US 20030004804A1

a9 United States

a2 Patent Application Publication o) Pub. No.: US 2003/0004804 A1

Landsman et al.

43) Pub. Date: Jan. 2, 2003

(54

(75)

(73)

@D
(22

(63)

(D
(52)

TECHNIQUE FOR IMPLEMENTING
INTERSTITIAL WEB ADVERTISING
THROUGH USE OF AN AD DESCRIPTOR
FILE

Inventors: Rick W. Landsman, Waccabuc, NY
(US); Wei-Yeh Lee, New York, NY
(US)

Correspondence Address:
MICHAELSON AND WALILACE
PARKWAY 109 OFFICE CENTER
328 NEWMAN SPRINGS RD

P O BOX 8489

RED BANK, NJ 07701

Assignee: Unicast Communications Corporation,
a corporation of the State of Delaware
Appl. No.: 10/162,626
Filed: May 31, 2002
Related U.S. Application Data

Continuation of application No. 09/237,718, filed on
Jan. 26, 1999, which is a continuation-in-part of
application No. 09/080,165, filed on May 15, 1998,
now abandoned.

Publication Classification

(7) ABSTRACT

A technique for implementing in a networked client-server
environment, e.g., the Internet, network-distributed adver-
tising in which advertisements are downloaded, from an
advertising server to a browser executing at a client com-
puter, in a manner transparent to a user situated at the
browser, and subsequently displayed, by that browser and on
an interstitial basis, in response to a click-stream generated
by the user to move from one web page to the next.
Specifically, an HTML advertising tag is embedded into a
referring web page. This tag contains two components. One
component effectively downloads, from an distribution web
server and to an extent necessary, and then persistently
instantiates an agent at the client browser. This agent
“politely” and transparently downloads advertising files
(media and where necessary player files), originating from
an ad management system residing on a third-party adver-
tising web server, for a given advertisement into browser
cache and subsequently plays those media files through the
browser on an interstitial basis and in response to a user
click-stream. The other component is a reference, in terms of
a web address, of the advertising management system. This
latter reference totally “decouples™ advertising content from
a web page such that a web page, rather than embedding
actual advertising content within the page itself, merely
includes an advertising tag that refers, via a URL, to a
specific ad management system rather than to a particular
advertisement or its content. The ad management system
selects the given advertisement that is to be downloaded,

Int. CL7 oo e GO6F 17/60 rather than having that selection or its content being embed-
US. Clh ettt eseciens 705/14 ded in the web content page.
420
TRANSITION AD CONTROLLER APPLET
SENSOR APPLET 422 APPLET REGISTRY
AD CONTROLLER AGENT 424 426
AD DESCRIPTOR MEDIA & BROWSER
FILE(s) PLAYER FILES DISK
CACHE
423 437 430
BROWSER JAVA VIRTUAL 440
MACHINE ul
; 400
RESIDENT -
APPLICATION /4 10
PROGRAMS PLAYER
FILES

US 2003/0004804 A1

Jan. 2, 2003 Sheet 1 of 26

Patent Application Publication

4DVd gHM HAISSAIONS
) LXdN AVOINMOA OL LSANOHY TNLH SANSST YASMOUL
VI DId ANV ‘HOVA g9M FAISSEODNS LXEN OL NOLLISNVYL OL (IOITD
HSNOW 8'2) INHAH QE.LYLLINI ¥SN OL ASNOJSTI NI THOVD
SSIA YHSMO¥E WO LNEWESILYFAQY 40 AVTd TVILILSYALNI b6
J1 'OId SHLVILINI LE1ddY JOSNES NOLLISNVYL ‘THOVO SIA ¥ASMONE
O QHAVOINMOQ NEAE FAVH ST YHAVII/VIHN T1V ALV
91 ‘OId ‘INVERLLS-OI'TD ¥ESN STOLINOW LA TddV YOSNAS NOLLISNY L
7Y
06 SSIa
QIVH TYO0T NO
88 N\ 4 gHOVO wAsMoud
\ , OLNI ST ASTHL
T YAV 14/VIQIN QIHOLAT 1SV SAVOINMOQ
ATALITOd,,
- ANV Dd INAITD
. o . 1V LNAAISTI-NON
— o o SATLI INAINOD
) 8L v ANV VIQaW
9/, o N ° h > TIV SANINIHIAA
- R T4 U3AVIdVIGaN G3HOL3 T OIS
v, | @74 qaHD1E Qv NI LSTIINVIN
ST HD1AA OL 15an0ad | e mmwmw% hmwwAMM
0 T SHAV II/VIAHIA QAGAAN BOTaE O1 1San0Td) m
>/ AV HOI 1 HOLEOSAA AV GHHDLE 0L av 9o
89 L] MOLdNOSAA
FOLARIDSHA AV AEHOLE: . SN IV 2O 1SAnD
. / mww Wwﬁwm%mmmm%omw DV.L NI QALIIDAdS WALSAS INTWAOVNVIN av | 09 7| SHOSSI mew%%«
I ‘O | 9 WO 8T HOLARIOSHA AV ATHORY OL ISANOAN dTTTORINOY AV

US 2003/0004804 A1

Jan. 2, 2003 Sheet 2 of 26

Patent Application Publication

“
8¢ |
N N
SLATddV
YA TTIOYINODAY
ANV YOSNAS
NOLLISNVYL :INADV
0S 40 NOLLNDHAXA
\ LAVLS ANV
avoT ‘WASMO¥d NI
e e |
| __ DV.LONISILNIAQY | 0¢~ QENANLAY INGDV YHTIONINOD Qv || OVL ONISLLYIAQY
L S <LARIDS/> | p ¥S O LVHL ONIGNTONI
P esAsTjuowoSeurR A pY m _ INHDV dHTIOULNOD AV HOLHA ‘HOVd 90O HA0D
L /dELsANDHEY AV | TALLH STLNDAXT ANV
| <s['popeo/w0oIoaIes | A1N09Xd /ALVIINVLSNI /AVO INAOU LNHDV SATTINOD YASMOYd
| PvseOlAdNg=ONS | OV LNEINOD QAHDLAd 9 R - e
OS> |« 2OVd QaHDIA 7| Cf ADVd d0d
Yova mmm\,w HOLA4 OL 1San0ay LSANOMY INNLIT
(qaA¥Es INGDY) | /] SHNSST AISMOTE
N
A ¥HA¥ES dLIH |0V S¢ NOLLOTAS te
S1 | NOMNENISIA | aovd - 1€
0z A7 | ONIsILyEAav —e THM TYLLINI
: TpeT :dny
N WO IOATOS ™ peTiseoruny;/ €1
7 ~. L [odINglD
HLSAS AHANAS dLLH S~ yEsmond
INFWEDVYNVIN AV (SINALNOD) -1-P
LANYHLNI LIS S ﬁ dEM
dLLH AV AL¥Vd-QuIHL 6 .
81 g di "DId

US 2003/0004804 A1

Jan. 2, 2003 Sheet 3 of 26

Patent Application Publication

A1 "OId

HI "DId

drl ‘DId

A1 “DId

0s

HLNOAXAI /HLVILNV.LSNI /AVOINAMOA
LNHOV

ST
™~

JHAHEN A1
LHTddV JHTTIOYINOD AV AVOTINMOd

0ST
™~

l

AIAHAN J1 1 1ddV JTTTOELINOD
AV LSALVT A0 AVOINMOQ LSHNOTI

091

4!

4

AYLSIEOHY
LHIddV

NI SHTILNYH
SHLVHED

LI IddY
JITIOAINOD
av

SLIV.IS ANV
SALVILNV.LSNI
LHIddY JOSNES
NOILLISNV Y.L

_____________>

IHIddV

T IOUYINOD
av Savol
ANV A4LSIDHA
LHIddV
SHLVILNV.LSNI
‘LA 1ddV
YOSNHS
NOILISNVYL
S19V.LS ANV
SALVLLNV.LSNI
LHTddV

A

US 2003/0004804 A1

Jan. 2, 2003 Sheet 4 of 26

Patent Application Publication

cel QHIAIEN AL LT 1ddY m
p HOSNHS NOLLISNVIL AVOINMOd m
€1 HA0D LATddV JOSNHS NOLLISNVYIL Szl ;
LSALVT A0 AVOTINMOJ 1SFNOTA |
N
LI 1ddV 410DaXH
ANV FT1IdNOD
‘AOVJ INTINOD
OLNI SOV.L
/ 1A T1ddY ALTEM
> ATIVOIANVNAQ
CIT / HTH LAIYOS VAV AHdHDILHA Ol1 910 NI
S
S OVL ONISLLIFAAY IdIDS HLNDAXH
(AAYAS NI QHIAIDAdS (Sfpepeo]) 111 »
INAOY) IdT¥DS VAV 40 AVOINMOJ 1SANOTY .
e 0114 DV.L
ST dHAIES dLLH ONISLLITAQY
NOLLNEGRILSIA |« — // T
\v ONISILIAAQY Z1
WOO"IOAIIS™ pBiseotun//:dny L1 el . P
< YHAYAS dLLH \4(
e (INAINOD) - Dd INAITD
INHLSAS d01 ALIS THM —p/ VOl
INANADVNVIN AV LHNYTHLNI TANMAINI |- JISMO¥I
- TaIM .
SC ygAwas dLIH 4/ N 01 7 \ 7 s
av ALIVdI-QATHL 6
Nk .
= e d1 "OId

d¢ DId | VT 'DId

US 2003/0004804 A1

Jan. 2, 2003 Sheet 5 of 26

Patent Application Publication

¢ DI

<TALH/>
<Adqodr»
Y3
HAd0D TALH
4%
A\
< . N\ <LdTIDS/>
< LJURISAS T JudwSRURAPY //:dNY, =10aT0gpY <[pepeorwooiseotuny :diny=3ys
N\ /
~ LdRIDS>
(44
DV.L ONISILIFAAV
oy
vee
dd00 TW.LH
- -\ <Adog>
S¢ | <avans<aiis e~ <TTLLI><AVHAH>
<miH> | V'

HOVd SINHINOD ONIIIHIHYT

DId

US 2003/0004804 A1

Jan. 2, 2003 Sheet 6 of 26

Patent Application Publication

d¢ DId

<TALH/>
¢ <Aqodr
dd00 "TALH SOVLL LATddV
NHLLIIM A TIVOINYVNAJ
<jorddes>
<, QB0 IO[[ONUOOPE, =aN[BA ,0sBqQRO, =oweU urered> dISMOUH Ad
<,,1x1°301d1I0SOp PR [()T SYIOMATT]/RIPAUI/TIOD JSEOTUN A MM //: AN, =on[eA Z% HAWM_WWMM
JTanpe,=sweu weied> INAOV WO
<, Jef Jo[TONu0ope, ,=3ATY IR AVOINA
:HOwﬁOMCOﬁ%wﬁQHF:”OEmG :O:HHSMMQQ :N:”ﬂwﬁﬂg :OQSOmwﬁ—:”Cw:Q < Aw—. 1% .MWuQv
/S9sse[o/RAR[WO0Y ISROTUN MMM //:d 1], =958 q3P0D “ - PUPEol
JOSUASUONISURL Y *S[00) II[[OTUOOPE ISLITUN WOD, =op0? 1o[dde> LdRIOS
\ LHTddV JOSNHS NOLLISNVIL /
g
HAOoD TALH
<Adog>
<gQvaH/~<dLLIL> — —— — —— ~ <dLI><dvdH>
<TAW.LH>
7
¢ HOVd LNHINOD ONRI{AITA

3

US 2003/0004804 A1

Jan. 2, 2003 Sheet 7 of 26

Patent Application Publication

(@SNOW

‘TIVOIATI "O'H) 06t ¢ ‘O]
HOIARA |, \
L0dNI c
dyasn [T~ S6¢€ b\
NOLLDITAS
2% SANVININOD Od)
AISN HALNdINOD SINVIODOUd
INHTTD 00F 7 NOLLVDI'IddVY
A 4
LEE
L9¢ ™~ S/O
AHINIId | \ /
— SN EE
s8¢ oce JLLIASIA 07E (EDMNOS VIVA
09¢ mmm/ TVNIALXE D'H)
AJOWHIN NV A1 [CT HO¥NO0s
s 3 LN | |OTE
LOdLNO 0LE
£9¢ A L v
AVISIA |e\ A Ju |
08¢ -~ 4/l JOSSHOOEd
NINOD SSADIV
0S¢ A 0vg SRMOMIAN
MAHLO
> MO/ANY
6 - LANMALNI

US 2003/0004804 A1

Jan. 2, 2003 Sheet 8 of 26

Patent Application Publication

00

v "DIA

SHTIA
YAV SINVIDOMd
-~ NOLLVIITddV
1]18% INFAISTI
L
N\
A ANIHDVIA
oy TVALIIA VAVI YASMOUL
(157 LEY N £Th N
AHOVD
SISIA SHTII YHAV1d Qgin
MASMONE 2 VIAQAN YOLATIDSHA AV
oty o 14y N INHOV Y TIOUILNOD AV
XAISIOT 1971ddV mmv/ LATddV MOSNAS
JA1ddV YA TIOALNOD av NOLLISNV ¥.L
a7

US 2003/0004804 A1

Jan. 2, 2003 Sheet 9 of 26

Patent Application Publication

Kerdsip JuswosnIsApY

SuIpEO[UAMOD JUSWIASIIISAPY

¢ DId

SIUQUIASTIIOAPY ! : J i
POIOpURY €— IOSMOIg 0 R E ! s1held
N : P wpo |

949 h

INHDV F[[oNuo)py

096

o , M 0bS 0Ty ——
R S0 T T J J
i s WA- N ouredyd py < Ansidoy
1 Iosmorg jorddy
ogy | R 0ce
b Y 4 A
N T ” m m
. : 0€s
VT L e
o SES
! ! weddy J 1o1ddy 10sueg
et EEEEEEREER »-- 1 KR[OnuoDpY “ UOnISuRI],
: '
t
Ve i cTS \IH
] prmrmem et
_ 0TS 018 $0%
$1 I9AISS s¢ ST 1oAJ3S JUSBY WEears-yo1D STIaAH 11815 %9 WL
a8y woly ayoes) WYSAS Jusafeury py wolj PaproO[uAO(1087) £q pore WEQU JOSu2g
I9SMO0Ig 0} PAPROTuAO(WOLT pSpeoumo(Sftd Olt] UOYEMSYUOD) juoaq doig Tosuag uonsuely,
$a113 JOKR[J/RIPIIN 10)d1I0S9(T PV U3V IS[[OIIUO)PY onIsueIL

US 2003/0004804 A1

Jan. 2, 2003 Sheet 10 of 26

Patent Application Publication

V9 "DI4

—geme

00v1 ouradid py o3 sse1ppy
PV 10UIOIU] JOSUISUOT)ISURA,
sassed 7 19[dde o1jonuo)Hpy

. €9
0 —/ sx

{IUSAY JosmoIg
IOSUSGUON)ISURIY,

1€9

0¢9 BUEN
) \/
G1 IOATDS 9] uoneIndyuoy)
JUQBY WOy AL uoneImFuo)) s [— JIo[[onuoDpPVY
SOARINNY 7t 19[ddy Jejonuo)py [euroxyg

sr9 ___/ .
I,

vTy 1Ay IeTjonuoDpy peoy 0) 9gy AnsiSoy
Jorddy syonnsuy 7z 1o7dde sosueguonISURIT

oo/

I9SMOIg WOI JUIAT
JOSUSS UONISUBLT, 1]

Iojugg

US 2003/0004804 A1

Jan. 2, 2003 Sheet 11 of 26

Patent Application Publication

NXH

98¢

S¥9

d9 DIA

j 899

PV Aeld 696
SI0A®[J BIPOIN

\\l/

(¢7 wasAs

~ JuowoSeURA

SUISTIIOADY)

07 JOAIRS
SursnioApy
WOIJ SO[L]
BIPSAl PV

I

[euIIXy

€99

LIUDAT 19SMO0Ig
JOSUQGUOT)ISURI],
doig

BIPIA PV $2101S
0cy
aYoBY IYSI(T IoSMOIg

!

Q€ 2yoeD JSI(J Jesmorg

—» 019 o[y 10duoseq py

Ur pAISIT SO[L JOACIJ/RIPIN
speoumo(] durRdid py

I

SSQIPPY 1ouIou[

PV seaomoy ourpadig py

L

099 .

069

0¥9

10)d11080(dPY |—» PV 18 Sp9 o7 T0ydiosac] \\\\

US 2003/0004804 A1

Jan. 2, 2003 Sheet 12 of 26

Patent Application Publication

1044

L "DIH

LH1ddV Ie[jonuo)py

PV @O—\—ODO IXON WEH%NTH JALERN

09L

0SL

H

Aeld py
3uLmp spy Jo Surprorumo(y

punoi3yoeg puadsng

ovL <~

ey 101ddy J0suag uonIsueIy,
Aq papraoad ajowrered jsenbay

PV 10§ 9 9Tk 10)d110So(PY PEO

g—

0€L

SPY SuIpeo[umo(T S[qrus

H

0zL

— @

0O

TP 191ddy 1o1[0nU10DPY 11RIS

OTL

o T widdy

IeflonuoDpy ozienmy |~

JUdAH 191ddy
do)g 1osuaguonisuel],

SSOIPPY 1oUINU] PV
JOSUQS UOTJISURL],

juaay 191ddy
1I2)S JOSUOSUOT)ISURI],

oA 101ddy
JZI[ENIU] JOSUQSUOT)ISURL],

US 2003/0004804 A1

Jan. 2, 2003 Sheet 13 of 26

Patent Application Publication

SO
QJRUTULIY], _

LS8
0¢8

€S8

8 DIA

{IU2AY T0sMOIg
UMOPp INYS

St¢ auradid woxy Ae[d py 1sonboy

%

 GH8

ON S suredid py ojul sa[py Jo Surpeo[umo(pusdsng
_J)
b8 At— g
(AT pY Aeld
\\|\|\|\ & OZ
0€8 ﬁ R 2 3
———>» SPS dupdid py ol SO Py Jo SUIprOTUMO(] SqRUH
- f
¢C8
7 GG suladid py 1Te)g pue djear)
A
0¢8 |
GT J2AI9S JUodY WOIf ()79
‘s 3 uonRINSU0)) AT Y IA[[ONUO)PY AN
SI8 »
SOA T~ ¥PI8
JIUOAY
ID[[ONUODPY MBS
018 N T~
4 101ddy 1or[0nU0 JZIfENIu
cos 7 191ddY I9[[onuo)pY dzZIentuf

JUQAF MUY
JOSUOS UONISURI],

AWV Jug

US 2003/0004804 A1

Jan. 2, 2003 Sheet 14 of 26

Patent Application Publication

--m oy e-

9YoBd JAVY 1954001q 01 say1y 10Ae[d pue eIpew pe SpeOTUMOp O | AX0I JYor) I9sMOIg

!

SO 104
PUE BIPSJA] PY PEO[UMOP 0) (OGT AX01J 9yoe)) Iasmolg sisenbar ooz sseooid sopeo[umo(py

x

0€P[anong) peoTumo(g
UT O[QR[IEAE SOWO0I3] PLO[UAOP 0) JUSWISHIIAPE [NUL $Y001q (L] $5e001d IPRO[UMO(] PY

I

0€PT ONONQ PEO[UMO(T UT G19 311 J0IdIIOSa(] PY SMASUL 09T $89001d UOBO0T PY

A

00S1 ssaoo1d 1aonpoig
PV WOIF PIATOORI ST G1,9 9T 103d110s3(] PV 1X5U [IUn sY201q 09} $$2003d UoIEI0T PY

%

¥ 1e1dde
19[[ONUODHPY WO PIAIIOAI ST SSAIPPE JOUINU] PY JX3U [1IUN $Y20[q QOS] SSev01d 130npoid py

%

Pe 1XU PROJUMOP 01 O0S] I0NPOI] PV $189nbal 471 191dde serjonuoypy

%

0r6 ——1
sc6 —
06
St6 —
026 —
516 —
016 —1
06 —

JUSWIISTIIOAPE
1X3u pRO[UMOP 0] $74 19[dde IaTjonuo)py sisonbai gz 1erdde tosuag vonisuel],

Ique

006

V6 DIH

US 2003/0004804 A1

Jan. 2, 2003 Sheet 15 of 26

Patent Application Publication

qd6 ‘O

d6 DId

qosﬁmumu‘&
< @ MUHHH SIT s919[dI0d JOAR[J USym JUIWRSTIIOAPE Pake[d sS0[I9[Npeyos JULAH
16— 1
. JUSWIASTIIOAPE
@ .DH m 1xou Aerd 01 19 o[y J03d110S(T PV ur PaISI] 10461d SOYOUNE] IOTNPAYDS JUSAT
06 —
0LP1 @nanQ) Ae|d Jo peay woxy Ae[d 0) JUSWOSTIIOAPE SIASLISL IS[NPAYOS JUSAL
S96 A

I

096 —| ‘uewasnreape IXau Jo Aed sisonbar gt 101dde IST[ONUOIPY [HUN SO0 IOMPAYDS JuaAg

f

JUQUISSTLIOAPR
CC6 | woukeld o yzf 107dde sa[onuodpy sisenbar opg1 poryiow juasg dog I0SUSS UOTISUBI],

I

OLYT anend) AB[d 0T 619 o1y J01dTISA(] Py SHASUT (0L] $$9001d JOPEOTUMO(] PV

056 —

US 2003/0004804 A1

Jan. 2, 2003 Sheet 16 of 26

Patent Application Publication

S90T

HOVd d9M INHLNOD HAISSHOONS LXAN ONLLSHNOTT WVHRLLS-MDOITD ¥ASN OL

PRN
0901 [

HSNOJSHY NI AV AHAYOINMOA AVTd OL I 1ddV JA TIOMINOD AV LONWLSNI

<

LHTddV dHTTOYINOD AV OL LSANOTI Vv SSVd

0v0T ——,

HTANVH LHTddV Y TIOVINOD AV ”ZMDHMM

Ail_ 0501

mmo~|A.||/

JHAVOTIAIddY JHTTOUINOD AV “JALSIOTA

§201 0€0T [a——

AN

qdAvVOT IH 1ddV JOSNAS NOILISNV AL -qaLSIDaY

LHIddY JHTIOULNOD AV LIV.LS ANV GHOVD JISMOTT WOUI LA TddY ST TIOULNOD AV avol

0201] >

(IHAVOT.LON IH1ddV I TIOULNOD AV HMmZOmmmM

S10T f—

(SAOLVILS L TddY ¥HTTIOYLNOD 4V :A¥dN0

LHTddV
YITIOYINOD AV

1449%

ul 9y \

AILSIOTI Ty~ J1dT1ddV JOSNHS

1H1ddV NOILISNVHL

INEOV 9 TIOUINOD AV

/

Wréd JHLVILNV.LSNI ST AULSIOHY LA TddY ANV ‘AHLIV.LS ST HOSNAS NOLLISNV L
‘HHOVD ¥HSMO¥E OLNI HAVOTINMOA ST LA TddY YT TIONINOD AV HT
{LATddV LdTIOSVAVI TYNYHELXH VIA
e

=+ 1

/

0101 l\
B .

4%
<IdIIOS/>

7/

LJIR)SASTIIOUIAS L UR AP Y

/Ay, =1SENOTI AV

S paprof/mosrasres—pe iseorun/:dny, =S

gcel | NOILNO3X3
3
NOLLYTIdWOD

1dr0S> TNLH

H3SMoud

mv\ 0V DV.IONISILIIAQY

VEE(|

0T "DIA

§€ 4OV SINHINOD AdHD.LAd

US 2003/0004804 A1

Jan. 2, 2003 Sheet 17 of 26

Patent Application Publication

[T DIA

IATddV 105USS uonisuel],

Py Aerd 01 $z 191dde xo1j0mU0)PY 15onbay
0911

00L1 $sa001d 1apEO[UMO(] PV 9[qesiq
osit

-

00L1 sseoo1d Jopeoumo(pV 9dqeuqg
orrr —

SSAIPPE JOUINU] (WISISAS JUSWATRURIA PV)
Iopraoid yuswesnreApe ureiqQ

ostT — H

v 191dde Jorj0nU0)pY prRO

%

uonezIenIu] Zzh 19dde Josuog uonjISuRI],

-—®

——e

1U9A9 101dde
JOSuQS
UOT)ISURI],
doig 1osmorg

JU2AQ 101dde
JOSUQS
uonIsuely,
1S J9smoIig

1U2AQ 191dde

<« 1OSUIS UOTIISURI],

9ZI[eNIU] IOSMOIg

US 2003/0004804 A1

Jan. 2, 2003 Sheet 18 of 26

Patent Application Publication

ANBUTILIA], DA PV Aeld Gt¢ duiadid py Isonboy

0LCT) A

JALIEY N
doig mosmorg

L9T1

09l €9z
ﬁ FurpeoruMo(py ¢S duradid py o[qeus 00Z1
0SCI L LYCl
PRLIETNE »L
1S I9smoIg
(174! — evel

ﬁ PV peoumo(J 01 7t 19[dde 1a1j0nu0)pY 159nbay

ocecr t

; TT 01ddy JosuaguonIsuely, sZipnu]

ot A AL

(IUOAT
JUT JOSMOIY

RN | K4 w ¢l "OId

US 2003/0004804 A1

Jan. 2, 2003 Sheet 19 of 26

Patent Application Publication

el "DId

OLET 7|

(Aeyd eIpaN)
uoneuasaId pv

SYe —
//

H

-
ap)
—

(00%1 sse001d urpeojumop pe) surediJ py

]]

A

|

[

H OL¥T 2nanQ) Ll

ourradid ur pe

H pe Surderd
J1 Surpeo[umOp

H pe surkerd LON

3

ssaIppe
% 1oUI U]

J1 Surpeo[umop ssaIppe oded qom
PSYoRd XU Aeld punoisyoeq punoigyoeq JouIU] LIEI10(0%)
o[qesIi(q Qrqeur 1s9nboy py SuLuopoy
IAe[d PV Me1S P — Surpeopumo(C19 1Y
oser — PV 31qusiq PV 2Iqvud B HMM%MMQ
OpEL — 0geT —— Ocel
OrET — [dV Iepeo] PV

US 2003/0004804 A1

Jan. 2, 2003 Sheet 20 of 26

Patent Application Publication

TN

G1 JoAJOS 1Ua8Yy woIy
O[T} JOAR[J PUe BIPIN PY

— 0SvI

(eype)
091 — AV J9smoxg
enang PUB) Oy YLD
OLVI %ﬁ d SI(IBSMOIg
SP9 g \\\J
100d1ossq pv
00L1 £X01J 9YoL)) IOSMOI
obbl $59201d JopRO[UMO(] PV JOAU > d ﬂU q
O—>
Sb9 OILT @ Sb9 oI O
J0)d11089(T PV 101dmoseq py
onang)
0l peojumo(]
St9 el
0CrI ,/ H mw 101dmosed py

ﬁ peojumop pe 1oy 00971 $59001d UOIIEI0T PV OAU]

S¥9 Ild
9 Joydurose pv
STEILS , OLvl
roidmoseq py - (O—» 00ST ssooo0xd 100npold Py 09X |

ssoIppe 1oura)uy oFed

SS2IPPR JoWId)U
PP 1 JULIUOD gosm SUTIISFaY

LOVI
1sonbay] pv 7

covl

GT JoAteg a8y woxy
so[ly JoAe]d PUe BIPSN PY

1 "DId

US 2003/0004804 A1

Jan. 2, 2003 Sheet 21 of 26

Patent Application Publication

¢T "DId

0091
ssa001d yoneoo|
PV 01 ¢t9
09ST —1 45 101dmoseq _J ’
PV 19jsuei], Socl
SY9 °1l SS3IPPY @mﬁ
Joydriosa(q p UL WOL) CH9
PV 11y J03drrosag 0SS1 T
pv peoumoq [01IST N
S+9 oIy 0¢sl (o1
Jorduosacg Joydrrosa(
PV 2491 $OA @<.§o N
ipeo[umop o) . 0] YoIyMm Arumroddo 40194 01
P® 1XAU JOJ JUIAD Wo1J SSAPPY peojuMop pe US4 WOIJ
PoIBTIIUL-Tos) I9AISG JouIU] 1X9U JIOJ SSaIppe AMD EINCREN| oy
TOPY JOUIIUT AI0)S

11491

sl

ARy

US 2003/0004804 A1

Jan. 2, 2003 Sheet 22 of 26

Patent Application Publication

SYo1

€9l

0€91

LE9T

191

{ peo[umop
pe XU I10]
JOSURS UOTIISURI],

UIOIJ POATSDAIX

$SQIPPE JOUINUT Iug

LI9T
ey mwo
anang) peorumot o%w ,%wowwmwm
oyur
oIy Mo&wuoomom <4— 030057 sseooxd
Py Smm soA\Pv o proriied 1990p0I PY
: Joureyu] Jsonboy
0v91 — —

0191 —

US 2003/0004804 A1

Jan. 2, 2003 Sheet 23 of 26

Patent Application Publication

L1 DIA

€Ll

OLY1 onond
Ke[d 01 0gp1
anang) peotuMO(
woJ 639
o1y Joduoseqpv
QAOIN

SOX

0SLT _/

OvLl

(P3peO[UMOp S0

SO[1J SUTST)IADE

LyL1 |/

ON

o[Jo1drrosa(y
PV ur perroads

peambear [y

0Ll

ayse) VY
IosmoIg O} GH9
a1 Jo1dTIoseIpy
ur porgroads ayoro
KX01J Josmolg
Ul So[I} BIpour
PaI0)S JOJSUEI],
05T
yoe) AX01J
19SMOIg 0) SATTY
JUOWIOSTIIOAPE
peoumo(]

CeILT

0gPy1 2nanQ
prOTUMO(]
Jopeay
WOL} 49 21
10)duosoq pv
1X3U 190)

J

LILT

janang)

PROTUMO(] WOIJ

S[qejieAt o9 S
10)d119s9(] PY

10Uy

US 2003/0004804 A1

Jan. 2, 2003 Sheet 24 of 26

Patent Application Publication

L 19sMoIq
Aq popeofumop Juraq
ST ‘1asn £q paysenbor ‘o8rd
JUSJUOD (M QATSSAOONS JXU

[Ty soryy pe jo Surprofumop 4 Qm@m 1%3u Aerd 0) 74
punoi8yoeq puadsns 03 H7p 10dde or0mUO)PY 159NboYy

1o1dde 30110 159nb .
[[o1UODPY 1sanbay Oﬁwﬁ)L cz8l .

0S8 L e

SIND20 JUIAD
(weans-yo1p *§-9) 105Ug

(Sunnooxy

@A v UOTISURL], POIeNIUI-Iosn pue popeo]
1XoU pue Sunnooxe SI 7 vep widdy
QJBUTILIS Y, 1wddy 19[[0nUO)PY [IIUN ON Is[[onuoDpy

Aerd pe 1senber jou oq

0e81)\L 0¢8I

81 "DIA

US 2003/0004804 A1

6l "DIA

Jan. 2, 2003 Sheet 25 of 26

QIRUTWIID |,
0961
0561 —,
Iasmorq £q
parspuar A[jualmo . o::ME 0 i
oSed qom speoyun °Il PE JO SUIPBOTUMOp 61
108N UOYM () owz o punos3dyoeq AmNm I \
poyseur dojs 10susg 9[qeUD (PAINOAX? sey
UOISURL], [[20 03 o8red gom Juou0D MON
[I9SMOIQ 10T Nep\
L161
LTOT | o,
SIN000 JU2A ON
sa[1] (weans-yo1yo *§°9) J0sU0g
pe Jo Surpeo[umop uonisuely, pajeniur-asn
punoissoeq XU pue SuNNnoAxXa SI iy ¢ 3unnooxa pue L 198moIq
oINS <Y 191dde 1e[f0MU0DPY [MUN Popeo] 74 1o[dde WOIJ PIATIII
0) 17t 1ordde Surpeorumop IQ[[ONUODPY JUIAY 1181
Is[[onuo)py pe punoigyoeq 109ug
1sanbayy [qrua JOuU O

Patent Application Publication

/ oge1) 0T61

orel —

Patent Application Publication Jan. 2, 2003 Sheet 26 of 26 US 2003/0004804 A1

Section 1 - Applet Player Java Class Configuration
playerName=AppletViewerPopup
playerClass=com.unicast.adcontroller.players.AppletViewerPopup
Section 2 - Ad Java Classes Configuration

AppletViewerPopup.adAppletName=ANM_AnimationLoaderApplet 2000
AppletViewerPopup.adAppletClass=
com.pointcast.applets.AnimationApplet. ANM_AnimationLoaderApplet /

Section 3 - Player Execution Configuration
AppletViewerPopup.windowTitle=AdController PointCast Ad
AppletViewerPopup.playerRefreshRate=1000
AppletViewerPopup.allowExit=true

AppletViewerPopup.xPosition=50

AppletViewerPopup.yPosition=50

AppletViewerPopup.windowWidth=280
AppletViewerPopup.windowHeight=355
AppletViewerPopup.isResizable=false
AppletViewerPopup.secondsWindowlsOpen=180
AppletViewerPopup.secondsToOverlay=1
AppletViewerPopup.closeButtonLabel=Close
AppletViewerPopup.openButtonLabel=More Info
AppletViewerPopup.saveButtonLabel=Save
AppletViewerPopup.openURL=http://www.pointcast.com/

Section 4 - Ad Applet Configuration

A. Ad Applet DocumentBase
AppletViewerPopup.ANM_AnimationLoaderApplet.documentBase=
http://www2.unicast.com/~rlandsma/AdController/MacromediaApplet/

B. Ad Applet Parameters
AppletViewerPopup.ANM_AnimationLoaderApplet. AdToPlay=deepsea.anm
AppletViewerPopup.ANM_AnimationLoaderApplet.Altimage=test.gif
AppletViewerPopup.ANM_AnimationLoaderApplet. MaxCycles=5
AppletViewerPopup.ANM_AnimationLoaderApplet. TargetURL=http://www.pointcast.com/
AppletViewerPopup.ANM_AnimationLoaderApplet.TargetFrame=_top
AppletViewerPopup.ANM_AnimationLoaderApplet.BorderWidth=2
AppletViewerPopup.ANM_AnimationLoaderApplet.BorderType=Standard

C. Ad Applet MediaList
AppletViewerPopup.ANM_AnimationLoaderApplet.mediaURLList=new
AppletViewerPopup.ANM_AnimationLoaderApplet.mediaURLList.size=2
AppletViewerPopup.ANM_AnimationLoaderApplet.mediaURLList.elementO=deepsea.anm
AppletViewerPopup.ANM_AnimationLoaderApplet.mediaURLList.elementO=animApplet.jar

FIG. 20

US 2003/0004804 Al

TECHNIQUE FOR IMPLEMENTING
INTERSTITIAL WEB ADVERTISING THROUGH
USE OF AN AD DESCRIPTOR FILE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation-in-part of our
co-pending U.S. patent application entitled “LOCALLY-
SUMMONED NETWORK-DISTRIBUTED CON-
FIRMED INFORMATIONAL PRESENTATIONS”, filed
May 15, 1998 and assigned Ser. No. 09/080,165; the latter
application is incorporated by reference herein.

BACKGROUND OF THE DISCLOSURE

[0002] 1. Field of the Invention

[0003] The invention relates to a technique, specifically
apparatus and accompanying methods, for implementing in
a networked client-server environment, such as the Internet,
network-distributed advertising in which an advertisement is
downloaded, from an advertising server to a web browser
executing at a client computer, in a manner transparent to a
user situated at the browser, and subsequently displayed, by
that browser and on an interstitial basis, in response to a
click-stream generated by the user to move from one web
page to the next.

[0004] 2. Description of the Prior Art

[0005] Currently, Internet usage, and particularly that of
the World Wide Web (henceforth referred to as simply the
“web”), is growing explosively, particularly as the number
of web sites and users that have access to the Internet
continue to rapidly and to a great extent, exponentially,
expand.

[0006] In essence, after establishing a suitable network
connection to the Internet, a user at a client computer can
easily employ a graphical web browser, such as the Internet
Explorer (“IE”) browser presently available from Microsoft
Corporation of Redmond, Wash., to connect to a web site
and then download a desired web page by simply supplying
a specific address (known as a URL or uniform resource
locator) of that page to the browser. The URL identifies both
an address of the site, in terms of its Internet domain name,
and a page of information at that site, in terms of its
corresponding file name. Each web site stores at least one,
and often times substantially more pages all arranged in a
pre-defined hierarchy, generally beginning, at its root, with
a so-called “home page”. Each such page is written in
HTML (hypertext markup language) form. A page, in this
context, refers to content accessed via a single URL, includ-
ing, €.g., text, graphics and other information specified in the
code for that particular page. Once a user supplies an URL
of interest, the browser operated by that user sends an
appropriate command, using a TCP/IP protocol (transmis-
sion control protocol/internet protocol), to a remote HTTP
(hypertext transport protocol) server, located at the web site
and which stores that page, to access and download a
corresponding file for that page. In response, the server then
sends, using the TCP/IP protocol, a stored file containing
HTML code that constitutes that page back to the browser.
As the file that constitutes the page itself is received by the
browser, the browser interprets and executes the HTML
code in that file to properly assemble and render the page on,

Jan. 2, 2003

e.g., a monitor to a user situated at the client computer. Such
a page may itself contain HTML commands that reference
other files, residing on the same or different web sites,
which, when these commands are appropriately interpreted
and executed by the browser, result in those files being
downloaded and their resulting content properly assembled
by the browser into the rendered page. Once all the content
associated with the page is rendered, the user can then
position his(her) mouse cursor on a suitable hypertext link,
button or other suitable user input field (whichever here
implements a “hotlink™) displayed on that page and then,
through, e.g., a mouse “click”, effectively download a file
for and render another desired page in succession until the
user has finished his(her) visit to that site, at which point, the
user can transition through a hotlink to a page at another site,
and so forth. A hotlink specifies a complete web address of
an associated page, including a domain name of its hosting
web site at which that page is situated. Consequently, by
simply and successively positioning and “clicking” his(her)
mouse at an appropriate hotlink for each one of a number of
desired web pages, the user can readily retrieve an HTML
file for each desired page in succession from its correspond-
ing web site and render that page, and, by doing so,
essentially effortlessly jump from site to site, regardless of
where those sites are physically located.

[0007] Ever since their introduction several years ago,
HTML and accompanying browser software, now including,
e.g., attendant programming languages such as Java and
JavaScript languages (“Java” is a registered trademark of
Sun Microsystems in Mountain View, Calif.; “JavaScript” is
a trademark of Netscape Communications in Mountain
View, Calif.), have undergone rather rapid and continual
evolution. A major purpose of which has been and continues
to be to provide web page authors with an ability to render
increasingly rich content through their pages and, as a result,
heighten a “user experience” for those users who visit these
pages. Consequently, web pages are no longer limited to
relatively simple textual displays—as occurred with early
versions of HTML and browser software, but can now
encompass even full-motion multimedia presentations and
interactive games that use rather sophisticated graphics.

[0008] The simplicity of browsing the web coupled with
the relative low-cost of accessing the Internet, and the
relative ease through which a web site can be established are
collectively fueling unparalleled growth and diffusion of the
Internet itself, web sites and the Internet user community
throughout the world. In that regard, by establishing web
sites, merchants, vendors and other information providers
have an unparalleled opportunity, basically unheard of as
little as 5-10 years ago, to reach enormous numbers of
potential consumers—regardless of where these consumers
reside—at costs far less than previously thought possible.
Moreover, given the staggering amount and wide diversity
of information currently available on the web, web browsing
is becoming so popular a past-time for sufficient numbers of
individuals that browsing is beginning to divert significant
viewership away from traditional forms of mass entertain-
ment, such as television and cable. While such diversion is
relatively small at present, it is likely to rapidly grow.
Moreover, given the ease and convenience with which users,
situated at their personal computers and with basically
nothing more complicated than a few mouse clicks, can
effectively interact with remote web sites, electronic com-
merce, through which goods and services are ordered

US 2003/0004804 Al

through the Internet without ever visiting a physical store, is
rapidly emerging as a significant sales medium. This
medium is likely to significantly challenge and possibly,
over a relatively short time, may even alter traditional forms
of retailing.

[0009] Given the wide and ever-growing reach of the web
as a source of consumer information and the increasing
consumer acceptance of electronic commerce, advertisers
have clearly recognized the immense potential of the web as
an effective medium for disseminating advertisements to a
consuming public.

[0010] Unfortunately, conventional web-based advertis-
ing, for various practical reasons—some being technical in
nature and others relating to a nature of traditional web
advertisements themselves, has generally yielded unsatis-
factory results and thus has usually been shunned by most
large advertisers. In that regard, several approaches exist in
the art for implementing web based advertisements. How-
ever, all suffer serious limitations of one form or another that
have sharply restricted their desirability and use.

[0011] Currently, a predominant format, referred to as a
“banner”, for a web advertisement takes the form of a
rectangular graphical display situated, typically at a fixed
location, in a rendered web page. A banner, which can be
static or animated, can be situated anywhere within a ren-
dered web page but most often is situated at a top or bottom,
or along a vertical edge of that page. A banner, depending on
its size, can extend across an entire page width or length, and
usually contains, in a graphical eye-catching form, a name of
a product or service being advertised. Increasingly, a banner
for a given product or service implements a hotlink to enable
a consumer to “click-through” the banner (i.e., generate a
mouse click on the banner) in order to transition, via his
browser, to a web site maintained by a corresponding
advertiser and, from that site, fetch a web page to provide
additional information regarding that product or service.
Hence, the consumer could easily obtain more information
by a click-through; while an advertiser, monitoring counts of
such click-throughs that occur in a given period of time,
could gain feedback on the effectiveness of the correspond-
ing banner.

[0012] Abanner is generally produced by properly embed-
ding specific HTML code for that banner within the HTML
coding for a given web page in which the banner is to appear.
A client browser, as it interprets and sequentially executes
the HTML code for a fetched page, will, in turn, compile and
execute the embedded code for the banner and hence display
the banner, as part of a rendered page and at a specified
location thereon.

[0013] In implementing a banner, whether static or even
animated, its HTML coding generally involved download-
ing an appropriate file, for that banner, to a client browser.
The file may be stored on the same server that stores the
HTML file for the page, or accessed from a remote server.
The file may contain a graphic itself, such as in a GIF
(graphic interchange format) file, or a Java applet which,
once interpreted and executed by the browser, generates and
renders a desired animated graphic. This file, whether it be
a graphic or applet, requires time to download and must be
downloaded and assembled by the browser on the page prior
to that page being fully rendered. The download time for that
file, particularly as it increases in size, clearly, a priori,

Jan. 2, 2003

lengthens a time interval during which that page would
completely download, thereby extending the time to fully
render the page, including the banner, after a user transi-
tioned to that page. Channel bandwidth to a client computer
(e.g., personal computer—PC), such as that provided
through a modem connection, is often rather limited. Con-
sequently, if the file size for the banner were relatively
large—as would certainly be the case for relatively “rich”
content, e.g., audio or video content, the delay in download-
ing such a file over such a limited bandwidth connection
could be excessive, and consequently highly frustrating to
the user. Hence, a user would likely wait a considerable
amount of time before all the page components for multi-
media content are fully downloaded to permit that page to be
rendered. Such delay, if encountered during a page transi-
tion, can be rather frustrating to a user, even to the point at
which the user, just to end his(her) waiting, will prematurely
terminate the download and transition to another page.
Therefore, in an effort to preserve an appropriate “editorial
experience” for a user, content suppliers sharply limit the file
size, of such banners to be rendered on their pages, in order
to minimize page download and hence latency times.

[0014] Unfortunately, such restricted file sizes effectively
limit the richness of the content of a banner to a rather
simplistic advertisement—even with animation. Thus, ban-
ners often failed, as advertisers soon recognized by rela-
tively low click-through counts, to attract sufficient viewer
attention to justify their use and expense.

[0015] In an effort to overcome the content limitation
associated with banners, the art teaches the use of a different
advertising modality: so-called “interstitial” advertisements.
See, e.g., U.S. Pat. No. 5,305,195 (issued to A. J. Murphy on
Apr. 19, 1994—hereinafter the “Murphy” patent) which
discloses the concept of using interstitial advertisements
though not in the context of web advertising. As described
in the Murphy patent, pre-stored advertisements are dis-
played at specific intervals on each one of a group of
networked ATM (automated transaction machines) termi-
nals. In particular, the advertisements are downloaded, either
directly or via a server, from a remote computer and locally
stored on each such terminal and subsequently displayed on
that terminal while it waits for a response, from a remote
mainframe transaction server, to a transaction initiated at
that terminal.

[0016] Generally speaking and with specific reference to
web advertising, interstitial ads are displayed in an interval
of time that occurs after a user has clicked on a hot-link
displayed by a browser to retrieve a desired web page but
before that browser has started rendering that page. Such an
interval, commonly referred to as an “interstitial”, arises for
the simple reason that a browser requires time, once a user
clicks on a hotlink for a new page, to fetch a file(s) from a
remote web server(s) for that particular page and then fully
assemble and render that page. The length of an interstitial
interval, which is quite variable, is governed by a variety of
factors, including, e.g., a number of files required to fully
render the new page and the size of each such file, and
network and server congestion and attendant delays occur-
ring when the user activated the hotlink.

[0017] Interstitial web advertising is taught in, e.g., U.S.
Pat. Nos. 5,737,619 and 5,572,643 (both of which issued to
D. H. Judson but on Apr. 7, 1998 and Nov. 5, 1996,

US 2003/0004804 Al

respectively—hereinafter the “Judson” patents). The Judson
patents disclose the concept of embedding an advertisement,
as an information object, in a web page file in such a manner
that the object will remain hidden and not displayed when
the file is executed to render the page. Rather than being
displayed, the information object is locally cached by the
browser during execution of the code for that page. Then,
during a transition initiated by user activation of a hotlink to
move from that page to a next successive page, i.e., during
an interstitial, the browser accesses the advertisement from
local cache and displays it until such time as that next
successive page is downloaded and rendered. See also,
published International patent application WO 97/07656 (to
E. Barkat et al and published on Mar. 6, 1997) which teaches
the concept of “polite” downloading. Here, a browser, on a
local computer (e.g., a client PC) downloads, from an
remote advertising system server and ostensibly as a back-
ground process, file(s) for a web advertisement only during
those intervals when bandwidth utilization of a communi-
cation channel (link) connected to the browser is less than a
pre-established threshold. Such “polite” downloading is
intended to minimally interfere with other communication
applications, then executing on the client PC, which will
utilize the link. The browser displays the downloaded ad(s)
to the user only after the user has not interacted, as detected
by a conventional screen saver process, with his(her) PC for
a predefined period of time, such as by neither moving a
mouse nor depressing a key on a keyboard during that
period. The server selects those advertisements for down-
load to the client PC based on a user-ID and preference
information of the user, who is then situated at that PC, and
configuration information of that PC, which, when a con-
nection is established between the client PC and the server,
the client PC uploads to the server. Though the files asso-
ciated with an interstitial advertisement can be large, these
files are advantageously fetched by a client browser during
those intervals when otherwise the browser would be idle
and hence bandwidth utilization of its network connection
would be relatively low. Such “idle times” would occur, in
the absence of processing an interstitial ad, after the browser
has fully rendered a web page and a user is viewing the page
but has not yet clicked on a hotlink to transition to another
page. During such an idle time, the browser would simply
wait for further user input.

[0018] By reducing, if not eliminating, problems, inherent
in banners and engendered by download latency, interstitial
web advertisements, by employing idle time downloading
and local caching, provide a theoretical promise of convey-
ing very rich media content with a pleasing “user experi-
ence”. However, interstitial advertisements, as convention-
ally implemented, have serious practical deficiencies which
have severely limited their use.

[0019] Conventional interstitial, as well as other forms of
current, web advertisements—here not unlike banners—rely
on embedding HTML ad code, as, e.g., a separate non-
displayable object, within HTML coding for a web page.
Unfortunately, this approach, inherent in that taught by the
Judson patents, can be inflexible and expensive for an
advertiser to implement and particularly later should that
advertiser, for whatever reason, seek to modify his(her) ad
content. In particular and presently, ad coding is manually
inserted into each and every content web page that is to carry
advertising. Consequently, insertion of increasingly sophis-
ticated embedded advertising, such as multi-media or video

Jan. 2, 2003

or audio, in existing web site content requires a large
investment in terms of human resources, time and cost as
web sites, particularly large sites, increase a number of
content pages available for advertising. In that regard, where
a banner usually required insertion of, e.g., a single line of
HTML code, content rich advertisements, such as those now
implemented by parameterized embedded Java advertising
applets, often consist of an entire page of coding and hence
require far more extensive and increasingly labor-intensive
and costly insertions. Moreover, over time, advertisers do
change their ads—such as by replacing one ad with a totally
new version. However, once HTML ad coding is embedded
within a number of web pages, it can be quite impractical
and rather costly for an advertiser to access each and every
page in which his(her) ad coding has been inserted and then
manually change the ad coding, as desired. The impracti-
cality and attendant cost compound if these pages are copied
to other web sites and hence diffuse through the Internet.

[0020] Given these deficiencies, the art teaches a concept
of implementing web advertising through using so-called
“push” technology. See, e.g., U.S. Pat. No. 5,740,549 (issued
to J. P. Reilly et al on Apr. 14, 1998—hereinafter the “Reilly
et al” patent). In essence and as described in the Reilly et al
patent, a client PC, through execution of a “push” applica-
tion program (called “administration manager”), establishes
a network connection with an information server, i.c., a
“push” web server, typically during off-hours, such as in the
late evening or early morning, or at a predefined interval
(e.g., every four hours). The information server then down-
loads, i.e., “pushes”, to the administration manager, content
files, such as for advertisements and/or other predefined
information, that are to be played to the user sometime later.
The administration manager, i.e., the “push” application, in
turn, stores all the “pushed” content files into a local
database (referred to as the “information database™) on a
local hard disk and, in response to instructions received from
the information server, deletes those previously “pushed”
content files which have already been displayed. The admin-
istration manager also maintains a user profile, which speci-
fies user preferences as to the specific advertising and/or
other information (s)he wants to receive, in the information
database. As such, through each connection, the information
server, by selecting content from its database relative to
preferences specified in the user profile, attempts to “push”
fresh content to the client PC that is likely to be of interest
to the user but without duplicating that which was already
displayed. Stored “pushed” content is later displayed, using
a data viewer, either on user demand or during those times
when the user is not interacting with the system, here too
detected by a conventional screen saver procedure.

[0021] While push technology reduces download latency,
by shifting downloads to occur at off-hours, this technology
also suffers serious drawbacks which have greatly restricted
its practical acceptance.

[0022] In particular, to access “pushed” content, a user
must initially download and install to his(her) client PC a
separate, platform-specific, software application program, as
well as subsequent updates to that program as new push
capabilities are released by the manufacturer of the program.
Unfortunately, these application programs can often extend
to tens of megabytes in length. Since typical Internet users
establish modem connections to their Internet service pro-
vider, these users will find that downloading these relatively

US 2003/0004804 Al

large program files, even in compressed form, will consume
an inordinate amount of time and is generally impractical
while (s)he is actively using his(her) client PC. Conse-
quently, these users are constrained to purchasing, at some
cost, an off-the-shelf version of the application program or
downloading that program, typically at no cost for the
program itself, at off-hours, when network congestion is
relatively light. Furthermore, while some efforts are under-
way in the art to automatically “push” and install incremen-
tal software updates to a client PC, thus eliminating a need
for a user to manually do so, the user still faces the burden
associated with the initial download and installation of the
“push” application program.

[0023] In addition, “push” application programs continue
to increase in size, often considerably, as they provide added
capabilities to a user. Downloading and then regularly
updating a push application will reduce, sometimes consid-
erably, the amount of disk space available to the user on
his(her) client PC. Furthermore, “push” applications rely on
periodically “pushing” large quantities of media content
from a push server to the client PC and storing that content
on the hard disk of that PC pending subsequent display. This
content, depending on its volume, can consume inordinate
amounts of hard disk space. Furthermore, advertisers have
discovered, not surprisingly, that relatively few PC users
will undertake any affirmative action, such as by download-
ing and installing an application program—almost regard-
less of its size, to receive advertisements and other such
information.

[0024] Faced with these practical, and rather acute, defi-
ciencies inhering in web advertising conventionally pro-
vided on either an interstitial or “push” basis, web adver-
tisers have apparently relegated their efforts to displaying
their advertisements on a banner-like approach, through
real-time downloading and rendering of advertising HTML
files. Here, the advertising files are sited on remote web
servers, rather than being embedded within given web page
HTML files, with appropriate HTML tags, which reference
the ad files, being embedded into the web page files them-
selves. Such a tag specifies when and where, within the
page, an advertisement is to appear.

[0025] To surmount the latency problems inherent in such
banner-like advertisements, various proprietary media for-
mats have appeared in the art. These formats employ
increasingly sophisticated data compression, sometimes in
conjunction with video and/or audio streaming. Rather than
waiting for a media file to fully download prior to its being
rendered, streaming permits content in a “streamed” media
file to be presented in real-time to the user as that content
arrives at his(her) client browser. While this approach
clearly provides enhanced richness in content over that
obtainable through a conventional banner and thus can
heighten a “user experience”, it nevertheless relies, to its
detriment, on a continuous real-time network connection
existing to a remote web server.

[0026] Unfortunately, any network or server congestion
which stops the download, even if temporary, can suspend,
i.e., freeze, or totally halt the “streamed” media presentation
to the user prior to its completion. This interruption, if
noticeable and sufficiently long, will likely frustrate the user
and degrade the “user experience”.

[0027] In spite of these drawbacks, particularly with
respect to interstitial advertisements and push technology,

Jan. 2, 2003

and apparently for lack of a better alternative, most web
advertising currently in use employs real-time streaming of
graphic files with their content being rendered by the
browser.

[0028] Web advertisements, like other forms of mass
advertising, do generate revenue, often in the form of an
on-going stream of payments to the host of the ads, in this
case web site owners. Accurate user accounting is essential
to ensure that an advertiser is not over- or under-charged
given an extent to which an ad is actually disseminated.
Hence, these payments are often tied to a function of the
number of web users whom the ad reached. But with web
advertisements, accurately ascertaining that number has
been difficult and problematic at best, and, given a basic
technique employed to do so, manifestly error-prone,
thereby causing unreliable user counts and erroneous ad
charges.

[0029] In particular and as conventionally employed,
delivery of a web advertisement, such as, e.g., a streamed ad,
is logged as a “user impression” at a web server at an instant
an advertising file(s), e.g., a streamed file, is served, rather
than after the browser has completely rendered the adver-
tisement to the user. Unfortunately, serving these ad files
does not guarantee that these files will be ultimately and
completely rendered by a client browser to a user. Conse-
quently, web server generated “user impression” counts can
be grossly understated. For example, if a user navigates to a
new content page after an advertisement has started playing
but before that advertisement completes and, by doing so,
prematurely terminated the advertisement, a full impression
is nevertheless logged—erroneously—since that advertise-
ment was completely served. Additional errors arise if a
proxy server is situated between multiple client PCs situated
on an intranet or a local area network (LAN) and a web
advertisement server situated on the Internet (or other inse-
cure public network). In this case, a request from one of the
client PCs for the advertisement files will be routed to the
proxy server, which, in turn, will direct that request onward
to the advertisement web server. The latter, in response to the
request, will serve one complete copy of the advertisement
files to the proxy server. The resulting fetched advertisement
files will be locally cached in the proxy server and, from
there, provided to the requesting client PC. Should any of the
other client PCs request the same files, the proxy server will
provide these files, totally unbeknownst to the web server,
from its local cache rather than directing a request from that
other PC back to the web server. Hence, the web server will
be totally oblivious to each additional instance in which the
proxy server accessed the ad files from its local cache and
disseminated the advertisement to any client PC other than
that which first requested the ad. Inasmuch as some intranets
situated behind a proxy server(s) can be rather extensive
with tens or hundreds of thousands of individual client PCs,
server-based user impression accounting based on copies
delivered by a web server may, owing to the presence of
proxy servers, be inordinately low and result in significant
under-charges to the advertiser. As of yet, no solution
apparently exists in the art that can provide accurate counts
of “user impressions” of web advertisements.

[0030] Other conventional approaches aimed at reducing
latency times associated with downloading content files
through relatively slow speed communication links, e.g.,
modem connections, have involved development and use of

US 2003/0004804 Al

new facilities within various programming languages. These
approaches, most notably involving the Java and JavaScript
programming languages, while helpful, still cause inefficient
use of available link bandwidth and still constrain the size of
the content files. These limitations arise from premature
terminations of preloaded files whenever a user transitions to
a new web page. Specifically, with these approaches, if a
user activates a hotlink to transition to a new web page while
an ad file is being downloaded but before the downloading
has completed, then the downloading simply stops. The
downloading will need to be re-started, but from the begin-
ning of the file, the next time that particular ad file is
requested. Hence, the time and bandwidth that has then been
expended in downloading part of that ad file is completely
wasted. In practice, many users tend to quickly navigate
through a series of web pages until they reach a desired
destination. Consequently, advertisers are constrained to
again minimize content file sizes and hence “richness” of
their advertisements in an effort to decrease a number of
premature terminations per unit time and in doing so reduce
latency caused by downloading duplicate sections of the
same ad file. Therefore, these approaches have generally
proven to be wholly unsatisfactory.

[0031] In view of the fundamental drawbacks associated
with various web based advertising techniques known in the
art, interstitial web advertising appears to hold the most
promise of all these techniques. Yet, the limitations inherent
in conventional implementations of conventional interstitial
advertising have effectively prevented this form of web
advertising from effectively fulfilling its promise. Moreover,
the deficiencies inherent in all known web advertising
techniques have, to a significant extent, collectively inhib-
ited the use of web advertising in general.

[0032] Thus, a pressing need exists in the art for a new
web-based interstitial advertising technique which does not
suffer from infirmities associated with such interstitial
advertising techniques known in the art.

[0033] Inthat regard, this new technique should preferably
not embed advertising HIML files within a web page. If this
could be accomplished, then advantageously such a tech-
nique would likely provide considerable economies to
advertisers in saved labor, time and cost in terms of both
inserting advertisements into web page files, and later
changing any of those advertisements. In addition, such a
new technique should preferably function in a manner that
is substantially, if not totally, transparent to a user and which
neither inconveniences nor burdens that user. In particular,
this new technique should preferably not require a user to
download and install on his(her) PC a separate application
program, let alone any update to it, specifically to receive
web advertising, or perform any affirmative act, other than
normal web browsing, to receive such advertising. Further-
more, this new technique should preferably be platform
independent and, by doing so, operate with substantially any
web browser on substantially any PC. Also, this new tech-
nique, when in use, should preferably not consume exces-
sive hard disk space on a client PC. Moreover, to provide a
pleasing “user experience”, this new technique should ren-
der an ad fully and without any interruptions that might
otherwise result from network and/or server congestion.
Lastly, this new technique should provide proper accounting
to an advertiser by accurately and validly ascertaining user
impressions of fully rendered advertisements.

Jan. 2, 2003

[0034] We believe that if such a new web-based interstitial
advertising technique could be provided, then this technique,
which should be both effective and desirable, may well
achieve broad support and use by advertisers and acceptance
by web users; hence, substantially expanding the use of
web-based advertising in general.

SUMMARY OF THE INVENTION

[0035] Advantageously, our present inventive technique
satisfies this need by overcoming the deficiencies associated
with conventional web-based interstitial advertising tech-
niques.

[0036] Our present invention accomplishes this, in accor-
dance with our broad inventive teachings, by: completely
“decoupling” advertising content from a web content page
(also hereinafter referred to as a “referring” page); “politely”
downloading advertising files, through a browser executing
at a client computer, into browser caches (e.g., browser disk
and RAM cache) at that computer and in a manner that is
transparent to a user situated at the browser; and interstitially
displaying advertisements through the browser in response
to a user click-stream associated with normal user naviga-
tion across different web pages.

[0037] Specifically, our technique relies on embedding an
HTML tag (which, where necessary, to distinguish this tag
from other HTML tags, will be also referred to hereinafter
as an “advertising tag”) into a referring page. This tag
contains two components. One component effectively down-
loads, from an distribution HTTP (web) server and to an
extent necessary, and then persistently instantiates an agent,
implemented as a “light-weight” Java applet, at the client
browser. This agent then “politely” and transparently down-
loads advertising files (media, and, where necessary, player
files), originating from an ad management system residing
on a third-party advertising HTTP (web) server, for a given
advertisement into browser disk cache (also in the case of
media files into the browser RAM cache) and subsequently
plays those media files through the browser on an interstitial
basis and in response to a user click-stream. The other
component is a reference, in terms of a web address, of the
advertising management system from which the advertising
files are to be downloaded. This latter reference totally
“decouples” advertising content from a web page such that
a web page, rather than embedding actual advertising con-
tent within the page itself—as conventionally occurs, merely
includes an advertising tag that refers, via a URL, to a
specific ad management system rather than to a particular
advertisement or its content. The ad management system
selects the given advertisement that is to be downloaded,
rather than having that selection or its content being embed-
ded in the web content page.

[0038] Advantageously, the agent operates independently,
in the client browser, of the content in any referring web
page. Once loaded and started, the agent executes in parallel,
with standard browser functionality, continually and trans-
parently requesting and downloading advertisements to
browser cache residing in a client computer (e.g., personal
computer—PC) and interstitially playing those advertise-
ments. In particular, once the agent is started, the agent
politely and transparently downloads, through the client
browser and to the browser cache, both media and player
files, originating from the advertisement management

US 2003/0004804 Al

server, for an advertisement that are needed to fully play
content in that advertisement. The agent also monitors a
click-stream generated by a user who then operates the
browser. In response to a user-initiated action, e¢.g., a mouse
click, which instructs the client browser to transition to a
next successive content web page and which signifies a start
of an interstitial interval, the agent, if all the media and
player files are then resident on the client hard disk, plays the
media files, through the browser and during that interstitial
interval, directly from the browser cache. Advertisements
are interstitially played typically in the order in which they
were downloaded to the client browser. Interstitial play from
browser cache advantageously permits previously cached
content rich advertisements to be played through the
browser without adversely affecting communication link
bandwidth then available to the client browser. Thus, the full
available link bandwidth can be used, while an advertise-
ment is being played, to download a next successive content
web page.

[0039] Employing a user click-stream to trigger play of
cached advertisements frees the user, for receiving adver-
tising, of any need either to undertake any affirmative action,
other than normal web browsing, or to learn any new
procedure; thus, advantageously imposing no added burden
on the user.

[0040] Advantageously, the agent “politely” downloads
advertisement media and player files, originating from the
advertising server, to the browser cache, during what oth-
erwise would be browser idle times, i.e., while a web page
is being displayed to a user and the browser is waiting for
user input. Caching advertisement files in this fashion
advantageously circumvents variable latency and erratic
(e.g., intermittent or suspended) play that frequently occurs
with conventional streamed and static media delivered over
the web.

[0041] At the start of an interstitial interval, the agent
determines whether all the media and player files required to
play a given advertisement (typically that having its so-
called AdDescriptor file situated in a head of a play queue)
then reside on the disk of the client PC or, with respect to
media files, are resident in browser RAM cache. If so, the
agent then accesses these files from the disk to “play” that
advertisement. Since all the media and player files are then
locally resident, the advertisement, from a user’s perspec-
tive, is immediately rendered from the client hard disk or
browser RAM cache with essentially no downloading delay,
thus providing a highly pleasing “user experience” with rich
multi-media content approaching that obtainable through
current CD-ROM based delivery. Thereafter, the agent
returns control to the browser to permit the browser, if a next
successive web page has been downloaded, assembled and
ready to be rendered, to render that particular page to the
user. If, however, an advertisement is prematurely termi-
nated by a user, that advertisement (in terms of its AdDe-
scriptor file) will remain in a play queue (with its media and
player files remaining on the client hard disk or, in the case
of media files, in browser RAM cache) and will be re-played
from its beginning at the start of a next successive interstitial
interval. Furthermore, if download of the media and player
files for an advertisement were to be interrupted by a user
click-stream, i.e., start of interstitial interval, the agent
suspends further downloading until after the ensuing inter-
stitial interval terminates. To conserve communication link

Jan. 2, 2003

bandwidth, the agent then resumes downloading of these
files at a point it was suspended, rather than, as convention-
ally occurs, totally re-starting the download.

[0042] In accordance with our specific inventive teach-
ings, the agent contains two applets: a Transition Sensor
applet and an “AdController” applet. Only the Transition
Sensor applet is itself associated with any content page.
Though the AdController applet, once started, executes
under the browser, it is not under the control of the browser
itself.

[0043] The advertising tag is itself embedded in a content
web page and references a JavaScript file. The advertising
tag also encapsulates a reference, i.e., a URL to a specific ad
management server, typically sited on a third party adver-
tising server, containing specific media, that collectively
constitutes web advertisements, and accompanying player
files. The file, when executed, downloads and implements,
through dynamic writing of applet tags, the Transition
Sensor applet. This particular applet remains visually trans-
parent to a user who displays, with his(her) browser, the
HTML coding for that page. In particular, the advertising tag
references a JavaScript file (which contains a “script”)
stored on a distribution server. When the JavaScript file is
downloaded and the script it contains is then executed by the
browser, the script dynamically writes a predefined number
and combination of applet tags, i.e., which collectively form
the Transition Sensor applet, into the retrieved web page
content in lieu of the advertising tag. Subsequent execution
of these tags, by the client browser, invokes the Transition
Sensor applet.

[0044] In particular, when executed, the Transition Sensor
applet instantiates an Applet Registry, which is used for
inter-applet communication. Thereafter, the Transition Sen-
sor applet determines whether the AdController applet has
been downloaded to the browser disk cache or whether an
updated version of this particular applet resides on the
distribution server. If an updated version of this applet exists
on the distribution server relative to that previously down-
loaded to the browser disk cache or if this applet has not
been download at all onto this cache, the Transition Sensor
applet loads the AdController applet from the distribution
server into the browser disk cache. The Transition Sensor
applet then instantiates the AdController applet. Once this
occurs, the Transition Sensor applet then establishes appro-
priate entries in the Applet Registry for itself and the
AdController applet.

[0045] The Transition Sensor applet then passes the URL
of the ad management system, as specified in the advertising
tag, to the AdController applet in order for the latter applet
to request delivery of an advertisement, specifically an
associated AdDescriptor file, originating from that system.
The system then selects the advertisement to be delivered
and, via the third party advertising server, so informs the
AdController applet by returning the requested AdDescrip-
tor file. For a given advertisement, this particular file, which
is textual in nature, contains a manifest, i.e., a list, of: file
names and corresponding web addresses of all media files
that constitute content for that advertisement and all player
files necessary to play all the media files; an order in which
the various media files are to be played; and various con-
figuration and other parameters need to configure and oper-
ate the operation of each player in order for it to properly

US 2003/0004804 Al

play a corresponding media file(s). The AdController then
“politely” downloads, typically via the advertising distribu-
tion server, the associated media and player files, as speci-
fied in the AdDescriptor file—and to the extent they do not
already reside on the hard disk of the client PC. As noted
above, the Transition Sensor applet also monitors a click-
stream produced by the current user to detect a user-initiated
page transition and hence the start of an interstitial interval.

[0046] Advantageously, the AdDescriptor file implements
a data abstraction that totally separates the media and player
files from the referring web page thus assuring that the
advertisement content itself remains completely indepen-
dent of the content web page that invoked its presentation.
This abstraction permits our technique to provide a highly
effective, generalized and very flexible mechanism for deliv-
ering rich web advertisements, particularly those that require
complex sets of media files and players. Through use of this
abstraction, our technique is able to handle present and
future media formats, regardless of their requirements,
including proprietary streaming and other content delivery
technologies that rely on Java applets as a delivery mecha-
nism—all transparently to the user. Moreover, since the
AdDescriptor file can specify media and player files for
different browsers, operating systems and computing plat-
forms then in use, our technique can readily function with a
wide variety of different computing and browsing platforms.

[0047] The Transition Sensor and AdController applets are
each implemented through appropriate Java classes and
collectively persist, through storage in the browser disk
cache, across different content pages within a site, across
different web sites, and across successive browser sessions.
Once either of these applets is completely downloaded,
providing it is not subsequently flushed from the browser
disk cache as the user navigates across web sites on the web,
the files for that applet will be loaded from that cache, rather
than being downloaded from the distribution server, the next
time that applet is required, e.g., when the user next navi-
gates, either during a current browser session or a subse-
quent session, to any content page that contains an adver-
tising tag.

[0048] Whenever the client browser encounters a next
successive page containing an advertising tag, then the
browser will first and automatically inquire with the distri-
bution server to ensure that executable code for the Transi-
tion Sensor applet, if previously downloaded into the
browser disk cache, has not been superseded by an updated
version. If such an updated version then exists, the browser
will collectively download updated files from the distribu-
tion server and replace, to the extent necessary, each Tran-
sition Sensor applet file residing in the browser disk cache
with its updated version. Alternatively, if the Transition
Sensor applet has not been previously downloaded into the
browser disk cache, then the browser will download all the
necessary files for the Transition Sensor applet from the
distribution server into that cache. The Transition Sensor
applet, once executing, will load, through the browser, the
AdController applet. To do so, the browser will, if necessary,
obtain an updated version, from the distribution server, in
the same manner as it did for the Transition Sensor. As a
result, any corrections or enhancements made to the agent
(specifically the Transition Sensor and/or the AdController
applets) since the agent was last downloaded to the client
browser will be automatically and transparently, from a user

Jan. 2, 2003

perspective, distributed to that browser and downloaded into
the browser disk cache the next time the browser encounters
a web page containing an advertising tag. By operating in
this fashion, the user is totally and advantageously relieved
of any need to: both initially load and install an application
program to obtain advertising and/or later update that pro-
gram.

[0049] Furthermore, the agent advantageously persists and
functions transparently in background, independent and
transparent to user navigation across pages on a common
web site and across web sites. The agent effectively imple-
ments a background process which runs in parallel with and
is transparent to normal HTML and HTTP operations imple-
mented by the client browser.

[0050] Moreover, in sharp contrast to conventional server-
based accounting of web advertisements, our inventive
technique provides highly accurate client-side accounting of
each user impression. Each log entry, produced by the
AdController applet, specifies a successful presentation of a
complete advertisement at a client browser. This entry may
include a source of the ad content, i.c., in terms of the URL
of the associated ad management system, a title of the
advertisement and the URL of the referring web page. Other
client-side information can be measured and included in
each entry, such as: an amount of time during which the
advertisement was rendered by the browser (presumably
during which the user dwelled on the advertisement); as well
as an identification, in terms of a URL, of a content web page
to which the user next navigated (particularly if the user
reached that page through a hotlink displayed in the adver-
tisement). Subsequently, the AdController applet uploads
the log entries to the advertising server. These entries will be
collectively processed, as needed, to permit shared ad rev-
enues from web-based advertisers to be properly allocated
among different web page content providers.

[0051] Advantageously, our inventive technique, by
totally decoupling referring web page content from its
corresponding advertising content, easily permits an adver-
tiser to change or update any of its advertisements by just
modifying, as needed, appropriate media and AdDescriptor
files that reside in the third-party advertising management
system. Since a referring web page merely incorporates an
advertising tag totally devoid of advertising content, no
changes whatsoever need to be made to that page. Hence,
use of our inventive technique substantially reduces the
burden, time and cost associated with maintaining and
updating web-based advertising over that conventionally
required.

[0052] As a feature, our inventive technique advanta-
geously implements, in conjunction with its persistent agent
approach, multi-threaded pipelining. By processing each
different advertisement as a different thread, each one of a
sequence of different processing operations can be per-
formed, effectively on a pipe-lined parallel basis, on differ-
ent sequentially occurring advertisements, thereby enhanc-
ing a rate (increasing throughput) at which advertisements
can be queued for playback. In addition, through such
pipe-lining, logging of a fully presented advertisement can
occur as a last operation in a pipeline and essentially in
parallel either: with presentation of cached advertisement
having its AdDescriptor file situated in the play queue

US 2003/0004804 Al

immediately behind that for the just presented advertise-
ment, or with downloading and caching of a next successive
advertisement.

BRIEF DESCRIPTION OF THE DRAWINGS

[0053] The teachings of the present invention can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0054] FIG. 1A depicts the correct alignment of the draw-
ing sheets for FIGS. 1B and 1C;

[0055] FIGS. 1B and 1C collectively depict a high-level
block diagram of an illustrative client-server distributed
processing environment, implemented through the Internet,
which embodies the teachings of our present invention,
along with, as pertinent to the invention, basic inter-com-
puter actions that occur in that environment and associated
client processing operations;

[0056] FIG. 1D depicts the correct alignment of the draw-
ing sheets for FIGS. 1E and 1F;

[0057] FIGS. 1E and 1F collectively depict the same
environment as shown in FIGS. 1B and 1C but showing an
detailed version of agent download/instantiate/execute
operations 50 shown in the latter figures;

[0058] FIG. 2 depicts the correct alignment of the drawing
sheets for FIGS. 2A and 2B;

[0059] FIGS. 2A and 2B collectively depict generalized
web page HTML code 35, specifically inclusion of adver-
tising tag 40, which transparently invokes our invention, and
changes which our invention dynamically makes to that
code, specifically substitution of Transition Sensor applet
210 for tag 40 to yield page 35', in order to download and
render web advertisements;

[0060] FIG. 3 depicts a high-level block diagram of client
PC 5 shown in FIGS. 1B and 1C, and 1E and 1F;

[0061] FIG. 4 depicts a simplified high-level block dia-
gram of application programs 400 resident within client PC
5 shown in FIG. 3;

[0062] FIG. 5 depicts a high-level block diagram of
AdController agent 420 shown in FIG. 4, which implements
our present invention;

[0063] FIG. 6 depicts the correct alignment of the drawing
sheets for FIGS. 6A and 6B;

[0064] FIGS. 6A and 6B collectively depict a high-level
flowchart of processing operations 600 performed by
AdController agent 420 shown in FIG. §;

[0065] FIG. 7 depicts a high-level block diagram of basic
processing threads that implement AdController applet 424
which, as shown in FIG. 4, forms part of AdController agent
420,

[0066] FIG. 8 depicts a high-level flowchart of processing
operations 800 performed by AdController applet 424
shown in FIG. 7;

[0067] FIG. 9 depicts the correct alignment of the drawing
sheets for FIGS. 9A and 9B;

Jan. 2, 2003

[0068] FIGS. 9A and 9B collectively depict a flowchart of
processing operations 900 performed by AdController
applet 424, shown in FIG. 7, specifically for processing an
advertisement;

[0069] FIG. 10 depicts inter-applet events that occur
within AdController agent 420 during execution of Transi-
tion Sensor applet 422;

[0070] FIG. 11 depicts a high-level block diagram of basic
processing threads that implement Transition Sensor applet
422 which, as shown in FIG. 4, forms part of AdController
agent 420;

[0071] FIG. 12 depicts a high-level flowchart of process-
ing operations 1200 performed by Transition Sensor applet
422 shown in FIG. 11;

[0072] FIG. 13 depicts a high-level block diagram of Ad
Loader process 1300 which can be used to provide adver-
tiser control over various functions, for advertisement play
and logging, implemented by AdController applet 424;

[0073] FIG. 14 depicts a high-level block diagram of Ad
Pipeline 545 that is implemented by and forms part of
AdController applet 424 shown in FIG. 4;

[0074] FIG. 15 depicts a high-level block diagram of Ad
Producer process 1500 that is executed by Ad Pipeline 545
shown in FIG. 14;

[0075] FIG. 16 depicts a high-level block diagram of Ad
Location process 1600 that is also executed by Ad Pipeline
545 shown in FIG. 14;

[0076] FIG. 17 depicts a high-level block diagram of Ad
Downloader process 1700 that is also executed by Ad
Pipeline 545 shown in FIG. 14;

[0077] FIG. 18 depicts a flowchart of stop method 1800
invoked by Transition Sensor applet 422 shown in FIG. 4;

[0078] FIG. 19 depicts a flowchart of start method 1900
invoked by Transition Sensor applet 422 shown in FIG. 4;
and

[0079] FIG. 20 depicts contents of actual illustrative
AdDescriptor file 2000 for use in interstitially rendering a
PointCast type Java advertisement through our present
invention.

[0080] To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures.

DETAILED DESCRIPTION

[0081] After considering the following description, those
skilled in the art will clearly realize that the teachings of our
present invention can be utilized in any networked client-
server environment in which advertising or other informa-
tion is to be presented to a user during interstitial intervals,
i.e., during a transition between successively displayed web
pages. Such an environment can encompass the Internet or
an intranet, or any client-server environment in which a
client browser (regardless of whether that browser executes
on a dedicated client computer or not) is used to access and
download web pages or, more generally speaking, files
through a network communication channel (link) from a
server (again regardless of whether that server executes on
a dedicated computer or not). In that regard, the server can

US 2003/0004804 Al

be a separate software application which executes on any
computer in the networked environment, even if that com-
puter is itself a client to another server in the network.

[0082] For purposes of simplicity and to facilitate reader
understanding, we will discuss our present invention in the
illustrative context of use in rendering interstitial web-based
advertisements to a client personal computer (PC) connected
to the Internet, where specifically a client browser executing
in the PC is used to download and render web pages from a
remote networked Internet accessible web server. Clearly,
after considering the ensuing description, anyone skilled in
the art will readily appreciate how the teachings of our
invention can be easily incorporated into any client-server or
other similar distributed processing environment in which a
client can encompass not only a specific computer connected
to a network but a software process that possesses network
connectivity to another such process and requests informa-
tion from and, in response, obtains information supplied by
the latter.

[0083] We will first present an overview of our invention,
particularly in the context of its use with an Internet web
browser in a client PC, followed by describing each basic
component of its implementation.

[0084] A. Overview

[0085] A general deployment of our invention in an Inter-
net environment is collectively shown in FIGS. 1B and 1C,
with a detailed view of a portion of the inter-processor agent
download/instantiation operations 50 shown in these figures
being depicted in FIGS. 1E and 1F. The correct alignment
of the drawing sheets for FIGS. 1B and 1C, and 1E and 1F
is shown in FIGS. 1A and 1D, respectively. FIGS. 2A and
2B, for which the correct alignment of the drawing sheets for
these figures is shown in FIG. 2, collectively depicts gen-
eralized web page HTML code which transparently invokes
our invention, and changes which our invention dynamically
makes to that code in order to download and render web
advertisements. For a understanding, the reader should
simultaneously refer to FIGS. 1B and 1C, 1E and 1F, and
2A and 2B throughput the following discussion.

[0086] As shown, client PC 5, upon which client browser
7 executes, is connected through communication link 9 to
Internet 10. Browser 7 is a conventional web browser, such
as Internet Explorer or Netscape Navigator commercially
available from Microsoft Corporation or Netscape Corpo-
ration, respectively. Preferably, for reasons that will shortly
become clear, that browser should preferably support
dynamic writing of applet tags. Though, for ease of illus-
trating inter-computer actions, we depicted Internet 10 as
having portions 10, and 105, we will collectively refer to
both portions as simply Internet 10. Web server 13, con-
nected, via link 11, to Internet 10 represents any web HTTP
(hypertext transfer protocol) server. This server, in response
to a request to fetch a specific file from web browser 7,
downloads that file, using conventional TCP/IP protocols
(transmission control protocols/internet protocols), through
the Internet to browser 7. Browser 7 will, in turn, render that
file typically on a monitor to a user situated at the client PC.

[0087] Advertising distribution HTTP server (also
referred to as “agent” server) 15 is connected, via commu-
nications link 17, to Internet 10 and stores files that collec-
tively implement a predefined agent, specifically, a light

Jan. 2, 2003

weight Java applet. This agent (referred to herein as the
“AdController” agent) transparently pre-loads itself, as well
as media rich advertising content, into a local hard disk
cache associated with the browser (“browser disk cache”) on
client PC 5. Server 15 downloads the AdController agent in
a manner to be described below, to client browser 7. This
agent, once instantiated and started, then transparently and
politely downloads (actually pre-loads) advertisements into
the browser disk cache, and subsequently plays each of those
advertisements, on an interstitial basis, in response to a click
stream generated by the user as (s)he navigates, through use
of browser 7, between successive web pages. Such hard disk
caching advantageously circumvents variable latency and
erratic play associated with conventional streamed and static
media delivered over the Internet. The agent enables rich
advertising to be presented in a highly-controlled fashion,
resulting in user experiences approaching that of CD-ROM.

[0088] Third-party ad HTTP server 20, connected to Inter-
net 10 via, e.g., communications links 18 and 23, hosts ad
management system 25. In essence and as discussed in detail
below, this system, in response to a request originating from
the AdController agent executing in browser 7, selects a
given advertisement and then downloads, in a “polite”
manner controlled by the agent, media and player files that
form that advertisement to the agent for storage in the
browser disk cache. Inasmuch as Java applets are currently
restricted under constraints inherent in the Java program-
ming language itself to retrieving files from an identical
Internet host that served the applet itself, the request for an
advertisement to system 25 as well as resulting media and
player files served by system 25 are routed through agent
server 15 as a proxy server.

[0089] Advantageously, our inventive technique com-
pletely “decouples™ advertising content from a web content
page (also hereinafter referred to as a “referring” page).
This, in turn, permits our technique to render media-rich
advertisements without requiring inclusion of any advertis-
ing content into a referring web page. This “decoupling” is
effectuated through inclusion of an HITML tag into a content
web page, which when the latter is downloaded, interpreted
and executed by the browser, effectively loads and instan-
tiates the agent and then retrieves advertisement files from
an ad management system specified in the tag. Thus, adver-
tising files (both media and player files) can be maintained
totally independently of their referring web page(s), with
advantageously any changes made to the former having no
effect on HTML coding contained in the latter.

[0090] In particular, HTML tag 40 (which, where neces-
sary, to distinguish this tag from other HTML tags, will be
also referred to hereinafter as an “advertising tag”) is
embedded by a content provider(s) into HTML code that
constitutes each referring web page, e.g., here page 35.
Generally, the position of this tag relative to existing HIML
code (shown as HTML code portions 35, and 355 in FIGS.
2A and 2B) for this page is not critical. Advantageously,
very rarely, if ever at all, do any changes need to be made
to these code portions to accommodate the tag. As shown
and as reproduced in Table 1 below, this tag, which typically
consumes one line in a web page, implements a script.

US 2003/0004804 Al

TABLE 1

ADVERTISING TAG

<SCRIPT SRC=http://unicast.com/loadad.js>

AdServer=“http://AdManagementsystem”
</SCRIPT>

[0091] One portion of the advertising tag (“SRC=http://
unicast.com/loadad.js”), when executed by the browser,
downloads a JavaScript file (named “loadad.js”) from the
agent server. This file, in turn, is then interpreted and
executed, as a script, by the browser. The effect of executing
this script, as symbolized by block 200 shown in FIGS. 2A
and 2B, is to substitute applet tags, dynamically written by
the script, into the referring web page in lieu of advertising
tag 40 so as to form a modified web page, here referring
content page 35', residing in the browser disk cache. The
script, by invoking a feature associated with dynamic writ-
ing, completely hides these tags from view should the user
then display HTML source code for page 35' with his
browser. This, in turn, hinders the user, to a certain degree,
from readily ascertaining the source of the agent and ad
management systems. Collectively, these applet tags form
Transition Sensor applet 210. This script, as described in
detail below and is reproduced in Table 2 below, when
interpreted and executed by a Java virtual machine (Java
interpreter) resident in the browser persistently loads and
then instantiates the Transition Sensor itself which, in turn,
loads and instantiates the remainder of the agent in the client
browser.

TABLE 2

TRANSITION SENSOR APPLET

<applet code=“com.unicast.adcontroller.tools.TransitionSensor”
codebase="http://www.unicast.com/java/classes/”

align="baseline” width="0" height=“0" name="TransitionSensor”
archive=“adcontroller.jar”>

<param name="“adURL”
value="http://www.unicast.com/media/fireworks_ 01__ad__descriptor.txt”>
<param name="cabbase” value=“adcontroller.cab”>

</applet>

[0092] The value of attribute CODE in the Transition
Sensor applet specifies a Java executable that will be
executed by the client browser, when it renders this applet,
to launch the Transition Sensor. The executable, imple-
mented through an appropriate Java class, was originally
compiled from its associated Java source code file. Tags
labeled “<WIDTH>" and “<HEIGHT>" jointly specify a
rectangular portion of a web page, as displayed by browser
7, in which the applet will be rendered. Since, here that
portion is non-existent, nothing will be rendered. Applets,
such as this one, can be delivered transparently over the
Internet to the client PC and require no user-assisted instal-
lation.

[0093] Another portion of the advertising tag (“AdServer=
“http://AdManagement_system™) references a URL of a
particular ad management system (where “AdManagement-
_system” represents a web address (URL) of that particular
system), here illustratively system 25, from which the agent
is to download an advertisement. As will be seen below, the
Transition Sensor applet, during its execution, passes this

Jan. 2, 2003

URL, as part of an advertising download request, to the
remainder of the AdController agent to subsequently down-
load appropriate advertising files, also as described below,
from that system necessary to interstitially play an adver-
tisement.

[0094] If advertisements are to play on client browsers
(specifically Microsoft Internet Explorer version 3) that do
not support dynamic writing of applet tags, then applet 210
would need to be inserted by content providers into each
referring web page in lieu of advertising tag 40. Unfortu-
nately, Transition Sensor applet 210 identifies both the agent
server, and an actual advertisement in terms of a URL of its
source components (through contents of an “AdDescriptor”
file—which will be discussed in detail below—specified in
this applet). Since browser technology continues to rapidly
advance with most users continually upgrading their brows-
ers, most browsers now in use, and in a very short time
nearly all such browsers, will support such dynamic writing.
Hence, we see little, and very shortly essentially no need, to
embed applet 210 into any referring web pages, thus mini-
mizing ad insertion cost, effort and time while restricting
disclosure of the agent server and advertisement source
information.

[0095] The agent, during its execution, “politely” and
transparently downloads advertising files (media, and where
necessary player files), originating from ad management
system 25 for a given advertisement into browser disk cache
(with the media files also being written into browser RAM
cache) and subsequently plays those media files through the
browser on an interstitial basis and in response to the user
click-stream.

[0096] Advantageously, the agent operates independently,
in the client browser, of the content in any referring web
page. Once loaded and started, the agent executes in parallel,
with standard browser functionality, continually and trans-
parently requesting and downloading advertisements to a
browser disk cache residing on a local hard disk (“browser
disk cache”), as well as in the case of media files into
browser RAM cache, in a client computer (e.g., personal
computer—PC) and interstitially playing those advertise-
ments.

[0097] Now, with the above in mind and specific reference
to FIGS. 1B and 1C, we will now describe the basic
inter-computer actions associated with use of our invention,
as well as the basic attendant processing steps that occur in
the client PC.

[0098] To begin a browsing session, the user first invokes
client browser 7. Once the browser is executing, the browser
obtains, as an initial web page—selection of this page being
referenced by numeral 31, an address either of a prior
so-called “default” content page previously specified by the
user and having its URL stored in the browser or of a content
page manually entered by the user. The client browser then
issues, as symbolized by block 33, a request to fetch a file
for that page; with the request containing a URL of that page
(ie., its complete web address including its file name). We
assume for simplicity that the file for that page resides on
web server 13. We also assume that page 35 is being
requested which will invoke an associated interstitial adver-
tisement in accordance with our invention. In response to the
request routed to server 13—as symbolized by line 34, this
particular server downloads, as symbolized by line 36, to

US 2003/0004804 Al

client PC 5 a file for page 35, where the coding stored in this
file contains advertisement tag 40. Illustrative contents of
this tag are shown in dashed block 45, as well as in FIGS.
2A and 2B.

[0099] Once this file is received as shown in FIGS. 1B
and 1C, browser 7 interprets and then executes, as symbol-
ized by block 52, the HTML code in page 35, which includes
tag 40 and thus undertakes the actions shown in agent
download/instantiate/execute operations 50. These opera-
tions eventually result in the AdController agent being
downloaded, instantiated and started in the client browser.
Generally speaking, the browser in response to executing the
advertising tag, issues a request, as symbolized by line 54,
to agent server 15 to download the AdController agent.
Through various several inter-processing operations, as
shown in further detail in FIGS. 1E and 1F and which will
be described below shortly, server 15 accesses and down-
loads, as symbolized by line 56, the needed files to install the
AdController agent to execute under browser 7 on the client
PC. Once files for the agent are downloaded to the browser
disk cache on the client PC, the browser then instantiates and
starts the agent executing, as symbolized by block 58.
Operations 50 effectively conclude once the agent begins
executing.

[0100] Now referring to operations 50 as shown in further
detail in FIGS. 1E and 1F, upon entry into these operations,
browser 7 executes, as symbolized by block 110, advertising
tag 40. The browser then issues a request, as symbolized by
line 115, to agent server 15, to download a JavaScript file
(named, e.g., “loadad.js”) specified in the request. This file
is specified as the first portion of the advertising tab. In
response to this request, server 15 downloads, as symbolized
by line 120, this particular file onto browser 7 where that file
is cached appropriately. Once the file is fully downloaded, it
is interpreted and executed by a Java virtual machine (a Java
interpreter integrated into the browser and which generates
code compatible with and executable by the browser). As
indicated by block 125, the browser then executes the
interpreted code for the script which, in turn, dynamically
writes applet tags—in the manner generally shown in FIGS.
2A and 2B and described above—into web page 35 in lieu
of the advertising tag. These tags, which collectively form
Transition Sensor applet 210, include a reference to a
specific ad management system as specified in the second
portion of advertising tag 40.

[0101] Once these tags are dynamically written into con-
tent web page 35 (to yield modified version 35' shown in
FIGS. 2A and 2B), Transition Sensor applet 210 is instan-
tiated and then executed. In particular, browser 7 determines
whether executable code for the Transition Sensor applet has
been previously downloaded to the browser disk cache. If
this code has not been downloaded or an updated version of
this code exists on agent server 15, the browser issues, as
symbolized by line 130, a request to download a latest
version of the Transition Sensor executable code from the
agent server. Server 15, in response to this request, down-
loads, as symbolized by line 135, file(s) for the latest version
of the transition sensor code to the browser which, in turn,
stores these file(s) into the browser disk cache. Thereafter as
symbolized by block 140, the browser instantiates and starts
execution of the Transition Sensor applet. This latter applet,
as part of its initial execution, instantiates an Applet Reg-
istry. This registry provides a mechanism, within the agent,

Jan. 2, 2003

for inter-applet communication between the constituent
Transition Sensor and AdController applets.

[0102] Thereafter, the Transition Sensor applet attempts to
load, also as symbolized by block 140, the AdController
applet, through the browser, from the browser disk cache. To
do so, the browser first determines whether the AdController
applet has been downloaded to the browser disk cache or
whether an updated version of this particular applet resides
on agent server 15. If an updated version of this applet exists
on the agent server relative to that previously downloaded to
the browser disk cache or if the AdController applet has not
been download at all into this cache, the browser issues a
request, as symbolized by line 150, to download a latest
version of the AdController applet from agent server 15.
Server 15, in response to this request, downloads, as sym-
bolized by line 155, file(s) for the latest version of the
AdController applet to the client browser which, in turn,
stores these file(s) into the browser disk cache. Lastly, as
symbolized by block 160, the Transition Sensor applet then
instantiates and starts the AdController applet; and thereafter
establishes appropriate entries in the Applet Registry for
itself and the AdController applet.

[0103] Returning to FIGS. 1B and 1C, once operations 50
have completed, such that the agent is executing under
browser 7, the AdController applet issues, as symbolized by
block 60, a request, via agent server 15, to download an
AdDescriptor file from the ad management system, e.g., ad
management system 25, specified in advertising tag 40. This
request contains the URL of the ad management system
contained in advertising tag 40. Currently, Java applets are
restricted under constraints inherent in the Java program-
ming language itself to retrieving files from an identical
Internet host that served the applet itself. As such, rather than
directing this request to advertising server 20, on which ad
management system 25 resides, this request, as symbolized
by line 62, is addressed to agent server 15, which serves as
a proxy server between client PC § and advertising server
20. Both the request and resulting advertising (including
media and player) files will be served to the client PC
through agent server 15. As such, once the request has been
received by the agent server, this server passes the request
onward, as symbolized by line 64, to advertising server 20.

[0104] Inresponse to this request for an AdDescriptor file,
ad management system 25 then selects a specific advertise-
ment to be delivered to client PC 5. This selection can be
selected on a predefined or random basis, or based on user
preference or other user-specific information previously
collected from and associated with the user then operating
browser 7. Such user-specific information, such as prior
buying patterns, could have been appropriately pre-collected
at the client PC, previously uploaded to ad management
system 25 and processed there such that, upon receipt of the
AdDescriptor request, system 25 would then select and
download an appropriate advertisement specifically targeted
to the user then situated at the client PC. In any event, once
system 25 selects the advertisement, through whatever
selection metric it employs, the corresponding AdDescriptor
file is then downloaded, as symbolized by line 66, to agent
server 15 (here being a proxy server) which, in turn, as
symbolized by line 68, supplies that file to the AdController
agent then executing under web browser 7.

[0105] To digress slightly, for the selected advertisement,
the AdDescriptor file is a text file that contains a manifest,

US 2003/0004804 Al

i.e., a list, of file names and corresponding network locations
(URLs) at which these files reside, and player instructions
and configuration parameter values necessary to play the
entire advertisement through web browser 7 to the user.
FIG. 20 shows contents of typical AdDescriptor file 2000
for a PointCast Java advertisement. Specifically and as
shown 1n section 4C of file 2000, this AdDescriptor file lists
file names with partial addresses on the ad management
system of all media files that constitute content for that
advertisement, and, in section 1 of this file, all Java player
files necessary to play all the media files. This file also
respectively specifies, here shown in section 3 and 4B, an
order in which the various media files are to be played, and
various configuration parameters need to properly configure
the operation of each player to play each corresponding
media file.

[0106] The AdDescriptor file implements a data abstrac-
tion that totally separates the media and player files from the
referring web page, here page 35, thus assuring that the
advertisement content itself remains completely indepen-
dent of the content web page that invoked its presentation.
This abstraction permits our technique to provide a highly
effective, generalized and very flexible mechanism for deliv-
ering rich web advertisements, particularly those that require
complex sets of media files and players. Through use of this
abstraction, our inventive technique can handle present and
future media formats, regardless of their requirements,
including proprietary streaming and other content delivery
technologies that rely on Java applets as a delivery mecha-
nism—all transparently to the user. Moreover, the AdDe-
scriptor file can contain separate listings (though not con-
tained in file 2000 shown in FIG. 20) that delineate media
and player files for different browsers, client operating
systems or computing platforms (to the extent any of these
require different versions of the media and/or player files)
then in use. As such, our technique can readily function with
a wide variety of different client computers and browsing
platforms.

[0107] Once the AdDescriptor file is downloaded to the
client PC, via agent server 15, the AdController then
“politely” downloads, as symbolized by block 70 shown in
FIGS. 1B and 1C, into the browser disk cache each media
and player file, as specified in the AdDescriptor file—to the
extent that file does not already reside on the hard disk of the
client PC. Through so-called “polite” downloading, media
and player files are downloaded to browser 7 during browser
idle time intervals, with the downloading suspended during
each ensuing interstitial interval after the user instructs
browser 7 to navigate to a new content web page. In this
manner, while a fully downloaded advertisement is intersti-
tially played from browser cache, the new content page is
downloaded over the full bandwidth of communications link
9. Advantageously, the communications link is freed during
each interstitial interval to just carry web page content,
thereby expediting download of content pages. If, due to the
occurrence of an interstitial interval, the AdController applet
suspends downloading of an advertisement file, then upon
termination of this interval, this applet then resumes down-
loading at a location in that file at which downloading had
stopped, thus conserving communication bandwidth and
reducing download time.

[0108] In particular, as part of the operations symbolized
by block 70, the AdController applet determines which files,

Jan. 2, 2003

of those listed on the AdDescriptor, do not then reside on the
hard disk of client PC 5. Once it has made that determina-
tion, this applet issues a request, as symbolized by line 72,
to agent server 15, to fetch a first one of these files. The agent
server, again serving as a proxy server, issues a request, as
symbolized by line 74, to fetch this file from a networked
server, anywhere on Internet 10, on which that file resides.
For simplicity, we assume that all such files reside on server
20 and are accessible through ad management system 25.
Hence, system 25, via server 20, issues a response, as
symbolized by line 76 to agent server 15, containing this first
advertisement file. The agent server, in turn and as symbol-
ized by line 78, downloads this particular file to client
browser 7 for storage in the browser disk cache. Download-
ing of advertisement files continues in this manner until, as
symbolized by line 88, a last required file for the advertise-
ment has been downloaded, via agent server 15, to the
browser disk cache on client PC 5.

[0109] As the advertisement files for a common advertise-
ment are being downloaded, the Transition Sensor applet
also monitors, as symbolized in block 90, a click-stream
produced by the current user so as to detect a user-initiated
page transition. Once such a transition occurs, usually
caused by a user engendered mouse click, and hence an
interstitial interval starts, the AdController applet plays, also
as symbolized by block 90, a fully cached advertisement
(assuming all its media and player files have been down-
loaded) in the manner specified in its associated AdDescrip-
tor file and using the players specified therein. Also, at the
inception of the interstitial interval, the browser issues, also
as symbolized by block 90, a request to fetch the next
successive web page to which the user desires to transition.
Once the advertisement has fully played, or until the next
successive content web page is fully downloaded and
assembled, or a user has closed an advertisement window,
whichever occurs first (assuming the AdDescriptor file
specifies that the advertisement can be prematurely termi-
nated), then control is returned, as symbolized by path 94, to
the client browser to await completion of the download and
interpretation of HTML code that forms that next content
page and subsequent execution, of an advertising tag therein
to invoke agent download/instantiate/execute operations 50
for that page; and so forth.

[0110] The Transition Sensor and AdController applets are
each implemented through appropriate Java classes and
collectively persist, through storage in the browser disk
cache, across different content pages within a site, different
web sites, and successive browser sessions. Once either of
these applets is completely downloaded through operations
50, providing that applet is not subsequently flushed from
the browser disk cache as the user navigates across web sites
on the web, the files for that applet will be loaded from that
cache, rather than being downloaded from agent server 15,
the next time that applet is required, e.g., when the user next
navigates, either during a current browser session or a
subsequent session, to any successive content page that
contains advertising tag 40.

[0111] Whenever client browser 7 encounters a next suc-
cessive content page containing advertising tag 40, then the
browser, will first and automatically inquire with agent
server 15 to ensure that executable code for the Transition
Sensor applet, if previously downloaded into the browser
disk cache, has not been superseded by an updated version.

US 2003/0004804 Al

If such an updated version then exists, the browser will
collectively download updated files from the agent server
and replace, to the extent necessary, each Transition Sensor
applet file residing in the browser disk cache with its updated
version. Alternatively, if the Transition Sensor applet has not
been previously downloaded into the browser disk cache,
then the browser will download all the necessary files for the
Transition Sensor applet from the agent server into that
cache. The Transition Sensor applet, once executing, will
load, through the browser, the AdController applet. To do so,
the browser will, if necessary, obtain an updated version,
from the agent server, in the same manner as it did for the
Transition Sensor. As a result, any corrections or enhance-
ments made to the agent (specifically the Transition Sensor
and/or the AdController applets) since the agent was last
downloaded to the client browser will be automatically and
transparently, from a user perspective, distributed to that
browser and downloaded into that disk cache the next time
the browser encounters a web page containing an advertising
tag. By operating in this fashion, the user is totally and
advantageously relieved of any need to: both initially load
and install an application program to obtain advertising
and/or later update that program.

[0112] Specifically, cross page persistency of the Transi-
tion Sensor agent is accomplished by using a Java “single-
ton” design. A singleton design allows only a single object
to ever be created and is accomplished by declaring a Java
class as static. Since all applets run in a same instance of a
Java virtual machine, therefore all applets and their associ-
ated code share all static class variables. A static Applet
Registry class is instantiated automatically by the Transition
Sensor applet at its run time and, by implementing the
Applet Registry, provides all inter-applet communication
between the Transition Sensor and the AdController applets
and their threads. The Applet Registry class implements a
“loadAdController” method which, in turn, instantiates the
persistent AdController applet. Through this method, the
Transition Sensor applet downloads the AdController applet
only if the latter applet has either been updated, relative to
that version of this applet then resident in the browser disk
cache, or does not then reside on the browser disk cache. The
AdController applet then instantiates all its own threads that
collectively implement transparent advertisement down-
loading and play mechanisms.

[0113] The AdController applet is itself created by an
Applet Registry singleton object and creates all other objects
that collectively constitute a run time agent execution mod-
ule. This applet extends standard applet class definitions by
over-riding standard Java applet init (initialize), start, run,
stop and destroy life cycle methods, conventionally imple-
mented in the client browser, with corresponding substitute
methods. The substitute stop method ensures that a tradi-
tional response provided by the browser of halting execution
for either the AdController applet does not occur whenever
the browser calls the stop method to terminate the lifecycle
of this applet; hence, advantageously providing persistence
to the agent across successive content pages. Consequently,
the agent continues executing until the user terminates
execution of (closes) the browser itself.

[0114] Thus, the agent persists and functions transparently
in background, independent and transparent to user naviga-
tion across pages on a common web site and across web
sites. In that regard, the agent effectively implements a

Jan. 2, 2003

background process which runs in parallel with and is
transparent to normal HTML and HTTP operations imple-
mented by the client browser.

[0115] To significantly simplify the description and the
accompanying drawings, we have intentionally omitted
from this discussion specific Java classes that constitute the
AdController agent as well as, to increase a rate at which
advertisements can be queued for playback, an accompany-
ing software architecture for processing these classes on a
multi-threaded pipelined basis. Such details are conven-
tional in nature; hence, their use in implementing our present
invention would be readily apparent to any one skilled in the
art.

[0116] B. Client PC
[0117] FIG. 3 depicts a block diagram of client PC 5.

[0118] As shown, the client PC comprises input interfaces
(I/F) 320, processor 340, communications interface 350,
memory 330 and output interfaces 360, all conventionally
interconnected by bus 370. Memory 330, which generally
includes different modalities, including illustratively ran-
dom access memory (RAM) 332 for temporary data and
instruction store, diskette drive(s) 334 for exchanging infor-
mation, as per user command, with floppy diskettes, and
non-volatile mass store 335 that is implemented through a
hard disk, typically magnetic in nature. Mass store 335 may
also contain a CD-ROM or other optical media reader (not
specifically shown) (or writer) to read information from (and
write information onto) suitable optical storage media. The
mass store stores operating system (O/S) 337 and applica-
tion programs 400; the latter illustratively containing
browser 7 (see, e.g., FIGS. 1B and 1C) which implements
our inventive technique. O/S 337, shown in FIG. 3, may be
implemented by any conventional operating system, such as
the WINDOWS NT, WINDOWS 95, or WINDOWS 98
operating system (“WINDOWS NT”, “WINDOWS 95 and
“WINDOWS 98” are trademarks of Microsoft Corporation
of Redmond, Wash.). Given that, we will not discuss any
components of O/S 337 as they are all irrelevant. Suffice it
to say, that the browser, being one of application programs
400, executes under control of the O/S.

[0119] Incoming information can arise from two illustra-
tive external sources: network supplied information, e.g.,
from the Internet and/or other networked facility, through
communication link 9 to communications interface 350, or
from a dedicated input source, via path(es) 310, to input
interfaces 320. Dedicated input can originate from a wide
variety of sources, e.g., an external database. In addition,
input information, in the form of files or specific content
therein, can also be provided by inserting a diskette con-
taining the information into diskette drive 334 from which
client PC 5, under user instruction, will access and read that
information from the diskette. Input interfaces 320 contain
appropriate circuitry to provide necessary and correspond-
ing electrical connections required to physically connect and
interface each differing dedicated source of input informa-
tion to client PC 5. Under control of the operating system,
application programs 400 exchange commands and data
with the external sources, via network connection 9 or
path(es) 310, to transmit and receive information typically
requested by a user during program execution.

[0120] Input interfaces 320 also electrically connect and
interface user input device 395, such as a keyboard and

US 2003/0004804 Al

mouse, to client PC 5. Display 380, such as a conventional
color monitor, and printer 385, such as a conventional laser
printer, are connected, via leads 363 and 367, respectively,
to output interfaces 360. The output interfaces provide
requisite circuitry to electrically connect and interface the
display and printer to the computer system.

[0121] Furthermore, since the specific hardware compo-
nents of client PC 5 as well as all aspects of the software
stored within memory 335, apart from the modules that
implement the present invention, are conventional and well-
known, they will not be discussed in any further detail.
Generally speaking, agent server 15 and third-party ad
server 20 each has an architecture that is quite similar to that
of client PC 5.

[0122] C. Software
[0123] 1. Application Programs 400

[0124] FIG. 4 depicts a simplified high-level block dia-
gram of application programs 400 resident within the client

[0125] As shown, the application programs, to the extent
relevant, contain browser 7 and resident JAVA player files
410, i.c., files for JAVA media players that have previously
been installed onto the hard disk of the client PC. These
players may illustratively include audio, streaming audio,
video and multi-media players.

[0126] Browser 7 contains AdController agent 420, when
it has been fully loaded for execution into browser cache,
browser disk cache 430 and Java virtual machine 440 (which
has been discussed above to the extent relevant). As noted,
this agent persists whenever the user causes browser 7 to
transition across different web content pages or different
web sites, and functions independently and transparently of
any such pages and sites. The AdController agent includes
applet registry 426 for facilitating inter-applet communica-
tion within the agent.

[0127] The AdController agent contains two applets Tran-
sition Sensor applet 422 and AdController applet 424. As
discussed above, the Transition Sensor applet accomplishes
three basic functions. First, this applet loads, instantiates and
starts the AdController applet. Second, the Transition Sensor
applet communicates an Internet address of an advertising
server, here server 20, to request an advertisement, specifi-
cally an AdDescriptor file therefor, that is to be downloaded
and subsequently presented. Lastly, the Transition Sensor
applet, through associated click-stream monitoring (per-
formed by a Transition Sensor implemented by this applet),
determines when a user situated at client browser 7 under-
takes an affirmative action, such as, e.g., causing a mouse
click, to request a next successive web page be downloaded
and rendered, and so notifies the AdController agent of that
event. This event signals a start of an ensuing interstitial
interval.

[0128] AdController applet 424, which is not embedded in
any content page, executes under but is not controlled by
browser 7. This applet, also as discussed above, accom-
plishes several basic functions. First, it creates all other
objects that collectively form a run time agent execution
module for the agent. As noted above, this includes extend-
ing standard Java applet class definitions by over riding
standard Java applet init, start, run, stop and destroy life

Jan. 2, 2003

cycle methods. Second, the AdController applet “politely”
downloads advertising (including media and, where neces-
sary, player) files, through the client browser executing at a
client computer, into browser disk cache and in a manner
that is transparent to a user situated at the browser. Lastly,
the AdController applet interstitially plays advertisements
through the client browser in response to the user click-
stream associated with normal user navigation across dif-
ferent web pages.

[0129] Browser disk cache 430 stores downloaded AdDe-
scriptor files 433 and accompanying and downloaded media
and player files 437.

[0130] 2. AdController Agent 420

[0131] FIG. 5 depicts a high-level block diagram of
AdController agent 420.

[0132] As shown, the agent specifically contains Transi-
tion Sensor applet 422, AdController applet 424 and applet
registry 426.

[0133] As discussed generally above, the Transition Sen-
sor applet implements, as one of its functions, a transition
sensor which detects, through user navigation click-stream
monitoring, a user-initiated transition to a new web page,
and produces, in response, a corresponding Transition Sen-
sor event. Such a transition occurs in response to an actual
user initiated mouse click or key depression to activate a
hotlink appearing on a currently displayed content page in
order to move to new content page, either on the same site
or on another site. Another such transition occurs whenever
a stored history of web pages just visited by the user changes
state. The latter is sensed by a JavaScript function that
monitors a history stored in browser disk cache 430 of
visited web page URLs and generates an event whenever the
history changes state. For ease of reference, we will collec-
tively define the term “click-stream™ to encompass any
user-initiated transition to a new content page, whether it is
a mouse click, key depression or history state change.

[0134] Transition Sensor events are used to trigger the
play of an advertisement only if, by then, all the media and
player files for that advertisement have been fully cached
into browser disk cache 430. Otherwise, play of that adver-
tisement is deferred until after all those files are cached and
the advertisement is ready to be rendered and, importantly,
in response to the next user-initiated transition.

[0135] Client browser 7 produces init (initialize) and start
and stop Transition Sensor events, as symbolized by line 505
and 510, respectively. The init and start events are produced
by the browser to initialize (i.e., load and instantiate) and
start the Transition Sensor applet. The stop events are also
produced by the browser, though through a Transition Sen-
sor stop method which has been substituted for a standard
browser stop method, in response to detection, by the
Transition Sensor, of user-initiated page transitions. These
events control the state of applet 422. Transition Sensor
applet 422 communicates directly with AdController applet
424, as symbolized by line 535—such as to pass an Internet
address of an advertising server, and indirectly, as symbol-
ized by line 530, through applet registry 426. Registry 426
passes information, as symbolized by line 540, to AdCon-
troller applet 424.

[0136] As noted above, AdController applet 424 extends
standard Java applet class definitions by over riding standard

US 2003/0004804 Al

Java applet init, start, run, stop and destroy life cycle
methods. By doing so, particularly in the case of the Stop
method (which will be described below in conjunction with
FIG. 18), permits the AdController applet to persist in
browser disk cache 430, as the user navigates, across suc-
cessive pages and web sites.

[0137] Advantageously, the AdController applet can
readily function in a wide variety of environments, without
changes to the coding of the applet itself. This is accom-
plished through downloading of an external configuration
file (specifically file 620 shown in FIGS. 6A and 6B, which
will be discussed below), as part of the applet files, from
agent server 15. Suitably changing parameter values in the
configuration file permits the behavior of applet 424 to be
readily changed to suit a desired environment without a need
to utilize a different version of that applet for each different
environment, otherwise requiring different software classes
and with attendant modifications and re-compilation.

[0138] Execution of AdController applet 424 begins by
Transition Sensor applet 422 calling a standard init Applet
method, which downloads the external configuration file
followed by extracting and saving its configuration param-
eters. These parameters are supplied, as symbolized by line
515, to the AdController applet, during its execution in order
to define its behavior given its current execution environ-
ment.

[0139] As noted above, AdController applet 424“politely”
and transparently downloads advertising (including media
and, where necessary, player) files, through browser 7 into
browser disk cache 430, for each and every advertisement
that is to be subsequently and interstitially played. A data
path through which advertisements are downloaded is
shown in FIG. 5 by dot-dashed lines; while that for adver-
tisement play is shown in this figure by dotted lines.

[0140] Specifically, to download and play advertisements,
applet 424 implements Ad Pipeline 545 (which will be
discussed in detail below in conjunction with FIG. 14).
Pipeline 545 implements various threads (processes) and
data structures which collectively load advertising files into
browser disk cache 430 (and, for media files, also into
browser RAM cache) and then present fully downloaded
advertisements. The pipeline implements Ad Producer, Ad
Location and Ad Downloader processes (processes 1500,
1600, 1700 shown in FIGS. 15, 16 and 17, respectively, and
discussed in detail below), and download queue 1430 and
play queue 1470 (both of which are shown in FIG. 14 and
discussed in detail below).

[0141] In essence, once Transition Sensor applet 422, as
shown in FIG. §, supplies AdController applet 424 with a
URL of an AdDescriptor file, Ad Pipeline 545 then down-
loads, as symbolized by dot-dashed line 520, the AdDescrip-
tor file, via agent server 15 (serving as a proxy server), from
a remote advertising management system. As noted above,
this file contains a manifest of media and player files
necessary to fully play a complete advertisement. Once this
AdDescriptor file has been downloaded into Ad Pipeline
545, pipeline 545 then “politely” downloads, as symbolized
by line 525, each file specified in the manifest—to the extent
that file does not already reside on the client hard disk.
Pipeline 545 writes the AdDescriptor file to the play queue
and each downloaded file specified therein to browser disk
cache 430; hence forming a queued advertisement for sub-
sequent access.

Jan. 2, 2003

[0142] At the inception of an interstitial interval, signaled
by a Transition Sensor stop event, the AdController applet
interstitially plays an advertisement that has then been
completely queued—both in terms of its media and player
files. In particular, at the start of that interval, the Ad Pipeline
retrieves an AdDescriptor that is then situated at the head of
a play queue. Media players 565 required by that advertise-
ment, as specified in the AdDescriptor file, are started in the
order specified in that file along with their corresponding
media file(s). A resulting processed media stream, produced
by the player(s), and as symbolized by line 570, is rendered
through browser 7 to the user. Media players 565 may
permanently reside, i.e., apart from being downloaded by
agent 420, on the client hard disk (thus being implemented
by resident player files 410 as shown in FIG. 4) or be
downloaded by pipeline 545 into browser disk cache 430
(and also browser RAM cache) for subsequent access and
use (thus stored within files 437 shown in FIG. 4).

[0143] Once an advertisement completely plays, AdCon-
troller applet 424, as shown in FIG. 5, establishes an
appropriate log entry for a “user impression” for that adver-
tisement. Advertisement files are retained in the browser
disk cache until that cache completely fills, at which point
these files, like any other content files stored in that cache,
are deleted by the browser on a first-in first-out (i.c., age
order) basis. Media players 565, browser 7 and browser disk
cache 430 are all shown in dashed lines as these compo-
nents, while being used by the AdController agent, are not
viewed as constituting components solely within the agent
itself.

[0144] FIGS. 6A and 6B collectively depict a high-level
flowchart of processing operations 600 performed by
AdController agent 420; the correct alignment of the draw-
ing sheets for these figures is shown in FIG. 6. Though, the
operations depicted in this figure—and also in FIGS. 8, 9A
and 9B, 12, and 14-19—occur through a multi-threaded
approach to process multiple advertisements on a pipelined
basis, to simplify all these figures, the sequential processing
flow shown in each of these figures is that which processes
a single common advertisement. Description of threads and
classes is provided to the extent needed to provide a suffi-
cient understanding to those skilled in the art as to how these
sequential processing flows would preferably be imple-
mented through a multi-threaded Java class methodology.

[0145] Upon entry into process 600 as shown in FIGS. 6A
and 6B, which occurs in response to an Transition Sensor
init event from browser 7, block 610 is performed. Through
this block, Transition Sensor applet 422 instructs the applet
registry to load the AdController applet. Once that occurs,
block 615 is performed through which external AdController
configuration file 620 is retrieved from agent server 15.
Thereafter, through decision block 630, agent 420 waits, by
looping through NO path 631, until browser 7 generates a
Transition Sensor start event. When such an event occurs,
execution proceeds, via YES path 633 emanating from this
decision block, to block 635. Through this latter block,
AdController applet 424 obtains an Internet address of an
advertisement management system (e.g., system 25) from
which the agent is to retrieve AdDescriptor file 645. Applet
424 then passes this address to Ad Pipeline 545. The Ad
Pipeline, as indicated in block 640, then retrieves AdDe-
scriptor file 645 from this address, and through agent server
15 serving as a proxy server. Once this file is retrieved, the

US 2003/0004804 Al

agent performs block 650 which “politely” downloads all
the media and player files 655 (to the extent each file does
not already reside on the client hard disk), from advertising
management system 25 (residing on advertising server 20),
and, through block 660, stores these files into browser disk
cache 430 (and, in the case of media files, into browser RAM
cache). As noted above, these files are downloaded via agent
server 15, which here too serves as a proxy server. This
downloading continues until either it finishes or a Transition
Sensor stop event generated by the browser arises, which-
ever occurs first. As to the stop event, decision block 665
tests for its occurrence, with execution looping back, via NO
path 666, in the absence of such an event. However, when-
ever this event occurs, such as (as discussed above) in
response to a user-initiation page transition, decision block
665 routes execution, via YES path 668, to block 670. This
latter block then, using media players 565, plays an adver-
tisement then fully queued in the play queue on the browser
disk cache, i.e., an AdDescriptor file for this ad then resides
at a head of the play queue and all associated media and
player files for that advertisement, as specified in that
AdDescriptor file, then reside on the client hard disk.

[0146] 3. AdController Applet 424

[0147] FIG. 7 depicts a high-level block diagram of basic
execution threads that implement AdController applet 424.

[0148] As shown, in response to a Transition Sensor init
event produced by the client browser, one thread executes
block 710 to initialize AdController applet 424. This block
performs the downloading (to the extent necessary) and
instantiation of applet 424. In response to a Transition
Sensor start event produced by the client browser, another
thread, by executing block 720, starts the AdController
applet. Once this applet is started, this applet, in turn and as
discussed above, through execution of block 730, enables
downloading of advertising (media and player) files to
commence. In response to an received Internet address of a
remote ad management system (here, ¢.g., system 25 shown
in FIGS. 1B and 1C) supplied by the Transition Sensor
applet, a third thread requests, through execution block 740
shown in FIG. 7, an AdDescriptor file from the ad manage-
ment system situated at this address and then downloads
AdDescriptor file 645 received in response. If, by this time,
block 730 has enabled advertisement downloading, then
advertising files, as specified in AdDescriptor file 645, are
“politely” downloaded as required. In response to a Transi-
tion Sensor stop event produced by the client browser and
which signals an inception of an interstitial interval, another
thread, here commencing with execution of block 750,
suspends downloading of advertisement files in favor of
displaying a queued advertisement. Once this downloading
is suspended, this last thread invokes block 760 to com-
mence play of an advertisement then situated, in terms of its
AdDescriptor file, at a head of the play queue.

[0149] FIG. 8 depicts a high-level flowchart of processing
operations 800 performed by AdController applet 424.

[0150] Upon entry into operations 800, which occurs in
response to an init event produced by the Transition Sensor
applet, block 810 is performed. Through this block, the
AdController applet is initialized. This includes download-
ing files, to the extent needed, for this applet from the agent
server and then instantiating this applet. Once this occurs,
block 810 tests for an occurrence of AdController start event

Jan. 2, 2003

produced by the Transition Sensor applet. Until this event
occurs, execution merely loops back, via NO path 812, to
block 810. When this event occurs, decision block 810
routes execution, via YES path 814, to block 815. This latter
block, retrieves external AdController configuration file 620
from the agent server. Thereafter, block 820 occurs through
which the AdController applet creates and starts Ad Pipeline
545. Once the pipeline is fully started, then, block 825 is
performed to enable advertisement files to be “politely”
downloaded into the ad pipeline and to thereafter actually
download such files. While advertisement files are being
downloaded or thereafter, if such downloading has com-
pleted, decision block 830 tests for an occurrence of a Play
Ad event. If no such event occurs, then execution loops
back, via NO path 833, to decision block 830 to continue any
further downloading. If however, a Play Ad event occurs,
then decision block 830 routes execution, via YES path 837,
to block 840. This latter block suspends further downloading
of advertisement files into the Ad Pipeline. Once this occurs,
then block 845, when performed, issues a request to the ad
pipeline to play an advertisement having its AdDescriptor
file then located at the head of the play queue. While the
advertisement is being played, decision block 850 tests for
an occurrence of an shutdown event generated by the
browser, such as caused by, e.g., a user-initiated transition or
the user closing an advertisement window or closing the
browser itself. If such an event does not occur, decision
block 850 routes execution, via NO path 853, back to block
825 to re-enable “polite” download of advertisement files
once again. If such a shutdown event occurs, then processing
operations 800 terminate, via YES path 857.

[0151] FIGS. 9A and 9B collectively depict a flowchart of
processing operations 900 performed by AdController
applet 424 specifically for processing an advertisement; the

correct alignment of the drawing sheets for these figures is
shown in FIG. 9.

[0152] Upon entry into operations 900, block 905 is per-
formed to receive a request, issued by the Transition Sensor
applet, to download a next advertisement, specifically an
corresponding AdDescriptor file. This request contains an
Internet address of a remote ad management system. In
response to this request, AdController applet 424 performs
block 910 to request Ad Producer process (also being a
thread) 1500 to download an ad. The Ad Producer process,
as will be discussed below in conjunction with FIG. 185,
requests advertisement files, specifically an AdDescriptor
file, from an Internet address communicated by the Transi-
tion Sensor applet. Thereafter, through block 915, the Ad
Producer process blocks (i.e., it actively waits for its input
data) until this process receives the Internet address of the
remote advertising management system. Thereafter, block
920 executes to cause Ad Location process (also being a
thread) 1600 to block until such time as the AdDescriptor file
is fully downloaded by Ad Producer process 1500 and is
provided to the Ad Location process. Ad Location process
1600, as will be discussed below in conjunction with FIG.
16, performs the following tasks: (a) on startup of process
1600, this process creates an Ad Producer object; (b) it asks
Ad Producer process 1500 for next AdDescriptor file 645;
and (c) once process 1600 obtains such AdDescriptor file
645 and if download queue 1430 (sec FIG. 14) is not full,
it writes that file into this queue. If this queue is then full,
process 1600 simply waits until the queue is not full before
writing the AdDescriptor file into the queue. Once the

US 2003/0004804 Al

AdDescriptor file has been completely downloaded, Ad
Location process 1600 inserts, as shown in block 925, this
file into download queue 1430.

[0153] Once AdDescriptor file 645 is inserted into the
download queue, then Ad Downloader process (also being a
thread) 1700 executes. This process, as will be discussed
below in conjunction with FIG. 17, performs a single chain
of tasks.

[0154] First, as shown by block 930, process 1700 blocks
until such time as the AdDescriptor file for the advertisement
to then be downloaded becomes available in the download
queue. During its execution, this process asks the download
queue 1430 if there is an AdDescriptor file therein, i.e., such
a file for which advertising files need to be downloaded. If
the download queue is empty, then AdDescriptor process
1700 both waits until that queue is not empty and also
retrieves the AdDescriptor file over the network. Once the
Ad Downloader process has retrieved the AdDescriptor file,
this process downloads, as shown by block 940, all the
advertising files specified in the AdDescriptor file, into
browser disk cache (and, in the case of media files, into
browser RAM cache), by using Browser Cache Proxy 1450
(see FIG. 14). Once all the advertising files have finished
downloading, this process, as shown in block 950, moves the
AdDescriptor file to play queue 1470 (see FIG. 14). How-
ever, if the play queue is then full, the Ad Downloader
process will wait until the play queue is not full before
moving the AdDescriptor file into this queue.

[0155] The Browser Cache Proxy implements an interface
to an abstract cache. The cache implementation could be any
kind of cache—the browser disk or RAM cache, a Java
virtual memory cache, a local raw disk cache, and so forth.
Once passed through this cache proxy, the media files that
constitute an advertisement will have been downloaded into
both disk and RAM cache of the browser. Whenever the Ad
Downloader process subsequently tries to access any media
file having an identical URL to that downloaded, this pro-
cess will first attempt to load the files from the browser disk
cache or browser RAM cache instead of downloading the
file, via the Internet, from its advertising management
server; thus leveraging, even across different referring web
pages or sites and to the extent possible, a one time down-
load of an advertising file across different advertisements.

[0156] Next, should a Transition Sensor stop event occur,
i.e., indicative of a start of a next interstitial interval, then
Transition Sensor stop method 1800 will request that
AdController applet 424 then play an advertisement. In
response to this request, an event scheduler thread within the
applet will block, as shown in block 955, until such time as
applet 424 responds to this request by initiating play of an
advertisement. The event scheduler thread controls playing
of advertisements to the user. This process determines when
to execute media players specific to the next advertisement
in the play queue (ie., in terms of corresponding AdDe-
scriptor files situated in that queue), as well as provides a
callback method which the player executes when that player
has successfully completed presenting an advertisement as
specified in its corresponding AdDescriptor file. Once the
AdController applet has initiated play of an advertisement,
then, as shown by block 965, the event scheduler retrieves
an advertisement, specifically the corresponding AdDescrip-
tor file, then situated at the head of the play queue. There-

Jan. 2, 2003

after, the event scheduler, as shown in block 970, launches
execution of the specific media player(s) 565 (see FIG. 5),
as specified in the corresponding AdDescriptor file, to play
this particular advertisement. The browser disk cache pro-
vides the associated content files for this advertisement to
the media player(s). Once the advertisement has been fully
presented, then, as shown in block 975, AdController applet
424 appropriately logs this presentation into a log file
maintained in the browser disk cache for subsequent upload-
ing to the agent server. Execution then exits from operations
900.

[0157] A logger process (also implemented as a thread)
keeps track of all log entries that need to be sent back to the
agent server. This process simply timestamps entries and
adds them to a log buffer. Then periodically, the logger
process will flush the log back to the agent server where
those entries can be archived and analyzed.

[0158] For an advertisement, player mechanisms take
associated media files specified in the associated AdDescrip-
tor file from the browser cache and actually display these
files to a user via a viewable frame or window. The user will
view a pre-cached smoothly playing advertisement out of
the browser disk cache and, where appropriate for media
files, from browser RAM cache, rather than being streamed
in over the Internet. Four modes for displaying advertise-
ments are supported; namely, user-event triggered ad play,
frame targeted ad play, timer based ad play and PopUp Java
frame play. Each of these player mechanisms uses a media
player module (contained within media players 565 shown
in FIG. 5) and a player thread. The player thread provides
an actual presentation of advertising media to the user then
operating the client browser. The combination of a player
and a player thread provides capabilities of: controlling
time-based frequency of advertisement play using an agent
configurable timer; displaying of advertising media files in
a browser window or Java frame; waiting a configurable
amount of time (usually the length of the advertisement as
specified in its AdDescriptor file); and terminating the
advertisement visually upon completion, or at a request of
the user if the advertisement, as configured in its AdDe-
scriptor file, permits pre-mature termination.

[0159] A frame targeted play renders advertisement media
onto a browser window. Such play is interruptible and
restartable upon user-demand. Timer based ad play utilizes
a separate thread that continuously loops to: obtain an
AdDescriptor file from the play queue; display that adver-
tisement using a player and player thread; and sleep for a
specified amount of time before repeating this sequence.
Timer-based ad play is also interruptible and restartable
upon user-demand. The result of this type of advertisement
play is that the user will periodically view advertisements
delivered at regular time intervals rather than by user
initiated events. The PopUp Java frame play is a separate
thread that also continuously loops to: obtain an AdDescrip-
tor file from the play queue; waits for a signal that a
user-initiated transition is occurring; pops up a display
window (“pop-up” window) in the browser, for a pre-
defined period of time, and presents the advertisement in that
window; and removes the pop up window before repeating
this sequence. The result of the PopUp Java Player is that the
user will view successive advertisements each for pre-
defined time interval (which can vary from one advertise-
ment to the next, as specified in the AdDescriptor files for

US 2003/0004804 Al

each such advertisement) whenever the user transitions
between one web page and the next. Once an advertisement
is completely played and in the absence, as discussed above
of any instructions in the AdDescriptor file to replay that
advertisement, such as through, e.g., timer-based ad play, the
associated AdDescriptor file is effectively “pulled off” the
play queue.

[0160] In particular, downloading of advertisement files
occurs, as discussed previously, continuously as effectively
a background process, using a separate asynchronous thread.
The stop method of the Transition Sensor (specifically
Transition Sensor stop method 1800 as will be described
below in conjunction with FIG. 18) is responsible for
generating a play event to the AdController agent. This event
notifies the agent of an opportunity to present a downloaded
advertisement to the user. This stop method is called auto-
matically by the client browser whenever a user transitions
off a web page that contains the embedded advertising tag.
In particular, this method invokes a start player method in
the AdController agent. The start player method, in turn,
invokes a similarly named method, in the event scheduler,
which initiates and controls the presentation of advertise-
ments during content page transitions. The event scheduler
ensures all media files for an advertisement have been
transparently downloaded before their presentation, as well
as exercises control over actual execution of the appropriate
player classes required to visibly render the advertisement.
In that regard, the event scheduler instantiates and invokes
a player class appropriate for the current advertisement by
calling a start method of that class. This start method creates
the player thread that performs visual rendering of the
advertisement. Then, this start method calls a run method of
the player thread in order to visually present the advertising
media from the browser disk and RAM caches. Upon
completion, based on the configuration of the advertisement,
the run method, by executing its own stop method, termi-
nates the advertisement either upon detecting a close request
by the user or completion of ad play timeout. The stop
method performs any player software termination and
cleanup, finally executing a callback to the scheduler object.

[0161] 4. Inter-Applet Events Involving Transition Sensor
Applet 422

[0162] FIG. 10 depicts inter-applet events 1000 that occur
within AdController agent 420 during execution of Transi-
tion Sensor applet 422.

[0163] As shown and discussed above, whenever a
browser interprets and then executes advertising tag 40,
specifically tag 42 therein, situated within content page 35,
this causes the browser to download script 200 (see FIGS.
2A and 2B) from the agent server. This applet, in turn,
dynamically writes Transition Sensor applet 210 into the
referring web content page. As discussed above, once this
applet is instantiated executed by the client browser, the
applet, in turn, instantiates applet registry 426.

[0164] Once the applet registry is instantiated, the Tran-
sition Sensor queries the registry, this operation being sym-
bolized by line 1015, to determine current status of the
AdController applet. If, as symbolized by line 1020, the
registry indicates that the AdController applet is not loaded
and hence is not executing, then Transition Sensor applet
422 loads, as symbolized by line 1025, AdController applet
424 from the browser disk cache, and then instantiates and

Jan. 2, 2003

starts this applet. Once the AdController applet is instanti-
ated, the Transition Sensor applet writes, as symbolized by
line 1030, appropriate entries, indicating that both the Tran-
sition Sensor applet is loaded and, as symbolized by line
1035, that the AdController applet is loaded, into the applet
registry. Once this occurs, then the applet registry returns, as
symbolized by line 1040, an appropriate handle for the
AdController applet to the Transition Sensor in order to
permit the latter to refer to the former. Thereafter, as
symbolized by line 1060, the Transition Sensor passes, as
discussed above and as symbolized by line 1060, a request
containing an Internet address of an advertisement manage-
ment system to the AdController applet to download an
AdDescriptor file, for an advertisement, from that address.
This address is specified in tag 44 of advertising tag 40 and,
as symbolized by dashed line 1050, incorporated into the
request. Thereafter, the Transition Sensor, in response to a
user-initiated transition (click-stream) to a next content web
page, executes its stop method (method 1800 shown in FIG.
18) to instruct, i.e., issue a request to, as symbolized by line
1065, the AdController applet to play a fully downloaded
advertisement having its corresponding AdDescriptor file
then situated at the head of the play queue. Once this occurs,
the Transition Sensor applet terminates its execution until
the browser next encounters, interprets and executes a
content page containing advertising tag 40 at which point the
Transition Sensor applet is re-loaded and re-started; and so
forth.

[0165] 5. Transition Sensor Applet 422

[0166] FIG. 11 depicts a high-level block diagram of basic
processing threads that implement Transition Sensor applet
422.

[0167] As shown, in response to a Init (Initialize) Transi-
tion Sensor applet event produced by the client browser, a
thread commences by executing block 1110 to initialize
Transition Sensor applet 422. This thread, in turn, executes
block 1120 to load AdController applet 424 from browser
disk cache or download it from the agent server, if necessary,
and then load it. Thereafter, this thread executes block 1130
to obtain the Internet address of an advertising management
system (e.g., system 25 shown in FIGS. 1B and 1C, 2A and
2B, and 10) in tag 44 from advertising tag 40.

[0168] As shown in FIG. 11, in response to a Start
Transition Sensor applet event generated by the client
browser, another thread commences by executing block
1140 to enable Ad Downloader process 1700 (as discussed
above, and to be discussed in detail below in conjunction
with FIG. 17) to commence “polite” downloading an AdDe-
scriptor file and all required and associated advertisement
files (both media and player) into the browser disk cache.

[0169] Further, as shown in FIG. 11, in response to a Stop
Transition Sensor applet event generated by the client
browser, a third thread commences by executing block 1150
to disable Ad Downloader process 1700 and thus suspend
further downloading of advertisement files. Once this
occurs, this thread then executes block 1160 to instruct the
AdController applet to play a fully downloaded advertise-
ment having its corresponding AdDescriptor file then situ-
ated at the head of the play queue.

[0170] FIG. 12 depicts a high-level flowchart of process-
ing operations 1200 performed by Transition Sensor applet
422.

US 2003/0004804 Al

[0171] Upon entry in operations 1200, decision block
1210 tests for an occurrence of an init event produced by the
client browser. Until such an event occurs, execution loops
back, via NO path 1213, to block 1210. When this event
occurs, execution proceeds, via YES path 1217 to block
1220 which, when performed, initializes Transition Sensor
applet 422. Thereafter, block 1230 is performed through
which the Transition Sensor applet 424 instructs, by issuing
a request to, the AdController applet to download an adver-
tisement, specifically as discussed above an AdDescriptor
file from an ad management server specified in the adver-
tising tag. Once this occurs, decision block 1240 tests for an
occurrence of a Transition Sensor start event generated by
the client browser. Until such an event occurs, execution
loops back, via NO path 1243, to block 1240. When this
particular event occurs, execution proceeds, via YES path
1247 to block 1250 which, when performed, enables Ad
Pipeline 545 to download the AdDescriptor file and associ-
ated advertising files.

[0172] Next, decision block 1260 tests for an occurrence
of a Transition Sensor stop event generated by the client
browser. Until such an event occurs, execution loops back,
via NO path 1263, to block 1260. When a Transition Sensor
stop event occurs, execution then proceeds, via YES path
1267 to block 1270 which, when performed, requests that
AdController applet 424, specifically via Ad Pipeline 545,
then play an advertisement.

[0173] 6. Ad Loader Process 1300

[0174] FIG. 13 depicts a high-level block diagram of Ad
Loader process 1300 which forms a portion of AdController
applet 424. Process 1300 provides an advertiser (specifically
an advertising programmer) with control over various func-
tions, for advertisement play and logging, implemented by
the AdController applet, specifically how and where this
applet retrieves advertisements across a networked connec-
tion and how those advertisements are played. Through use
of the Ad Loader, the AdController applet can be controlled,
to an extent desired, by external programmatic calls.

[0175] As shown, this process includes Ad Loader API
(application programming interface) 1310 which interfaces
to Ad Pipeline 545 and through this pipeline controls how
advertisements are presented, as symbolized by block 1370,
by the player mechanisms. In particular, the Ad Loader API
provides information regarding and, through setting various
program variables, permits programmer control over adver-
tisement display and downloading operations. In that regard,
these variables provide a callback to the AdController applet
indicating when a content page to which the user has just
transitioned has completed its downloading; and can be used
to: instruct the AdController applet when to download a next
advertisement, when to play a next advertisement fully
queued in the Ad Pipeline, start and stop a play timer (for use
with, e.g., timer based ad play, as discussed above), log a
message, set a mode so as to specify a desired location to
display advertisements, suspend and resume download of
advertisement files into the Ad Pipeline, suspend a current
download for a given period of time, and suspend and
resume advertisement play by the player mechanisms.

[0176] In that regard, the Ad Loader API configures Ad
Pipeline 545 such that AdDescriptor file 645 is downloaded,
as symbolized by block 1320, from a remote ad management
system into the Ad Pipeline in response to receipt of an

Jan. 2, 2003

Internet address of an ad management system and, for
targeted advertisements, a URL of a referring web page
address. As symbolized by block 1330, the API configures
the Ad Pipeline such that advertisement downloading is
enabled only when AdController applet 424 is not playing an
advertisement. Furthermore, as symbolized by block 1340,
the API configures the Ad Pipeline such that advertisement
downloading is disabled whenever the AdController applet
is playing an advertisement. Furthermore, as symbolized by
block 1350, the API configures the Ad Pipeline such that
advertisement play is to commence in response to a request
to play a next advertisement, i.e., one that is fully cached in
the browser disk cache and having its AdDescriptor file then
situated at the head of the play queue.

[0177] 7. Ad Pipeline 545

[0178] FIG. 14 depicts a high-level block diagram of Ad
Pipeline 545. As discussed above, the Ad Pipeline imple-
ments various threads and data structures which collectively
load advertising files (needed media and player files) into the
browser disk cache and, for media files, also into browser
RAM cache, and then present fully downloaded advertise-
ments. As noted, the Ad Pipeline employs Ad Producer
process 1500, Ad Location process 1600 and Ad Down-
loader process 1700 (all of these processes, as noted above,
are also threads).

[0179] Inresponse to an incoming request to download an
advertisement, Ad Pipeline 545 is invoked. Specifically,
within this pipeline, first block 1410 executes to invoke Ad
Producer process 1500 in response to an incoming request to
download an advertisement. As discussed above, this
request, issued by the Transition Sensor applet, includes an
Internet address of a remote ad management system (e.g.,
system 25 shown in FIGS. 1B and 1C) on which an
advertisement resides and is to be downloaded (through
agent server 15 as a proxy server). Ad Producer process
1500, as will be discussed below in conjunction with FIG.
15, requests advertisement files, specifically an AdDescrip-
tor file (e.g., file 645), from an Internet address specified in
the request. During its execution, the Ad Producer process
waits until it receives the Internet address of the remote
advertising management system, whereupon this process
then downloads AdDescriptor file 645 from the specified ad
management system. Once this file has been downloaded,
block 1420, shown in FIG. 14, executes to invoke Ad
Location process 1600 (which will be discussed in detail
below in conjunction with FIG. 16). During its execution,
Ad Location process 1600 blocks until such time as AdDe-
scriptor file 645 is fully downloaded by Ad Producer process
1500 and is provided to the Ad Location process, whereupon
the Ad Location process writes this AdDescriptor file into
download queue 1430.

[0180] After AdDescriptor file 645 has been written into
the download queue, Ad Location process 1600, as will be
discussed below in conjunction with FIG. 16, performs the
following tasks: (a) on startup of process 1600, this process
creates an Ad Producer object; (b) this process asks Ad
Producer process 1500 for next AdDescriptor file 645; and
(c) once process 1600 obtains AdDescriptor file 645 and, if
download queue 1430 is not full, process 1600 writes that
file into this queue. If this queue is then full, process 1600
simply waits until the queue is not full before writing the
AdDescriptor file into the queue. Once the AdDescriptor file

US 2003/0004804 Al

has been completely downloaded, Ad Location process 1600
inserts, as shown in block 925, this file into download queue
1430.

[0181] Once AdDescriptor file 645 is inserted into the
download queue, then Ad Downloader process 1700
executes. Process 1700, which will be discussed below in
conjunction with FIG. 17, performs a single chain of tasks.
First, process 1700 blocks until such time as the downloaded
AdDescriptor file has become available in the download
queue. During its execution, this process asks download
queue 1430 if it contains an AdDescriptor file, e.g., file 645.
If so, then advertising files need to be downloaded for that
particular AdDescriptor file. If the download queue is empty,
then process 1700 both waits until that queue is not empty
and also retrieves the AdDescriptor file over the network.
Once Ad Downloader process 1700 has obtained this AdDe-
scriptor file, process 1700 then downloads, all the media and
required player files specified in the AdDescriptor file by
using Browser Cache Proxy 1450, into browser disk and
RAM cache. Once all the advertising files have finished
downloading, process 1700 moves the AdDescriptor file to
play queue 1470. However, if the play queue is then full, the
Ad Downloader process waits until play queue 1470 is not
full before moving the AdDescriptor file into this queue for
subsequent ad play. As discussed above, AdDescriptor file
645 for a fully queued ad (i.e., with its all the associated
media and player residing on the client hard disk) is subse-
quently retrieved from play queue 1470 in response a
request to play an advertisement, this request being issued in
response to a Transition Sensor stop event.

[0182] 8. Ad Producer Process 1500

[0183] FIG. 15 depicts a high-level block diagram of Ad
Producer process 1500. As noted above, this process
requests an AdDescriptor file from an Internet address
communicated by the Transition Sensor applet and subse-
quently downloads that file in the browser disk cache.

[0184] As shown, upon entry into process 1500, execution
first proceeds to decision block 1510. This block determines
whether a URL has been received, from the Transition
Sensor, from which to fetch an AdDescriptor file. If such a
URL has not yet been received, then execution loops back,
via NO path 1517, to this decision block. Alternatively, if
such a URL has been received, then execution proceeds, via
YES path 1513, to block 1520 which, in turn, stores this
URL, as Ad URL 1530, for use during a next successive
advertisement download opportunity

[0185] Once this URL has been so stored, execution
proceeds to decision block 1540. This block tests for an
occurrence of a user-initiated event (click-stream) signifying
that advertisement downloading can now occur, such as,
e.g., when the user has just closed an existing advertisement
frame and a next successive content page to which the user
has transitioned is being rendered by the client browser. If
such an event has not yet occurred, e.g., the next successive
content web page is downloading, then execution merely
loops back, via NO path 1543, back to decision block 1540.
However, if such an event occurs, then this decision block
routes execution, via YES path 1547, to block 1550. This
latter block, when executed, downloads AdDescriptor file
645 using the URL communicated by the Transition Sensor.
Once this file is completely downloaded, then block 1560

Jan. 2, 2003

executes to transfer this file to Ad Location process 1600.
Thereafter, execution loops back, via path 1565, to decision
block 1510, and so forth.

[0186] 9. Ad Location Process 1600

[0187] FIG. 16 depicts a high-level block diagram of Ad
Location process 1600. This process, as discussed above,
accomplishes the following tasks: (a) on startup of this
process, process 1600 creates an Ad Producer object; (b)
process 1600 asks Ad Producer process 1500 for next
AdDescriptor file 645; and (¢) once process 1600 obtains
AdDescriptor file 645 and, if download queue 1430 (see
FIG. 14) is not full, process 1600 then writes that file into
this queue. If this queue is then full, process 1600 simply
waits until the queue is not full before writing the AdDe-
scriptor file into the queue.

[0188] Upon entry into process 1600 and with respect to
advertisement downloading itself, execution proceeds to
decision block 1610. This decision block, when executed,
determines whether an Internet address (URL) of an ad
management system has been received from the Transition
Sensor applet from which a next successive advertisement
download. If that address has not yet been received, then
execution merely loops back, via NO path 1613, to decision
block 1610. Alternatively, if such an address has been
received but not yet processed, then decision block 1610
routes execution, via YES path 1617, to block 1620. This
latter block requests Ad Producer process 1500 to download
an AdDescriptor file, e.g., file 645, from this URL. Once this
request occurs, execution proceeds to decision block 1630 to
determine whether this AdDescriptor file has been com-
pletely downloaded. If this file download is still occurring,
then execution merely loops back, via NO path 1633, to
block 1630 to await completion of the download. Once this
download completes, decision block 1630 routes execution,
via YES path 1637, to block 1640. This latter block writes
the downloaded AdDescriptor file into download queue
1430. Once this occurs, execution is directed, via path 1645,
back to decision block 1610, and so forth.

[0189] 10. Ad Downloader Process 1700

[0190] FIG. 17 depicts a high-level block diagram of Ad
Downloader process 1700. Essentially, as discussed above,
process 1700 determines, from the download queue, if it
contains an AdDescriptor file, e.g., file 645. If it does contain
such an AdDescriptor file, then advertising files need to be
downloaded for that file. Consequently, process 1700 then
downloads required advertising files specified in that AdDe-
scriptor file. Once this fully occurs, process 1700 moves the
AdDescriptor file to the play queue.

[0191] In particular upon entry into process 1700, execu-
tion proceeds to decision block 1710. This decision block
determines whether the download queue then contains an
AdDescriptor file, e.g., file 645. If the queue is empty, then
execution merely loops back, via NO path 1717, to this
decision block to await such an AdDescriptor file. However,
if download queue 1430 then contains such a file, process
1720 obtains the AdDescriptor file then situated at the head
of this queue. Thereafter, block 1730 executes. This block
downloads all the required advertising files, not then resi-
dent on the client hard disk, into browser proxy cache 1450.
This block also transfers all the associated media files in the
browser proxy cache to the browser RAM cache. Execution

US 2003/0004804 Al

then proceeds to decision block 1740 which determines
whether all required advertising files have then been down-
loaded. If any such file remains to be downloaded, then
decision block 1740 routes execution, via NO path 1747,
back to block 1730 to download that file. Alternatively, if all
the required advertising files have been downloaded, then
execution proceeds, via YES path 1743, to block 1750. This
latter block moves the AdDescriptor file from download
queue 1430 to an end of play queue 1470. Once the
AdDescriptor file is written into the play queue, the corre-
sponding advertisement is then ready to be presented to the
user, in order relative to other AdDescriptor files then
queued in the play queue, during an ensuing interstitial
interval.

[0192] 11. Transition Sensor Stop Method 1800

[0193] FIG. 18 depicts a flowchart of stop method 1800
invoked by Transition Sensor applet 422. This method, in
response to a stop event generated by the browser, suspends
downloading of advertisement files and initiates interstitial
ad play.

[0194] In particular, upon entry into method 1800, deci-
sion block 1810 executes to determine if a stop event has
been received from browser 7. If such a stop event has yet
not occurred, then execution loops back, via NO path 1813,
back to block 1810 to await occurrence of this event. When
this event occurs, decision block 1810 directs execution, via
YES path 1817, to decision block 1820. This latter decision
block determines if AdController applet 424 is then loaded
and executing. If this applet is not then executing, decision
block 1820 routes execution, via NO path 1827, to block
1830. This latter block inhibits any request from being made
to the AdController applet to play any advertisement until
that applet is executing and, once that occurs, a next user-
initiated (click-stream) event occurs. Thereafter, execution
of method 1800 terminates. Alternatively, if the AdControl-
ler applet is loaded and executing, then decision block 1820
routes execution, via YES path 1823, to block 1840. This
latter block requests the AdController applet to play a next
advertisement. Once this request is issued, then execution
proceeds to block 1850. This block, in turn, requests the
AdController applet to suspend “polite” background down-
loading of advertisement files while a next successive web
content page, as requested by the user, is being downloaded
by the browser. Once block 1850 executes, execution of
method 1800 terminates.

[0195] 12. Transition Sensor Start Method 1900

[0196] FIG. 19 depicts a flowchart of start method 1900
invoked by Transition Sensor applet 422. This method, in
response to a start event generated by the browser, resumes
background downloading of advertisement files.

[0197] Specifically, upon entry into method 1900, execu-
tion proceeds to decision block 1910 which, when executed,
determines if a start event has been received from browser
7. If such a start event has not yet occurred, then execution
loops back, via NO path 1913, back to block 1910 to await
occurrence of this event. When this event occurs, decision

Jan. 2, 2003

block 1910 directs execution, via YES path 1917, to decision
block 1920. This latter decision block determines if AdCon-
troller applet 424 is then loaded and executing. If this applet
is not then executing, decision block 1920 routes execution,
via NO path 1927, to block 1930. Block 1930 inhibits any
request from being made to the AdController applet to
download any advertisement until that applet is executing
and, once that occurs, a next user-initiated (click-stream)
event occurs. Once the AdController applet begins executing
and thereafter a next user-initiated (click-stream) event
occurs, execution proceeds to block 1940. This latter block
requests the AdController applet to resume background
downloading of advertisement files. Once this downloading
is resumed, method 1900, through execution of block 1960,
waits for browser 7 to call Transition Sensor stop method
1800 whenever the user next unloads a web page currently
rendered by the browser, i.e., causes a user initiated-event to
transition to a next successive web page. Alternatively, if the
AdController applet is loaded and executing, then decision
block 1920 routes execution, via YES path 1923, to block
1950. Since at this point the next successive content web
page has been fully executed by the browser and is, e.g.,
rendered to the user, block 1950 issues a request, through the
applet registry, to the AdController applet to enable it to
resume background downloading of advertisement files.
Once this occurs, block 1940 is executed to issue a request
to the AdController applet to resume the background down-
loading. Execution then proceeds to block 1960 to wait for
browser 7 to call Transition Sensor stop method 1800
whenever the user next unloads a web page currently
rendered by the browser, i.e., causes a user initiated-event to
transition to a next successive web page. Whenever the
browser generates a next Transition Sensor stop event,
process 1900 terminates.

[0198] Although a single embodiment which incorporates
the teachings of our present invention has been shown and
described in considerable detail herein, those skilled in the
art can readily devise many other embodiments and appli-
cations of the present invention that still utilize these teach-
ings.

We claim:

1. A computer readable medium storing a web page
wherein the web page comprises a plurality of computer
readable instructions, the instructions representing page
content and an embedded advertising tag, wherein the adver-
tising tag when executed by a web browser, causes the
browser to:

download from a server, at least one media file forming a
predefined advertisement, while the browser is display-
ing a content web page to a user; and

during an interstitial interval occurring in response to a
user-initiated event for transitioning between succes-
sive web pages, suspending the download and display-
ing said one media file so as to render the advertisement
through the browser to the user.

#* #* #* #* #*

