6), 200 mM NaCl, 2.5% BSA, 0.1% Triton X100 and 0.09% Sodium azide is used. The amount of a biomarker such as Mcm5 that is released using a lysis buffer may be determined by assaying the amount present after exposure to the lysis buffer and comparing it to a reference sample (preferably a sample which is substantially the same or identical to the first sample) which has been exposed to a buffer containing 0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6. In an embodiment the amount of a biomarker such as Mcm5 that is released using a lysis buffer may be determined by assaying the amount present after exposure to the lysis buffer and comparing it to a reference sample (preferably a sample which is substantially the same or identical to the first sample) which has been exposed to a buffer containing 10mM Tris (pH 7.6), 200 mM NaCl, 2.5% BSA, 0.1% Triton X100 and 0.09% Sodium azide. The amount of a biomarker such as Mcm5 that is released may be measured using a sandwich ELISA assay such as the assay described in Example 4. The antibodies used in the sandwich assay should be antibodies that bind to the biomarker such as Mcm5, for example a first monoclonal antibody or second monoclonal antibody according to the invention.

Preferably 12A7 and 4B4 antibodies are used.

In an even more preferred embodiment of the invention the lysis buffer is capable of releasing Mcm5 from cells in the urine sample and does not substantially degrade the Mcm5 protein. A buffer can be considered to not substantially degrade Mcm5 protein if the
amount of intact Mcm5 present after exposure of the sample to the lysis buffer is greater than 40%, 50%, 60%, 70%, or 80% the amount of intact Mcm5 after exposure to a buffer containing 0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6. Mcm5 protein can be considered to be intact, if the binding site for antibodies that bind to SEQ ID NO: 1 and SEQ ID NO: 2 (such as the first monoclonal antibody and second monoclonal antibody or antibodies 12A7 and 4B4) are present. It is within the capabilities of the skilled person to determine how much Mcm5 within a sample is degraded. The sample should be tested to see whether the Mcm5 within the sample can bind to the first monoclonal antibody and the second monoclonal antibody according to the invention. This may be measured using a sandwich ELISA assay such as that described in Example 4. The antibodies used in the sandwich assay should be antibodies that bind to Mcm5, for example a first monoclonal antibody or second monoclonal antibody of the invention. Preferably 12A7 and 4B4 antibodies are used.

In one embodiment the lysis buffer is capable of releasing Mcm5 from cells in a fresh sample. The term "fresh sample" refers to a sample that has not been frozen. Preferably, the "fresh sample" has been obtained from a patient less than 10 days, less than 5 days, less than 2 days or less than 1 day prior to its use in the methods of the invention. In one embodiment the cells are exposed to the lysis buffer and then frozen before further treatment. For example, the urine sample may be concentrated by centrifugation followed by discarding the supernatant and then the lysis buffer may be added to the concentrated cells. Preferably the frozen sample is thawed prior to a step of performing an assay to determine the concentration of the at least one biomarker in the urine sample. Preferably the sample is frozen for at least 1 hour, at least 1 day, at least 5 days or at least 10 days prior to a step of performing an assay to determine the concentration of the at least one biomarker in the urine sample. Preferably the sample is frozen for between 1 hour and 1 year, between 1 hour and 6 months, between 1 day and 3 months or around one week prior to a step of performing an assay to determine the concentration of the at least one biomarker in the urine sample.

In an embodiment of the invention the lysis buffer is Cytobuster™ Protein Extraction Reagent.
In one embodiment the lysis buffer does not comprise sodium azide. In one embodiment
the lysis buffer is not PBS containing 0.4% sodium deoxycholate and 0.02% sodium azide.

In one embodiment the lysis buffer comprises a detergent (also referred to as a surfactant).

In general detergents are compounds that are known to disrupt cell walls. Detergents are
amphiphilic having both hydrophobic and hydrophilic regions. Suitable detergents are well
known to the person of skill in the art. Suitably the detergent is an anionic detergent, a
cationic detergent, a non-ionic detergent or a zwitterionic detergent. Suitably the detergent
is selected from the group consisting of sodium deoxycholate, 3-[(3-
Cholamidopropyl)dimethylammonio]-l-propanesulphonate (CHAPS),
alkylbenzenesulphonates, sodium dodecylbenzenesulphonate, a Tween detergent (such as
polyoxyethylene (2b) sorbitan monoooleate or Tween-20), and a Triton detergent (such as
polyethylene glycol p-(l, 1, 3, 3,-tetramethylbutyl)-phenyl ether or Triton X-100). Suitably
the detergent comprises sodium deoxycholate. Suitably the detergent comprises CHAPS.

Suitably the detergent comprises sodium deoxycholate and CHAPS. Suitably the lysis
buffer comprises sodium deoxycholate at a concentration between 0.01% and 0.15%,
between 0.03% and 0.10%, between 0.05% and 0.09%, or about 0.08%. Suitably the lysis
buffer comprises CHAPS at a concentration between 0.01% and 0.15%, between 0.03%
and 0.10%, between 0.05% and 0.09%, or about 0.08%. Suitably the detergent comprises
triton X-100. Preferably the detergent comprises triton X-100 at a concentration between
0.01% and 25%, between 0.01% and 10%, between 0.05% and 5%, between 0.05% and
1%, between 0.05% and 0.5%, between 0.075% and 0.125% or around 0.1%. Suitably the
detergent consists of triton X-100. Preferably the detergent consists of triton X-100 at a
concentration between 0.01% and 25%, between 0.01% and 10%, between 0.05% and 5%,
between 0.05% and 1%, between 0.05% and 0.5%, between 0.075% and 0.125% or around
0.1%. Suitably the detergent comprises a polysorbate, preferably polysorbate 20 (also
known as Tween 20). Suitably the detergent comprises polysorbate at a concentration
between 0.01% and 5%, between 0.02% and 1%, between 0.03% and 0.07% or around
0.05%. Suitably the detergent comprises sodium deoxycholate or sodium dodecylsulphate.

For example the detergent may comprise sodium deoxycholate or sodium dodecylsulphate
at a concentration between 0.1% and 20%, between 0.5% and 10%, between 0.5% and 5%,
between 0.75% and 1.25% or around 1%.
In a further embodiment the lysis buffer comprises a chelating agent. In a further embodiment the lysis buffer does not comprise a chelating agent. Chelating agents are multidentate ligands which can coordinate metal ions. Suitably the chelating agent is EDTA (ethylenediaminetetraacetic acid). Optionally the lysis buffer comprises EDTA at a concentration between 0.5mM and 10mM, between 1mM and 5mM, between 1.5mM and 3mM, or about 2mM.

In a further embodiment the lysis buffer comprises a buffer component. A buffer component can be considered to be any component which maintains the pH of the lysis buffer at a pH varying by less than 2.0 pH units, 1.5 pH units or 1.0 pH units. Examples of buffers which are suitable for this purpose are well known to the person skilled in the art. In an embodiment the buffer component is a buffer selected from the group consisting of TAPS (3-[[tris(hydroxymethyl)methyl]amino]propanesulfonic acid), Bicine (N,N-bis(2-hydroxyethyl)glycine), Tris (tris(hydroxyethyl)methylamine), Tricine (N-tris(hydroxymethyl)methylglycine), TAPSO (3-[[N-Tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic acid, HEPES (4-2-hydroxyethyl-1-piperazineethanesulfonic acid) and MOPS (3-(N-morpholino)propanesulfonic acid. Suitably the buffer component comprises Tris, phosphate buffered saline (PBS), MOPS, bicarbonate or HEPES buffer. Suitably the buffer component comprises Tris, PBS, MOPS or bicarbonate buffer. Suitably the buffer component comprises Tris, PBS or bicarbonate buffer. In one embodiment the buffer component is Trizma or Tris buffer. In one embodiment the buffer component comprises or consists of Trizma or Tris buffer. Trizma may refer to Trizma® Pre-set crystals pH 7.6’ (Sigma-Aldrich Cat. No. T7943). In a further embodiment the buffer component maintains the pH of the buffer at a pH between pH 4 and pH 9, between pH 5 and pH 8, between pH 6 and pH 8, or around pH 7.6. Optionally the buffer component is Trizma or Tris buffer, and the buffer component maintains the pH of the lysis buffer between pH 4 and pH 9, between pH 5 and pH 8, between pH 6 and pH 8, or around pH 7.6. Optionally the buffer component comprises or consists of Trizma or Tris buffer, and the buffer component maintains the pH of the lysis buffer between pH 4 and pH 9, between pH 5 and pH 8, between pH 6 and pH 8, or around pH 7.6.

Preferably the buffer component comprises tris buffer, for example at a concentration greater than 5 mM, between 5 mM and 350 mM, between 200 mM and 300 mM, between 225 mM and 275 mM between 10mM and 25mM, between 8mM and 12mM, around 10
mM or around 250 mM. Preferably the buffer component consists of tris buffer, for example at a concentration greater than 5 mM, between 5 mM and 350 mM, between 200 mM and 300 mM, between 225 mM and 275 mM, between 1OMm and 25mM, between 8mM and 12mM, around 10 mM or around 250 mM. Suitably the buffer component comprises phosphate buffered saline, for example at a concentration of between 5 mM and 250 mM, between 50 mM and 250 mM or around 100 mM.

In an embodiment the lysis buffer comprises sodium deoxycholate at a concentration between 0.01% and 0.15%, CHAPS at a concentration between 0.01% and 0.15%, EDTA at a concentration between 0.5mM and lOMm, and Trizma or Tris buffer, wherein the Trizma or Tris buffer maintains the pH of the lysis buffer between pH 4 and pH 9. In a further embodiment the lysis buffer comprises sodium deoxycholate at a concentration between 0.05% and 0.09%, CHAPS at a concentration between 0.05% and 0.09%, EDTA at a concentration between 1.5mM and 3mM, and Trizma or Tris buffer, wherein the Trizma or Tris buffer maintains the pH of the lysis buffer between pH 6 and pH 8. In a further embodiment the lysis buffer comprises sodium deoxycholate at a concentration about 0.08%, CHAPS at a concentration about 0.08%, EDTA at a concentration about 2mM, and Trizma or Tris buffer, wherein the Trizma or Tris buffer maintains the pH of the lysis buffer around pH 7.6.

In one embodiment the lysis buffer comprises a salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, sodium sulphate, potassium sulphate, magnesium sulphate, sodium acetate, potassium acetate, magnesium acetate, sodium phosphate, potassium phosphate or magnesium phosphate. Preferably the salt is a sodium salt or a potassium salt. Suitably the salt is sodium chloride or potassium chloride. Suitably the salt comprises or consists of sodium chloride or potassium chloride. Suitably the salt is at a concentration between 20 mM and 300 mM, between 150 mM and 300 mM, between 100 mM and 200 mM, between 150 mM and 250 mM, between 175 mM and 275 mM or around 200 mM. Preferably the salt is sodium chloride, for example at a concentration between 20 mM and 300 mM, between 150 mM and 300 mM, between 100 mM and 200 mM or around 200 mM. Preferably the salt comprises or consists of sodium chloride, for example at a concentration between 20 mM and 300 mM, between 150 mM and 300 mM, between 100 mM and 200 mM or around 200 mM.
In one embodiment the lysis buffer has an ionic strength of between 1 mM and 500mM, between 50 mM and 450 mM, between 100 mM and 250 mM, between 100 mM and 175 mM, or between 125 mM and 175 mM. Various components of the buffer may contribute to this ionic strength. For example, the lysis buffer may comprise a buffer component (such as Tris) and an additional salt component (such as sodium chloride) and both of these components may contribute to the ionic strength of the lysis buffer.

In one embodiment the lysis buffer comprises a stabiliser. A "stabiliser" is a component that reduces the breakdown of proteins. For example, a stabiliser reduces the breakdown of Mcm5. Whether a buffer component stabilises Mcm5 can be tested using a sandwich ELISA assay such as the assay described in Example 4. For example, a sample may be exposed to a lysis buffer comprising the potential stabiliser and a control sample may be exposed to a lysis buffer lacking the potential stabiliser. The level of Mcm5 that can be detected after exposure is measured using the sandwich ELISA. If the level of Mcm5 in the sample having the buffer comprising the potential stabiliser is greater than the level of Mcm5 in the sample having the buffer that does not comprise the potential stabiliser, then the potential stabiliser is a stabiliser according to the present invention. A stabiliser of the invention may prevent the breakdown of Mcm5 such that 1%, 2%, 5%, 10%, 20% or 25% more Mcm5 is present after storage in a buffer comprising a stabiliser for 1 day, 3 days, 5 days, 1 week or 2 weeks (compared to a buffer that does not comprise the stabiliser).

The stabiliser may be a stabiliser selected from the group consisting of bovine serum albumin (BSA), foetal bovine serum (FBS) and a protease inhibitor. For example, protease inhibitors include 4-(2-aminoethyl)benzenesulphonyl fluoride hydrochloride (Petrabloc SC or AEBSF), a protease inhibitor cocktail (such as Sigma P8340) comprising AEBSF, aprotinin, bestatin hydrochloride, N-(trans-epoxysuccinyl)-L-leucine 4-guanidinobutylamide (E-64), leupeptin hemisulphate salt and pepstatin A, and Roche complete protease inhibitor. Preferably the stabiliser is BSA, for example at a concentration between 0.1% and 20%, between 0.1% and 10%, between 0.1% and 5%, between 1% and 3%, between 2.2% and 2.7% or around 2.5%. Preferably the stabiliser comprises or consists of BSA, for example at a concentration between 0.1% and 20%, between 0.1% and 10%, between 0.1% and 5%, between 1% and 3%, between 2.2% and 2.7% or around 2.5%.

20
The lysis buffer may comprise an antimicrobial agent. A component is an "antimicrobial agent" if it reduces the replication of microbes, for example bacteria, viruses or fungi. In one embodiment the antimicrobial agent is sodium azide or an isothiazolone. In one embodiment the antimicrobial agent comprises or consists of sodium azide or an isothiazolone. The isothiazolone may be 2-methyl-4-isothiazolin-3-one and/or 5-chloro-2-methyl-4-isothiazolin-3-one. Preferably the antimicrobial agent comprises sodium azide, for example at a concentration between 0.01% and 5%, between 0.02% and 1.5%, between 0.07% and 0.12% or around 0.09%. Preferably the antimicrobial agent consists of sodium azide, for example at a concentration between 0.01% and 5%, between 0.02% and 1.5%, between 0.07% and 0.12% or around 0.09%.

The lysis buffer may comprise:

(i) between 1 mM and 500 mM Tris;
(ii) between 5 mM and 500 mM sodium chloride;
(iii) between 0.1% and 20% BSA;
(iv) between 0.001% and 10% Triton X-100; and
(v) between 0.001% and 1% sodium azide.

Alternatively, the lysis buffer may comprise:
(i) between 1 mM and 150 mM Tris;
(ii) between 50 mM and 400 mM sodium chloride;
(iii) between 0.5% and 10% BSA;
(iv) between 0.01% and 5% Triton X-100; and
(v) between 0.01% and 0.5% sodium azide.

Alternatively, the lysis buffer may comprise:
(i) between 1 mM and 100 mM Tris;
(ii) between 100 mM and 300 mM sodium chloride;
(iii) between 1% and 5% BSA;
(iv) between 0.01% and 1% Triton X-100; and
(v) between 0.01% and 0.1% sodium azide.
The lysis buffer may comprise:
(i) around 10 mM Tris;
(ii) around 200 mM sodium chloride;
(iii) around 2.5% BSA;
(iv) around 0.1% Triton X-100; and
(v) around 0.09% sodium azide.

The lysis buffer may consist of:
(i) between 1 mM and 500 mM Tris;
(ii) between 5 mM and 500 mM sodium chloride;
(iii) between 0.1% and 20% BSA;
(iv) between 0.001% and 10% Triton X-100; and
(v) between 0.001% and 1% sodium azide.

Alternatively, the lysis buffer may consist of:
(i) between 1 mM and 150 mM Tris;
(ii) between 50 mM and 400 mM sodium chloride;
(iii) between 0.5% and 10% BSA;
(iv) between 0.01% and 5% Triton X-100; and
(v) between 0.01% and 0.5% sodium azide.

Alternatively, the lysis buffer may consist of:
(i) between 1 mM and 100 mM Tris;
(ii) between 100 mM and 300 mM sodium chloride;
(iii) between 1% and 5% BSA;
(iv) between 0.01% and 1% Triton X-100; and
(v) between 0.01% and 0.1% sodium azide.

The lysis buffer may consist of:
(i) around 10 mM Tris;
(ii) around 200 mM sodium chloride;
(iii) around 2.5% BSA;
(iv) around 0.1% Triton X-100; and
(v) around 0.09% sodium azide.
In one embodiment the lysis buffer of the invention is used for releasing at least one biomarker from cells in a urine sample. Optionally the at least one biomarker is an Mem protein, preferably Mcm5.

The lysis buffer may be RIPA buffer.

Performing an assay to determine the concentration of Mcm5

In one embodiment of the invention the term "detecting the presence of Mem5" can be considered to be substitutable with the term "performing an assay to determine the concentration" of Mcm5. In such embodiments, the presence of Mcm5 can be considered to be detected, where its concentration is higher than a defined cut-off level. For example the cut-off may be a concentration of Mcm5 higher than the mean value from healthy patients plus a multiple of the standard deviation shown by the values derived from healthy subjects.

There is no particular requirement that the concentration of, for example, the full length Mcm5 polypeptide be scored. Indeed, it is possible that detection may take place by assaying particular fragments of Mcm5 being present which are thus taken to indicate the presence of the overall biomarker polypeptide in the sample. This is especially true if the samples are analysed for example by mass spectrometry. Therefore the invention embraces the detection of fragments of Mcm5 biomarkers. Suitably the fragment is sufficiently long to enable its unique identification by immunological or mass spectrometry methods. Such a fragment is suitably at least 6 amino acids in length, suitably at least 7 amino acids in length, suitably at least 8 amino acids in length, suitably at least 9 amino acids in length, suitably at least 10 amino acids in length, suitably at least 15 amino acids, suitably at least 25 amino acids, suitably at least 50 amino acids, suitably at least 100 amino acids, or suitably the majority of Mcm5. Suitably a fragment comprises a small fragment of Mcm5, whilst being long enough to retain an identifiable amino acid sequence or mass.

Antibodies
The assay to determine the concentration of Mcm5 is performed by exposing the sample to a first monoclonal antibody and/or a second monoclonal antibody. Preferably the assay comprises exposing the sample to both a first monoclonal antibody and a second monoclonal antibody. The kits of the invention comprise a first monoclonal antibody and a second monoclonal antibody.

The term 'antibody' can refer to naturally occurring forms or recombinant antibodies such as single-chain antibodies, chimeric antibodies or humanised antibodies. The terms 'antibody' and 'antibodies' may also be considered to encompass fragments of antibodies that can bind to a target protein, such as an Mem protein like Mcm5. Such fragments may include Fab'2, F(ab)_2, Fv, single chain antibodies or diabodies. In a preferred embodiment antibodies of the invention are naturally occurring, full length antibodies (rather than fragments). In a preferred embodiment the antibody is a mouse antibody (i.e. originally derived from mouse spleen cells).

In general, antibodies are formed from two heavy chains and two lights chains. Each heavy chain is made up of a heavy chain constant region (CH) and a heavy chain variable region (VH). Similarly each light chain is made up of a light chain constant region (CL) and a light chain variable region (VL). The VH and VL regions comprise complementarity defining regions (CDRs). The CDRs are, primarily, responsible for specific binding to the target protein.

An antibody of the invention may be an antibody of any class, particularly IgG, IgM or IgA. In a preferred embodiment the antibody is an IgG antibody.

The term "monoclonal antibody" is intended to refer to an antibody that is obtained from a population of substantially similar antibodies, i.e. from a population of antibodies that are identical except for a minority of naturally occurring variants. A population of monoclonal antibodies will bind to the same epitope. Monoclonal antibodies can be produced by a variety of techniques well known to the person skilled in the art and including the methods disclosed in "Monoclonal Antibodies: A manual of techniques", H Zola (CRC Press, 1988) and in "Monoclonal Hybridoma Antibodies: Techniques and Application", SG Hurrell (CRC Press, 1982).
Antibody target

Preferably the first monoclonal antibody and/or the second monoclonal antibody bind specifically to Mcm5. Preferably the first monoclonal antibody binds to SEQ ID NO: 1. Preferably the second monoclonal antibody binds to SEQ ID NO: 2.

The first monoclonal antibody or the second monoclonal antibody will bind to an epitope (fragment) of Mcm5 (for example SEQ ID NO: 1 or SEQ ID NO: 2). Thus, the term "antibody which binds to Mcm5" refers to an antibody that binds to only a single epitope of Mcm5 such as SEQ ID NO: 1 or SEQ ID NO: 2.

For the purposes of the present invention the term 'binding affinity' refers to the ability of an antibody to bind to its target. For the purposes of the present invention, the term 'specifically binds' refers to an antibody that binds to a target such as Mcm5 with a binding affinity that is at least 2-fold, 10-fold, 50-fold or 100-fold greater than its binding affinity for binding to another non-target molecule. In an embodiment the non-target molecule is an Mem protein, other than Mcm5, such as Mcm2. Preferably, an antibody of the invention is capable of binding to an Mem protein, optionally Mcm5, with a binding affinity that is at least 2-fold, 10-fold, 50-fold or 100-fold greater than its binding affinity for binding to another non-target molecule. Even more preferably, an antibody of the invention is capable of binding to SEQ ID NO: 1 (such as the first monoclonal antibody) or SEQ ID NO: 2 (such as the second monoclonal antibody) with a binding affinity that is at least 2-fold, 10-fold, 50-fold or 100-fold greater than its binding affinity for binding to another non-target molecule.

A preferred method for the evaluation of binding affinity for Mcm5 is by ELISA. Preferably, the first monoclonal antibody and/or the second monoclonal antibody have an affinity for Mcm5 (measured as an EC50 or 50% maximum binding concentration, as described in Example 2) of 2500 ng/ml or lower, 1500 ng/ml or lower, 1000 ng/ml or lower, 600 ng/ml or lower, 50 ng/ml or lower, 30 ng/ml or lower, 20 ng/ml or lower, or 10 ng/ml or lower. The EC50 will typically be higher than 1 ng/ml and thus the EC50 may be between 1 ng/ml and any of the upper limits specified in the preceding sentence. Other standard assays to evaluate the binding ability of ligands such as antibodies towards targets are known in the art, including for example, Western blots, RIAs, and flow cytometry.
analysis. The binding kinetics \textit{(e.g. binding affinity)} of the antibody also can be assessed by standard assays known in the art, such as by Surface Plasmon Resonance (SPR) \textit{(e.g. Biacore TM system)} analysis. The affinity constant (\textit{KD}) for binding to Mcm5 is preferably in the range of 1-10 000 nM, 1-1 000 nM, 1-500 nM, 1-100 nM, 1-50 nM or 1-10 nM. The association rate (\textit{ka}) is preferably in the range of 0.4-3.4 \times 10^{6} \text{M}^{-1} \text{s}^{-1}. The dissociation rate (\textit{kd}) is preferably in the range of 1-10 \times 10^{7} \text{s}^{-1}. These values may typically be determined by SPR (surface plasmon resonance).

\textbf{Complementary determining regions (CDRs)}

The invention relates to antibodies that preferably comprise at least one of the CDRs of antibodies 12A7 or 4B4, \textit{i.e.} a CDR selected from the group consisting of:

\begin{itemize}
 \item[a.] 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that differs from SEQ ID NO: 9 by 1, 2 or 3 amino acid substitutions;
 \item[b.] 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that differs from SEQ ID NO: 11 by 1, 2 or 3 amino acid substitutions;
 \item[c.] 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that differs from SEQ ID NO: 13 by 1, 2 or 3 amino acid substitutions;
 \item[d.] 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that differs from SEQ ID NO: 3 by 1, 2 or 3 amino acid substitutions;
 \item[e.] 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that differs from SEQ ID NO: 5 by 1, 2 or 3 amino acid substitutions;
 \item[f.] 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that differs from SEQ ID NO: 7 by 1, 2 or 3 amino acid substitutions;
 \item[g.] 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO: 21 by 1, 2 or 3 amino acid substitutions;
 \item[h.] 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO: 23 by 1, 2 or 3 amino acid substitutions;
 \item[i.] 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO: 25 by 1, 2 or 3 amino acid substitutions;
 \item[j.] 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO: 15 by 1, 2 or 3 amino acid substitutions;
\end{itemize}
k. 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO: 17 by 1, 2 or 3 amino acid substitutions; and
l. 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO: 19 by 1, 2 or 3 amino acid substitutions.

Antibodies that have the same CDRs as the 4B4 and 12A7 antibodies may differ substantially from the sequences of 4B4 and 12A7 in other regions. Such antibodies may, for example, be antibody fragments.

The phrase "sequence that differs from SEQ ID NO: 3 by a single amino acid substitution" refers to the possibility of replacing one amino acid defined in SEQ ID NO: 3 by a different amino acid. Preferably such a replacement is a conservative amino acid substitution. The following eight groups each contain amino acids that are typically conservative substitutions for one another:

1) Alanine, Glycine;
2) Aspartic acid, Glutamic acid;
3) Asparagine, Glutamine;
4) Arginine, Lysine;
5) Isoleucine, Leucine, Methionine, Valine;
6) Phenylalanine, Tyrosine, Tryptophan;
7) Serine, Threonine; and
8) Cysteine, Methionine.

In an embodiment the first monoclonal antibody comprises at least one CDR from the heavy chain of 12A7 (12A7 CDRH1, 12A7 CDRH2 or 12A7 CDRH3) as well as at least one CDR from the light chain of 12A7 (12A7 CDRL1, 12A7 CDRL2 or 12A7 CDRL3). In a further embodiment the first monoclonal antibody comprises at least two CDRs from the heavy chain of 12A7 and at least two CDRs from the light chain of 12A7. In a preferred embodiment the first monoclonal antibody comprises all three CDRs from the heavy chain of 12A7 and/or all three CDRs from the light chain of 12A7. In an embodiment the first monoclonal antibody comprises 12A7 CDRL1 and 12A7 CDRL2, 12A7 CDRL1 and 12A7 CDRL3, 12A7 CDRL1 and 12A7 CDRH1, 12A7 CDRL1 and 12A7 CDRH2, 12A7 CDRL1 and 12A7 CDRH3, 12A7 CDRL2 and 12A7 CDRL3, 12A7
CDRL2 and 12A7 CDRH1, 12A7 CDRL2 and 12A7 CDRH2, 12A7 CDRL2 and 12A7 CDRH3, 12A7 CDRL3 and 12A7 CDRH1, 12A7 CDRL3 and 12A7 CDRH2, 12A7 CDRL3 and 12A7 CDRH3, or 12A7 CDRH2 and 12A7 CDRH3.

In an embodiment the second monoclonal antibody comprises at least one CDR from the heavy chain of 4B4 (4B4 CDRH1, 4B4 CDRH2 or 4B4 CDRH3) as well as at least one CDR from the light chain of 4B4 (4B4 CDRL1, 4B4 CDRL2 or 4B4 CDRL3). In a further embodiment the second monoclonal antibody comprises at least two CDRs from the heavy chain of 4B4 and at least two CDRs from the light chain of 4B4. In a preferred embodiment the second monoclonal antibody comprises all three CDRs from the heavy chain of 4B4 and/or all three CDRs from the light chain of 4B4. In an embodiment the second monoclonal antibody comprises 4B4 CDRL1 and 4B4 CDRL2, 4B4 CDRL1 and 4B4 CDRL3, 4B4 CDRL1 and 4B4 CDRH1, 4B4 CDRL1 and 4B4 CDRH2, 4B4 CDRL1 and 4B4 CDRH3, 4B4 CDRL2 and 4B4 CDRL3, 4B4 CDRL2 and 4B4 CDRH1, 4B4 CDRL2 and 4B4 CDRH2, 4B4 CDRL2 and 4B4 CDRH3, 4B4 CDRL3 and 4B4 CDRH1, 4B4 CDRL3 and 4B4 CDRH2, 4B4 CDRL3 and 4B4 CDRH3, 4B4 CDRH1 and 4B4 CDRH2, 4B4 CDRH1 and 4B4 CDRH3, or 4B4 CDRH2 and 4B4 CDRH3.

In a preferred embodiment an antibody comprises at least one CDR having a sequence identical to that described in any one of SEQ ID NO: 3 (12A7 CDRL1), SEQ ID NO: 5 (12A7 CDRL2), SEQ ID NO: 7 (12A7 CDRL3), SEQ ID NO: 9 (12A7 CDRH1), SEQ ID NO: 11 (12A7 CDRL2), SEQ ID NO: 13 (12A7 CDRH2), SEQ ID NO: 15 (4B4 CDRL1), SEQ ID NO: 17 (4B4 CDRL2), SEQ ID NO: 19 (4B4 CDRL3), SEQ ID NO: 21 (4B4 CDRH1), SEQ ID NO: 23 (4B4 CDRH2) or SEQ ID NO: 25 (4B4 CDRH3). In an embodiment where the first monoclonal antibody comprises 12A7 CDRL2, the 12A7 CDRL2 has the sequence described in SEQ ID NO: 5. In a further embodiment where the first monoclonal antibody comprises 12A7 CDRL1, the 12A7 CDRL1 has the sequence described in SEQ ID NO: 3. In a further embodiment where the first monoclonal antibody comprises 12A7 CDRL3, the 12A7 CDRL3 has the sequence described in SEQ ID NO: 7. In a further embodiment where the first monoclonal antibody comprises 12A7 CDRH1, the 12A7 CDRH1 has the sequence described in SEQ ID NO: 9. In a further embodiment where the first monoclonal antibody comprises 12A7 CDRH2, the 12A7 CDRH2 has the sequence described in SEQ ID NO: 11. In a further embodiment where the first...
monoclonal antibody comprises 12A7 CDRH3, the 12A7 CDRH3 has the sequence described in SEQ ID NO: 13. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRL1, the 4B4 CDRL1 has the sequence described in SEQ ID NO: 15. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRL2, the 4B4 CDRL2 has the sequence described in SEQ ID NO: 17. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRL3, the 4B4 CDRL3 has the sequence described in SEQ ID NO: 19. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRH1, the 4B4 CDRH1 has the sequence described in SEQ ID NO: 21. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRH2, the 4B4 CDRH2 has the sequence described in SEQ ID NO: 23. In a further embodiment where the second monoclonal antibody comprises 4B4 CDRH3, the 4B4 CDRH3 has the sequence described in SEQ ID NO: 25.

Preferably an antibody comprising at least one of the CDRs of 12A7 or 4B4 binds (optionally specifically binds) to Mcm5. Even more preferably an antibody comprising at least one of the CDRs of 12A7 or 4B4 binds (optionally specifically binds) to SEQ ID NO: 1 or SEQ ID NO: 2.

Heavy and light chain variable region sequences

The first monoclonal antibody preferably comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29. The first monoclonal antibody preferably comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27. The second monoclonal antibody preferably comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33. The second monoclonal antibody preferably comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31. Such antibodies may be referred to as "variant antibodies".

In an embodiment the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 29. In a further embodiment the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 98%, identical to SEQ ID NO: 29. In one embodiment the first monoclonal antibody comprises a light chain variable region having a sequence at least 95% identical to SEQ ID
In a further embodiment the first monoclonal antibody comprises a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 27. In a further embodiment the first monoclonal antibody comprises a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 27 and a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 29. In a preferred embodiment the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 98% identical to SEQ ID NO: 29 and a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 27.

In a further embodiment the second monoclonal antibody comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 33. In a further embodiment the second monoclonal antibody comprises a heavy chain variable region having a sequence at least 98% identical to SEQ ID NO: 33. In a further embodiment the second monoclonal antibody comprises a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 31. In a further embodiment the second monoclonal antibody comprises a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 31. In a further embodiment the second monoclonal antibody has a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 33 and a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 31. In a preferred embodiment the second monoclonal antibody has a heavy chain variable region having a sequence at least 98% identical to SEQ ID NO: 33 and a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 31.

As is known to the person skilled in the art, antibodies contain multiple regions including framework regions. Deletion or addition of amino acids in the framework regions is unlikely to affect the ability of the antibody to bind to its target. On the other hand, mutations in the CDRs are considerably more likely to affect the ability of an antibody to bind to a target. Thus, in certain embodiments of the invention, variant antibodies have CDRs which are identical to the CDRs of the 12A7 or 4B4 antibodies or have CDRs which vary in only a single amino acid substitution (preferably a conservative amino acid substitution). The first monoclonal antibody and/or the second monoclonal antibody may have framework regions which differ in sequence quite significantly from those described in SEQ ID NO: 27, 29, 31 or 33.
Optionally, where the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29, the antibody further comprises at least one of 12A7 CDRH1, 12A7 CDRH2 or 12A7 CDRH3. It is understood by the person skilled in the art that, since target binding specificity is determined by the CDRs, an antibody comprising the CDRs of 12A7 may still bind to Mcm5 even if the remainder of the antibody sequence is quite variable. For this reason where the first monoclonal antibody comprises at least one of 12A7 CDRH1, 12A7 CDRH2 or 12A7 CDRH3 the first monoclonal antibody preferably comprises a heavy chain variable region having a sequence at least 90% identical to SEQ ID NO: 29. In a more preferred embodiment the first monoclonal antibody of the invention comprises 12A7 CDRH1, 12A7 CDRH2 and 12A7 CDRH3 and comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO:29.

Optionally, where the second monoclonal antibody comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33, the second monoclonal antibody further comprises at least one of 4B4 CDRH1, 4B4 CDRH2 or 4B4 CDRH3. It is understood by the person skilled in the art that, since target binding specificity is determined by the CDRs, an antibody comprising the CDRs of 4B4 may still bind to Mcm5 even if the remainder of the antibody sequence is quite variable. For this reason where the second monoclonal antibody comprises at least one of 4B4 CDRH1, 4B4 CDRH2 or 4B4 CDRH3 the second monoclonal antibody preferably comprises a heavy chain variable region having a sequence at least 90% identical to SEQ ID NO: 33. In a more preferred embodiment the second monoclonal antibody comprises 4B4 CDRH1, 4B4 CDRH2 and 4B4 CDRH3 and comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 33.

Optionally, where the first monoclonal antibody comprises a light chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27, the first monoclonal antibody further comprises at least one of 12A7 CDRL1, 12A7 CDRL2 or 12A7 CDRL3. It is understood by the person skilled in the art that, since target binding specificity is determined by the CDRs, an antibody comprising the CDRs of 12A7 may still bind to Mcm5 even if the remainder of the antibody sequence is quite variable. For this reason where the first monoclonal antibody comprises at least one of 12A7 CDRL1, 12A7 CDRL2 or 12A7 CDRL3 the first monoclonal antibody preferably
comprises a light chain variable region having a sequence at least 90% identical to SEQ ID NO: 27. In a more preferred embodiment the first monoclonal antibody comprises 12A7 CDRL1, 12A7 CDRL2 and 12A7 CDRL3 and comprises a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 27.

Optionally, where the second monoclonal antibody of the invention comprises a light chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31, the second monoclonal antibody further comprises at least one of 4B4 CDRL1, 4B4 CDRL2 or 4B4 CDRL3. It is understood by the person skilled in the art that, since target binding specificity is determined by the CDRs, an antibody comprising the CDRs of 4B4 may still bind to Mcm5 even if the remainder of the antibody sequence is quite variable. For this reason where the second monoclonal antibody comprises at least one of 4B4 CDRL1, 4B4 CDRL2 or 4B4 CDRL3 the second monoclonal antibody preferably comprises a heavy chain variable region having a sequence at least 90% identical to SEQ ID NO: 31. In a more preferred embodiment the second monoclonal antibody comprises 4B4 CDRL1, 4B4 CDRL2 and 4B4 CDRL3 and comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 31.

In a further embodiment of the invention the first monoclonal antibody comprises:

(i) 12A7 CDRH1, 12A7 CDRH2 and 12A7 CDRH3;

(ii) a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 29;

(iii) 12A7 CDRL1, 12A7 CDRL2 and 12A7 CDRL3; and

(iv) a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 27.

In a further embodiment the second monoclonal antibody comprises:

(i) 4B4 CDRH1, 4B4 CDRH2 and 4B4 CDRH3;

(ii) a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 33;

(iii) 4B4 CDRL1, 4B4 CDRL2 and 4B4 CDRL3; and

(iv) a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 31.
An antibody having a heavy chain variable sequence identical to SEQ ID NO: 29 and a light chain variable sequence identical to SEQ ID NO: 27 may be referred to as antibody 12A7. An antibody having a heavy chain variable sequence identical to SEQ ID NO: 33 and a light chain variable sequence identical to SEQ ID NO: 31 may be referred to as an antibody 4B4.

In some embodiments the first monoclonal antibody will compete for binding to Mcm5 with the 12A7 antibody. Similarly, in some embodiments of the invention the second monoclonal antibody will compete for binding to Mcm5 with the 4B4 antibody.

For the purposes of the present invention an antibody is 'at least 90%, 95%, 98%, 99% or 100% identical' to a second antibody if the sequences have at least 90%, 95%, 98%, 99% or 100% identity when assessed using ClustalW (Thompson et al., 1994) with the following parameters:

Pairwise alignment parameters -Method: accurate, Matrix: PAM, Gap open penalty: 10.00, Gap extension penalty: 0.10;

Multiple alignment parameters -Matrix: PAM, Gap open penalty: 10.00, %identity for delay: 30, Penalize end gaps: on, Gap separation distance: 0, Negative matrix: no, Gap extension penalty: 0.20, Residue-specific gap penalties: on, Hydrophilic gap penalties: on, Hydrophilic residues: GPSNDQEKR.

It is well within the knowledge of the person skilled in the art how to make variant antibodies which bind to Mcm5. Such variant antibodies may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50 or 100 substitution or deletion mutations compared to SEQ ID NOs: 27, 29, 31 or 33. 'Deletion' variant antibodies may comprise the deletion of 1, 2, 3, 4, 5 or more amino acids or, in some cases, the deletion of entire regions of SEQ ID NOs: 27, 29, 31 or 33. 'Substitution’ variants may comprise the replacement of 1, 2, 3, 4, 5 or more amino acids with the same number of new amino acids.

Preferably, the variant antibodies of the invention comprise sequences differing from SEQ ID NOs: 27, 29, 31 or 33 by conservative amino acid substitutions (optionally only by conservative amino acid substitutions). The skilled person is well aware that such conservative substitutions are unlikely to alter the binding properties of an antibody.
Antibodies that compete with antibodies of the invention

The invention further relates to a first monoclonal antibody that competes with an antibody which:

5 (i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 1;
(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that differs from SEQ ID NO:9 by a single amino acid substitution;
(b) 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that differs from SEQ ID NO:11 by a single amino acid substitution;
(c) 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that differs from SEQ ID NO:13 by a single amino acid substitution;
(d) 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that differs from SEQ ID NO:3 by a single amino acid substitution;
(e) 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that differs from SEQ ID NO:5 by a single amino acid substitution; and
(f) 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that differs from SEQ ID NO:7 by a single amino acid substitution;

10 (iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29; or
(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27.

The invention further relates to a second monoclonal antibody that competes with an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 2;
(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO:21 by a single amino acid substitution;
(b) 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO:23 by a single amino acid substitution; and
(c) 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO:25 by a single amino acid substitution;

30
(d) 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO: 15 by a single amino acid substitution;

(e) 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO: 17 by a single amino acid substitution; and

(f) 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO: 19 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33; or

(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31.

Preferably the first monoclonal antibody is an antibody that competes with an antibody comprising 12A7 CDRH1, 12A7 CDRH2, 12A7 CDRH3, 12A7 CDRL1, 12A7 CDRL2, and 12A7 CDRL3. Preferably the second monoclonal antibody is an antibody that competes with an antibody comprising 4B4 CDRH1, 4B4 CDRH2, 4B4 CDRH3, 4B4 CDRL1, 4B4 CDRL2, and 4B4 CDRL3. More preferably the first monoclonal antibody is an antibody that competes with an antibody comprising a heavy chain variable region having a sequence identical to SEQ ID NO: 29 and a light chain variable region having a sequence identical to SEQ ID NO: 27. More preferably the second monoclonal antibody is an antibody that competes with an antibody comprising a heavy chain variable region having a sequence identical to SEQ ID NO: 33 and a light chain variable region having a sequence identical to SEQ ID NO: 31.

It is within the abilities of the person skilled in the art, to determine whether an antibody competes with another antibody of the invention.

For example, an ELISA assay may be performed by immobilising the reference antibody, such as a 4B4 or a 12A7 antibody, on an ELISA plate. The plate is then blocked with a suitable blocking agent. An excess of a second antibody is added (the second antibody is the antibody whose ability to compete with the 4B4 or 12A7 antibody is to be assessed for example a first monoclonal antibody or a second monoclonal antibody that competes with 4B4 or 12A7). Mcm5 is added. Following a suitable incubation period, the ELISA plate is washed and an Mcm5 detection agent is added to measure the amount of Mcm5 bound to the immobilised reference antibody. If this test is to be used to detect whether an antibody
competes with 4B4, a suitable detection reagent is a labelled 12A7 antibody. Similarly if this test is to be used to detect whether an antibody competes with 12A7, a suitable detection reagent is a labelled 4B4 antibody. The concentration at which 50% inhibition occurs is known as the Ki. In a preferred embodiment an antibody that competes with 12A7 or 4B4 binds with a Ki 2-fold, 5-fold, 10-fold, 50-fold or 100-fold lower than an antibody which does not bind to Mcm5.

In an embodiment an antibody that competes with a particular antibody binds to the same epitope as that particular antibody (for example SEQ ID NO: 1 or SEQ ID NO: 2). It is possible to determine to which epitope an antibody binds by performing an experiment in which the target protein, such as Mcm5, is digested into fragments (for example see Example 3 below). The affinity with which the 12A7 and 4B4 antibodies to bind to each of the fragments can then be determined. Once the fragment (representing the epitope), to which the first antibody binds with a reasonable affinity, has been determined, the epitope may be synthesised. It is then possible to determine whether a second antibody is capable of binding to the same epitope by measuring the binding affinity of that second antibody to the fragment.

Antibody production

The first monoclonal antibody or the second monoclonal antibody may be produced from a polynucleotide which encodes, and is capable of expressing, it. Where the antibody comprises two or more chains, a polynucleotide of the invention may encode an antibody light chain, and an antibody heavy chain or both. Two polynucleotides may be provided, one of which encodes an antibody light chain and the other of which encodes the corresponding antibody heavy chain. Such a polynucleotide or pair of polynucleotides may be expressed together such that an antibody of the invention is generated. The polynucleotide may be part of a vector which typically further comprises control sequences operably linked to the inserted sequence, thus allowing for expression of the antibody of the invention in vivo. Preferably the vector of the invention further comprises appropriate initiators, promoters, enhances and other elements which may be necessary and which are positioned in the correct orientation, in order to allow for expression of a polypeptide of the invention.
Polynucleotides can be synthesised according to methods well known in the art, as described by way of example in Sambrook et al (1989, Molecular Cloning - a laboratory manual; Cold Spring Harbor Press).

The polynucleotides or vectors may be expressed in a host cell. Such host cells may be eukaryotic cells or prokaryotic cells. For example, the host cells may be mammalian cells, insect cells, or bacterial cells. Particular examples of host cells that may be modified by insertion of vectors or nucleic acids of the invention include mammalian FIEK293T, CHO, HeLa, NSO and COS cells. Alternatively bacterial cells such as E.coli may be used.

Such host cells may be cultured using routine methods to produce an antibody of the invention.

The first monoclonal antibody or the second monoclonal antibody may also be produced from a hybridoma. It is well within the ability of the person skilled in the art to develop a hybridoma expressing an antibody of the invention. This may be performed by immunising a mammal such as a mouse, rabbit or guinea pig, with an antigen (for example Mcm5). It may be beneficial to include an adjuvant such as Freund's complete adjuvant. The spleen cells of the immunised mammal removed and fused with myeloma cells to form hybridoma lines which are immortal given appropriate conditions and which secrete antibodies. The hybridomas are separated into single clones and the antibodies secreted by each clone are evaluated for their binding ability to Mcm5 protein.

The first monoclonal antibody or the second monoclonal antibody may be produced using any method. In one embodiment, the antibodies are produced directly from a hybridoma cell line. In a further embodiment of the invention, the antibodies are produced recombinantly.

To produce an antibody from a hybridoma cell line, the cell line can be cultivated in vitro, for example in a vessel such as a cell culture flask or a fermenter, and the antibody can be isolated from the vessel using conventional techniques known in the art. For the purposes of the present invention, an antibody will be considered to have been "produced by a hybridoma cell line" if the antibody is derived from an antibody which was produced by the hybridoma cell line. For example, it is well within the abilities of the person skilled in
the art to obtain an antibody from a hybridoma cell line, sequence the amino acid sequence of the antibody, and transfect cells such as CHO cells or *E.coli* cells with vectors encoding the amino acid sequence of the antibody. Such antibodies can be considered to have been "derived" from an antibody which was produced by the hybridoma cell line. In one particular embodiment, antibodies of the invention are produced directly from the hybridoma cell line itself.

Alternatively antibodies of the invention may be produced using recombinant techniques. The sequence of an antibody of the invention may be used to transfec a host cell line of the invention. The cell lines may be grown in a flask or a fermenter, and the antibody expressed by the cell can be isolated and purified using standard techniques (such as affinity chromatography).

Once purified the antibodies may then be conjugated to a radio label or immobilised to a solid support. An example of a suitable solid support is an ELISA plate.

Exposing the sample to the first monoclonal antibody and/or the second monoclonal antibody and measuring the amount of Mcm5 that binds to the first monoclonal antibody and/or the second monoclonal antibody

The method of the invention comprises exposing the sample to the first monoclonal antibody and/or the second monoclonal antibody and measuring the amount of Mcm5 that binds to the first monoclonal antibody and/or the second monoclonal antibody. Preferably this step is carried out using an assay such as a sandwich assay. Preferably this step is carried out using an ELISA assay. Even more preferably this step is carried out using a sandwich ELISA assay. Preferably this step does not comprise an immunofluorometric assay.

For example, this step may comprise steps of capturing the Mcm5 using a "capture antibody" already bound to the plate, and detecting how much antigen has been captured using a "detection antibody". The detection antibody has been pre-conjugated to a label such as the enzyme HRP (Horse Radish Peroxidase). The ELISA plate with the labelled detection antibody is then washed to remove any excess unbound detection antibody. The washed plate is then exposed to an agent whose properties are changed by the label in a
measurable manner. The concentration of the detection antibody may then be determined. For example if the detection antibody is conjugated to (labelled with) horseradish peroxidase, the ELISA plate may be exposed to TMB substrate. The concentration of the detection antibody, and therefore the concentration of Mcm5 in the original sample, may then be determined by quantitation of the colour change corresponding to the conversion of TMB into a coloured product. In such an assay the first monoclonal antibody may be the capture antibody and the second monoclonal antibody may be the detection antibody. Alternatively the first monoclonal antibody may be the detection antibody and the second monoclonal antibody may be the capture antibody.

Detection antibodies

The method of the invention may comprise exposing Mcm5 to a detection antibody. In addition, in kits of the invention, the first monoclonal antibody or the second monoclonal antibody may be a detection antibody. The detection antibody may be conjugated to any suitable label (for example Europium\(^{3+}\) or Horseradish Peroxidase). The label may be directly attached or may be attached via a linker (such as Adipic Acid Dihydrazide (ADH)).

The label may be attached by chemical conjugation. Methods of conjugating labels to antibodies are known in the art. For example, carbodiimide conjugation (Bauminger & Wilchek (1980) Methods Enzymol. 70, 151-159) may be used to conjugate labels to antibodies. Other methods for conjugating a label to an antibody can also be used. For example, sodium periodate oxidation followed by reductive alkylation of appropriate reactants can be used, as can glutaraldehyde cross-linking. However, it is recognised that, regardless of which method of producing a conjugate of the invention is selected, a determination must be made that the conjugated detection antibody maintains its targeting ability and that the conjugated label maintains its function.

In a preferred embodiment the detection antibody is labelled by conjugation to Horseradish Peroxidase.

Kits
The present invention provides a kit comprising a lysis buffer which is capable of releasing Mcm5 from cells in a urine sample, a first monoclonal antibody and a second monoclonal antibody wherein the first monoclonal antibody is an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 1;

(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that differs from SEQ ID NO:9 by a single amino acid substitution;
(b) 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that differs from SEQ ID NO:11 by a single amino acid substitution;
(c) 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that differs from SEQ ID NO:13 by a single amino acid substitution;
(d) 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that differs from SEQ ID NO:3 by a single amino acid substitution;
(e) 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that differs from SEQ ID NO:5 by a single amino acid substitution; and
(f) 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that differs from SEQ ID NO:7 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29;

(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27; or

(v) competes with the antibody of (i), (ii), (iii) or (iv);

and the second monoclonal antibody is an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 2;
(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO:21 by a single amino acid substitution;
(b) 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO:23 by a single amino acid substitution; and
(c) 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO:25 by a single amino acid substitution;
(d) 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO: 15 by a single amino acid substitution;
(e) 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO: 17 by a single amino acid substitution; and
(f) 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO: 19 by a single amino acid substitution;
(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33;
(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31; or
(v) competes with the antibody of (i), (ii), (iii) or (iv).

Suitably a kit of the invention is suitable for performing the method of the invention.

In some embodiments the first monoclonal antibody and/or the second monoclonal antibody are present in the kit as part of a composition. In some embodiments the kit comprises a vial or other suitable container containing a composition comprising the first monoclonal antibody (which is optionally conjugated to a label) and optionally comprising further components. In some embodiments the kit comprises a vial or other suitable container containing a composition comprising the first second monoclonal antibody (which is optionally conjugated to a label) and optionally comprising further components. Such compositions may further comprise suitable stabilising agents that are capable of stabilising the antibody in solution. For example, the composition may comprise a buffer selected from the group consisting of TAPS (3-

{(tris(hydroxymethyl)methyl)amino}propanesulfonic acid), Bicine (N,N-bis(2-hydroxyethyl)glycine), Tris (tris(hydroxymethyl)methylamine), Tricine (N-tris(hydroxymethyl)methylglycine), TAPSO (3-[N-Tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic acid), HEPES (4-2-hydroxyethyl-1-piperazineethanesulfonic acid), phosphate buffer saline and MOPS (3-(N-morpholino)propanesulfonic acid). In a preferred embodiment the composition comprises phosphate-buffered saline pH 7.6. In a further preferred embodiment the composition comprises phosphate-buffered saline with between 0.01% and 0.09% sodium azide. Preferably, the composition comprises agents suitable for storing the antibodies of the invention at room temperature or at a temperature less than or equal to 15°C, 10°C, 7°C, 5°C, 0°C, -10°C, or -25°C. In a preferred
embodiment the composition comprises agents suitable for storing the antibodies of the invention at a temperature between 2°C and 8°C. In a further embodiment, the composition comprises a stabilising agent such as a sugar, for example lactose or trehalose.

In some embodiments the first monoclonal antibody and/or the second monoclonal antibody present in the kit is a "detection antibody". If the antibody of the invention is conjugated, for example to a Europium label, it is advantageous to include a 7.5% purified BSA stabiliser in the composition.

In some embodiments the first monoclonal antibody and/or the second monoclonal antibody is present in the kit bound to a solid support such as an ELISA plate. In such embodiments an antibody bound to a solid support may be referred to as a "capture antibody".

In an embodiment the kit comprises a calibrator. The "calibrator" is a preparation of one or more known concentrations of Mcm5.

In an embodiment the kit comprises a substrate reagent. A substrate reagent can be used to detect the detection antibody. For example, where a "detection antibody" is conjugated to horse radish peroxidase the substrate reagent may comprise TMB (3, 3', 5, 5'-tetramethylbenzidine), DAB (3, 3'-diaminobenzidine) or ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid). In a preferred embodiment the substrate reagent comprises TMB. In a more preferred embodiment the substrate reagent is peroxide and TMB.

In an embodiment the kit further comprises a wash solution and/or a stop solution. In an embodiment the kit is suitable for performing a sandwich ELISA.

Comparing the concentration of Mcm5 determined in step (b) to reference values

The method of the invention further comprises a step of comparing the concentration of Mcm5 determined to reference values. A kit of the invention may comprise a reference standard. The reference standard typically refers to a sample from a healthy individual *i.e.* one who has not suffered urological cancer.
The reference standard can be an actual sample analysed in parallel. Alternatively the reference standard can be one or more values previously derived from a comparative sample e.g. a sample from a healthy subject (for a example a subject who is known not to be suffering from a urological cancer). In such embodiments a mere numeric comparison may be made by comparing the value determined for the sample from the subject to the numeric value of a previously analysed reference sample. The advantage of this is not having to duplicate the analysis by determining concentrations in individual reference samples in parallel each time a sample from a subject is analysed.

Suitably the reference standard is matched to the subject being analysed e.g. by gender e.g. by age e.g. by ethnic background or other such criteria which are well known in the art. The reference standard may be a number such as an absolute concentration determined by one or more previous studies.

Reference standards may suitably be matched to specific patient sub-groups e.g. elderly subjects, or those with a previous relevant history such as a predisposition to urological cancer.

Suitably the reference standard is matched to the sample type being analysed. For example the concentration of the biomarker polypeptide(s) being assayed may vary depending on the type or nature of the sample (e.g. conventional urine sample vs first catch sample after prostatic massage). It will be immediately apparent to the skilled worker that the concentration value(s) for the reference standard should be for the same or a comparable sample to that being tested in the method(s) of the invention. For example, if the sample being assayed is first catch urine then the reference standard value should be for first catch urine to ensure that it is capable of meaningful cross-comparison. In particular, extreme care must be taken if inferences are attempted by comparison between concentrations determined for a subject of interest and concentrations determined for reference standards where the nature of the sample is non-identical between the two. Suitably the sample type for the reference standard and the sample type for the subject of interest are the same.

It should be noted that for some embodiments of the invention, the protein concentrations determined may be compared to a previous sample from the same subject. This can be
beneficial in monitoring the possibility of recurrence in a subject. This can be beneficial in monitoring the course and/or effectiveness of a treatment of a subject. In this embodiment the method may comprise further step(s) of comparing the value(s) determined for the sample of interest to one or more value(s) determined for the same biomarker(s) from different samples such as samples taken at different time points for the same subject. By making such a comparison, information can be gathered about whether a particular marker is increasing or decreasing in a particular subject. This information may be useful in diagnosing or predicting changes over time, or changes inhibited or stimulated by a particular treatment or therapy regime, or any other variable of interest.

In this way, the invention can be used to determine whether, for example after treatment of the patient with a drug or candidate drug, or by tumour resection, the disease has progressed or not, or that the rate of disease progression has been modified. The result can inform the pathway of further treatment.

In some embodiments an abnormal value (for example a value that is statistically different to the reference value) indicates an increased likelihood of a urological cancer in the subject. Preferably the patient is diagnosed as having a urological cancer where the concentration of the Mcm5 determined in step (b) is higher than the mean value from healthy patients plus a multiple of the standard deviation shown by the values derived from healthy subjects.

Urological Cancers

The invention also provides methods for detecting a urological cancer. Such methods offer a significant advantage in that they will detect any tumours which are in intimate contact with the flow or urine in the urological system (i.e. kidneys, ureters, bladder and urethra) of the patient being assayed.

Urological cancer includes all types of transitional cell carcinoma which might arise in the urological system. One example of transitional cell carcinoma is bladder cancer. However, transitional cells are present throughout the urological system including the lining of the renal pelvis, the ureters which conduct urine from the kidneys to the bladder and the urethra, as well as the wall of the bladder itself. Transitional cell carcinoma may arise in any of these locations.
It should be noted that there is a range of different sub-types of bladder cancer, i.e. there are types of bladder cancer other than transitional cell carcinoma, although this (transitional cell carcinoma) is the most common type of bladder cancer.

It is an advantage of the invention that other primary cancers such as penile cancer may also be detected, for example if they impinge on the urethral tract as it passes through the penis.

In addition, certain urological tumours may be detected even though they may not be in direct contact with the urine flow. One example is a prostate tumour which is not typically in contact with the urine flow, but from which cells exfoliate and exude into the urethra.

The invention also offers the advantage of being capable of detecting metastatic cancers, for example metastases of a different primary cancer which metastases have alighted in the urological system. In this embodiment, the invention is capable of detecting any cancer which either grew into the urological system (e.g., a colon cancer which may have invaded locally) or any cancer which has invaded through a metastasis (e.g., a remote primary cancer, which has given rise to one or more metastatic tumours within the urological system of the subject).

In one embodiment, the invention is advantageous applied to the detection of prostate cancer. In one embodiment, the invention is advantageously applied to the detection of bladder cancer. In one embodiment, the invention is applied to the detection of both prostate and bladder cancer.

Sequence Homology/Identity

Although sequence homology can also be considered in terms of functional similarity (i.e., amino acid residues having similar chemical properties/functions), in the context of the present document it is preferred to express homology in terms of sequence identity. Sequence comparisons can be conducted by eye or, more usually, with the aid of readily available sequence comparison programs. These publicly and commercially available
computer programs can calculate percent homology (such as percent identity) between two or more sequences.

Percent identity may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues (for example less than 50 contiguous amino acids). For comparison over longer sequences, gap scoring is used to produce an optimal alignment to accurately reflect identity levels in related sequences having insertion(s) or deletion(s) relative to one another. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package, FASTA (Altschul et al., 1990, J. Mol. Biol. 215:403-410) and the GENEWORKS suite of comparison tools.

In the context of the present document, a homologous amino acid sequence is taken to include an amino acid sequence which is at least 40, 50, 60, 70, 80 or 90% identical. Most suitably a polypeptide having at least 90% sequence identity to the biomarker of interest will be taken as indicative of the presence of that biomarker; more suitably a polypeptide which is 95%, or more suitably 98%> identical at the amino acid level will be taken to indicate presence of that biomarker. Suitably said comparison is made over at least the length of the polypeptide or fragment which is being assayed to determine the presence or absence of the biomarker of interest. Most suitably the comparison is made across the full length of the polypeptide of interest.

Definitions

The terms "comprises" means "includes". Thus, the word "comprises" and variations such as "comprise ", and "comprising" will be understood to imply the inclusion of a stated compound or composition or step, or group of compounds or steps, but not to the exclusion of any other compounds, composition, steps or groups thereof.
The term "consists of" should also be understood to have its normal meaning in the art, *i.e.* that the stated feature or group of features is included, to the exclusion of further features. For example a lysis buffer consisting of a detergent contains detergent and no other components. On the other hand a lysis buffer comprising a detergent consisting of polysorbate 80 may comprise components other than detergents but the only detergent in the lysis buffer is polysorbate 80.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described aspects and embodiments of the present invention will be apparent to those skilled in the art without departing from the scope of the present invention. Although the present invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are apparent to those skilled in the art are intended to be within the scope of the following claims.

Table 1: Sequences

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>Nucleotide/Polypeptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WDETKE (epitope to which antibody 12A7 binds)</td>
</tr>
<tr>
<td>2</td>
<td>DDRVAIH (epitope to which antibody 4B4 binds)</td>
</tr>
<tr>
<td>3</td>
<td>12A7 light chain CDR 1 polypeptide sequence</td>
</tr>
<tr>
<td>4</td>
<td>12A7 light chain CDR 1 nucleotide sequence</td>
</tr>
<tr>
<td>5</td>
<td>12A7 light chain CDR 2 polypeptide sequence</td>
</tr>
<tr>
<td>6</td>
<td>12A7 light chain CDR 2 nucleotide sequence</td>
</tr>
<tr>
<td>7</td>
<td>12A7 light chain CDR 3 polypeptide sequence</td>
</tr>
<tr>
<td>8</td>
<td>12A7 light chain CDR 3 nucleotide sequence</td>
</tr>
<tr>
<td>9</td>
<td>12A7 heavy chain CDR 1 polypeptide sequence</td>
</tr>
<tr>
<td>10</td>
<td>12A7 heavy chain CDR 1 nucleotide sequence</td>
</tr>
<tr>
<td>11</td>
<td>12A7 heavy chain CDR 2 polypeptide sequence</td>
</tr>
<tr>
<td>12</td>
<td>12A7 heavy chain CDR 2 nucleotide sequence</td>
</tr>
<tr>
<td>13</td>
<td>12A7 heavy chain CDR 3 polypeptide sequence</td>
</tr>
<tr>
<td>14</td>
<td>12A7 heavy chain CDR 3 nucleotide sequence</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>4B4 light chain CDR 1 polypeptide sequence</td>
</tr>
<tr>
<td>16</td>
<td>4B4 light chain CDR 1 nucleotide sequence</td>
</tr>
<tr>
<td>17</td>
<td>4B4 light chain CDR 2 polypeptide sequence</td>
</tr>
<tr>
<td>18</td>
<td>4B4 light chain CDR 2 nucleotide sequence</td>
</tr>
<tr>
<td>19</td>
<td>4B4 light chain CDR 3 polypeptide sequence</td>
</tr>
<tr>
<td>20</td>
<td>4B4 light chain CDR 3 nucleotide sequence</td>
</tr>
<tr>
<td>21</td>
<td>4B4 heavy chain CDR 1 polypeptide sequence</td>
</tr>
<tr>
<td>22</td>
<td>4B4 heavy chain CDR 1 nucleotide sequence</td>
</tr>
<tr>
<td>23</td>
<td>4B4 heavy chain CDR 2 polypeptide sequence</td>
</tr>
<tr>
<td>24</td>
<td>4B4 heavy chain CDR 2 nucleotide sequence</td>
</tr>
<tr>
<td>25</td>
<td>4B4 heavy chain CDR 3 polypeptide sequence</td>
</tr>
<tr>
<td>26</td>
<td>4B4 heavy chain CDR 3 nucleotide sequence</td>
</tr>
<tr>
<td>27</td>
<td>12A7 full light chain variable region sequence (polypeptide)</td>
</tr>
<tr>
<td>28</td>
<td>12A7 full light chain variable region sequence (nucleotide)</td>
</tr>
<tr>
<td>29</td>
<td>12A7 full heavy chain variable region sequence (polypeptide)</td>
</tr>
<tr>
<td>30</td>
<td>12A7 full heavy chain variable region sequence (nucleotide)</td>
</tr>
<tr>
<td>31</td>
<td>4B4 full light chain variable region sequence (polypeptide)</td>
</tr>
<tr>
<td>32</td>
<td>4B4 full light chain variable region sequence (nucleotide) variable region</td>
</tr>
<tr>
<td>33</td>
<td>4B4 full heavy chain variable region sequence (polypeptide)</td>
</tr>
<tr>
<td>34</td>
<td>4B4 full heavy chain variable region sequence (nucleotide)</td>
</tr>
<tr>
<td>35</td>
<td>Mcm5 polypeptide sequence</td>
</tr>
<tr>
<td>36</td>
<td>Mcm5 polynucleotide sequence</td>
</tr>
</tbody>
</table>

Examples
Cloning of Mcm5

Stage I: Cloning Strategy

1. A verified IMAGE clone containing the human MCM5 cDNA was obtained and used as a PCR template in order to amplify a 648bp fragment of DNA. The forward PCR primer encoded n initiation codon as well as a modified unpatented poly-Histidine tag (HQ)4.

2. The PCR fragment was cloned into the inducible expression E. coli vector pTRC99a using a double restriction site strategy. This vector allows inducible expression directed by the hybrid trplac "trc" promoter. Downstream is a lacZ ribosome binding site (RBS) that is situated at an optimized distance from an initiation ATG codon, which is supplied by the Ncol cloning site.

Stage IIA: Expression and Purification (small scale – 10ml)

3. The recombinant plasmid containing the Mcm5 fragment was transformed into BL21 E. coli (ηνη-λDE3) to ensure high yields of expressed protein.

4. Several small volume E. coli cultures were induced with IPTG. Cells will be lysed in SDS loading buffer and total protein separated by SDS-PAGE. High expressing clones will be identified by Western blotting using a mouse monoclonal supplied by Urosens.

Stage IIB: Expression and Purification (large scale – 500ml)

5. The identified clone with high levels of recombinant protein was cultured at the 0.5L scale and induced with IPTG. Cells were pelleted and stored at -70°C. Cells were disrupted in a denaturing lysis buffer described by Stoeber et al. J Natl Cancer Inst 2002 94 1071-9.

6. His-tagged recombinant protein was affinity purified under denaturing conditions on an immobilized metal affinity (EVIA) chromatography column. Protein were eluted using an acidic buffer and dialysed against storage buffer (PBS containing 0.3 SDS)

7. Eluted protein was analyzed and quantified by SDS-PAGE and western blotting using a mouse monoclonal supplied by Urosens.

Example 1 - MAb screening ELISA

Protein A purified MAbs were obtained from the Welcome/CRUK Institute for Cancer and Developmental Biology. These antibodies were screened for their ability to bind to Mcm5.
An ELISA of recombinant His6-tagged Mcm5 was performed using Ni-NTA His-Sorb 96 well microtitre coated plate wells (Qiagen). The Ni-NTA coated plates, pre-blocked with BSA, ensure an orientated presentation of the 6x His tagged Mem through Nickel affinity binding to the spacer in comparison to the random presentation of the Mcm5 to the well that would be achieved by passive adsorption plate coating. The Mcm5 at a concentration of 625 ng/ml was Nickel affinity immobilised to Ni-NTA His-Sorb surface (Qiagen) of a 96 well plate at 200 μl/well resulting in 125 ng foMcm5/well. This was done following the manufacturers instructions to apply a His-6 tagged protein or peptide to the plate wells at a titre>100 ng/well. This was done to ensure that the protein or peptide is not limiting to Ab detection. The screening of the MAbs for development of a Mcm5 IFMA was performed with an enzyme linked immunosorbent assay (ELISA) of Mcm5. To screen MAbs, supernatants from hybridoma cultures expressing the MAbs were incubated in the microtitre wells at RT for 3 h and then washed away with an automated 96 well plate washer. The Mcm5 Ag-Ab complexes of the MAbs were detected by a colorimetric ELISA using goat anti-mouse IgG conjugated to HRP, TMB reagent and 1M H2SO4 assay stop solution, for the measurement of light absorbance at 450 nanometres (Abs 450 nm). An absence of Non-specific binding (NSB) of goat anti-mouse HRP conjugate to the Ni-NTA His-Sorb surface and Mcm5 was excluded by performing the ELISA on wells free from MAbs. The degree of NSB of the mouse MAbs being screened to the Ni-NTA coated polystyrene wells was established by performing the ELISA in wells with the omission of Mcm5 wells in parallel to performing the ELISA in wells with the Nickel affinity immobilisation of Mcm5 to the microtitre wells.

The performance in the colorimetric ELISA of a mouse MAb in the media samples taken from the hybridomas (Table 2) was used for selection of the highlighted clones, 12A7 and 4B4. The selected MAb hybridomas were grown up to produce IgG for purification from the culture supernatant using solid-phase protein-A separation according to the manufacturer's instructions (Amersham Pharmacia Biotech Little Chalfont Buckinghamshire, UK). The 12A7 MAb gave rise to the greatest response to the Mcm5.

Table 2: hybridoma MAb screening ELISA Abs 450-650 results

<table>
<thead>
<tr>
<th>Mcm5 MAb</th>
<th>Mcm5 well response</th>
<th>NSB well response</th>
<th>Mcm5 specific response</th>
</tr>
</thead>
</table>

50
MAb relative affinities

Relative affinities of the protein A purified MAbs were determined by normalisation of Ab concentrations and application of the MAbs to the colorimetric screening assay under Ag-limiting conditions. Ag limiting conditions were determined by linear titration of Mcm5 across the Ni-NTA His-Sorb microtitre plate wells. An observed maximal Abs 450 nm of <3.000 is indicative of Ag limiting conditions, because the maximum Abs 450 reading obtainable when Ag is non-limiting is 4.000. The Ag titration was performed using rabbit Mcm5 PAb (101) and Goat anti Rabbit HRP to measure ELISA response. A concentration that gave 25 ng of Mcm5 available for binding to each Ni-NTA well was limiting to the ELISA Abs 450 response of the PAb. The rabbit PAb was chosen to determine Ag-limiting conditions for investigation of the mouse MAbs, as the full array of Mcm5 epitopes are bound by the PAb. This ensured that the MAbs could be investigated in combined incubation studies to determine the degree of epitope competition.

The concentration of IgG in the protein-A purified MAb solutions was determined by Abs 280 nm measurement in a spectrophotometer and MAb concentrations were normalised by dilution in PBS. The 50% maximum binding concentration was then determined by a linear dilution of the MAbs applied to an ELISA of Nickel affinity Mcm5 wells under Mcm5 Ag-limiting conditions. To demonstrate the plateau of the binding signal to the 25 ng/well foMcm5rfo the plate the MAb 7A3 was run in the ELISA over a greater concentration range. The 50% maximum binding response for 12A7 was obtained at a concentration of 20 ng/well. 12A7 is shown by its 50% maximum binding concentration to demonstrate the highest relative affinity to hMcm5. (Table 3).

Table 3: MAb titrations against limiting 25ng/well antigen couples to Ni-NTA

<table>
<thead>
<tr>
<th>MAb</th>
<th>4B4</th>
<th>12A7</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb/well MAb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.086</td>
<td>0.051</td>
</tr>
</tbody>
</table>
Example 2 - Antibody epitope competition

For a two-site immunometric assay two MAbs that are targeted to distinct epitopes are required. In Ag limiting conditions a pair of MAbs competing for the same epitope will provide an ELISA Abs 450 nm measurement equal to the Abs 450 nm signal of the higher relative affinity Ab when it is incubated in the absence of the competing MAb, however, incubation of a pair of MAbs targeted to distinct epitopes will provide an Abs 450 measurement equal to the sum of both the MAbs individual Abs 450 nm responses to the limited Ag available provided there is an absence of steric hindrance. The MAbs 12A7 and 4B4 were normalised to the 50% maximum binding concentration of 20 ng/well of the highest relative affinity MAb 12A7. The MAbs at normalised concentration underwent an ELISA using both individual and paired Ab incubations on the 25 ng/well Mcm5 Ag limiting Ni-NTA plate. The highest Abs 450 nm signal measured from a combined incubation of a pair of the MAbs would be indicative of the most suitable MAbs for use in a two-site IFMA.

Antibody epitope competition results

The Ab Ag epitope competition ELISA study results (Table 4) show that the MAb 4B4 is targeted to a distinct epitope compatible for two-site binding with the 12A7. The distinct epitope targeted by 4B4 is demonstrated by the Abs 450 response being equal to the sum of both MAbs binding to the limiting Ag when 4B4 was incubated in parallel to the other MAbs.

Table 4: Ab Ag epitope competition ELISA study results

<table>
<thead>
<tr>
<th>MAb 20 ng/well incubation</th>
<th>Mcm5 25ng/well Abs 450-650 response</th>
</tr>
</thead>
<tbody>
<tr>
<td>12A7</td>
<td>1.375</td>
</tr>
</tbody>
</table>
The MAbs were incubated at a normalised concentration of 20 ng/well, the 50% maximum binding concentration of the MAb with the highest relative affinity 12A7. The optimal MAbs for two-site immunoassay development are highlighted in blue, and their ELISA Abs 450 responses highlighted in yellow.

Example 3 - Epitope mapping

Materials used:

<table>
<thead>
<tr>
<th>Microarray Content:</th>
<th>The sequence of antigen Mcm 5 (aa 367-582) was translated into 15 aa peptides with a peptide-peptide overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples:</td>
<td>Mouse monoclonal IgG antibodies 12A7 and 4B4</td>
</tr>
<tr>
<td>Washing Buffer:</td>
<td>PBS, pH 7.4 with 0.05% Tween 20 (3x1 min after each assay)</td>
</tr>
<tr>
<td>Blocking Buffer:</td>
<td>Rockland blocking buffer MB-070 (30 min before the first assay)</td>
</tr>
<tr>
<td>Incubation Buffer:</td>
<td>PBS, pH 7.4 with 0.05% Tween 20 and 10% Rockland blocking buffer</td>
</tr>
<tr>
<td>Assay Conditions:</td>
<td>Antibody concentrations of 1 µg/ml and 10 µg/ml in incubation buffer; incubation for 16 h at 4°C and</td>
</tr>
<tr>
<td>Secondary Antibody:</td>
<td>Goat anti-mouse IgG (H+L) DyLight 680 antibody;</td>
</tr>
<tr>
<td>Control Antibodies:</td>
<td>Monoclonal anti-HA (12CA5)-DyLight680 (1:1000), monoclonal anti-FLAG(M2)-DyLight800 (1:500); staining in</td>
</tr>
<tr>
<td>Scanner:</td>
<td>LI-COR Odyssey Imaging System, scanning offset 0.8 mm, resolution 21 µm, scanning intensity red/green of</td>
</tr>
</tbody>
</table>

Pre-staining of one of the peptide microarrays was done with the secondary goat anti-mouse IgG (H+L) DyLight680 antibody at a dilution of 1:5000 to investigate background interactions with the antigen-derived peptides that could interfere with the main assays.
Subsequent incubation of the peptide microarrays with mouse monoclonal IgG antibodies 12A7 and 4B4 at concentrations of 1 µg/ml and 10 µg/ml in incubation buffer was followed by staining with the secondary antibody and read-out at a scanning intensity of 5 (red). HA and Flag control peptides framing the peptide arrays were finally stained as internal quality control to confirm the assay quality and the peptide microarray integrity (scanning intensities red/green: 5/7).

Quantification of spot intensities and peptide annotation were done with PepSlide® Analyzer. A software algorithm breaks down fluorescence intensities of each spot into raw, foreground and background signal and calculates the standard deviation of foreground median intensities. Based on averaged foreground median intensities, intensity maps were generated and interactions in the peptide maps highlighted by an intensity color code with red for high and white for low spot intensities.

We further plotted averaged spot intensities of all assays with the antibody samples against the antigen sequence from the N- to the C-terminus to visualize overall spot intensities and signal to noise ratios. The intensity plots were correlated with peptide and intensity maps as well as with visual inspection of the microarray scans to identify peptides and epitopes that were recognized by the antibody samples. In case it was not clear if a certain amino acid contributed to antibody binding.

After 15 min pre-swelling in washing buffer and 30 min in blocking buffer, one of the peptide microarrays was initially incubated with the secondary goat anti-mouse IgG (H+L) DyLight680 antibody at a dilution of 1:5000 for 30 min at room temperature to analyze background interactions with the antigen-derived peptides. At a scanning intensity of 5, we did not observe any background due to non-specific binding of the secondary antibody. Data quantification with PepSlide® Analyzer was neither possible nor required, since the absence of any spot pattern hampered alignment of the microarray grid.

The peptide microarrays were incubated with mouse monoclonal antibody 12A7 at concentrations of 1 µg/ml and 10 µg/ml (top right). After each incubation, staining with the secondary goat anti-mouse IgG (H+L) DyLight680 antibody was followed by read-out at a scanning intensity of 5. We observed a strong and well-defined epitope-like spot pattern
formed by a row of neighbored peptides with a consensus motif at excellent signal to noise ratios.

The final staining of the HA and Flag control peptides framing the peptide microarray gave rise to the expected and well-defined spot pattern and validated the overall peptide microarray integrity.

Data quantification was followed by generation of peptide and intensity maps as well as of intensity plots for the assays with mouse monoclonal antibody 12A7 at concentrations of 1 µg/ml and 10 µg/ml; the intensity plot of the latter was leveled to provide a clearer data overview. The signals were based on the epitope-like spot pattern observed in the microarray scan and attributed to peptides with the consensus motif WDETKGE.

The peptide microarrays were incubated with mouse monoclonal antibody 4B4 at concentrations of 1 µg/ml) and 10 µg/ml. After each incubation, staining with the secondary goat anti-mouse IgG (H+L) DyLight680 antibody was followed by read-out at a scanning intensity of 5. We observed two strong and well-defined epitope-like spot patterns formed by a row of neighbored peptides with consensus motifs at excellent signal to noise ratios. At an antibody concentration of 10 µg/ml the raw intensities of the epitope-like spot pattern were similar but the background interactions were slightly increased indicating a signal saturation of the antibody in the concentration range of 1 - 10 µg/ml.

The final staining of the HA and Flag control peptides framing the peptide microarray gave rise to the expected and well-defined spot pattern and validated the overall peptide microarray integrity.

Data quantification was followed by generation of peptide and intensity maps as well as of intensity plots for the assays with mouse monoclonal antibody 4B4 at concentrations of 1 µg/ml and 10 µg/ml; the intensity plot of the latter was leveled to provide a clearer data overview. At an antibody concentration of 10 µg/ml the raw intensities of the epitope-like spot pattern were similar but the background interactions were slightly increased leading to reduced normalized signal intensities. The signals were based on the epitope-like spot patterns observed in the microarray scan and attributed to peptides with the consensus motifs DDRVAIH and WDETKGE.

Example 4
Materials

Single voided urine specimens were obtained from patients attending a haematuria clinic at Heatherwood Hospital (Heatherwood and Wexham Park Hospitals NHS Foundation Trust), having obtained ethical approval from the Local Research Ethics Committee. Urinalysis using Multistix 10 SG dipsticks (Siemens) was carried out on fresh samples and the remainder of the urine was dispensed into 1 ml or 15 ml Falcon tubes which were placed in dry ice for transport to the laboratory.

Mcm5

An embodiment of the invention is a simple ELISA test for Mcm5, which usefully replaces the specialized and complex Mcm5 DELFIA® test (see Stoeber et al 2002 (Journal of the National Cancer Institute, 94, 1071-1079; 2002), thus the test could be carried out in a typical clinical chemistry laboratory. The test is a direct double-monoclonal antibody sandwich enzyme-linked immunoassay. Both antibodies have high affinity and specificity for the antigen Mcm5. Any Mcm5 in the sample under test is captured by a specific monoclonal antibody bound to the surface of the microtitre plate well. Detector antibody is then added, which binds to a different site on the antigen and which is linked to the enzyme horseradish peroxidase (HRP). The presence and amount of HRP retained in plate wells is assessed by measuring the intensity of colour that develops after the addition of tetramethylbenzidine (TMB), which is a chromogenic substrate of HRP. Optical density is proportional to the concentration of Mcm5 in the sample within defined limits. By testing a range of concentrations of Mcm5, a dose-response curve can be generated from which the antigen concentration of an unknown can be ascertained (see Figures 2 and 3).

Two monoclonal antibodies (mAbs) are used in the assay, 12A7 and 4B4. The antibodies were obtained from Cancer Research Technology Ltd (CRT) under a non-exclusive licensing agreement with the applicant. For ELISA tests, mAb 12A7 was used for plate coating, and mAb 4B4 for detection.

Specimen collection and preparation: The test can be performed on human urine. Samples should be collected in, for example, 150mL plastic bottles with a screw cap, which should be clean but not necessarily sterile. The collection bottle should not contain any preservative and ideally should be of a volume of greater than 100mL. Samples may be
stored for up to 4 hours at 2 - 8°C prior to use. To prepare urine specimens for assay 30mL of the sample is transferred to a 50mL plastic centrifuge tube with screw cap. After centrifugation for 5 min at 1,500g the supernatant is carefully decanted and treated as waste according to local H&S guidelines. The tubes are placed inverted on absorbent paper and excess liquid is allowed to drain. 250µL lysis/sample buffer is added to the pellet; the pellet is resuspended using an adjustable pipette with disposable tip.

Reagents: Test components are described herewith in the form of a kit (see Table 1). Each kit contains sufficient materials for a single 96-well microplate, or 80 determinations in duplicate wells if the whole plate is used at one time.

Table 1:

<table>
<thead>
<tr>
<th>MCM5 kit contents</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-MCM5 antibody coated microplate comprising twelve 8-well strips coated with mouse monoclonal anti-MCM5 antibody and a stabiliser packed in a sealed foil pouch with desiccant.</td>
<td>1 microtitre plate, 96 wells</td>
</tr>
<tr>
<td>Wash solution. 20x concentrate. PBS buffer containing Tween-20 at 0.05% after dilution to 1 litre in deionized water.</td>
<td>1 x 50mL</td>
</tr>
<tr>
<td>Anti-MCM5 antibody-HRP conjugate. Mouse anti-MCM5 monoclonal antibody conjugated to horseradish peroxidase (HRP) at working concentration in a buffered solution containing protein and an anti-microbial agent.</td>
<td>1 x 11 mL</td>
</tr>
<tr>
<td>TMB substrate reagent. A colourless solution that develops a blue colour in the presence of HRP.</td>
<td>1 x 11 mL</td>
</tr>
<tr>
<td>Stop solution. Aqueous 1M hydrochloric acid. Personal protective equipment is recommended to avoid direct exposure.</td>
<td>1 x 11mL</td>
</tr>
<tr>
<td>Lysis/running buffer. An aqueous solution containing a buffering agent and a mild detergent.</td>
<td>1 x 15mL</td>
</tr>
<tr>
<td>Calibrator set. Vials containing lyophilised purified MCM5 protein at concentrations of 900, 300, 100 and 33 pg/mL, to be reconstituted in 1 mL lysis/running buffer.</td>
<td>4 vials</td>
</tr>
<tr>
<td>Controls set. Vials containing lyophilised protein/cells.</td>
<td>2 vials</td>
</tr>
<tr>
<td>Adhesive material. For sealing the plate wells during incubations.</td>
<td>1 sheet</td>
</tr>
<tr>
<td>Instructions for Use. Also available at www.urosens.com</td>
<td>1 copy</td>
</tr>
</tbody>
</table>

In addition to the constituents listed in Table 1, the following additional materials are helpful and may optionally be provided in a kit of the invention. These materials are to be
regarded as separately disclosed and may therefore be individually added to the kit of the invention. Pipette(s) capable of delivering 50 µl and 100 µl volumes with a precision of better than 1.5%; dispenser(s) for repetitive deliveries of 100 µl and 300 µl volumes with a precision of better than 1.5%; microplate washer or a squeeze bottle (optional); a microplate reader with 450nm and 620nm wavelength absorbance capabilities, absorbent paper for blotting the microplate wells and plastic wrap or microplate covers for incubation steps plus a timer.

Test Procedure: Before proceeding with the assay, all reagents should be brought to room temperature (20 - 27°C) for 30 minutes. Unused reagents are stored at 2-8°C after use. Sufficient microplate well strips are removed for each sample to be tested, including a dilution series of calibrators and quality control samples, to be assayed in duplicate. 100 µL of the appropriate calibrator-or specimen is pipetted into the assigned well which is incubated at room temperature (20 - 27°C) for thirty (30) minutes on a rotary microtitre plate shaker at 700 rpm. The contents is are discarded and the wells washed by six changes of 300µl of wash buffer. 100µl of the Anti Mcm5 HRP Antibody reagent/conjugate is then added to each well. After mixing, the wells are incubated stationary for 30 minutes at room temperature (20 - 27°C). The contents of the microplate are then discarded by decantation or aspiration. If decanting, tap and blot the plate dry with absorbent paper and then wash the wells as described above. 100µl of Substrate Reagent is then added to all wells and incubated at room temperature (20 - 27°C) for thirty 30 minutes. The reaction is stopped by addition of 100µL of stop solution to each well. The absorbance in each well is read at 450nm (using a reference wavelength of 620-630nm to minimize well imperfections) in a microplate reader. The results should be read within 30 minutes of adding the stop solution.

Calibrator samples are provided. These are prepared using a serial dilution at the time of the assay and discarded after use (see Figure 2).

To interpret the results a dose-response curve is used to ascertain the concentration of Mcm5 in unknown specimens. This can be constructed manually or automatically using a computer programme. For manual calculation, record the absorbance obtained from the printout of the microplate reader. Plot the absorbance for each duplicate dilution versus the corresponding Mcm5 concentration in ng/mL on linear graph paper then draw the best-fit curve through the plotted points. To determine the concentration of Mcm5 for an unknown, locate the average absorbance of the duplicates for each unknown on the vertical axis of...
the graph, find the intersecting point on the curve, and read the concentration (in ng/ml) from the horizontal axis of the graph.

Table 2 illustrates the results from a typical experiment.

Table 2.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Value [ng/ml]</th>
<th>Well number</th>
<th>Abs (A)</th>
<th>Mean Abs (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL G (blank)</td>
<td>0</td>
<td>A1</td>
<td>0.082</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>CAL F</td>
<td>25</td>
<td>C1</td>
<td>0.164</td>
<td>0.163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D1</td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>CAL E</td>
<td>50</td>
<td>E1</td>
<td>0.245</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1</td>
<td>0.239</td>
<td></td>
</tr>
<tr>
<td>CAL D</td>
<td>100</td>
<td>G1</td>
<td>0.395</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H1</td>
<td>0.390</td>
<td></td>
</tr>
<tr>
<td>CAL C</td>
<td>200</td>
<td>A2</td>
<td>0.693</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>0.669</td>
<td></td>
</tr>
<tr>
<td>CAL B</td>
<td>400</td>
<td>C2</td>
<td>1.281</td>
<td>1.252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>1.222</td>
<td></td>
</tr>
<tr>
<td>CAL A</td>
<td>800</td>
<td>E2</td>
<td>2.458</td>
<td>2.342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2</td>
<td>2.226</td>
<td></td>
</tr>
</tbody>
</table>

The Mcm5 procedure has an analytical detection limit of < 7 pg/ml.

Example 5 - Clinical study of Mcm5 in 116 subjects being investigated for bladder cancer.

Urine specimens were obtained from 116 patients the majority of whom were subsequently examined by flexible cystoscopy and scanning by CT or ultrasound. If abnormal results were obtained the patients were referred for biopsy. Where available the results of these investigations were collected and added to the data set. The levels of Mcm5 were measured in each subject using the ELISA technique described above (Example 4). Eight cases of bladder cancer were clinically confirmed of which five were scored as positive in the Mcm5 assay.

Table: In the table "+" indicates that the Mcm5 assay result exceeded the mean of the known negatives + 3 SDs (negative mean OD 0.05, SD 0.0593). Therefore the cut point was arbitrarily set at OD 0.23.

<table>
<thead>
<tr>
<th>Patient ID Number</th>
<th>Grade/Stage Location</th>
<th>ELISA result</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G2 pTa, papillary tumour, bladder</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>pTa, ureter</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>G2 pTa, papillary tumour, bladder</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>G1 pTa, 5 mm tumour, bladder</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>Squamous cell carcinoma, bladder</td>
<td>+</td>
</tr>
<tr>
<td>92</td>
<td>Squamous cell carcinoma, bladder</td>
<td>+</td>
</tr>
<tr>
<td>96</td>
<td>G3 pT2, bladder (gross haematuria)</td>
<td>+</td>
</tr>
<tr>
<td>115</td>
<td>G3 pT2, bladder</td>
<td>+</td>
</tr>
</tbody>
</table>

There were also four cases in which a positive ELISA result occurred in the absence of a confirmed diagnosis of malignancy: Patient 13 (Papillary lesions were observed in the bladder; biopsy result was not recorded. Prostate occlusive); Patient 30 (No other pathology recorded); Patient 65 (Nephrectomy recorded); Patient 101 (enlarged prostate with calcification). It is known that the presence of calculi can cause false positive results due to the abrasive effect of the material on the basal layer of the epidermis leading to release of MCM+ cells, but rate of such cases is too small to impact on the present assay.

Assay statistics

Standard assay statistics were calculated for the Mcm5 assay data. Although the true clinical end-point was not available for all patients in the study, the skilled person will appreciate that this modest panel has yielded convincing results. In particular the study has provided a realistic estimate of specificity of 96% (104/108).

Example 6 - comparison of various buffers

Known numbers of T24 urothelial carcinoma cells were lysed in each buffer and the lysates tested in ELISA for Mcm5. The results demonstrate a marked difference in lysis efficiency in this assay. The buffer containing SDS is typical of those described in the literature but is significantly less efficient than Cytobuster or 'Urosens LB' (0.08% sodium deoxycholate, 0.08% CHAPS, 2 mM EDTA, 150 mM Trizma pH 7.6). The results are presented in Figure 3.
Example 7

The lysis of cells in CytoBuster was compared to cells in TBS Triton buffer (TBST) and RIPA buffer with a control of cell pellets reconstituted in DMEM (cell culture medium). The results are described in Figure 5.

The potency of Mcm5 in the lysed samples was tested after application of buffer to cells. Some samples were frozen after exposure to buffer and before testing. Ideally, a universal buffer that would be used in both scenarios would be useful.

The control results proved that when fresh samples were tested, the cells remain intact when no lysing agent is added, but post-freeze-thaw (FT), the cells burst by mechanical breakdown of the cell membrane, thereby releasing Mcm5. This experiment showed that when fresh lysates are used, the TBST buffer is roughly equivalent to the CytoBuster. However, after samples have been frozen, the CytoBuster lysates undergo a drastic loss of potency, whereas the TBST is not as strongly affected. The RIPA lysates buffer, although lower when derived from fresh sample retains all of the potency post-FT.

Example 8

Additional components were added to TBT to try to improve stability of TBST lysates. The potency of Mcm5 in the lysed samples was tested after application of buffer to both fresh and frozen cells. The results of this experiment are presented in Figure 6.

These data (described in Figure 6) demonstrated that the stabilising components of the RIPA buffer are the sodium deoxycholate (SDC) and the sodium dodecyl sulfate (SDS), but unfortunately the incorporation of these elements into the simpler TBST buffer cause a dramatic loss in signal. A supplemental test was performed to remove elements of the RIPA buffer one-by-one to see if removal of any element could improve the RIPA signal to the same level as the TBST while retaining stability. The results are described in Figure 7.

Example 9
Various buffers comprising differing concentrations of Tris and Triton X-100 were compared. The potency of Mcm5 in the lysed samples was tested after application of buffer to both fresh and frozen cells. The results are presented in Figure 8.

The data showed that increasing the Tris concentration caused an improvement on cell lysate Mcm5 levels, although increasing the Triton X-100 concentration had no effect.

To ensure the optimal base for the lysis buffer is used before progressing further, several compounds were tested across various pH ranges and buffer types. Several of these buffers gave good results, but TBS was shown to have the highest signal. These data are described in Figure 9.

Example 10

A further titration of Tris was performed to see whether the signal would still increase if a higher buffer concentration was used, and to see where the improvement plateaued. The results are presented in Figure 10.

The level of Mcm5 begins to plateau at 225mM Tris, with only the 250mM Tris being higher, and then the signal is stable until 325mM, after which a decrease is seen. To avoid potential issues with manufacturing and variation, a concentration on a stable area of the plateau would be the optimal choice, such as 300mM.

Example 11

It was hypothesised that altering the Tris concentration may be effective due to increased ionic strength. Since this can be equally achieved by adding NaCl, compositions having different concentrations of NaCl were tested. The results are presented in Figure 11.

The data shows that increasing the NaCl concentration in TBST (TBS + Tween 20) buffers with lower Tris levels improves signal, but the same effect is not seen in RTPA buffer, regardless of the Tris concentration. Increasing the Tris concentration does not seem to have any substantial improvement on standard RIPA buffer (25mM Tris and 150mM NaCl) signal even if the NaCl level is reduced in compensation. The 10mM Tris 150mM...
NaCl TBST has the highest signal obtained in the data set (approximately double that of the CytoBuster), so this buffer was optimised in terms of NaCl concentration and assessed separately for stabilising components.

5 **Example 12**

The data presented in Example 8 suggests buffers having around 10mM tris are most effective, so buffers having 10mM tris and different NaCl concentrations were investigated. The results are presented in Figure 12.

The titration of NaCl shows the best candidate to be the 10mM Tris with 200mM NaCl. The data also seems to show that when the ionic strength reaches a certain point, precision is compromised. The chosen formulation of the buffer from this point was 10mM Tris, 200mM NaCl & 0.1% Triton X-100, to which stabilising compounds were then added to find a suitable final formulation.

Example 13

Various stabilisers were tested for their effectiveness in stabilising the Mcm5 samples when combined with TBS-T.

In terms of potential candidates, the 1% FBS (foetal bovine serum), 2.5% BSA (bovine serum albumin), 0.25mM Pefabloc SC, 0.1mM Pefabloc SC, 0.5% Sigma P8340 protease inhibitor cocktail and the 0.25x Roche cOmplete protease inhibitor cocktail all had encouraging data without compromising the background or positive sample signal compared to the buffer without stability additives. These data are presented in Figures 13A and 13B.

These compounds were tested with various storage temperatures after 6 days to see how they compared to the additive-free TBST and the CytoBuster. These data are presented in Figure 14.

All the stabilisers were effective at stabilising the compositions. The commercially produced protease inhibitor cocktails (Pefabloc, Sigma P3840 & Roche cOmplete) were
stable, but reduced the Mcm5 signal. The 2.5% BSA performed better than the 1% FBS at -20°C. Performance at 4°C and fresh were equivalent for 1% FBS and 2.5% BSA, and both seem to increase signal comparison to standard TBST buffer. As there was a loss at -20°C for the BSA, a repeat experiment was performed using additional cell lines to confirm the improvement to stability.

Example 14

A TBSTr + 2.5%, BSA composition was compared with TBSTr and CytoBuster. The results are presented in Figures 15A, 15B and 15C.

With all cell lines, the TBST + 2.5% BSA has proven to be both stable (concentration within 10% of fresh lysate) and to have the highest signal after 1 FT cycle than both CytoBuster and TBST. Generally speaking, CytoBuster appears to give very variable results with fresh lysates, but there is always a pronounced loss of potency when freeze-thawing is performed.

Example 15

As BSA containing buffers tend to be prone to microbial growth, the two anti-microbial agents ProClin950 and sodium azide (NaN3) were tested with the TBST +2.5% BSA formulation. The results are presented in Figures 16 and 17.

The 0.09% sodium azide is the best candidate for anti-microbial agent as there is less than 10% deviation from the reference buffer.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described aspects and embodiments of the present invention will be apparent to those skilled in the art without departing from the scope of the present invention. Although the present invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are apparent to those skilled in the art are intended to be within the scope of the following claims.
Sequence listing

SEQ ID NO: 1
WDETKGE

SEQ ID NO: 2
DDRVAIH

SEQ ID NO: 3
QNLVQSGNNTY

SEQ ID NO: 4
CAGAACCTTGTACAAAGTAATGGAAACACCTATTTA

SEQ ID NO: 5
KVS

SEQ ID NO: 6:
AAGTTTCCAA

SEQ ID NO: 7:
SQSTRVPYT

SEQ ID NO: 8:
TCTCAAGTGACGCGTACGCTCAGCTACACA

SEQ ID NO: 9:
GFSLSTSGMG

SEQ ID NO: 10:
GGGTTTTCACTGAGCACTTCTGGTATGGGT

SEQ ID NO: 11:
IFWDDDK

SEQ ID NO: 12:
ATTTTCTGGGATGATGACAAG

SEQ ID NO: 13:
ARRSDYNYYYSMDY

SEQ ID NO: 14:
GCGCGCGAAGTGACTACAATTACTACTCTATGGACTAC
SEQ ID NO: 15:

5 QDIGSS
SEQ ID NO: 16:

CAGGACATTGGTAGTAGC
SEQ ID NO: 17:

ATS
SEQ ID NO: 18:

GCCACATCC
SEQ ID NO: 19:

LQYASSPPT
SEQ ID NO: 20:

CTACAATATGCTAGTTCTCCTCCGACG
SEQ ID NO: 21:

GFTFSNYA
SEQ ID NO: 22:

GGATTCCTTCAGTAACATGCC
SEQ ID NO: 23:

ISRGGSYT
SEQ ID NO: 24:

ATTAGTCGTGGGTGTTACACC
SEQ ID NO: 25:

ARHGNYDDGAWFAN
SEQ ID NO: 26:

GCAAGACATGGATATAATTACGACGGGGCCTGGTTTGCTAAC
SEQ ID NO: 27:

DIMLTQSPLSLVTLGDAISCRSSQNLVQSNGNTLYTWYLDQPGQSPKVLINKVSNRFY
GVPDRFSGSGTDFTLISRVEAEGLGIYFCQSTRPVTFTGSGTKLEIR
SEQ ID NO: 28:
GATATCATGCTGACCCAATCTCCACTCTCCCTGTCTGTCACTCTTGGAGATCAGGCCTC
CATCTCTTGCAGATCTAGTCAGAACCTTGTACAAAGTAATGGAAACACCTATTTAACTT
GGTACCTGCAGAAGCCAGGCCAGTCTCCTCAAAGGTTCTCCTGAACAAAGTTTCCACCG

ATTITATGGGGTCCAGACAGGTTCGATGGCGATGGACAGATTTTCACTACT
AGGATCAGCAGAGTGGAGGCTGAGGATCTGGGAATTTTCTGCTCTCAAAGTACAC
GTGTTCCGTCACACATTCGGAGGGGGGACCAAGCTGGAATAAGACG

SEQ ID NO: 29:

QQDLQQSGPILQPTQLTSTCFSFSFLSTSGMGVSVIRQSSNMGLEWHLAHFWDKDRY
NPSLRSRLTSLKDTSSSVFLMITSVSTADSATYYCARRSDYNYYSMDYWGQGTAVTVSS

SEQ ID NO: 30:

CAGCAAGATCTCAGCAGTCTGGCCCTGGGATATTGCAGCCCACCCAGACCCTCAGTC
TGACCTGTTCTTCTCTCTGGGTTTTTCACTGGCATGCCACATCTGGATGAGTGGATTC
GTCAATCTTCAAATAATGGCTGCTGGATGCTGGGACACATTTTCTGAGGATGACAA
GGCTATATACTTCTCCCTGAGGACCCGACTCACTCCTCAAGATTTCCAGTACG

CAGGTATATTTCTCTCATGACACAGTGGTAGACTCGAGATTTTCTGCCCACATACTCGTG
CGGCGCAGTGAACAACTACTACTACTACTGGAATCTGGGTCAGATTATTCTCTCACATCAGCCTT

SEQ ID NO: 31:

DIIMLTQSPSSLASLGERVSLRCSQDIDGSSLNWLVQEPDGTIKRLIYATTSSDSGVPKRS
GSRSGSDYSLTISSESEDVFYDYYCLQYASSPTFGGTLKLEIK

SEQ ID NO: 32:

GATATCATGCTGACCCAATCTCCACTCTCCCTGTCTGTCACTCTTGGAGAAAGAGTCAG
TCTCACTTTGTCGCCGAGTCAAGCTGCAATTTGATGATGATTAAATCTGGCTTCAACAGAA
CCAGATGGAACATATAAAACGCTAATCTACGCCACATCCAGTATTTGATTCTGGTGCC

CAAAAGGGTCGTCGGAAGTAGCTGGCTGCAAGATTTATCTTCTACCCATACGCGACCCTT

GAGTCCTGGAAGATTTTGTAAGACTATTACTGCTACCATATATGCTAGTCTTCTCCTCCCGAGTT
CGGTGGAGGCCACCAAGCTGGGAAATCAAC

SEQ ID NO: 33:

VKLQESGGGLVKPGGSLKLSCAASGGFTFSNYAMSWVRQNPEKRLAWSVTISRRGGSYTYY
PDSVKGRTFSRDNKNTLYLQMNSLRSEDTAMYFCARHGYNYYDDGAWFANWQGQTLY
TVSA

SEQ ID NO: 34:

TAGGTGAAACTGCAGAGGATCAGTGGGGAGCTGGTATGTAAGCTGGAGGGTCTCTGAAA
CTCTCTGGTCAGCTCCTCTGGAGATCATTACACCTTTGACTATACTGGCGATGCG

GAATCCGGAGAAGAGCTGAGTGCTGGCCCAACATTATCTGCTGGGTAGTACAC
CTACTATACCAAGTGAGGGTGATTCTAGCCATCACCTCCAGACAAGTCCAGAAAG

ACCTCTGTATCTGCAAATGACAGTCGAGGTCTGAGGACACACGGCGCATGTATTTCCTGT

CAAGACATGGATATAATTACGACAGCAGGGGCTGGTGTCTAATCTGCGGGAAGGGA
CTCTGGTCACTGTCTCGCA

SEQ ID NO: 35:
MSGFDDPGIF YSDSFGGDAQ ADEGQARKSQ LQRRFKEFLR QYRVGTDRTG
FTFKYRDELK

5

RHYNLGEGWI EVEMEDLASF DEDLADYLYK QPAEHLQLLE EAAKEVADEV
TRPRPSGEEV

10

LQDIQVMLKS DASPSSIRSL KSDMMSHLVK IPGIIIAASA VRAKATRISI QCRSCRNTLT

15

NIAMRPGLGEG YALPKRCNTD QAGRPCPCLID PYFIMPDKCK CVDFQTLKLQ
ELPDAVPHEG

20

MPRHMQLYCD RYLCDDKVPVG NRVTIMGIYS IKKFGLTTSR GRDRVGVGIR
SSIRVRLGIQ

25

SRKRRLPDGLT RRGDINLLML GDPGTASKQL KLFVEKCSPI GVYTSKGSS
AAGLTSVMR

30

DPSSRFNIME GGAMVLADGG VVCIDEFDKM REDDRVAIHE AMEQQTISIA
KAGITTLNS

35

RCSVLAAANS VFGRWDETKG EDNIDFMPTI LSRFDMIFIV KDEHEERDV
MLAKHVTILH

40

VSALTQTQAV EGEIDLAKLK KFIAYCRVKC GPRLSAEAAA KLKNRYIIMR
SGARQHERDS

45

RRRSSIPITV RQLEAIVRIA EALSKMKLQP FATEADVEEA LRLFQVSTLD AALSGTLSGV

50

EGFTSQEDQE MLSRIEKQLK RRFAIGSQVS EHSIIKDKFTK QKYPEHAIHK VLQLMLRRGE

55
361 ggccttctg ggaggaggtg ctccaggaca tccaggtcat gctcaagtcg gacgccagcc
4 2 1 cttccagcat tcgtagcctg aagtcggaca tgatgtcaca ... cgttaataat aaagccacgg
246 1 tgtgttcagg taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2521 aaaaaaaaaa aaaa
CLAIMS

1. A method for detecting the presence of Mcm5 in a subject, the method comprising:
 (a) preparing a sample from said subject wherein preparing the sample comprises
 exposing the sample to a lysis buffer;
 (b) performing an assay to determine the concentration of Mcm5 by exposing the
sample to a first monoclonal antibody and/or a second monoclonal antibody and
measuring the amount of Mcm5 that binds to the first monoclonal antibody and/or the
second monoclonal antibody; and
 (c) comparing the concentration of Mcm5 determined in step (b) to reference
values;
wherein the first monoclonal antibody and the second monoclonal antibody bind to
Mcm5.

2. The method of claim 1 wherein the first monoclonal antibody is an antibody which:
 (i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 1;
 (ii) comprises at least one Complementary Determining Region (CDR) selected
from the group consisting of:
 (a) 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that
differs from SEQ ID NO:9 by a single amino acid substitution;
 (b) 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that
differs from SEQ ID NO: 11 by a single amino acid substitution;
 (c) 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that
diffsers from SEQ ID NO: 13 by a single amino acid substitution;
 (d) 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that
differs from SEQ ID NO: 3 by a single amino acid substitution;
 (e) 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that
differs from SEQ ID NO: 5 by a single amino acid substitution; and
 (f) 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that
differs from SEQ ID NO: 7 by a single amino acid substitution;
 (iii) comprises a heavy chain variable region having a sequence at least 85%, 90%,
95%, 98%, 99% or 100% identical to SEQ ID NO: 29;
 (iv) comprises a light chain variable region sequence having a sequence at least
85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27; or
 (v) competes with the antibody of (i), (ii), (iii) or (iv).
3. The method of claim 1 or claim 2 wherein the second monoclonal antibody is an antibody which:

 (i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 2;

 (ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

 (a) 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO:21 by a single amino acid substitution;

 (b) 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO:23 by a single amino acid substitution;

 (c) 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO:25 by a single amino acid substitution;

 (d) 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO:15 by a single amino acid substitution;

 (e) 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO:17 by a single amino acid substitution; and

 (f) 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO:19 by a single amino acid substitution;

 (iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33;

 (iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31; or

 (v) competes with the antibody of (i), (ii), (iii) or (iv).

4. A kit comprising a lysis buffer which is capable of releasing Mcm5 from cells in a sample, a first monoclonal antibody and a second monoclonal antibody wherein the first monoclonal antibody is an antibody which:

 (i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 1;

 (ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

 (a) 12A7 CDRH1 which has a sequence of SEQ ID NO: 9 or a sequence that differs from SEQ ID NO:9 by a single amino acid substitution;

 (b) 12A7 CDRH2 which has a sequence of SEQ ID NO: 11 or a sequence that differs from SEQ ID NO:11 by a single amino acid substitution;
(c) 12A7 CDRH3 which has a sequence of SEQ ID NO: 13 or a sequence that differs from SEQ ID NO: 13 by a single amino acid substitution;

(d) 12A7 CDRL1 which has a sequence of SEQ ID NO: 3 or a sequence that differs from SEQ ID NO:3 by a single amino acid substitution;

(e) 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 or a sequence that differs from SEQ ID NO:5 by a single amino acid substitution; and

(f) 12A7 CDRL3 which has a sequence of SEQ ID NO: 7 or a sequence that differs from SEQ ID NO:7 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 29;

(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 27; or

(v) competes with the antibody of (i), (ii), (iii) or (iv);

and the second monoclonal antibody is an antibody which:

(i) binds to a polypeptide having an amino acid sequence of SEQ ID NO: 2;

(ii) comprises at least one Complementary Determining Region (CDR) selected from the group consisting of:

(a) 4B4 CDRH1 which has a sequence of SEQ ID NO: 21 or a sequence that differs from SEQ ID NO:21 by a single amino acid substitution;

(b) 4B4 CDRH2 which has a sequence of SEQ ID NO: 23 or a sequence that differs from SEQ ID NO:23 by a single amino acid substitution;

(c) 4B4 CDRH3 which has a sequence of SEQ ID NO: 25 or a sequence that differs from SEQ ID NO:25 by a single amino acid substitution;

(d) 4B4 CDRL1 which has a sequence of SEQ ID NO: 15 or a sequence that differs from SEQ ID NO:15 by a single amino acid substitution;

(e) 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 or a sequence that differs from SEQ ID NO:17 by a single amino acid substitution; and

(f) 4B4 CDRL3 which has a sequence of SEQ ID NO: 19 or a sequence that differs from SEQ ID NO:19 by a single amino acid substitution;

(iii) comprises a heavy chain variable region having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 33;

(iv) comprises a light chain variable region sequence having a sequence at least 85%, 90%, 95%, 98%, 99% or 100% identical to SEQ ID NO: 31; or

(v) competes with the antibody of (i), (ii), (iii) or (iv).
5. The method or kit of any one of the preceding claims wherein the first monoclonal antibody and/or second monoclonal antibody has an affinity for Mcm5 in the range of 1-10 nM.

6. The method or kit of any one of the preceding claims wherein the first monoclonal antibody and/or the second monoclonal antibody is Fab’, F’(ab)2, Fv, a single chain antibody or a diabody.

7. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises 12A7 CDRH1, 12A7 CDRH2, and 12A7 CDRH3.

8. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises 12A7 CDRL1, 12A7 CDRL2 and 12A7 CDRL3.

9. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a 12A7 CDRH1 which has a sequence of SEQ ID NO: 9, a 12A7 CDRH2 which has a sequence of SEQ ID NO: 11, and a 12A7 CDRH3 which has a sequence of SEQ ID NO: 13.

10. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a 12A7 CDRL1 which has a sequence of SEQ ID NO: 3, a 12A7 CDRL2 which has a sequence of SEQ ID NO: 5 and a 12A7 CDRL3 which has a sequence of SEQ ID NO: 7.

11. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises 4B4 CDRH1, 4B4 CDRH2, and 4B4 CDRH3.

12. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises 4B4 CDRL1, 4B4 CDRL2 and 4B4 CDRL3.

13. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises a 4B4 CDRH1 which has a sequence of SEQ ID NO:
21, a 4B4 CDRH2 which has a sequence of SEQ ID NO: 23, and a 4B4 CDRH3 which has a sequence of SEQ ID NO: 25.

14. The method or kit of any one of the preceding claims wherein the second monoclonal antibody has a 4B4 CDRL1 which has a sequence of SEQ ID NO: 15, a 4B4 CDRL2 which has a sequence of SEQ ID NO: 17 and a 4B4 CDRL3 which has a sequence of SEQ ID NO: 19.

15. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 29.

16. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a heavy chain variable region having a sequence at least 98% identical to SEQ ID NO: 29.

17. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 27.

18. The method or kit of any one of the preceding claims wherein the first monoclonal antibody comprises a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 27.

19. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises a heavy chain variable region having a sequence at least 95% identical to SEQ ID NO: 33.

20. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises a heavy chain variable region having a sequence at least 98% identical to SEQ ID NO: 33.
21. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises a light chain variable region having a sequence at least 95% identical to SEQ ID NO: 31.

22. The method or kit of any one of the preceding claims wherein the second monoclonal antibody comprises a light chain variable region having a sequence at least 98% identical to SEQ ID NO: 31.

23. The method of any one of the preceding claims wherein the assay is not an immunofluorometric assay.

24. The method of any one of the preceding claims wherein an abnormal value for the concentration of Mcm5 indicates an increased likelihood of a urological cancer in said subject.

25. The method of any one of the preceding claims wherein the assay to determine the concentration of Mcm5 is an ELISA assay.

26. The method of claim 25 wherein the assay to determine the concentration of Mcm5 is a sandwich ELISA assay.

27. The method of any one of the preceding claims wherein the assay to determine the concentration of Mcm5 comprises capturing the Mcm5 in the sample using a capture antibody and detecting the concentration of the Mcm5 using a detection antibody, wherein the capture antibody is the first monoclonal antibody and the detection antibody is the second monoclonal antibody or the capture antibody is the second monoclonal antibody and the detection antibody is the first monoclonal antibody.

28. The method of claim 27 wherein the capture antibody is immobilised on an ELISA plate.

29. The method of claim 27 or 28 wherein the detection antibody is conjugated to Horse Radish Peroxidase.
30. The method of any one of the preceding claims further comprising diagnosing a patient as having the urological cancer where the concentration of the Mcm5 determined in step (b) is higher than the mean value from healthy patients plus a multiple of the standard deviation shown by the values derived from healthy subjects.

31. The method of any one of the preceding claims wherein the sample comprises urine.

32. The method of any one of the preceding claims wherein the sample or the urine sample comprises urinary sediment.

33. The method of any one of the preceding claims wherein the sample or urine sample comprises urinary sediment obtained from first catch urine collected after prostatic massage.

34. The method of any one of the preceding claims wherein the method is an in vitro method.

35. The method of claim 24 wherein said urological cancer comprises transitional cell carcinoma.

36. The method of claim 35 wherein said transitional cell carcinoma comprises bladder cancer.

37. The method of claim 35 wherein said transitional cell carcinoma comprises prostrate cancer.

38. The method of claim 35 wherein said transitional cell carcinoma comprises cancer of the pelvis or the kidney.

39. The method or kit of any one of the preceding claims wherein the lysis buffer is capable of releasing Mcm5 from cells in the urine sample.

40. The method of any one of the preceding claims wherein preparing the sample comprises a step of exposing the sample to a lysis buffer and:
(i) the lysis buffer is not PBS containing 0.4% sodium deoxycholate and 0.02% sodium azide;
(ii) the method does not comprise incubation of the sample at a temperature greater than 95°C for around 45 minutes;
(iii) the method does not comprise shearing the nucleic acids by passing the sample through a 21 gauge needle;
(iv) the method does not comprise digesting the nucleic acids by exposing the sample to Dnase I or Rnase A; and/or
(v) the method does not comprise centrifuging the sample at 15,000 g for 10 minutes.

41. The method of any one of the preceding claims wherein preparing the sample comprises a step of concentrating cells in the urine sample.

42. The method of any one of the preceding claims wherein the sample comprises cells and preparing the sample consists of the following steps:
 (i) centrifugation of the sample; and
 (ii) resuspension of the pelleted cells from the sample in the lysis buffer.

43. The method or kit of any one of the preceding claims wherein the first monoclonal antibody is a capture antibody and the second antibody is a detection antibody.

44. The method or kit of any one of claims 1-42 wherein the second monoclonal antibody is a capture antibody and the first antibody is a detection antibody.

45. The method or kit of claim 43 or 44 wherein the capture antibody is bound to an ELISA plate.

46. The method or kit of any one claims 43-45 wherein the detection antibody is conjugated to horseradish peroxidase.

47. The method or kit of any one of the preceding claims wherein the lysis buffer is capable of releasing Mcm5 from cells in the sample and does not substantially denature the Mcm5 protein.
48. The method of any one of the preceding claims wherein the lysis buffer does not denature an antibody.

49. The method or kit of any one of the preceding claims wherein the lysis buffer is Cytobuster Protein Extraction Reagent.

50. The method or kit of any one of the preceding claims wherein the lysis buffer comprises a detergent.

51. The method or kit of claim 50 wherein the detergent comprises or consists of triton X-100.

52. The method or kit of claim 51 wherein the detergent comprises or consists of triton X-100 at a concentration between 0.01% and 25%, between 0.01% and 10%, between 0.05% and 5%, between 0.05% and 1%, between 0.05% and 0.5% or around 0.1%.

53. The method or kit of any one of claims 50-52 wherein the detergent comprises a polysorbate.

54. The method or kit of claim 53 wherein the polysorbate is polysorbate 20.

55. The method or kit of claim 53 or 54 wherein the detergent comprises polysorbate at a concentration between 0.01% and 5%, between 0.02% and 1% or around 0.05%.

56. The method or kit of any one of claims 50-55 wherein the detergent comprises sodium deoxycholate or sodium dodecylsulphate.

57. The method or kit of claim 56 wherein the detergent comprises sodium deoxycholate or sodium dodecylsulphate at a concentration between 0.1% and 20%, between 0.5% and 10%, between 0.5% and 5% or around 1%.

58. The method or kit of any one of claims 50-57 wherein the detergent comprises 3-[(3-Cholamidopropyl)dimethylammonio]-l-propanesulphonate (CHAPS).
59. The method or kit of any one of the preceding claims wherein the lysis buffer comprises sodium deoxycholate at a concentration between 0.01% and 0.15%, between 0.03% and 0.10%, between 0.05% and 0.09% or about 0.08%.

60. The method or kit of any one of the preceding claims wherein the lysis buffer comprises CHAPS at a concentration between 0.01% and 0.15%, between 0.03% and 0.10%, between 0.05% and 0.09% or about 0.08%.

61. The method or kit of any one of the preceding claims wherein the lysis buffer comprises a chelating agent.

62. The method or kit of any one of claims 1-60 wherein the lysis buffer does not comprise a chelating agent.

63. The method or kit of claim 61 wherein the chelating agent is EDTA.

64. The method or kit of any one of the preceding claims wherein the lysis buffer comprises EDTA at a concentration between 0.5mM and 10mM, between 1mM and 5mM, between 1.5mM and 3mM or about 2mM.

65. The method or kit of any one of the preceding claims wherein the lysis buffer comprises a buffer component.

66. The method or kit of claim 65 wherein the buffer component is, comprises or consists of Trizma or Tris buffer.

67. The method or kit of claim 66 wherein the buffer component comprises or consists of tris buffer at a concentration greater than 5 mM, between 5 mM and 350 mM, between 200 mM and 300 mM, between 10 mM and 25mM, around 10 mM or around 250 mM.

68. The method or kit of any one of claims 65-67 wherein the buffer component comprises phosphate buffered saline (PBS), MOPS, bicarbonate or HEPES buffer.
69. The method or kit of any one of claims 65-68 wherein the buffer component comprises phosphate buffered saline at a concentration of between 5 mM and 250 mM, between 50 mM and 250 mM or around 100 mM.

70. The method or kit of any one of claims 65-69 wherein the buffer component maintains the pH of the buffer between pH 4 and pH 9, between pH 5 and pH 8, between pH 6 and pH 8 or around pH 7.6.

71. The method or kit of any one of the preceding claims wherein the lysis buffer comprises a salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, sodium sulphate, potassium sulphate, magnesium sulphate, sodium acetate, potassium acetate, magnesium acetate, sodium phosphate, potassium phosphate and magnesium phosphate.

72. The method, apparatus or kit of claim 71 wherein the salt is at a concentration between 20 mM and 300 mM, between 150 mM and 300 mM, between 100 mM and 200 mM or around 200 mM.

73. The method or kit of claim 71 or 72 wherein the lysis buffer or salt comprises or consists of sodium chloride at a concentration between 20 mM and 300 mM, between 150 mM and 300 mM, between 100 mM and 200 mM or around 200 mM.

74. The method or kit of any one of the preceding claims wherein the lysis buffer has an ionic strength of between 1 mM and 500 mM, between 50 mM and 450 mM, between 100 mM and 250 mM, or between 100 mM and 175 mM.

75. The method or kit of any one of the preceding claims wherein the lysis buffer comprises a stabiliser.

76. The method or kit of claim 75 wherein the stabiliser comprises or consists of a stabiliser selected from the group consisting of bovine serum albumin (BSA), foetal bovine serum (FBS) and a protease inhibitor.
77. The method or kit of claim 75 wherein the protease inhibitor is selected from the group consisting of 4-(2-aminoethyl)benzenesulphonyl fluoride hydrochloride (such as Petrabloc SC or AEBSF), Roche complete, and a protease inhibitor cocktail (such as Sigma P8340) comprising AEBSF, aprotinin, bestatin hydrochloride, N-(trans-epoxysuccinyl)-L-leucine 4-guanidinobutylamide (E-64), leupeptin hemisulphate salt and pepstatin A.

78. The method or kit of claim 75 or 76 wherein the stabiliser comprises BSA at a concentration between 0.1% and 20%, between 0.1%> and 10%>, between 0.1%> and 5%, between 1% and 3% or around 2.5%.

79. The method or kit of any one of the preceding claims wherein the lysis buffer comprises an antimicrobial agent.

80. The method or kit of claim 79 wherein the antimicrobial agent comprises or consists of sodium azide or an isothiazolone.

81. The method or kit of claim 79 or 80 wherein the antimicrobial agent comprises 2-methyl-4-isothiazolin-3-one and/or 5-chloro-2-methyl-4-isothiazolin-3-one (Proclin 950).

82. The method or kit of any one of claims 79-81 wherein the antimicrobial agent comprises or consists of sodium azide at a concentration between 0.01%> and 5%, between 0.02% and 1.5% or around 0.09%.

83. The method or kit of any one of the preceding claims wherein the lysis buffer comprises or consists of:
 (i) between 1 mM and 100 mM Tris;
 (ii) between 100 mM and 300 mM sodium chloride;
 (iii) between 1% and 5% BSA;
 (iv) between 0.01% and 1% Triton X-100; and
 (v) between 0.01% and 0.1% sodium azide.
84. The method or kit of claim 83 wherein the lysis buffer comprises or consists of:

(i) around 10 mM Tris;
(ii) around 200 mM sodium chloride;
(iii) around 2.5% BSA;
(iv) around 0.1% Triton X-100; and
(v) around 0.09% sodium azide.

85. The method or kit of any one of the preceding claims wherein the lysis buffer comprises RIPA buffer.

86. The method or kit of any one of the preceding claims wherein the lysis buffer is Cytobuster Protein Extraction Reagent.

87. The method or kit of any one of the preceding claims wherein the method does not comprise incubation of the sample at a high temperature.

88. The method of claim 87 wherein the high temperature is a temperature greater than 50°C, greater than 60°C, greater than 70°C, greater than 80°C, greater than 90°C, between 50°C and 120°C, between 60°C and 110°C, between 70°C and 100°C or between 80°C and 100°C.

89. The method of claim 87 or 88 wherein the method does not comprise incubation of the sample at a high temperature for more than 30 minutes, more than 35 minutes, more than 40 minutes, more than 45 minutes, between 30 minutes and 2 hours, between 35 minutes and 2 hours, or between 40 minutes and 2 hours.

90. The method of any one of the preceding claims wherein the method does not comprise shearing nucleic acids in the sample by mechanical shearing.

91. The method of any one of the preceding claims wherein the method does not comprise exposing the sample to enzymes which digest nucleic acids.
92. The method of any one of the preceding claims wherein the method does not comprise centrifuging the sample at 15,000 g for 10 minutes.

93. The kit of any one of claims 4-22 or 43-87 further comprising a calibrator.

94. The kit of claim 93 wherein the calibrator is a solution of Mcm5 of a known concentration.

95. The kit of any one of claims 4-22, 43-87 or 93-94 further comprising a substrate reagent which can be used to detect the concentration of the detection antibody.

96. The kit of claim 95 wherein the substrate reagent is peroxide and TMB.

97. The kit of any one of claims 4-22, 43-87 or 93-96 further comprising a wash solution and/or a stop solution.
Figure 1

![Graph showing calibrators with linear regression equation]

The graph shows the relationship between [MCM5] pg/ml and absorbance at 450 nm. The equation of the line is $y = 0.0028x + 0.0996$ with a coefficient of determination $R^2 = 0.9997$.

The x-axis represents [MCM5] pg/ml ranging from 0 to 800, and the y-axis represents absorbance at 450 nm ranging from 0 to 2.4.
Figure 2

Stock Calibrator

968 µL 1x lysis buffer (LB)

Working stock (fresh)

25 µL Working stock

500 µL 500 µL 500 µL 500 µL 500 µL

Vol. of 1xL.B.: 975 µL 500 µL 500 µL 500 µL 500 µL 500 µL

Mcm5, ng/mL: 0.8 0.4 0.2 0.1 0.05 0.025 0
Figure 3

T24 cells: different lysis buffers in ELISA

Absorbance 450 nm

T24 urothelial carcinoma cells per mL lysis buffer

- Uro LB
- Cytobuster TM
- Giolytix TM
- 0.1% SDS 50 mM Triz pH 7.6, 150 mM NaCl, 1 mM EDTA
Figure 4

T24 cells: different lysis buffers in ELISA

Absorbance 450 nm

T24 urothelial carcinoma cells per mL lysis buffer

- Uro LB
- Cytobuster TM
- Golytiss TM
- 0.1% SDS 50mM Triz pH 7.6, 150mM NaC, 1mM EDTA
Figure 5

Cell Lysis Comparison (+/- 2 S.D.)

- Freshly Lysed Samples
- FT Lysed Samples

Conditions
- 0 cells/mL DMEM
- 40k cells/mL CytoBuster
- 40k cells/mL RIPA Buffer
- 40k cells/mL TBS-T

Measurement
- ▶ [Mcm5] pg/mL
Figure 6

Cell Lysis Comparison (+/- 2 S.D.)

- Freshly Lysed Samples
- FT Lysed Samples

Buffer

[Diagram showing cell lysis comparison with bars representing different buffers and their effects on cell lysis.]
Figure 7

Cell Sample Comparison (+/- 2 S.D.)

- Freshly Lysed Samples
- FT Lysed Samples

[Diagram showing cell sample comparison with various conditions]

Buffer
Figure 8

10mM - 100mM Tris and 0.1% - 0.5% TX-100 Titrations on Fresh Lysates (+/- 2 S.D.)

[Diagram showing cell concentration levels for different Tris and Triton X-100 concentrations.]
Figure 9

Lysis Buffer Base Formulation Comparison (+/- 2 S.D.)

[Diagram showing the comparison of different lysis buffers with error bars representing +/- 2 S.D. for each measurement. The x-axis represents different buffers: 100mM Tris 0.1% Triton, 100mM PBS 0.1% Triton, 100mM Bicarb 0.1% Triton, 100mM MOPS 0.1% Triton, and 100mM HEPES 0.1% Triton. The y-axis represents the number of Mcm55 pg/mL.]
Figure 10

100mM - 350mM Tris Titration on Fresh Lysates (+/- 2 S.D.)

- 0 cells/mL
- 70k cells/mL

[Diagram showing titration results with buffer concentrations and cell counts]
Figure 11

Lysis Buffer Ionic Strength Comparison with Freeze-Thawed Lysates
(+/- 2 S.D.)

Buffer

[Mcg] pg/mL

DMEM
CytoBuster
0mM NaCl
150mM NaCl
DEN MuQST
DEN MuQST
10mM TBS-Tr
100mM TBS-Tr
300mM TBS-Tr
25mM Tris RIPA
100mM Tris RIPA
300mM Tris RIPA
Figure 12

NaCl Titration using Fresh Lysates (+/- 2 S.D.)

0 cells/mL
100k cells/mL

[Graph showing the effects of various NaCl concentrations on Mcm5 PG/mL levels.]
Figure 14

Lysis Buffer Stability Compound Comparison (+/- 2 S.D.)

- 0 cells/mL
- 30k cells/mL (Fresh lysate)
- 30k cells/mL (6 days @ -20°C)
- 30k cells/mL (6 days @ 4°C)
- 30k cells/mL (6 days @ RT)

Buffer:
- CytoBuster
- TBStr
- TBStr + 1% FBS
- TBStr + 2.5% BSA
- TBStr + 0.25 mM Pefabloc SC
- TBStr + 0.1 mM Pefabloc SC
- TBStr + 0.5% Sigma P8340
- TBStr + 0.25x Roche Complete

Mcm5 [pg/mL]
Figure 2.4M T24/83 Cell Lysis Comparison

Figure 2.4N RT4 Cell Lysis Comparison
Figure 16

Cell Lysis Comparison (+/- 2 S.D.)

- TBSTr + 2.5% BSA
- TBSTr + 2.5% BSA + 0.05% Proclin950

Sample:
- 0 cells/mL
- 5k cells/mL
- 10k cells/mL
- 20k cells/mL

[McM5] pg/mL

Y-axis range:
- 0.0 to 250.0

X-axis range:
- 0 cells/mL to 20k cells/mL
Figure 17

Cell Lysis Comparison (+/- 2 S.D.)

- TBSTr + 2.5% BSA
- TBSTr + 2.5% BSA + 0.09% NaN3

[Diagram showing cell lysis comparison across different cell concentrations and treatments, with error bars indicating standard deviation.]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01N33/574 G01N33/68

ADD.

According to International Patent Classification (IPC) and/or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 99/21014 AI (CANCER RES CAMPAIGN TECH [GB]; LASKEY RONALD ALFRED [GB]; WI LLIAMS GAR) 29 April I 1999 (1999-04-29) Examples 15 and 29</td>
<td>1-97</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier application or patent but published on or after the international filing date
* "L" document which may throw doubts on priority claim(s) on which the published date of another citation is not in conflict with the relevant prior publication
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 12 September 2016

Date of mailing of the international search report: 23/09/2016

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Lopez Garcia, F
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9921014 A1</td>
<td>29-04-1999</td>
<td>AT 290213 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 751754 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9813127 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2305872 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1282422 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5080817 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69829198 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69829198 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1025444 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1025444 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2239407 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2332515 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0004134 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS 5456 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000511291 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003240786 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 26557 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20002044 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 503996 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 01212000 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 340057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1025444 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 5592000 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9921014 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102782497 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2513651 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2977762 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013513812 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013171662 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015219659 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011073619 A1</td>
</tr>
</tbody>
</table>