发明名称
多缸发动机方法

摘要
本发明公开一种用于将空气喷射到发动机的排气口中的实施例。在一个实例中，一种多缸发动机方法，包括燃烧室内的空气混合物，在第一气缸的排气冲程期间将空气喷射到第一气缸的排气口中而不喷射到第二气缸的排气口中，并在第二气缸的排气冲程期间，将空气喷射到第二气缸的排气口中而不喷射到第一气缸的排气口中。以这种方式，到每个排气口中的喷射可以用于排气释放到排气口中被定时。
1. 一种多缸发动机方法，包括：
 燃烧富集的空燃混合物；

 在第一气缸的排气冲程期间，旋转具有包括圆盘形的单个切口开口的圆形盘到第一位置，处于所述第一位置的所述开口将压缩空气源流体连接于第一气缸的排气口而不连接于第二气缸的排气口，并且将空气从所述压缩空气源喷射到所述第一气缸的排气口而不喷射到所述第二气缸的排气口中；以及

 在所述第二气缸的排气冲程期间，旋转所述圆形盘到第二位置，处于所述第二位置的所述切口开口将所述压缩空气源流体连接于所述第二气缸的排气口而不连接于所述第一气缸的排气口，并且将空气从所述压缩空气源喷射到所述第二气缸的排气口而不喷射到所述第一气缸的排气口中。

2. 根据权利要求1所述的多缸发动机方法，其中将空气喷射到所述第一气缸的排气口中还包括不将空气喷射到没有正经历排气冲程的其他气缸的排气口中，并且其中将空气喷射到所述第二气缸的排气口中还包括不将空气喷射到没有正经历排气冲程的其他气缸的排气口中。

3. 根据权利要求1所述的多缸发动机方法，其中将空气喷射到所述第一气缸的排气口中还包括响应排气的温度低于阈值将空气喷射到所述第一气缸的排气口中。

4. 根据权利要求1所述的多缸发动机方法，其中所述圆形盘的旋转是针对所述发动机的凸轮轴被机械定时的。

5. 根据权利要求4所述的多缸发动机方法，还包括通过运行空气泵来产生所述压缩空气源。

6. 根据权利要求4所述的多缸发动机方法，还包括通过装在涡轮增压器压缩机下游的空气引导到空气喷射系统中产生所述压缩空气源。

7. 根据权利要求1所述的多缸发动机方法，其中将空气喷射到所述第一气缸的排气口中还包括阻挡向所有其他气缸的排气口中的空气喷射，其中所述阻挡是针对所述发动机的凸轮轴被机械地定时的。

8. 根据权利要求1所述的多缸发动机方法，其中将空气喷射到所述第二气缸的排气口中还包括阻挡向所有其他气缸的排气口中的空气喷射，其中所述阻挡是针对所述发动机的凸轮轴被机械地定时的。
多缸发动机方法

技术领域
[0001] 本发明涉及用于发动机排气的空气喷射系统。

背景技术
[0002] 为了减少排气排放物，车辆装有各种催化转化器的一种或更多种排放物控制装置。为了最佳地起作用，这些装置频繁地利用快速加热到起燃温度。已经采用各种方法来快速加热排放物控制装置。在一个例子中，发动机可以以富集空燃比来运行。剩余在排气中的未燃烧的碳氢化合物可以与喷入排气歧管中的二次空气进行反应，以在排放物控制装置上游的排气中产生附加的热。
[0003] 欧洲专利No. EP2016261公开一种将空气泵送到排气口中的二次空气喷射泵。但是，在多缸四冲程发动机中，排气是脉动的并且因此排气口不在同一时间释放排气。因此释放排气的排气口具有更高的背压。在二次空气喷射期间，这会导致释放排气的排气口接受更多的二次空气。

发明内容
[0004] 本文的发明人已经认识到利用上述方法的这些问题并且提供一种至少部分地解决这些系统的系统。在一个实施例中，一种多缸发动机方法包括：燃烧富集空燃混合物，在第一汽缸的排气冲程期间将空气喷射到第一汽缸的排气口而不喷射到第二汽缸的排气口，并且在第二汽缸的排气冲程期间将空气喷射到第二汽缸的排气口而不喷射到第一汽缸的排气口。
[0005] 以这种方式，只有在排气口正释放排气时每个排气口才可以接收喷射的二次空气（或其他氧化剂）。为了有效地与排气中的碳氢化合物进行反应所需要的二次空气的量对于所有的排气口可以相等地提供，从而使省去不必要的空气喷射。
[0006] 在一个例子中，被喷射的空气可以由空空气泵提供，该空气泵包括针对发动机的凸轮轴被机械地定时的旋转盘。通过仅仅在每个排气口的排气释放期间将空气喷射到该排气口中，可以利用使用较少能量的较小的空气泵或空气源，因此，提高总的发动机燃料经济性。而且，由于空气泵的旋转盘可以连接于凸轮轴以控制对每个排气口的空气喷射，所以空气泵和到排气口的喷射的控制策略可以被简化。还有，如果希望，就可以省去在每个排气口利用耐热的控制阀，从而减少成本。
[0007] 在另一个实施例中，一种多缸发动机方法包括：燃烧富集空燃混合物；仅仅在第一汽缸的排气冲程期间，通过针对发动机的凸轮轴被机械定时的第一连接将空气从压缩空气源喷射到第一汽缸的排气口；以及仅仅在第二汽缸的排气冲程期间，通过针对发动机凸轮轴被机械定时的第二连接将空气从该空空气源喷射到第二汽缸的排气口中。
[0008] 在另一个实施例中，燃烧所述富集空燃混合物还包括在操作空气泵以产生压缩空气源的同时燃烧所述富集空燃混合物。
[0009] 在另一个实施例中，燃烧所述富集空燃混合物还包括在引导涡轮增压器压缩机下
进系统中。发动机10可以至少部分地由包括控制器12的控制系统和经由输入装置130来自车辆操作者132的输入来控制。在这个例子中，输入装置130包括加速器踏板和用于生成成比例的踏板位置信号的踏板位置传感器134。发动机10的燃烧室（即，气缸）30可以包括具有设置在其中的活塞36的燃烧室壁32。活塞36可以联接于曲轴40，以便活塞的往复运动转换成曲轴的旋转运动。曲轴40可以经由中间变速器系统被联接到车辆的至少一个驱动轮。此外，起动马达可以经由飞轮被联接到曲轴40，以能够进行发动机10的起动操作。

[0026] 燃烧室30可以经由进气通道44接收来进气歧管44的进入空气，并且可以经由排气通道48排出燃烧气体。进气歧管44和排气通道48能够经由相应的进气门52和排气门54与燃烧室30选择性地连通。在一些实施例中，燃烧室30可以包括两个或更多个进气门和/或两个或更多个排气门。

[0027] 在这个例子中，进气门52和排气门54可以经由相应的凸轮致动系统51和53通过凸轮致动来控制。凸轮致动系统51和53可以每个均包括一个或更多个凸轮并且可以利用由控制器12控制的凸轮廓线变换系统（CPS）、可变凸轮轴正时（VCT）、可变气门正时（VVT）和/或可变气门升程（VLI）系统中的一个或更多个，以改变气门运行。进气门52和排气门54的位置可以分别由位置传感器55和57确定。在可替代实施例中，进气门52和/或排气门54可以由电子气门致动来控制。例如，气缸30可以替代性地包括经由电子气门致动控制的进气门和经由包括CPS和/或VCT系统的凸轮致动来控制的排气门。

[0028] 燃料喷嘴66被示出直接连接于燃烧室30，用于与从控制器12接收的信号FPW的脉冲宽度成比例经由电子驱动器68将燃料直接喷射到其中。以这种方式，燃料喷嘴66提供通常所说的燃料直接喷射到燃烧室30中。例如，燃料喷嘴可以安装在燃烧室的侧面或燃烧室的顶上。燃料可以由包括燃料箱、燃料泵和燃料轨的燃料系统（未示出）提供给燃料喷嘴66。在一些实施例中，燃烧室30可以替代性地或附加地包括以如下构造被设置在进气通道44中的燃料喷嘴，即提供到燃烧室30上游的进气口内的通常所说的进气道燃料喷射。

[0029] 进气通道42可以包括具有节流板64的节气门62。在这个具体的例子中，可以通过提供给节气门62所包括的电动马达或致动器——一种通常被叫做电子节气门控制器（ETC）的结构——的信号由控制器12来改变节流板64的位置。以这种方式，节气门62可以运行成改变提供给燃烧室30以及其他发动机气缸的进气。节流板64的位置可以通过节气门位置信号PP提供给控制器12。进气通道42可以包括用于向控制器12提供相应信号MAF和MAP的质量空气流量传感器120和歧管空气压力传感器122。

[0030] 在所选的运行模式中，点火系统88能够响应来自控制器12的火花提前信号SA经由火花塞92为燃烧室30提供点火火花。虽然在一些实施例中示出火花点火部件，但是发动机10的燃烧室30或一个或更多个其他燃烧室可以在具有或不具有点火火花的情况下以压缩点火模式运行。

[0031] 排气传感器126被示为被联接于排放物控制装置70上游的排气通道48。传感器126可以是用于提供对排气空/燃比的指示的任何合适的传感器，例如线性氧传感器或EGO（通用或宽域排气氧）、双态氧传感器或EGO，HEGO（加热的EGO）、NOX，HC或CO传感器。排放物控制装置70被示为在排气传感器126下游沿着排气通道48设置。装置70可以是三元催化剂（TWC）、NOX捕集器、各种其他的排放物控制装置或其组合。在一些实施例中，在发动机10的运行期间，可以通过在具体空/燃比内运行发动机10的至少一个气缸从而周期性地复位
(reset) 排放物控制装置70。

[0032] 发动机10还可以包括沿着进气歧管44设置的压缩装置，诸如包括至少一个压缩机162的涡轮增压器或机械增压器。对于涡轮增压器，压缩机162可以至少部分地由沿着排气通道48设置的涡轮164(例如，由轴)驱动，还可以包括废气门和压缩机旁通阀中的一个或更多个以控制通过涡轮和压缩机的流动。对于机械增压器，压缩机162可以至少部分地由发动机和/或电机驱动，并且可以不包括涡轮。因此，经由涡轮增压器或机械增压器提供给发动机的一个或更多个气缸的压缩的量可以通过控制器12改变。

[0033] 空气喷射系统138可以将二次空气喷射到气缸30的排气口139中。该空气喷射系统138可以包括空气喷嘴140，其被构造为将空气吹出地喷射到发动机10的每个气缸的每个排气口中。空气喷嘴140可以包括多个连接，每个连接均联接于排气口。空气喷嘴140可以由与凸轮致动系统53的凸轮轴的机械联接件来控制空气喷射。在一个例子中，该机械联接件可以包括旋转盘(图1中未示出)，该盘被构造成在气缸30的排气冲程期间打开空气喷嘴140和排气口139之间的连接，并且在其他时间阻断该连接。以这种方式，喷射到排气口的空气喷射可以随该排气口中的排气释放被定时。

[0034] 在一个实施例中，压缩空气可以由空气泵142被提供给空气喷嘴，该空气泵142可以包括由控制器12调节的接通和关闭状态。在另一个实施例中，可以由由涡轮增压器压缩机162下游的进入空气转向的通路146向空气喷嘴140提供压缩空气。该通路146可以由控制器12控制的涡轮增压器转向阀148被打开和关闭。虽然在图1中喷嘴140和空气泵142被示为分开的部件，但是应当理解，在一些实施例中，喷嘴140和空气泵142可以集成为单个装置。

[0035] 在图1中控制器12被示出为微型计算机，包括：微处理器单元(CPU)102，输入/输出(I/O)端口104，在这个具体例子中被示为只读存储器106的用于可执行程序和校准值的电子存储介质，随机存取存储器(RAM)108，保持存储器(KAM)110和数据总线。控制器12可以接收来自被联接到发动机10的传感器的各种信号，除了上面提到的那些信号之外，还包括：来自质量空气流量传感器120的感生的质量空气质量(MAF)的测量；来自联接于冷却套筒114的温度传感器112的发动机冷却剂温度(ECT)；来自联接到曲轴40的霍尔效应传感器118(或其他类型)的表面点火感应信号(PIS)；来自节气门位置传感器的节气门位置信号(TH)；以及来自传感器122的绝对歧管压力信号MAP。发动机转速信号RPM可以由控制器12从信号PIS产生。来自歧管压力传感器的歧管压力信号MAP可以用来提供对进气歧管中的真空或压力的指示。应当注意可以使用上述各种传感器的组合，例如有MAF传感器而没有MAP传感器，或反之亦然。在化学计量比运行期间，MAP传感器可以给出对发动机转矩的指示。而且这个传感器以及探测到的发动机转速可以提供被引入气缸中的充气(包括空气)的估算。在一个例子中，也用作发动机转速传感器的传感器118可以对于曲轴的每一转产生预定数量的等间隔脉冲。

[0036] 存储介质只读存储器106能够用计算机可读数据以及可以想到但未列出的其他变量编程，该计算机可读数据表示用于进行下面所述的方法的由处理器102可执行的指令。[0037] 如上所述，图1只示出吨缸发动机的一个气缸，并且每个气缸可以类似地包括其自身的一套进气/排气门，燃料喷嘴，火花塞等。

[0038] 图2A和图2B示出在示例性的空气喷射系统200。图1的空气喷射系统138是空
气喷射系统200的一个非限制性示例。气喷射系统200包括旋转盘202和凸轮轴连接件204。该旋转盘可以包括切口，以实现气喷射系统和气缸排气口之间的连接。如上所述，旋转盘202可以连接于发动机的凸轮轴，以使该旋转可以针对发动机的每个气缸的每个排气门的打开做定时。气喷射系统200还可以包括压缩空气源210，以向气喷射系统的多个连接供给空气。该压缩空气源210可以包括由空气泵产生的空气或可以包括在压缩机下游转向的空气。如果压缩空气包括由空气泵产生的空气，则该空气泉可以与旋转盘202、凸轮轴连接件204和连接被包括在单个装置中，或者空气泵可以是单独的。

图2A示出旋转盘202在第一位置，从而旋转盘202从0°起始位置已转到120°，正如切口的前边缘所确定的。因此，气喷射系统和第一气缸的排气口之间的连接206被打开。气喷射系统和其他气缸的排气口之间的所有其他连接均被阻挡。图2B示出旋转盘在第二位置，从而使旋转盘202从起始位置已转到225°，以便气喷射系统和第二气缸的排气口之间的连接208被打开；连接206以及其他两个连接被阻挡。

如图2A和图2B所示，气喷射系统和排气口之间的连接206和208是由旋转盘中切口开口所产生的连接。然而，在一些实施例中，连接可以由连接于凸轮轴的一个或更多个阀提供，或用于在每个相应的气缸的排气冲程期间定时气喷射系统和每个排气口的连接的其他合适机构来提供。所述连接是空气连通/通路连接，这种连接仅仅在选择的持续时间期间（例如排气冲程期间）允许空气连通并且在其他情况下被阻挡，同样地，气缸的正时也针对凸轮轴被定时。虽然旋转盘202在图2A和图2B中示出包括切口部分，以实现每个连接的打开，但这不是非限制性的例子，并且在阻挡其他连接的同时打开一个连接的旋转盘的其他构造也属于本发明的范围内。

而且，虽然示出四个连接，但是其他连接也是可能的，例如六个连接或八个连接。连接的数目可以等于发动机中的气缸的数目，或可以等于气缸组中的气缸的数目。在一些实施例中，气缸可以包括多于一个的排气口。在这种情况下，每个连接可以开放于多个通路以便将空气一次喷射至单个气缸的所有排气口中。在其他实施例中，每个排气口可以具有其自身的与气喷射系统的连接，并且连接的位置和切口开口的尺寸可以确定向每个排气口中进行气喷射的持续时间。例如，如果每个气缸具有两个排气口，则用于一个气缸的排气口的连接可以被设置成彼此紧邻，以使得每个排气口接收基本相同的持续时间和正时的气喷射。在另一个例子中，单个气缸的排气口连接可以相互分开，并且切口开口可以尺寸做成使得一个排气口在排气冲程的第一半冲程期间接收空气喷射，而另一个排气口在该排气冲程的第二半冲程期间接收空气喷射。其他的连接构造也在于本发明的范围内。

图3示出用于在多缸发动机中喷射空气的方法300。方法300可以通过存储在控制装置12的存储器中的指令来执行。在302，方法300包括确定发动机运行参数。发动机运行参数包括发动机转速、发动机负荷、发动机温度、排气温度、设置在排气中的一个或更多个排放物控制装置的温度等。在304，方法确定是否指示空气喷射到发动机的一个或更多个排气口，正如前面所说明的，为了引起排气的快速加热并且因此快速加热设置在排气系统中的排放物控制装置，空气可以被喷射到发动机的排气口中。如果发动机温度低于阈值，例如低于预热发动机温度，如果排气温度低于阈值，如果排气控制装置温度低于阈值，例如低于起燃温度等，则可以指示空气回喷射。而且，在一些实施例中，如果排气传感器指示来自发动机的排气比化学计量比更富集，或比期望的空/燃比更富集，则可以喷射空气以燃烧存在于排
气中的过量碳氢化合物。

[0043] 如果不指示空气喷射，例如如果排放物控制装置处在起燃温度或高于起燃温度，则方法300进行到306，在306没有空气被喷射。没有空气喷射可以包括在308关闭诸如泵142的空气泵或将其保持在关闭状态。在其他实施例中，没有空气喷射可以包括在310关闭诸如阀148的涡轮转向阀，以阻止压缩空气转向到空气喷射系统中。在312，按照预定的策略（例如，基于发动机转速和发动机负荷，基于来自一个或更多个排气传感器的反馈）喷射燃料，并且然后方法300返回。

[0044] 如果指示空气喷射，例如，如果排放物控制装置的温度低于起燃温度，则方法进行到314，以调节燃料喷射以致发动机燃烧富集的空/燃混合物。这可以包括增加燃料喷射量、延迟火花点火正时和/或其他调节。在316，在第一气缸的排气冲程期间，经由空气喷射系统的第一连接，空气被喷射到第一气缸的排气口中。这可以包括在318运行空气泵。正如上述参考图1所说明的，空气泵可以包括联接于发动机的凸轮轴的旋转盘。在第一气缸的排气冲程期间该旋转盘可以打开第一连接，以便压缩空气可以被喷射到第一气缸的排气口中。然而，在通过使涡轮增压器压缩机下游的压缩空气转向而产生压缩空气的实施例中，喷射空气可以包括在320打开涡轮转向阀。以这种方式，压缩机下游的压缩空气可以被引导到空气喷射系统并且被喷射到第一气缸的排气口中。而且，在转向期间可以调节（例如关闭）涡轮增压器废气门，以保持合适的涡轮增压器操作。在322喷射空气包括阻挡与其余气缸的排气口的连接。因此，只有第一气缸的排气口接收被喷射的空气。

[0045] 在324，方法300包括在第二气缸的排气冲程期间经由空气喷射系统的第二连接将空气喷射到第二气缸的排气口中。当完成第一气缸的排气冲程并且开始第二气缸的排气冲程时，空气喷射系统可以结束第一次气缸排气口内的喷射，代之以将空气喷射到第二气缸的排气口中。向第二气缸的排气口中的空气喷射可以包括在326继续运行空气泵或在328保持涡轮转向阀打开。向第二气缸的排气口内的空气喷射还包括在330阻挡空气喷射系统和其他气缸的排气口之间的连接（包括与第一气缸的排气口的连接）。

[0046] 在322，方法300包括类似于将空气喷射到第一和第二气缸的排气口中的，顺序地将空气喷射到任何其余气缸的排气口中。然后方法300返回。

[0047] 因此，图3的方法300提供用于多缸发动机的方法，包括：燃烧富含的空/燃混合物；在第一气缸的排气冲程期间，将空气喷射到第一气缸的排气口中而不喷射到第二气缸的排气口中（并且不喷射到任何其他气缸的排气口中）；以及在第二气缸的排气冲程期间，将空气喷射到第二气缸的排气口中而不喷射到第一气缸的排气口中（并且不喷射到任何其他气缸的排气口中）。在一些实施例中，这可以包括仅在第一气缸的排气冲程期间，将空气喷射到第一气缸排气口中，以及仅在第二气缸的排气冲程期间，将空气喷射到第二气缸排气口中。而且，在一些实施例中，该方法可以包括将空气喷射到第一气缸排气口中而不将空气喷射到第一气缸排气口中的其他气缸的排气口中，以及将空气喷射到第二气缸排气口中而不将空气喷射到第一气缸排气口中的其他气缸的排气口中。

[0048] 以这种方式，在每个气缸的排气冲程期间，空气可以顺序地喷射到发动机的每个气缸的排气口。通过这样做，仅当从气缸释放排气时才可以喷射空气，从而避免不必要的空气喷射并且使得所有的气缸间的喷射等量。

[0049] 参考图4，图4示出模拟的发动机运行的示例性曲线图。时间从图的左侧开始并且
向图的右侧增加。所示的顺序代表非限制性的四缸四循环发动机的运行。所示的顺序可以在发动机运行的开始、中间或在末尾发生。在这个例子中，汽缸位置迹线（trace）CYL.1-4之间的竖直标记代表相应汽缸冲程的上止点或下止点，并且在每个竖直标记之间有180度的曲轴角度。在汽缸的一个循环期间汽缸1-4经历进气、压缩、膨胀和排气冲程。

0050 从该图的顶部起的第一曲线图代表一号汽缸的位置。并且具体说，发动机曲轴旋转时一号汽缸的冲程，每个冲程可以代表180度曲轴角度。因此对于四冲程发动机，一个汽缸循环可以是720度，发动机的一个完整循环有相同的曲轴间隔。星号表示燃烧事件的点火事件。点火可以由火花塞或通过压缩起动。在这个顺序中，一号汽缸的气门针对进气冲程的至少一部分是打开的，以向该汽缸提供空气。燃料可以通过进气道喷嘴或直接喷嘴被喷射到发动机气缸中。在压缩冲程期间燃料和空气混合物被压缩并且点火。在排气冲程的至少一部分期间排气门打开以将燃烧气体释放到排气系统中。

0051 从该图的顶部起的第二汽缸位置迹线代表二号汽缸的位置和冲程。类似于一号汽缸的汽缸位置迹线，星号代表点火事件，并且在压缩冲程期间喷射燃料以形成被压缩并点火的燃料空气混合物。在排气冲程期间排气门打开。从该图的顶部起的第三汽缸位置迹线代表三号汽缸的位置和冲程。从该图的顶部起的第四汽缸位置代表四号汽缸的位置和冲程。虽然汽缸被表示为按照1-2-3-4的顺序点火，但是应当明白这是非限制性的示例，并且汽缸可以与其他合适的顺序点火。

0052 上述每个汽缸曲线图均是与该汽缸有关的排气口内的示例性空气喷射的代表。例如，空气喷射曲线图402示出向一号汽缸的排气口中的空气喷射。空气喷射曲线图404示出向二号汽缸的排气口中的空气喷射，空气喷射曲线图406示出向三号汽缸的排气口中的空气喷射，而空气喷射曲线图408示出向四号汽缸的排气口中的空气喷射。

0053 参考第一汽缸迹线，在排气冲程期间，排气门打开，并且排气从一号汽缸的排气口释放到排气系统。向一号汽缸的排气口中的空气喷射410基本发生在一号汽缸的排气冲程期间。虽然在一些实施例中喷射被示出发生在整个排气冲程期间，但是喷射可以发生仅仅在一部分排气冲程期间，例如在第一冲程、第二冲程期间等。对于每个汽缸，在这个汽缸的排气冲程期间，空气可以经由与排气泵的连接而被喷射到这个汽缸。排气泵的连接可以通过旋转盘控制，该旋转盘按照图4的底部所示的示例性盘旋转曲线图而旋转。这个示例性的盘旋转曲线图取向成类似于关于图2A和图2B所示的盘旋转，其中0°在是该盘的切口开口的前边缘的开始位置，并且沿着逆时针方向旋转。例如，当该盘的切口的前边缘已经旋转120°时，该盘处在图2A的第一位置，在这个位置空气喷射系统和一号汽缸的排气口之间的连接被打开，而所有其他的连接被阻挡。在225°处，该盘已经旋转到了图2B的第二位置，在这个位置空气喷射系统和二号汽缸的排气口之间的连接被打开，而所有其他的连接被阻挡。

0054 应当理解，这里公开的结构和方法在性质上是示例性的，并且这些具体的实施例并不被认为具有限制意义，因为许多种变化是可能的。例如，上述技术可以用于V-6,1-4,1-6,V-12,5-8及其他发动机类型。本发明的主题包括这里公开各种系统和结构，以及其他特征、功能和/或特性的所有新颖和显而易见的组合和子组合。

0055 所附权利要求具体指出认为是新颖的和非显而易见的一些组合及子组合。这些权利要求涉及“一个”元件或“第一”元件或其等同物，这种权利要求应当理解为包括一个或更
多个这种元件的结合，既不需要或也不排除两个或更多的这种元件。所公开的特征、功能、元件和/或特性的其他组合及子组合可以通过本权利要求的修改或通过本申请或相关申请中的新的权利要求来主张。这些权利要求无论其范围比原权利范围更宽、更窄、相同或不同，都被认为被包括在所发明的主题内。
说明 书 附 图

开始

302

确定发动机运行参数

304

空气喷射被指示出？

是

调节燃料喷射以致燃烧富集的空/燃混合物

314

316

在排气冲程期间经由第一连接向第一汽缸的排气口中喷射空气

运行空气泵

318

打开涡轮转向阀

320

322

阻挡其余汽缸的排气口连接

324

在排气冲程期间经由第二连接将空气喷射到第二汽缸的排气口中

继续空气泵的运行

326

涡轮转向阀打开

328

330

阻挡其他汽缸的排气口连接

332

顺序地将空气喷射到任何其余汽缸

返回

300

306

没有空气喷射

空气泵关闭

308

涡轮转向阀关闭

310

312

按照预定的策略喷射燃料

返回

图3
图4