PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GOG6F 12/02 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/10812

4 March 1999 (04.03.99)

(21) International Application Number: PCT/IB98/01088

(22) International Filing Date: 16 July 1998 (16.07.98)

(30) Priority Data:

9717718.2 22 August 1997 (22.08.97) GB

(71) Applicant: KONINKLIKE PHILIPS ELECTRONICS N.V.
[NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven
(NL).

(71) Applicant (for SE only): PHILIPS AB [SE/SE]; Kottbygatan 7,
Kista, S—164 85 Stockholm (SE).

(72) Inventor: HOULSDWORTH, Richard, James; Prof. Holstlaan
6, NL-5656 AA Eindhoven (NL).

(74) Agent: WHITE, Andrew, G.; Internationaal Octrooibureau
B.V., P.O. Box 220, NL-5600 AE Eindhoven (NL).

(81) Designated States: JP, KR, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: MEMORY MANAGEMENT WITH COMPACTION OF

(57) Abstract

DATA BLOCKS

A method and
apparatus are provided
for management of stored

B Ut

B2

data in the form of data
blocks interspersed with
free blocks in a fixed
size system memory. A
compaction procedure,
periodically applied to the
memory, repositions those
data blocks identified (107)
as moveable such as to

T

P1

!

P2

P P4

increase the extent of free block contiguity within the memory. The search for a suitable free block (114-117) for housing a relocated

data block is sequentially applied for each data block; a data block is

moved (118) to a free block if the free block is greater than or equal

to the data block size and less than or equal to the size of the data block when added to the size of any free block abutting the original

data block position.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Ccu

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
T
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

DESCRIPTION
MEMORY MANAGEMENT WITH COMPACTION OF DATA BLOCKS

The present invention relates to a method and apparatus for handling
stored data and particularly, but not exclusively, to memory compaction during

garbage collection in a real or virtual memory space of a data processing
apparatus.

Garbage collection is the automated reclamation of system memory
space after its last use by a programme. A number of examples of garbage
collecting techniques are discussed in "Garbage Collection: Algorithms for
Automatic Dynamic Memory Management" by R. Jones et al, pub. John Wiley
& Sons 1996, ISBN 0-471-94148-4, at pages 1 to 18, and "Uniprocessor
Garbage Collection Techniques" by P.R. Wiison, Proceedings of the 1992
International Workshop on Memory Management, St. Malo, France, September
1992. Whilst the storage requirements of many computer programs are simple
and predictable, with memory allocation and recovery being handled by the
programmer or a compiler, there is a trend toward languages having more
complex patterns of execution such that the lifetimes of particular data
structures can no longer be determined prior to run-time and hence automated
reclamation of this storage, as the program runs, is essential.

One particular class of garbage collection / memory reclamation
techniques, as described in the above-mentioned Wilson reference, is mark-
compact collection. In common with many garbage collection techniques it is
a two-stage procedure and, as its name suggests, it involves first marking all
stored objects that are still reachable by tracing a path or paths through the
pointers linking data objects, and then compacting the memory - that is to say
moving the marked objects stored in the memory to a contiguous area of

memory to leave a space containing only redundant objects, which space may
then be reclaimed.

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

Fragmentation of system memory is a problem which is particularly acute
with garbage collected memory systems. Methods for compaction of memory,
such as mark-compact collection, where all memory blocks are moveable are
well known. However, the situation where there is a variety of fixed and
moveable data, interleaved in an arbitrary fashion, causes problems.

Applying conventional defragmentation techniques in circumstances
where there are unmoveable blocks may still leave memory in a partially
fragmented state, that is to say composed of collected groups of filled memory
blocks interspersed with more than one area of free memory. The consequence
of this is that the allocator (the system function allotting storage locations to
memory blocks) needs to be designed to work with partially fragmented
memory. Also, an overall monitoring and control function must be applied to
ensure that defragmentation actually results in a more useful memory
organisation than before compaction. As memory allocation patterns are
arbitrary and unpredictable, the suitability of memory organisations for a
particular size of allocation cannot be known before the allocation actually

occurs.

it is an object of the present invention to provide a method for dynamic
allocation of storage locations in a random-access memory that can
accommodate the limitations imposed by having some stored memory blocks
unmovable from a respective storage location.

It is a further object to provide a data processing apparatus embodying
such a method in the handling of data storage.

In accordance with the present invention there is provided a method for
management of stored data in the form of data biocks interspersed with free
bilocks in a fixed size memory, wherein a compaction procedure is periodically
applied during which the data blocks are moved together such as to increase
the extent of free block contiguity within the memory; characterised in that
some of the data blocks are fixed in memory location and not moved by the

compaction procedure and the remainder are tested in sequence to determine

10

15

20

25

30

WO 99/10812 PCT/1B98/01088

whether a free block location is available for that block such as to improve the
overall distribution, wherein a data block is moved to a free block if the free
block is greater than or equal to the data block size and less than or equal to
the size of the data block when added to the size of any free block abutting the
original data block position.

This motion condition enabies a relatively rapid determination of a
suitable location for moving a data block: whilst not optimising the compaction
procedure, this method may improve the efficiency of compaction without
adding undue burden to the search procedure for identifying suitable free
blocks.

To prevent unnecessary movement of blocks in an existing "best fit"
location, any data block not abutted by at least one free block is suitably
treated as fixed in memory location. The method described above may further
comprise the step of determining, following movement of a data biock, whether
the block preceding the new data block location is a free block and, if so,
moving the data block down to the preceding free block location. This use of
sliding compaction can reduce small spaces appearing although preferably, as
will be described, a data block is not moved down to a preceding free block
location if said preceding free block is smaller than said data block.

Also in accordance with the present invention there is provided a data
processing apparatus comprising a data processor coupled with a random-
access memory containing a plurality of data objects interspersed with free
blocks, each said data object and free block being at a respective known
location within the memory, the apparatus being configured to periodically apply
a compaction procedure during which at least some of the data blocks are
repositioned within the memory such as to increase the extent of free block
contiguity; characterised in that some of the data blocks are fixed in memory
location with the apparatus comprising means operable to identify fixed blocks
and exclude them from the compaction procedure, and search means
configured to determine, for each of the remaining data blocks, whether a free

block location is available for that block such as to improve the overall

10

15

20

25

30

WO 99/10812 ' PCT/IB98/01088

distribution, said search means moving a data block to a free block if the free
block is greater than or equal to the data block size and less than or equal to
the size of the data block when added to the size of any free block abutting the
original data block position.

A free block memory may be provided coupled with the search means
and holding, for each size of free block in the random-access memory, the
random-access memory address for the, or at least one of the, free blocks. In
such a case, the addresses for all free blocks of a common size may be stored
as a linked list in the free block memory, with entries in the linked list suitably
being stored in order of lowest to highest random-access memory address, with
the lowest forming the list header. With this latter arrangement, the list headers
may be referenced in free block memory as nodes of a binary tree structure,
with the search means configured to traverse the structure to identify free
blocks of a selected size. In order to reduce the extent of required tree-
traversal, the free block memory may comprise a plurality of said binary tree
structures, each referencing a different range of free block sizes, with a header
array identifying the location in said free block memory of the header node of
each binary tree. Further features and advantages of the present invention are
recited in the attached claims or will become apparent from reading of the

following description of example embodiments.

The invention will now be described by way of example only, with
reference to the accompanying drawings, in which:

Figure 1 is a block diagram of a data processing system suitable to
embody the present invention;

Figure 2 represents a contiguous section of memory containing both
moveable and immovable blocks of data;

Figure 3 shows part of a managed binary tree list referencing free
memory blocks, such as those in Figure 2; and

Figure 4 is a flow chart representation of a compaction procedure
embodying the invention.

10

15

20

25

30

WO 99/10812 ' ' PCT/IB98/01088

Figure 1 represents a data processing system, such as a personal
computer, which acts as host for a number of software utilities which may, for
example, configure the system as a browser for data defining a virtual
environment. The system comprises a central processing unit (CPU) 10
coupled via an address and data bus 12 to random-access (RAM) and read-
only (ROM) memories 14, 16. These memories may be comprised of one or
several integrated circuit devices and may be augmented by a system hard-disk
as well as means to read from additional (removable) memory devices, such
as a CD-ROM. The present invention is particularly embodied in memory
management for a working area of the RAM 14 under control of the CPU 10;
a controlling program for this may initially be held in ROM 16 and loaded up
with the operating system on power-up.

Also coupled to the CPU 10 via bus 12 are first and second user input
devices 18, 20 which may suitably comprise a keyboard and a cursor control
and selection device such as a mouse or trackball. Audio output from the
system is via one or more speakers 22 driven by an audio processing stage 24.
Video output from the system is presented on display screen 26 driven by
display driver stage 28 under control of the CPU 10.

A further source of data for the system is via online link to remote sites,
for example via the Internet, to which end the system is provided with a
network interface 30 coupled to the bus 12. The precise construction of the
interface is not an essential feature of the present invention, although it will be
recognised that the interface configuration will depend on the type of data
network to which the system is to be coupled: for example, where the system
is for use by a private home user, the data link is likely to be a telephone
connection to a local service provider. In such a case, the interface 30 will
suitably incorporate a modem. For other types of data link, such as an ISDN
connection, the interface will be configured accordingly.

The problem to be overcome in the allocation of storage locations in
RAM 12 is schematically illustrated in Figure 2 which represents a contiguous

area of memory containing both moveable (B1, B2, B3) and unmoveable (U1,

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

U2) blocks of data interspersed with blocks of free memory: pointers P1 to P4
indicate the start of respective free blocks. The free memory may be unused
or it may contain data which has served its function and has been identified as
redundant (i.e. it can be safely overwritten). In the following description, it is
assumed that the contiguous area of memory can be scanned linearly for
blocks, thereby implying the provision of a length field in each object, or some
other means for indicating where the next object starts. It will be recognised,
however, that the invention is not so limited to linear scanned memories, with
other configurations being possible, as long as relative locations and types of
stored data object may be determined.

The purpose of compaction is to move blocks B1, B2 and B3 so that the
free space is arranged in the best way to suit the maximum number of potential
allocation requests. Good free space organisations have the fewest number
of free blocks and the largest size of free blocks. The best organisation (from
the point of view of operational flexibility) is to have a single free block but, as
will be recognised, the presence of the fixed blocks means there may have to
be multiple free blocks.

In the example, moving block B3 to block space P3 will merge spaces
P3 and P4, which improves the situation as the combined free space can
satisfy more allocation requests. However, if block B3 fits in space P1 or P2,
then spaces P3 and P4 are merged, but the size of spaces P1 or P2 are
reduced to smaller sizes (that is to say their original size less the size of block
B3), which may be less useful for subsequent allocations. Moving block B2 to
space P2 does not change the situation at all, and motion to space P1, P3 or
P4 increases space P2 at an equal expense to another block. This move is
only worthwhile if block B2 closes a free block completely. The same applies
to biock B1.

The compaction procedure is operated in real-time under control of the
system CPU (10; Fig.1) concurrently with the operation of the system. In this
example, the locking system utilised by the system memory manager indicates

that an item (data block) is instantaneously unmoveable, but the lock may be

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

obtained and released during the progress of the procedure. Therefore, the
system can not be analysed at a single point to determine which are the fixed
blocks, as the analysis would immediately become invalid.

In a preferred embodiment, the memory management system takes, as
its starting condition, that large free blocks are preferable and are to be
obtained wherever possible. Considering the potential space released (the
source) by the movement of a candidate block to elsewhere in memory, this is
given by:

Source = Size of the previous block (if free)

+ size of the candidate block

+ size of the next block (if free)

The movement has a positive effect if the size of the free block at the
destination is smaller than this amount. Ideally, the destination block size
should equal the size of the moveable block, as this removes a fragment of free
space, although leaving small areas of free memory at the destination is
generally unavoidable in a practical system, with the rejection of non-exact fits

being counterproductive. The resulting full motion condition may be written as:
Block size <= Destination size <= Source size

It will be recognised that this formulation leaves the possibility that a
block bounded by two other used blocks can be moved if there is an exact fit
elsewhere, although this is not a useful movement as no benefit is gained. In
order to avoid this situation, either the case (Previous is free) or (Next is free)

is added to the full motion condition, or the condition is limited as:
Block size <=Destination size < Source size

The system requires a mechanism for rapid identification of free blocks

and their sizes and, as a part of this, maintains a "free" list for every size of

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

free block available at a given time. Most operations will access only the head
of each list to identify the free block of appropriate size and with the lowest
address. The lists are accessed via a balanced binary free structure, as
illustrated in Figure 3. To remove the top few levels of the binary tree, there
are separate trees for data blocks sized between each power of 2, with only a
tree for blocks in the range of 9-16 bytes being shown, for reasons of clarity,
together with a linked list for objects of size 2 bytes. Nodes are only included
where there are one or more free space blocks of that size in the memory,
such that it is unlikely that full binary trees will occur at anything other than the
lowest levels. The nodes forming the heads of the trees are accessed directly
from a top-level array 40. The particular arrangement (divisions by powers of
2) is chosen because the higher potential size of the trees for large free blocks
will be at least partially offset by the smaller number of larger free blocks
created.

The array 40 may be arranged as shown with elements separated in the
ranges 2" < X <=2", giving element ranges 0-1, 2-2, 3-4, 5-8, and so on.
Alternatively, the separation may be given by 2" <= X < 2" which gives
element ranges 0-0, 1-1, 2-3, 4-7, 8-15, and so on. This latter arrangement is
preferred for ease of searching, with the first bit identifying the range.

As shown for node 42A, representing a free block of size 14 bytes, free
biocks are items in a double-linked list of blocks of the same size (as shown
at 42A,B,C, and 44A,B,C,D), or nodes in the tree. Nodes (42A, 44A) are the
heads of the list, and contain pointers 46 to the next item in the list, as well as
to the parent node (the node representing a free block of size 12 bytes in the
case of node 42A), and pointers to the children nodes (nodes representing
block sizes 13 and 16 bytes), one greater, and one smaller than this node.
Only node 42A and list 42B and 42C are shown expanded in Figure 3 for
reasons of clarity. This fully connected system ensures that no expensive list
searching needs to be done.

The linked list from node 44A for nodes of 2 bytes illustrates one

potential solution to problems which may be caused in terms of overheads for

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

blocks of less than 4 words in length. As shown, the smaller blocks are aligned
on 2 word boundaries which, whilst not as wasteful as aligning on 4 word
boundaries so that small items are padded out, is still wasteful. Aligning on 1
word boundaries but excluding short items from the free list structure, and
relying on sliding compaction (discussed hereinafter) is an improvement but
may be only sporadically so.

When the compactor attempts to find a suitable placement for the current
block, the appropriate section of tree is first determined via array 40 and then
traversed, optionally from the lower size limit up to the upper limit, although any
block within range will generally be acceptable and the full search need not
always be performed. The allocator, looking to add new blocks to the memory,
also searches upwards from the requested size to find a best fit. The
compaction process adjusts the internal structure of the free lists, whereas the
allocator will only need to access the node at the top of each list. In terms of
the Figure 3 example, the compaction process may result in the removal of the
block referenced by list item 42B: in removing this block the compactor
removes the pointers from blocks 42A and 42C and sets the pointers from
those blocks to each other, restoring the double link between what are now the
first and second entries in the list. The free list structure is maintained
consistent at all times, allowing full concurrency between the tasks by
preventing compaction and allocation occurring simultaneously. The compactor
will remove objects from the list during coalescing and moving actions. Tree
searches only occur when it is necessary to insert the free blocks of a new
size.

The procedure employed during compaction is illustrated by the flow
chart of Figure 4, starting at 101 with the first (lowest address) block in the
memory. The first operation in the iteration, the store of a pointer from this
block to the previous block at 102, is omitted for this first block following which
the test of step 103 determines whether the block is a free block. If the block
is free, a further test 104 determines whether the next block is free and, if so,

it coalesces the two (105) to a single larger block. Having coalesced the two

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

10

blocks, the test as to whether the (new) next block is free 104 is repeated,
followed by coalescence 105 until a used (non-free) block is encountered, at
which the procedure (compaction loop) iteration concludes at 106 with selection
of the next block in the memory, before recommencing with step 102 storing a
pointer from the newly selected block to the previous one. It will be recognised
that the coalescing of free blocks is not strictly tied in with the compaction
procedure; it may instead be controlled by the allocator mechanism or as part
of the garbage collection mechanism. Where coalescence is not incidentally
or actually triggered during compaction, stages 104 and 105 of Figure 4 may
be omitted, with a positive result to the "Block Free ?" test of 103 leading
directly to selection of the next block at 106.

When the test of step 103 determines that the block is not free, the
iteration proceeds to step 107 where it is determined whether the block is
movable or fixed. If the block is not movable, the iteration is again concluded
with selection of the next block at 106. If the block is identified as movable, the
source block size is initially set to that of the block under consideration at 108,
following which a check is made (109) as to whether the preceding block is
free, in which case the source block size is increased from the initial block size
by the size of the previous block, at 110. Following the test of the previous
block (and expansion of the source if the block is free), a similar test is
performed at 111 for the next block: if the next block is free, the source block
size is increased by the size of that next block at 112.

Following the tests of whether next and previous blocks are free (with
expansion of the source if they are), at 113 a further test is made as to whether
the current value for the source block size equals the original block size. If so,
neither the previous nor next blocks are free so that moving the block from its
current location has no value and, unless a destination block of exactly the size
of the block under consideration is found, there will be a worsening of layout.
Consequently, when the test at 113 determines a block to be bounded by non-
free blocks, that block will remain unmoved and the iteration again moves to
selection of the next block at 106.

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

11

If the test at 113 shows the source block size to be greater than the
original block size, the search of the free list begins to find a suitably sized
candidate for destination block, with the first free list block selected at 114.
The test of fitness for the destination block candidates, applied at 115, is

whether it meets the above-desci'ibed full motion condition:
Block size <=Destination size < Source size

If the free list block does not meet the above condition, a check is made
at 116 as to whether there are any further blocks on the free list and, if so, the
next on the list is selected at 117 and the procedure reverts to the fitness test
at 115. If the test at 116 indicates that there are no further blocks on the free
list, there are no suitable destination blocks for the block under consideration,
and the iteration proceeds to step 106 and selection of the next candidate
block. However, if the fitness test at 115 shows a destination block fulfilling the
above motion criteria, the block under consideration is moved to the destination
block, at 118, with the consequent updating of the free list structure.

Having moved a block, the compactor makes a further check at 119 as
to whether the new preceding neighbour for the moved block is free. If so, at
120 a process of sliding is implemented whereby the block is moved down into
the space presented by the free block: "down" in this case refers to towards the
first block in memory at the lowest address. The motion of free blocks to
higher memory space and data to low memory space is implicit in the approach
and, in an operational optimisation, only lower memory is scanned for free
blocks capable of holding the moveable memory block. Following the test at
119 (or sliding at 120 if implemented) the iteration closes with selection of the
next block at 106. In order to avoid anomalies, each iteration of the compactor
loop is an atomic operation, with the previous, current and next items not
changing their state during the iteration.

The use of sliding compaction retains locality of reference and reduces

the size of the free list, with only free blocks positioned before unmoveable

10

15

20

25

WO 99/10812 PCT/IB98/01088

12

blocks being placed on the free list. In step 120, a block is only shifted down
in memory if the move is non-overlapping, that is to say the size of the
preceding block exceeds that of the block being moved. Non-overlapping
moves are potentially useful with highly incremental operations as access to the
data can occur during the move (with some extra overhead). This constraint
will tend to prevent small movements which will release little memory.

Although defined principally in terms of a software implementation, the
skilled reader will be well aware that the above-described functional features
could equally well be implemented in hardware, or in a combination of software
and hardware.

From reading the present disclosure, other modifications will be apparent
to persons skilled in the art. Such modifications may involve other features
which are already known in the design, manufacture and use of data
processing and storage apparatus and devices and component parts thereof
and which may be used instead of or in addition to features already described
herein. Although claims have been formulated in this application to particular
combinations of features, it should be understood that the scope of the
disclosure of the present application also includes any novel feature or novel
combination of features disclosed herein either expilicitly or implicitly or any
generalisation thereof, whether or not it relates to the same invention as
presently claimed in any claim and whether or not it mitigates any or all of the
same technical problems as does the present invention. The applicants hereby
give notice that new claims may be formulated to such features and/or
combinations of such features during the prosecution of the present application

or of any further application derived therefrom.

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

13

CLAIMS

1. A method for management of stored data in the form of data blocks
interspersed with free blocks in a fixed size memory, wherein a compaction
procedure is periodically applied during which the data blocks are moved
together such as to increase the extent of free block contiguity within the
memory;

characterised in that some of the data blocks are fixed in memory location
and not moved by the compaction procedure and the remainder are tested in
sequence to determine whether a free block location is available for that block
such as to improve the overall distribution, wherein a data block is moved to
a free block if the free block is greater than or equal to the data block size and
less than or equal to the size of the data block when added to the size of any

free block abutting the original data block position.

2. A method as claimed in Claim 1, wherein any data block not abutted

by at least one free block is treated as fixed in memory location.

3. A method as claimed in Claim 1, further comprising the step of
determining, following movement of a data block, whether the block preceding
the new data block location is a free block and, if so, moving the data biock
down to the preceding free block location.

4. A method as claimed in Claim 3, wherein a data block is not moved
down to a preceding free block location if said preceding free biock is smaller
than said data block.

5. A data processing apparatus comprising a data processor coupled
with a random-access memory containing a plurality of data objects
interspersed with free blocks, each said data object and free block being at a

respective known location within the memory, the apparatus being configured

10

15

20

25

30

WO 99/10812 PCT/IB98/01088

14

to periodically apply a compaction procedure during which at least some of the
data blocks are repositioned within the memory such as to increase the extent
of free block contiguity;

characterised in that some of the data blocks are fixed in memory location
with the apparatus comprising means operable to identify fixed blocks and
exclude them from the compaction procedure, and search means configured
to determine, for each of the remaining data blocks, whether a free block
location is available for that block such as to improve the overall distribution,
said search means moving a data block to a free block if the free block is
greater than or equal to the data block size and less than or equal to the size
of the data block when added to the size of any free block abutting the original

data block position.

6. Apparatus as claimed in Claim 5, further comprising a free block
memory coupled with the search means and holding, for each size of free block

in the random-access memory, the random-access memory address for the, or

at least one of the, free blocks.

7. Apparatus as claimed in Claim 6, wherein the addresses for all free

blocks of a common size are stored as a linked list in the free block memory.

8. Apparatus as claimed in Claim 7, wherein the linked list entries are
stored in order of lowest to highest random-access memory address, with the

lowest forming the list header.

9. Apparatus as claimed in Claim 8, wherein the list headers are
referenced in free block memory as nodes of a binary tree structure, with the

search means configured to traverse said structure to identify free blocks of a
selected size.

10. Apparatus as claimed in Claim 9, wherein the free block memory

WO 99/10812 PCT/IB98/01088
15
comprises a plurality of said binary tree structures, each referencing a different

range of free block sizes, and a header array identifying the location in said
free block memory of the header node of each binary tree.

WO 99/10812 ' PCT/IB98/01088

1/3
A
10 " . :
%)) v
NETWORK | -
o RAM ROM INTERFACE [
AN AN AN AN
\)) Ny 2
USER USER AUDIO DSPLAY |
P.1 P.2 PROCESS DRVER
18 2 % l
DISPLAY |—26
2
B Ui B | U2 B3
A A A A
P P 3 P4

FIG. 2

WO 99/10812 PCT/IB98/01088

2/3

0-1] 2-2 | 3-4 | 5-8 | 9-16 |17-32|33-64

A~ 2 12
//‘-r:,:]_]' INY: 4c
4B) 1

44D 10 14 14 14

7\, &
) L] T

FIG. 3

WO 99/10812 ‘ PCT/IB98/01088

3/3
START)——10f
1

————»| STOREPOINTER |—102 106~| COALESCE
Y
BLOCK FREE Y BT RS

103 /

107 104

110

|

SOURCE =
BLOCK + PREV
|
| SOURCE =
SOURCE + NEXT
)
112
FIRSTFREELIST | 414
BLOCK "

|

NEXT LIST
BLOCK

NEXT BLOCK |——108 FIG. 4

- INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB 98/01088

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: GO6F 12/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Flectronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5561786 A (PETER L. MORSE), 1 October 1996 1-10

(01.10.96), column 11, line 22 - column 13, line 3,
figures 7A,7B, abstract

A US 5604902 A (THERESA A. BURKES ET AL), 1-10
18 February 1997 (18.02.97), column 3,
line 51 - column 4, line 20, abstract

A US 5109336 A (ROBERT L. GUENTHER ET AL), 1-10
28 April 1992 (28.04.92), column 8,
line 45 - column 9, line 52, abstract

m Further documents are listed in the continuation of Box C. m See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date 31' pl’iOl;ty
upn ; ioh] date and not in conflict with the application but cited to understan
A” document defining the general state of the art which is not considered P ; ; :
10 be of particular relevance the principle or theory underlying the invention
“E” erlier document but published on or after the international filing date "X” document of particular relevance: the claimed invention cannot be

; . . Lo S < : . ive
“1.” document which may throw doubts on priority claim(s) or which is ;onﬂ‘g;::d‘g:\ae(l)cm‘;ﬂ;ni:tt:; e;o:lgtl)?leerm to invaive an inventiv
cited to establish the publication date of another citation or other step

special reason (as specified) “Y” document of particular relevance: the claimed invention cannot be
“0" document referting to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is o

means combined with one or more other such documents, such combination
“P” document published prior to the international filing date but later than being obvious to a person skilled in the art

the priority date claimed “&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

27 January 1999 29 -01- 1999

Name and mailing address of the ISA/ Authorized officer

Swedish Patent Office

Box 5055, §-102 42 STOCKHOLM Goran Magnusson

Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB 98/01088

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 5623654 A (JIM PETERMAN), 22 April 1997

(22.04.97), column 2, Tine 29 - column 3, line 12,
abstract

US 4660130 A (DAVID H. BARTLEY ET AL),
21 April 1997 (21.04.97), column 2,
line 39 - column 3, line 19, abstract

1-10

1-10

Form PCT,I1SAj210 (continuation of second sheet) (July 1992)

- INTERNATIONAL SEARCH REPORT

Intérnational application No.

21/12/98 | PCT/IB 98/01088

Information on patent family members

Patent document Publication Patent family Publication

cited in search report date member(s) date
US 5561786 A 01/10/96 CA 2119788 C 31/12/96
EP 0606461 A 20/07/94
JP 6511582 T 22/12/94
WO 9402898 A 03/02/94

US 5604902 A 18/02/97 NONE
US 5109336 A 28/04/92 EP 0395606 A 31/10/90
JP 2038817 C 28/03/96
JP 2300949 A 13/12/90
JP 7075004 B 09/08/95

US 5623654 A 22/04/97 NONE
US 4660130 A 21/04/97 EP 0175458 A 26/03/86
JP 1917346 C 23/03/95
JP 6048469 B 22/06/94
JP 61112256 A 30/05/86

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

