wo 2014/049308 A1 |1 F 1 0V O Y OO N

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 April 2014 (03.04.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/049308 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6F 9/455 (2006.01) GO6F 9/50 (2006.01)
GO6F 17/22 (2006.01)

International Application Number:
PCT/GB2013/000346

International Filing Date:
16 August 2013 (16.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

12250153.9 25 September 2012 (25.09.2012) EP

Applicant: BRITISH TELECOMMUNICATIONS
PUBLIC LIMITED COMPANY [GB/GB]; 81 Newgate
Street, London EC1A 7AJ (GB).

Inventor: DUKE, Alistair, Keith; PP:C5A, 81 Newgate
Street, London, EC1A 7AJ (GB).

Agents: LIDBETTER, Timothy, Guy, Edwin et al.; BT
LEGAL, Intellectual property department, PP:C5A, BT
centre, 81 Newgate Street, London EC1A 7AJ (GB).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: DOCUMENTATION PARSER

AP}
Documentation

Figure 2

[Analysis
HTML Call | Word Parameter] | Response | | Request
Parser Identification) | Frequency| | Extraction Data Data
Extraction Extraction | | Extraction
0 21 23 25
00 11 222 233 255
Heading Set of Calls Popular Call Response Request
Structure Words Parameter} Data Data
and text s Structures | | Structures
[I \ - I I
Test
30 | Gather results : generate a set of fest cal\sj
Test APY
Calls Endpoint
31
™
T
GUI for APY
changing Endpoint
calis and
41 testing
User .
Create
Wrappar(s)| 42
[inUse ;
. AP
Program| Wrapper Endpotnt -~
51
53

(57) Abstract: A documentation parser 20 identifies text in documenta-
tion (1) on computer processes and performs analysis (21 -25) on the
structure and content of the documentation to determine automatically
how to invoke services. The system then compiles a process using the in-
voked services and runs tests (30) using the process to determine wheth -
er it functions as intended. This reduces the degree of human interven-
tion (41) required to generate the complete program (50, 51).

10

15

20

25

30

WO 2014/049308 . PCT/GB2013/000346

1

Documentation parser

The invention is related to the provision of services ‘using an information
distribution system ruhning over an electronic data network, for example using the
“World Wide Web” over the Internet, in which clients send requests to servers
servers process the requests and return appropriate responses. A Web Service
can be considered to be a computatlonal object on the Web.

The Web is traditionally concerned with servinQ static pages of text and other
media.for human consumption. Howe\)er, more recently the Web approach has
been used to deliver computational objects which can be requested from within
computer code (or via a human interface), carry out some computation (for
example Using data contained in the requeet) and return a result. Increasingly
organisations are making their data available by'We_b application programming
intrerfaces (APIs). A simple example of a Web Service would be a weather service
in which, when given a request including a location parameter, the Service will
return data about the weathef at the location. Data in the response is typically in
the form of; XML or JSON (JavaScript Object Notation).

Web Services might aiso have interfaces suited to human users e.g. a form
interface where users can enter data as free text or by selecting items from a
menu, and make a request to the website, which returns the results of the
requests to the user terminal for output such as a visual display.. Such human
interaction can be useful for testing a service invocation function prior to

integration with other software. | : 5

‘The majority of early Web Services conformed to the WSDL’ (Web Service

Description Language) / SOAP (Simple Object Access Protocol) style, whieh is

very prescriptive. WSDL allows a strict definition of the Web Service to be made in

-terms of available methods that can be invoked, and the data that should be

provided in response to the invoked method. Similarly SOAP defines a protocol for
the messages that are to be passed. The prescriptive nature of WSDL / SOAP

allows the definitions to be interpreted 'by a computer, making it easy to construct

Ias

10

15

20

25

30

WO 2014/049308 : PCT/GB2013/000346

2

wrappersk around the service which can be éxposed in a variety of ways dépending
upon the needs of the consumer of the Web Service. For example, a wrapper
cou]d be constructed to expose a Web Service as' a Java Class making it easy to
integrate the Web Service with a Java application.

More recently a trend for Web Services to adopt the Representational State

Transfer (“ReST’f) protocol has emerged. This approach relies on the standard

.features of the HTTP (hypertext transport protocol) to simplify the coding. process

" for the user.. It is much less prescriptive and does not use an equivalent of WDSL

/ SOAP to define the interaction. Instead documentation pages are written in plain
text to describe the service to the human who can then create code to wrap the
Service as appropriate. A format named WADL (Web Application Description
Language) exists which replicates some of the features of WSDL for ReST
sérvices (i.e. description of 'available résources‘); hoWever, this is not widely

supported.

It is known, for example, from Uhite States patent' application U82007/016897
(IBM) to use pattern matching to parse individual service requests generated in the
Simple Object Access Protocol (“SOAP”) by comparison with templates generated
from parsing of earlier requests. Thiis arrangement is therefore concerned with
parsing individual requests, based on experience derived from earlier requests,

The present invention provides an automated analyéis of a docurﬁentation page to
establish how a service should be invoked. The documentation pagé will typically
be - human-readable “Rébresentationai State Transfer (*ReST;’) ~protoc6|
instructions for generating the coding necessary to perform the desired function.

A number of xpOSsible techniques can be used t<; identify features in the
documentation text; and thus to identify the set of routines which involve
interaction with a further computing entity that the service accepts. This invention
then genei'ates‘ a computational process including such routines. In preferred

embodiments test service invocations are made to validate the analysis. Although

10

15

.20

- 25

30

WO 2014/049308 PCT/GB2013/000346
3

largely automated, the invention may allow human intervention to perform

modifications in order to successfully allow a web-based service to be invoked.

Maleshkova, M., Pedrinaci, C., and Domingue, J. @ ‘Semantically Annotating
RESTful Services with- SWEET’ Demo at 8th International Semantic Web
Conference, October 2009 describes a tool known as SWEET (Semantic Web .
sErvice Editing Tool). The tool provides a graphical user ivnterface (GUI) that
allows a user to manually create annotations ona web service documentation
page using the ReST protocols. The user is able to highlight parts of the page and
assign a type (e.g. input, output, method, operation',‘ address) and a semantic
annotation (e.g. a concept in ‘a domain ontology) to it. Upon completion of this
process the user can then create a Semantic Service description which can be
uploaded to a public server. This description can then be used by other tools to
understand how to invoke the web service and / or combine it with other services..
These references describe methods of identifying that a web page describes a
Web Service of this type, but requires the user to perform the laborious process of
parsing and interpreting the information contained within the page. This manually
annotated documentation can then be .automatically interpreted allowing the
service to be invoked from within an application. The present invention automates

the annotation process. . | |

Steinmetz, N., Lausen, H. and Brunner, M. ‘Web Service Search on Large Scale’
(International anference on Service Oriented Computing (ICSOC) 2009,
November 24-17, 2009, Stockholm, Sweden) describes a web “crawler” that
identifies yw_eb service descriptions on the web and indexeé them such that a
search engine can then return them as resuits to users. The crawler attempts to
index service descriptions of both WSDL and ReST format. The-crawler looks for
features in the page content such as:

keywords on the page or in the URL such as “api”, “d’éveloper’, “lib”,

“code”, “service”, etc;

a high number of ‘camelcase’ words (character strings containing medial

.. upper-case characters, such as ReST, apiKey, or parameterValue) ,

10

15

20

25

30

~ WO 2014/049308 PCT/GB2013/000346 .

4

a high number of inner domain links, , '

or other characteristic character strings such as “.//".

According to the iﬁvention, there is provided a method of generating a
service invocation function, wherein documentatioh relating to the processes to be
performed by the service invocation function is analysed, the textual content of the
documentation is parsed, and computationaj routines required to perform the

processes are identified and compiled into the service invocation function.

This automated process reduces the level of expertise required to make use of the

_service.

The parsing may include the identification of. textual content in specified
alphanumeric formats, such as specified character strings or formats, or the

structure or layout of the textual content.

In a preferred embodiment the method includes a test process for the ‘service

invocation function so generated by the operation of a computer according to the

service invocation function using predetermined test data, and analysis of the
outcome of the operation. This allows the process to determine whether it has
found a valid way to invoke the Service, or may initiate an interaction with the user

to improve upon or correct the outcome of the automated process.

Once a valid service invocaﬁon function has been generated from the textual
content it can be encoded with a computational wrapper allowing the Servic/e to be
invoked from an external brogram or application, in an analogous way to that done
for WSDL descriptions, for example the Axis2 process for Eclipse.

The invéntion makes use of the fact that documentation foi' web serviceé usihg the
Representational State Transfer protocol typically uses a set of common
characteristics. Although there is a significant variety in the quality and content of i

documentation, certain commonalities can be identified and extracted, and used to

10

WO 2014/049308 . PCT/GB2013/000346

5 -

provide a service invocation function or “‘wrapper” allowihg the. service to be
invoked. The following examples describe how invocations to such a Web Service
can be made, using the application programme interface (api) of a fictional service
XYZ provided by a service ABC.

A base URL (universal resource locator) provides an endpoint for the service e.g.
https://www.ABCapis.com/XYZ/v1/. ‘

Following specification of the base URL, the resource type is then usually given
e.g. https://www.ABCapis.com/XYZ/v1/resources.

At this stage, invocations can then be made against' the resource type, or a

specific resource of the type can be referenced. In both cases a parameter can be

added after a “?’ character. Further parameters can be added Separated by a ‘&

15

20

25

30

character. Parameters always follow the format: parameterName=parameterValue.
Thus an invocation against all resources using the search parameter q would be:

https.//www.ABCapis.com/XYZ/v1/resources?q=search+terms -

- An invocation to retrieve a specific resource would be:

https://www.ABCapis.com/XYZ/v1/resources/myresource/ . ltems related to
specific resources can also be referred to. For example the following retrieves a

specific resource res1 from a set of resources belonging to a specific user:

https://www.ABCapis.com/XYZ/v1/users/userld/resources/res1.

Several different methods can be applied to the invocations. The most common
are: '

GET which requests an existing resource,

POST which creates a new resource, _

PUT which updates an existing resource and

DELETE which deletes an existing resource.

10

15

20

25

30

WO 2014/049308 _ PCT/GB2013/000346

/
6

PUT and POST methods typically include a message body where the data /
resource to be added or modified is described. A message body is part of an
HTTP request.

The felIoWing characteristics are typically found in ReST WS documentation. The

HTML structure of the page and ih' particular the structure of the headings provides
an important indication about the different,' invocations that can be made for the
service. The headings themselves will typically reference the resources that can
be accessed. |

The pages will generally contain http or https URLS written as text, which ere
almost always service invocations -(they may be templates for invocations; or
eXampIe inilocations) including the resources that can be accessed and the
parameters that can be used. Invocations are accompanied by a mention of the
http method that should be used ie. GET, POST, PUT or DELETE and these are
generally written in uppercase. |

. Invocations are usually accompanied by the allowable parameters that can be

used with the invocation. These are often generally described as ‘parameter’,
‘arguments’ or ‘attributes’. '

The text surrounding, the invocations provides detailed information about what the

invoked service does and what resources it provides access to.

URLs and perameters are often written using preformatted text using the <pre>

html tag. Text in an element is displayed in a fixed-width font (usually Courier).

Parameters are usually presented in an HTML table or list or some other repeated

format. A description of what the parameter does is presented.nexf to the

parameter name.

10

15

20

25

30

WO 2014/049308 , PCT/GB2013/000346

7

Sample responses to invocations are often provided, again using tags. These are
generally encoded as JSON (Javascript Object Notatioh) or XML.

Sample messége bodies for invocations are often prc)vided,‘ again using tags and
also generally encoded as JSON (Javascript Object Notation) or XML.

Based on these characteristics various techniques can be applied to analyse and

extract information about how to invoke the service. An embodiment of this

_process will now be described with reference to the drawings, in which:

Figure 1 is a flow chart showing the principal elements of the process, and

Figure 2 depicts some of these elements in greater detail

Referring to Figure 1, the process is initiated by_ inputting the url for the
documentation into the system. (Step 1). The process then runs an analysis of the
page structure and content of thé documentation (step'2). This analysis comprises

several inter-dependént elements 20-25, generating respective output's'2IOO—255. '

The first element is an 'HTML parser 20, for example jsoup (www.jsoup.org) which
parses the HTML (HyperText Markup Language) of the documentation page to
identify a hierarchical structure 200. This hierarchy is not the same as that formed
by the various levels of headings that are found on a page, but on the HTML/tags
and their contents. The parsed HTML can be recursively searched in order to
locate headings and their sub-headings and the textual content provided under

each heading. jspup provides methods to obtain tags of a certain type.

For example, the arrangemént'of headings 200 may be represenied in a tree data
structure. ’

Following this, the text under each of. the héadings 200 is searched for
occurrences of textual URLs. (step 21) This is carried out using a regular
expression which assumes that the URL will start with ‘http://" or ‘hitps://’ followed

10

15

20

25

30

WO 2014/049308 PCT/GB2013/000346

by a set of characters (not mcludmg a' character — if the URL has parameters,
these are found in the next step 22). For each invocation found, it is stored in a set

of invocation data 211, related to the heading under which it was found.

Any parameter names are then found (step 23) by using a regular expression to

. locate anything between ‘?’ or ‘& and ‘=". The values given for these are also

stored by extractlng anythlng after a ‘=", Parameter names and values are stored

(233). wrth the invocation (211) after Wthh they were found

The next step is to identify the HTML method associated with t’he invoked eervice.
The text under the heading under which the invocation is located is searched for
rhe occurrence of one of the methods, first in uppercase and if not successful in
IoWer or title case. The methog found (or if more than one is found, the one
mentioned most often and / or first) is also stored 233 along with the invocation
data 211.

Following, this the parsed HTML 200 is'sear_ched for a table or repeating construct
such as a list which provides the parameters that can be used with the service
invocations. These are often provided under a heading containing a form of the
word ‘parameter’, or failing that ‘argument’ or ‘attribute’. The text under this
heading can then be searched for the occurrence of a HTML table tab. Within this
there is typ‘ically a table heading or first row which contains the column names of
the table, one of which typically contains the ‘parameter keyword. The table
elements arranged under this column will provide the names of the parameters.
The other columns will typically provide text describing what the parameter does or
represents and where it can be used. This can also be stored 233 with the

parameter as supporting text.

If a table is not found, other HTML t‘ags such as “list” can be searched for. Another
technique is to search for the names ef. parameters already found alongside

invocations, and locate where they are subsequently described. Once found the

5

10

15

20 .

25

30

WO 2014/049308 , PCT/GB2013/000346

9

preceding htrhl tags and or characters e.g. a tag can be used to locate
other parameters assuming that some unknown repealting structure is used to
display the list of parameters. |

A further technique is to USe_ the word frequency in the documentation (step 22),
and in particular the headings, to determine the most important features i.e. the
resourqe's that the service represents. A word frequency counter can be used to
identify the words that are used the most in the documentation. The results of this
test can be used in conjunction with a stop list to filter out the most common
everyday words as well as the allowable set of html tags. The data thus collected
222 can be used on the headings and text under them. This approach ;cypically
identifies the resources of the API followed by the names of parameters and can
be used to unpick the resources from the API invocations that have already been
found and to reinforce the identification Qf parameters 233.

Sample responses to invocations are often provided -an'd'typically follow closely
after a invocation in the documentation and often under the Asame. hea:ding or a
subsequent heading at the same level. These are generally JSON or XML and are
displayed in a fixed width font. Since both JSON and XML px;ovide ‘a parsable

_structure, these can therefore be identified by a response data extraction function

24, and a data structure in the target language can be automatically constructed
which represents the response and can be used to store it 244, allowing it to be
used in the‘ target application. In a similar way, a data structure 25 can be created
to represent a request message body 255 for invocations using PUT and POST
methods. o

The end result of the analysis 2 is a set of data 200-255 which represehts the API
as described in the documentation. Since the quality and content of the
documentation varies this will affect thé quality of the results of the analysis. A set
of confidence values can be attributed to the data that is discovered. This indicates
the level of evidence found which supports the invention in creating-a set of valid

4

APl invocations.

10

15

20

25

30

WO 2014/049308 PCT/GB2013/000346

A

10

/

This data 200-255 from the analyéis 2 can be used to create invocations to the.
API. - ‘

The next stage (step 3) of the process is to test the data 200-255 that has been
collected, by carrying out some test invocations using it. Since GET invocations
have no side effects i.e. will not add, change or remove resources; test invocations
using this method will not have any side effects. If it is necessary to test methods
which do have side effects, a sequence of test invocations can be run which have
a zero overall effect. For example, a “POST" invocation can be tested by using it to
create a resourcé_. The same resource can then be deleted using the *DELETE”
invocation. Alternatively, a “DELETE" invocation can be tes'ted by first creating‘ a
test resource (using "POST") to be deleted. A “PUT" function can be tésted by first
using “GET" to obtain the current value of a resource, then using “PUT" t\)vice, first
to change that value to a test value and then to restore it to the original value
previously obtained by the “GET" function.. ‘

Test invocations 31 can be carried out automatically using values for rgsourbes or
parameters found in the documentation or by allowing the user to provide suitable
test values. The invocations are transmitted to the application process interface
endpoint 9 and responses evaluated to determine whether the invocations
succeed and_ to analyse any data thaf is returned." Where different values for the
same invocation are provided in the documentation, a number of tests using
different combinations of values can be carried out and the results analysed to
identify which ones succeed. If successful invocations are found to have been
made this increases the confidence that the data discovered about thé' APl is
correct and would satisfy a user and the stored confidence values can be
increased to represent this.

The next phase of the process (step 4) allows the user to modify the service
invocations. A representation of the API is delivered to a graphical user interface

(GUI) 40 with a user input allowing changes to be made, to provide input values, to

10

15

WO 2014/049308 PCT/GB2013/000346

11

further test the invocations and check that the output is stored correctly. A form-

style interface can be used to allow the user to provide input values. The user is

- also able to add, remove or change the names of parameters and resources that

can be made with a invocation, and to add, change or remove invocations
themselves. The data structures created to- represent message bodies and
responses may also be provided to the user. As shown in Figure 3, the changes
implemented by the user are themselves tested (step 3) at the APl end point 9 and

the testing and modification steps (31, 40) can be iterated until the user is satisfied

The user then initiates the final phése of the process by selecting an API Wrapper

for a chosen target programming language (step 41) which is used to create a set

“of classes (51) containing appropriate methods and attributes to allow the API 9 to

be invoked from an application 50 written in the target language.

The user may also make these fenctions (wrappers) available to others (step 53)

by allowing them to be stored in an online repository accessible to other users.

10

15

20

25

30

WO 2014/049308) PCT/GB2013/000346 |

12

CLAIMS

1. A method of generating a service. invocation function, wherein
documentation relating to the processes to be performed by thé service invocation
function is analysed, the textual content of the documentation is parsed, and
computational routines required to perform the processes are identified and
compiled into the service invocation function, the processes including the
invocation of routines.

2. A method according to claim 1, wherein the parsing includes the

identification of textual content in specified alphanumeric formats.

3. A method according to claim 2, wherein the parsing analyses thé textual

content for predetermined character strings or formats,

4 A method accbrding to Claim 2 or Claim 3, wherein the parsing analyses

the textual content for predetermined structures or layouts of the textual content.

3. A method according to any preceding claim, further cbmprising a test
process for the service invocation function so generated, the test process causing

the operation of an application programming interface on- commands from the.

~ service invocation function using predetermined test data, and analysis of the

outcome of the operation.

10

WO 2014/049308 PCT/GB2013/000346
13

6. A method according to Claim 5, wherein the test process initiates an
interaction with a user to modify the service invocation function. ‘

N

7. A method according to any preceding claim, further comprising the step of'

encoding the resulting service invocation function with a co‘mputational'wrapper

allowing a computational object to be invoked from an external program or

application

8. A computer program or suite of computer programs for use with one
or more computers to carry out the method as set out in any one of claims 1

to 7

WO 2014/049308 PCT/GB2013/000346

l Start l

y

Input
documentation
page URL

Analyse Page
Structure and
Content

Test Service
Calls

A

User modification 4
of results ‘
7 Figure 1
Select target 41
‘ wrappers
vY. -
Generate ,
Wrappers | = 42

_End

WO 2014/049308 PCT/GB2013/000346

2/2
1 —— | API :
— | Documentation Flgure 2
: A
| Analysis) ‘
ATML Call Word Parameter] | Response| | Request
Parser | |ldentification] | Frequency| | Extraction Data "~ Data _
' ' Extraction | _ Extraction | | Extraction|.
0 717 22T 23 4 pi
2 | \ :
200 211 222 33 244 255
Heading Set of Calls Popular Call Response | | Request
Structure . Words Parameter] Data ‘Data
and text s Structures| | Structures
.1 | [T] T
Test v
3() | Gather results : generate a set of test calls
Test > API
3 Calls , Endpoint
31
‘ ™~
GU! for ~ API ,
changing "1 Endpoint j
‘ > callsand |
41 testing
4
- User ‘ v
Create
Wrapper(s) 42 ;
. M , .
In Use Iﬁ
| Pro w ' AP ~1
oo gram| VWrapper » Endpoint
- > ‘ 51 _
S |
User 0 v ,
»| Publish 5 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/000346

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/455 GO6F17/22
ADD.

GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2007/016897 Al (IBM CORPORATION) 1-8
18 January 2007 (2007-01-18)
abstract
paragraph [0001]
paragraph [0005]
paragraphs [0007] - [0011]
paragraphs [0032] - [0036]
paragraphs [0048] - [0052]
figures 2-3
claims 1-4,7-8
A AHMED PATEL, NIKITA SCHMIDT: "“Application 1-8
of structured document parsing to focused
web crawling",
COMPUTER STANDARDS & INTERFACES,
24 August 2010 (2010-08-24), XP027557867,
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 September 2013

Date of mailing of the international search report

07/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tomas Blanch, F

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/000346

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

TAK CHEUNG LAM, JIANXUN JASON DING,
JYH-CHARN LIU: "XML Document Parsing:
Operational and performance
characteristics",

COMPUTING PRACTICES,

1 September 2008 (2008-09-01),
XP011234226,

the whole document

US 2005/015619 Al (WING LEE)

20 January 2005 (2005-01-20)

the whole document

1-8

1-8

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/GB2013/000346
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2007016897 Al 18-01-2007 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - wo-search-report
	Page 18 - wo-search-report
	Page 19 - wo-search-report

