

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2015336086 C1

(54) Title
Compositions and methods for detecting an RNA virus

(51) International Patent Classification(s)
C12P 19/34 (2006.01) **C12Q 1/68** (2006.01)

(21) Application No: **2015336086** (22) Date of Filing: **2015.10.20**

(87) WIPO No: **WO16/064894**

(30) Priority Data

(31) Number	(32) Date	(33) Country
62/104,008	2015.01.15	US
62/066,277	2014.10.20	US

(43) Publication Date: **2016.04.28**

(44) Accepted Journal Date: **2020.12.03**

(44) Amended Journal Date: **2021.07.29**

(71) Applicant(s)
Envirologix Inc.

(72) Inventor(s)
Peters, Lars;Judice, Stephen A.;Shaffer, Daniel;Parker, Breck

(74) Agent / Attorney
Griffith Hack, GPO Box 4164, Sydney, NSW, 2001, AU

(56) Related Art
US 20090017453 A1
US 20130280706 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/064894 A3

(43) International Publication Date

28 April 2016 (28.04.2016)

WIPO | PCT

(51) International Patent Classification:

C12Q 1/68 (2006.01) C12P 19/34 (2006.01)

(21) International Application Number:

PCT/US2015/056491

(22) International Filing Date:

20 October 2015 (20.10.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/066,277 20 October 2014 (20.10.2014) US
62/104,008 15 January 2015 (15.01.2015) US

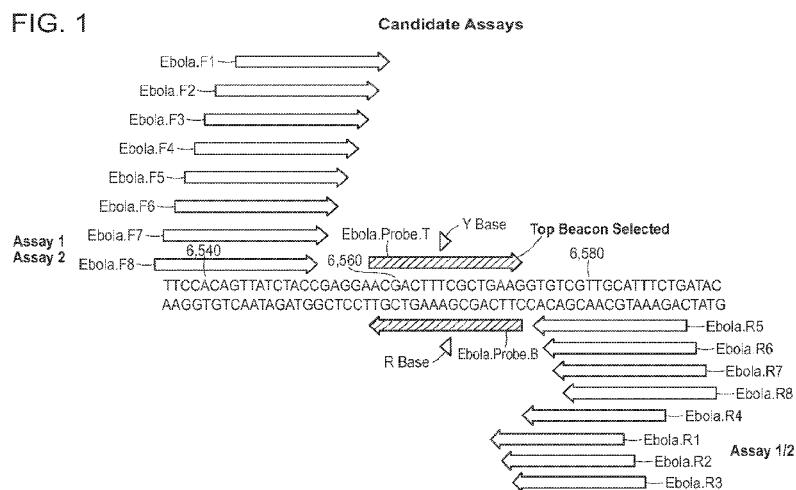
(71) Applicant: ENVIROLOGIX INC. [US/US]; 500 Riverside Industrial Parkway, Portland, ME 04103-1418 (US).

(72) Inventors: PETERS, Lars; 500 Riverside Industrial Parkway, Portland, ME 04103 (US). JUDICE, Stephen, A.; 500 Riverside Industrial Parkway, Portland, ME 04103 (US). SHAFFER, Daniel; 500 Riverside Industrial Parkway, Portland, ME 04103 (US). PARKER, Breck; 500 Riverside Industrial Parkway, Portland, ME 04103 (US).

(74) Agents: HUNTER-ENSOR, Melissa et al.; Saul Ewing LLP (Philadelphia), Centre Square West, 1500 Market Street, 38th Floor, Philadelphia, PA 19102-2186 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).


Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR DETECTING AN RNA VIRUS

FIG. 1

(57) Abstract: The present invention provides methods for rapidly identifying an RNA viral infection using an isothermal nucleic acid amplification reaction that can be carried out extracted RNA in the context of a crude biological sample.

(88) Date of publication of the international search report:
9 June 2016

COMPOSITIONS AND METHODS FOR DETECTING AN RNA VIRUS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Patent

5 Application Serial Nos. 62/066,277, filed October 20, 2014, and 62/104,008 filed January 15, 2015. The entire contents of each of these applications are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

0 The *Ebola* virus causes hemorrhagic fever with mortality rates reaching 50% to 90% of infected humans. *Ebola* virus (EBOV) includes four species, Zaire EBOV, Sudan EBOV, Ivory Coast EBOV, and Reston EBOV. Human infection with *Ebola* typically results from contact with contaminated blood, tissues, and/or excretions of animals or patients with an *Ebola* infection. Patients typically exhibit symptoms 4 to 10 days after *Ebola* infection. This

5 long incubation period provides an opportunity for the virus to be carried to new areas before the carrier displays any signs of illness. Symptoms of *Ebola* include fever, chills, malaise, and myalgia. Because such symptoms are displayed in a variety of illnesses, there is a significant risk that *Ebola* infection may be misdiagnosed in the early stages, thereby facilitating spread of the disease. In later stages, *Ebola* -infected subjects typically develop

10 vomiting, diarrhea, coughing, vascular symptoms, headache, confusion, coma, mucosal hemorrhages, bloody diarrhea and ultimately multiorgan failure, resulting in death. The bodily fluids of *Ebola* patients are highly infectious as are the dead bodies of *Ebola* patients.

Public health concerns about *Ebola* infection are mounting as *Ebola* infections in West Africa in late 2014 are predicted to rise to 10,000 people per week. Because of their 25 exposure to the bodily fluids of *Ebola* patients, health care workers are at risk for catching *Ebola* from infected patients. The risk of infection increases as the extent and the frequency of contact increased. In a 1976 Sudan *Ebola* outbreak 81% of healthcare workers nursing *Ebola* patients were infected with the virus. In order for medical staff and health care workers to avoid unnecessary infections, early detection of *Ebola* is critical so that 30 appropriate infection control measures are instituted and the risk of transmission is minimized.

To stop the spread of *Ebola* within West Africa and internationally, rapid diagnosis is essential so that infected subjects may be immediately quarantined and proper protective

equipment used by health care workers caring for these subjects. High titers of infectious filovirus are present in the blood and tissues during early stages of illness. Currently, Ebola is identified by virus isolation, reverse transcription-PCR (RT-PCR), including real-time quantitative RT-PCR, antigen-capture enzyme-linked immunosorbent assay (ELISA), antigen detection by immunostaining, and IgG- and IgM-ELISA using authentic virus antigens. Unfortunately, these tests are time-consuming because they can only be carried out on purified and isolated RNA and require access to laboratory equipment and trained technicians that are scarce in many areas where Ebola is endemic.

Accordingly, improved methods for rapidly identifying patients infected with *Ebola* virus are urgently required.

SUMMARY OF THE INVENTION

The present invention provides methods for rapidly identifying an Ebola infection using an isothermal nucleic acid amplification reaction that can be carried out on extracted RNA in the context of a crude biological sample.

In one aspect, the invention provides a method of detecting a specific target polynucleotide (e.g., RNA) in an isothermal amplification reaction coupled with reverse transcription, the method involving

(a) contacting a target polynucleotide molecule in a sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;

(b) contacting the cDNA with forward and reverse primers each carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, a detectable oligonucleotide probe, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA; and

(c) detecting a signal specific for detectable oligonucleotide probe hybridization to the amplicon, where detection of the signal indicates the presence or quantity of the target polynucleotide present in the sample and failure to detect the signal indicates the absence of target polyribonucleotide in the sample.

In another aspect, the invention provides a method of detecting an RNA virus in a sample, the method involving

(a) contacting an RNA virus polynucleotide molecule in a biological sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;

5 (b) contacting the cDNA with forward and reverse primers each carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, a detectable oligonucleotide probe, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA; and

0 (c) detecting a signal specific for detectable oligonucleotide probe hybridization to the amplicon, where detection of the signal indicates the presence or quantity of the RNA virus polynucleotide molecule present in the sample and failure to detect the amplicon indicates the absence of an RNA virus.

In a related aspect, the invention provides a method of detecting an Ebola virus in a sample, the method involving

5 (a) contacting an Ebola polynucleotide molecule in a biological sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;

10 (b) contacting the cDNA with forward and reverse primers each carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, a detectable oligonucleotide probe, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA; and

25 (c) detecting a signal specific for detectable oligonucleotide probe hybridization to the amplicon, where detection of the signal indicates the presence or quantity of the Ebola polynucleotide present in the sample and failure to detect the signal indicates the absence of Ebola polynucleotide present in the sample.

30 In various embodiments of the above aspects or any other aspect of the invention delineated herein, the Ebola polynucleotide is obtained by contacting a biological sample with an agent capable of extracting an RNA molecule present in the sample and an agent capable of stabilizing an RNA molecule against degradation.

In yet another aspect, the invention provides a method of detecting an Ebola virus in a sample, the method involving

(a) contacting a biological sample with an agent capable of extracting a polynucleotide molecule present in the sample and an agent capable of stabilizing a polynucleotide molecule against degradation;

5 (b) contacting the extracted and stabilized Ebola RNA with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating an Ebola cDNA;

0 (c) contacting the Ebola cDNA with forward and reverse primers each carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the Ebola cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons; and

5 (d) detecting the amplicons, where the presence of an Ebola amplicon detects an Ebola polynucleotide in the sample and failure to detect the amplicon indicates the absence of an Ebola polynucleotide in the sample.

In yet another aspect, the invention provides a kit for detecting an RNA virus polynucleotide molecule involving primers that specifically bind an RNA viral sequence, a detectable probe that specifically binds a viral (e.g., Ebola) amplicon, a reverse transcriptase enzyme, a nicking enzyme, and a strand-displacement polymerase. In one embodiment, the primers contain the following sequences:

Forward primer:

GAATCGATATCGAGTCGCTTCCA[MeOC]AGTTATC[MeOU][MeOA][MeOC][MeOC][MeOG]

(SEQ ID NO: 1)

Reverse Primer:

25 GACTCGATATCGAGTCGAAATGC[MeOA]ACGA[MeOC][MeOA][MeOC][MeOC][MeOU] (SEQ ID NO: 2); and the probe contains the following sequence: gctacACGACTTYGCTGAAGgtgc (SEQ ID NO: 3).

In another embodiment, the probe has a fluorescent dye at the 5' end, and a quencher at the 3' end or vice versa. In one embodiment, the probe is

30 5'-CALRed_{610nm}- gctacACGACTTYGCTGAAGgtgc BHQ2- 3' (SEQ ID NO: 4) or

5'-FAM or FITC - gctacACGACTTYGCTGAAGgtgc-BHQ1-3' (SEQ ID NO: 5). In one embodiment, the 3' quencher is replaced by DABsyl.

In another aspect, the invention provides a kit for amplifying an Ebola polynucleotide molecule in a reverse transcriptase nicking amplification reaction, the kit containing the following primers:

Forward primer:

5 GACTCGATATCGAGTCGCTTCCA[MeOC]AGTTATC[MeOU][MeOA][MeOC][MeOC][MeOC][MeOG]
(SEQ ID NO: 1)

Reverse Primer:

GACTCGATATCGAGTCGAAATGC[MeOA]ACGA[MeOC][MeOA][MeOC][MeOC][MeOU] (SEQ
ID NO: 2);

0 the following probe:

gctacACGACTTYGCTGAAGgtgc (SEQ ID NO: 3);

a reverse transcriptase enzyme, a nicking enzyme, a strand-displacement polymerase, and directions for use of the aforementioned primers, probes and enzymes for detecting an Ebola polynucleotide molecule.

5 In one embodiment, the kit further contains a capillary tube that may or may not contain lyophilized lysis or RNA stabilization reagents for viral polynucleotide extraction. In another embodiment, the kit further contains one or more vessels containing a buffer suitable for carrying out a reverse transcriptase and/or amplification reaction. In another embodiment, the kit further contains vessels containing the reverse transcriptase enzyme, nicking enzyme,
10 and strand-displacement polymerase in lyophilized form.

In yet another aspect, the invention provides a method of diagnosing a human or animal subject with an RNA virus, the method involving

25 (a) contacting a sample of the subject with an agent capable of extracting an RNA virus present in the sample and an agent capable of stabilizing the extracted polynucleotide molecule against degradation;

(b) contacting the polynucleotide molecule with a reverse transcriptase primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA copy of the polynucleotide molecule;

30 (c) contacting the cDNA with forward and reverse primers carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons; and

(d) detecting the amplicons, where the presence of an RNA viral amplicon diagnoses an RNA viral infection in the subject and failure to detect the amplicon diagnoses the absence of an RNA viral infection in the subject.

In various embodiments of any aspect delineated herein, no detectable signal is present in a control assay lacking a target polynucleotide at seven minutes, ten minutes, and/or fifteen minutes following initiation of the assay. In other embodiments of any aspect delineated herein, the primer used in step (a) has the same sequence or a different sequence than a primer used in step (b). In other embodiments of any of the above, steps (a)-(c) are carried out in a single reaction. In still other embodiments of the above aspects, the reverse transcriptase enzyme and the strand-displacement DNA polymerase are the same or different enzymes. In still other embodiments, the cDNA of step (a) is generated in a first reaction vessel, then transferred to a second reaction vessel where step (b) is carried out. In still other embodiments of any aspect delineated herein, the polynucleotide molecule is an Ebola polynucleotide. In still other embodiments of any aspect delineated herein, the sample is a bodily fluid (e.g., saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma). In still other embodiments of any aspect delineated herein, the bodily cavity is peritoneal cavity or pericardial cavity. In still other embodiments of any aspect delineated herein, the limit of detection is 10 or 20 copies per reaction. In still other embodiments of any aspect delineated herein, the method is carried out in about 5, 7, 10, 15, 20, 25 or thirty minutes. In still other embodiments of any aspect delineated herein, steps a-d are carried out in the context of the biological sample. In still other embodiments of any aspect delineated herein, Ebola or other viral RNA is not purified or isolated away from the biological sample (e.g, crude). In still other embodiments of any aspect delineated herein, the method is carried out at a point of care or diagnosis in a portable battery powered device. In still other embodiments of any aspect delineated herein, no separate reverse transcriptase primer is required, but the forward and/or reverse primers are used. In still other embodiments of any aspect delineated herein, the sample is a biological sample or an environmental sample. In still other embodiments of any aspect delineated herein, the biological sample is obtained from a subject, bat, bush meat, or a domestic animal. In still other embodiments of any aspect delineated herein, the biological sample is a swab of a mucosal membrane that is any one or more of buccal, nasal, eye, rectal, and vaginal or skin. In still other embodiments of any aspect delineated herein, the biological sample is a tissue

sample obtained from a subject, necropsy, or culture media. In still other embodiments of any aspect delineated herein, the necropsy is of a human, primate, bat, or other mammal. In still other embodiments of any aspect delineated herein, the environmental sample is a material that may be contaminated with a biological fluid of a subject having or having a propensity to develop an Ebola viral infection. In still other embodiments of any aspect delineated herein, the environmental sample is bedding, a seat cushion, a rug, an air condition filter or other material. In still other embodiments of any aspect delineated herein, the polymerase are 5'-exo⁻ derivatives of Bst DNA polymerase I, Gst DNA polymerase I, Gka DNA polymerase I, Gca DNA polymerase I, Gan DNA polymerase I, Gbo DNA polymerase I, Gsp70 DNA polymerase I, GspT3 DNA polymerase I, Gsp52 DNA polymerase I and/or fragments thereof. In still other embodiments of any aspect delineated herein, the nicking enzyme is one or more of Nt.BstNBI, Nt.BspD6I, Nt.BspQI, Nt.BsmAI, Nt.AlwI, N.Bst9I, or N.BstSEI. In still other embodiments of any aspect delineated herein, the reverse transcriptase is M-MLV RT, AMV RT, RSV RT, and/or mutants/derivates thereof. In still other embodiments of any aspect delineated herein, the detectable probe contains a molecular beacon. In various embodiments of any aspect delineated herein, an amplification primer (e.g., forward and/or reverse primer) comprises one or more 2' modified nucleotides (e.g., 2'-O-methyl ribonucleotides) in the 3' terminal region or recognition region. In particular embodiments, the amplification primer comprises one or more 2'-O-methyl modified nucleotides at the 3' end, including for example 2'-O-methyl, 2'-methoxyethoxy, 2'-fluoro, 2'-hydroxyl, 2'-alkyl, 2'-allyl, 2'-O-[2-(methylamino)-2-oxoethyl], 4'-thio, 4'-CH₂-O-2'-bridge, 4'-(CH₂)₂-O-2'-bridge, 2'-LNA, and 2'-O-(N-methylcarbamate).

In still other embodiments of any aspect delineated herein, the forward and reverse primers for detection of Ebola virus contain the following sequences, respectively:

25 Forward primer:

GACTCGATATCGAGTCGCTTCCA[MeOC]AGTTATC[MeOU][MeOA][MeOC][MeOC][MeOG]
(SEQ ID NO: 1)

Reverse Primer:

30 GACTCGATATCGAGTCGAAATGC[MeOA]ACGA[MeOC][MeOA][MeOC][MeOC][MeOU] (SEQ ID NO: 2).

In still other embodiments of any aspect delineated herein, amplification is detected using a probe having the following sequence: gctacACGACTTYGCTGAAGgtgc (SEQ ID NO: 3). In still other embodiments of any aspect delineated herein, the probe has a fluorescent dye at 5'

end, and a quencher at 3' end or vice versa. In still other embodiments of any aspect delineated herein, the probe is

5'-CALRed_{610nm}- gctacACGACTTYGCTGAAGgtgc BHQ2- 3' (SEQ ID NO: 4) or
5'-FAM or FITC - gctacACGACTTYGCTGAAGgtgc-BHQ1-3' (SEQ ID NO: 5).

5 In still other embodiments of any aspect delineated herein, the 3' quencher is replaced by DABsyl.

In still other embodiments of any aspect delineated herein, the forward and reverse primers for detection of HIV virus contain one or more of the following sequences, respectively:

0 Forward primer:

GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO: 6),

GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7); and

Reverse Primer:

GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8),

5 GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9).

In still other embodiments of any aspect delineated herein, amplification is detected using a probe having the following sequence: cgcaagGGAGAGAGATGGGTGcttgcg (SEQ ID NO: 10).

In still other embodiments of any aspect delineated herein, the forward and reverse primers for detection of Dengue virus contain one or more of the following sequences,

10 respectively:

Forward primer:

GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11); and

Reverse Primer:

GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12),

25 GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13).

In still other embodiments of any aspect delineated herein, amplification is detected using a probe having the following sequence: cgcacTGTTCTTCCCAGCgatgcg (SEQ ID NO: 14).

In still other embodiments of any aspect delineated herein, the forward and reverse primers for detection of influenza B virus contain one or more of the following sequences,

30 respectively:

Forward primer:

GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16),
GACTCGATATCGAGTCAAATGCAmGATGGTTCTmAmGmCmTmA (SEQ ID NO: 17); and

Reverse Primer:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18),

5 GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19),

GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20).

In still other embodiments of any aspect delineated herein, amplification is detected using a probe having the following sequence: gccaaGCTATGAACACAGCAAActtggc (SEQ ID NO: 21).

In still other embodiments of any aspect delineated herein, the forward and reverse

0 primers for detection of BVDV1 virus contain one or more of the following sequences, respectively:

Forward primer:

GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmAmA (SEQ ID NO: 22),

GACTCGATATCGAGTCGGCCACmTGCACTGCTmAmCmTmAmAmAmA (SEQ ID NO: 23); and

5 Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC (SEQ ID NO: 24).

In still other embodiments of any aspect delineated herein, amplification is detected using a probe having the following sequence: cgctacATCTCTGCTGTACATGgttagcg (SEQ ID NO: 25).

In still other embodiments of any aspect delineated herein, the probe has a fluorescent dye at

:0 the 5' end and a quencher at the 3' end, or a fluorescent dye at the 3' end and a quencher at the 5' end. In particular embodiments, the fluorescent dye is CALRed_{610nm}, and the quencher is BHQ2 or DABsyl. In certain embodiments, the fluorescent dye is FAM or FITC and the quencher is BHQ1 or DABsyl.

In still other embodiments of any aspect delineated herein, the RNA virus is an Ebola

25 virus, human immunodeficiency virus (HIV), Dengue virus, influenza virus (e.g., influenza B), Bovine Viral Diarrhea virus (e.g., BVDV Genotype 1), Yellow Fever virus, West Nile virus, Hepatitis C, Lassa virus, Flavivirus, Arenavirus, or single-stranded RNA virus. In still other embodiments of any aspect delineated herein, the agent capable of extracting the virus is one of or a combination of sodium dodecyl sulfate, sodium lauryl sulfate, Guanidinium

30 thiocyanate, and/or guanidine hydrochloride. In various embodiments, the Guanidinium thiocyanate or other agent capable of extracting the virus is used at a concentration of about 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10, 15, 20, 25, 50, 100, 250, 500 mM or more. In still other embodiments of any aspect delineated herein, the method is used for daily screening of health

care workers. In still other embodiments of any aspect delineated herein, the samples are pooled and the screening is carried out on a human or animal population.

The present invention as claimed herein is described in the following items 1 to 12:

5 1. A method of detecting a specific target polynucleotide in an isothermal amplification reaction coupled with reverse transcription, the method comprising:

10 (a) contacting a target polynucleotide molecule in a sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;

20 (b) contacting the cDNA with

25 (i) forward and reverse primers each comprising a modified nucleotide (m);
wherein the polynucleotide molecule is Ebola virus (EBOV) and the forward and reverse primers for the detection of EBOV are selected from the group consisting of:

Forward primer:

30 GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ ID NO: 1), and

Reverse Primer:

35 GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID NO: 2); or

40 wherein the polynucleotide molecule is human immunodeficiency virus (HIV) and the forward and reverse primers for the detection of HIV are selected from the group consisting of:

45 Forward primers:

50 GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO: 6), and

55 GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7), and

60 Reverse Primers:

65 GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or

wherein the polynucleotide molecule is dengue virus and the forward and reverse primers for the detection of dengue virus are selected from the group consisting of:

Forward primer:

GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

Reverse Primer:

GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

wherein the polynucleotide molecule is influenza B virus and the forward and reverse primers for the detection of influenza B virus are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and

GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18),

GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and

GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

wherein the polynucleotide molecule is bovine diarrhea virus and the forward and reverse primers for the detection of bovine diarrhea virus are selected from the group consisting of:

Forward primers:

5 GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmA
mA (SEQ ID NO: 22), and

10 GACTCGATATCGAGTCGGCCACmTGCACTGCTmAmCmTmAmAmA
(SEQ ID NO: 23), and

15 Reverse Primer:

20 GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC
(SEQ ID NO: 24),

25 (ii) dNTPs,

30 (iii) a detectable oligonucleotide probe, and

35 (iv) a strand-displacement polymerase

under conditions permissive for the isothermal amplification of the cDNA; and

40 (c) detecting a signal specific for detectable oligonucleotide probe hybridization to the
amplicon, wherein detection of the signal indicates the presence or quantity of the target
polynucleotide present in the sample and failure to detect the signal indicates the absence of
45 target polynucleotide in the sample.

2. A method of detecting an RNA virus in a sample, the method comprising

5 (a) contacting an RNA virus polynucleotide molecule in a sample with a primer in the
presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA

10 synthesis, thereby generating a cDNA;

15 (b) contacting the cDNA with

20 (i) forward and reverse primers each comprising a modified nucleotide (m);

25 wherein the RNA virus polynucleotide is Ebola virus (EBOV) and the forward
and reverse primers for the detection of EBOV are selected from the group consisting
of:

30 Forward primer:

35 GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ
ID NO: 1), and

40 Reverse Primer:

45 GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID
NO: 2); or

wherein the RNA virus polynucleotide is human immunodeficiency virus (HIV) and the forward and reverse primers for the detection of HIV are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO: 6), and

GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7), and

Reverse Primers:

GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or

wherein the RNA virus polynucleotide is dengue virus and the forward and reverse primers for the detection of dengue virus are selected from the group consisting of:

Forward primer:

GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

Reverse Primer:

GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

wherein the RNA virus polynucleotide is influenza B virus and the forward and reverse primers for the detection of influenza B virus are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and

GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

5 GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT
(SEQ ID NO: 18),
GACTCGATATCGAGTCCTCCCTmTCCCATTCCATmTmCmAmTmT (SEQ ID
NO: 19), and
0 GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID
NO: 20); or

5 wherein the RNA virus polynucleotide is bovine diarrhea virus and the
forward and reverse primers for the detection of bovine diarrhea virus are selected
from the group consisting of:

Forward primers:

0 GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmA
mA (SEQ ID NO: 22), and
GACTCGATATCGAGTCGGCCACmTGCACTGCTmAmCmTmAmAmAmA
5 (SEQ ID NO: 23), and

Reverse Primer:

0 GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC
(SEQ ID NO: 24),

5 (ii) dNTPs,

10 (iii) a detectable oligonucleotide probe, and

15 (iv) a strand-displacement polymerase

under conditions permissive for the isothermal amplification of the cDNA; and

20 (c) detecting a signal specific for detectable oligonucleotide probe hybridization to the
amplicon, wherein detection of the signal indicates the presence or quantity of the RNA virus
25 polynucleotide molecule present in the sample and failure to detect the amplicon indicates the
absence of an RNA virus.

3. A method of diagnosing a human or animal subject with an RNA virus, the method
comprising

30 (a) contacting a sample of the subject with an agent capable of extracting an RNA virus
present in the sample and an agent capable of stabilizing the extracted polynucleotide
molecule against degradation;

(b) contacting the polynucleotide molecule with a reverse transcriptase primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA copy of the polynucleotide molecule;

(c) contacting the cDNA with

5 (i) forward and reverse primers each comprising a modified nucleotide (m); wherein the polynucleotide molecule is Ebola virus (EBOV) and the forward and reverse primers are selected from the group consisting of:

Forward primer:

GAATCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ ID NO: 1),

0 and

Reverse Primer:

GAATCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID NO: 2); or

wherein the polynucleotide molecule is human immunodeficiency virus (HIV) and the forward and reverse primers are selected from the group consisting of:

5 Forward primers:

GAATCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO:

6), and GAATCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7), and

Reverse Primers:

0 GAATCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and

GAATCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or

wherein the polynucleotide molecule is dengue virus and the forward and reverse primers are selected from the group consisting of:

Forward primer: GAATCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC

25 (SEQ ID NO: 11), and

Reverse Primer:

GAATCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

GAATCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

wherein the polynucleotide molecule is influenza B virus and the forward and reverse primers are selected from the group consisting of:

30

Forward primers:

GAATCGATATCGAGTCAAATGCmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

GAATCGATATCGAGTCAAATGCmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16),

and GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO:

5 18), GACTCGATATCGAGTCCTCCCTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

wherein the polynucleotide molecule is bovine diarrhea virus and the forward and reverse primers are selected from the group consisting of:

0 Forward primers:

GACTCGATATCGAGTCGGCCCACmTGTATTGCTmAmCmTmGmAmAmA (SEQ ID NO: 22), and

GACTCGATATCGAGTCGGCCCACmTGCACTGCTmAmCmTmAmAmAmA (SEQ ID NO: 23), and

5 Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC (SEQ ID NO: 24),

ii) dNTPs,

iii) a detectable oligonucleotide probe, and

0 iv) a strand-displacement polymerase

under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons; and

(d) detecting the amplicons, wherein the presence of an RNA viral amplicon diagnoses an RNA viral infection in the subject and failure to detect the amplicon diagnoses the absence of 25 an RNA viral infection in the subject.

4. The method of any one of items 1-3, wherein the polynucleotide molecule is obtained by contacting the sample with one or more of an agent capable of extracting an RNA molecule present in the sample and an agent capable of stabilizing an RNA molecule against

30 degradation, optionally wherein the agent capable of extraction is one or a combination of sodium dodecyl sulfate, sodium lauryl sulfate, Guanidinium thiocyanate, and/or guanidine hydrochloride; and/or

wherein no detectable signal is present in a control assay lacking a target polynucleotide at seven minutes, ten minutes, and/or fifteen minutes following initiation of the assay; and/or

5 wherein the primer used in step (a) has the same sequence or a different sequence than the forward or reverse primer used in step (b); and/or

wherein steps (a)-(c) are carried out in a single reaction; and/or

wherein the cDNA of step (a) is generated in a first reaction vessel, then transferred to a second reaction vessel where step (b) is carried out; and/or

wherein the reverse transcriptase enzyme used in step (a) and the strand-displacement DNA 0 polymerase used in step (b) are the same or different enzyme; and/or

wherein the sample is a bodily fluid, optionally selected from the group consisting of saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma, optionally wherein the bodily cavity is peritoneal cavity or

5 pericardial cavity; and/or

wherein the limit of detection is 10 or 20 copies per reaction; and/or

wherein the method is carried out in about 5, 7, 10, 15, 20, 25 or thirty minutes; and/or

wherein steps (a)-(d) are carried out in the context of the biological sample; and/or

:0 wherein the polynucleotide molecule is not purified or isolated away from the biological sample.

5. The method of any one of items 1-4, wherein the method is carried out at a point of care or diagnosis in a portable battery powered device; and/or

25 wherein no separate reverse transcriptase primer is required, but the forward and/or reverse primers are used; and/or

wherein the sample is a biological sample or an environmental sample, optionally wherein the biological sample is obtained from a subject, bat, bush meat, or a domestic animal; or wherein the biological sample is a swab of a mucosal membrane selected from the 30 group consisting of buccal, nasal, eye, rectal, and vaginal or skin; or wherein the biological sample is a tissue sample obtained from a subject, necropsy, or culture media, optionally wherein the necropsy is of a human, primate, bat, or other mammal; or wherein the environmental sample is a material that may be contaminated with a biological fluid of a

subject having or having a propensity to develop an Ebola viral infection; or wherein the environmental sample is bedding, a seat cushion, a rug, an air condition filter or other material; and/or

wherein the polymerase are 5'-exo⁻ derivatives of Bst DNA polymerase I, Gst DNA polymerase I, Gka DNA polymerase I, Gca DNA polymerase I, Gan DNA polymerase I, Gbo DNA polymerase I, Gsp70 DNA polymerase I, GspT3 DNA polymerase I, Gsp52 DNA polymerase I and/or fragments thereof; and/or

wherein the nicking enzyme is one or more of Nt.BstNBI, Nt.BspD6I, Nt.BspQI, Nt.BsmAI, Nt.AlwI, N.Bst9I, or N.BstSEI; and/or

wherein the reverse transcriptase is M-MLV RT, AMV RT, RSV RT, and/or mutants/derivatives thereof.

6. The method of any one of items 1-5, wherein the polynucleotide molecule is EBOV and the probe having the following sequence: gctacACGACTTYGCTGAAGgtac;

5 optionally

wherein the probe is

5'-CALRed610nm- gctacACGACTTYGCTGAAGgtac BHQ2- 3' or

5'-FAM or FITC - gctacACGACTTYGCTGAAGgtac-BHQ1-3'; or

wherein the polynucleotide molecule is HIV and the probe comprises the following sequence:

:0 cgcaagGGAGAGAGATGGGTGcttgcg; or

wherein the polynucleotide molecule is Dengue virus and the probe comprises the following sequence: cgcacTGTTCTTCCCAGCgatgac; or

wherein the polynucleotide molecule is influenza B and the probe comprises the following sequence: gccaaGCTATGAACACAGCAAActggc; or

25 wherein the polynucleotide molecule is bovine diarrhea virus and the probe comprises the following sequence: cgctacATCTCTGCTGTACATGgtac.

7. The method of any one of items 1-6, wherein the detectable probe comprises a molecular beacon; or

30 wherein the detectable probe has a fluorescent dye at the 5' end, and a quencher at the 3' end or a fluorescent dye at the 3' end, and a quencher at 5' end; optionally,

wherein the quencher is BHQ1, BHQ2 or DABsyl; and/or

wherein the fluorescent dye is CALRed610nm, FAM or FITC.

8. The method of any one of items 1-7, wherein the one or more 2' modified nucleotide is one or more of 2'-O-methyl, 2'-methoxyethoxy, 2'-fluoro, 2'-hydroxyl, 2'-alkyl, 2'-allyl, 2'-O-[2-(methylamino)-2-oxoethyl], 4'-CH₂-O-2'-bridge, 4'-(CH₂)₂-O-2'-bridge, 2'-LNA, and 2'-O-(N-methylcarbamate).

5 9. A kit for detecting an RNA virus polynucleotide molecule comprising:

(i) forward and reverse primers each comprising a modified nucleotide (m), wherein the RNA virus polynucleotide is Ebola virus (EBOV) and the forward and reverse primers are selected from the group consisting of:

0 Forward primer:

GAATCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmAmCmCmG (SEQ ID

NO: 1), and

Reverse Primer:

GAATCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID NO: 2);

5 or

wherein the RNA virus polynucleotide is human immunodeficiency virus (HIV) and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GAATCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ

:0 ID NO: 6), and GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7), and

Reverse Primers:

GAATCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO:

8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO:

25 9); or

wherein the RNA virus polynucleotide is dengue virus and the forward and reverse primers are selected from the group consisting of:

Forward primer:

GAATCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11),

30 and

Reverse Primer:

GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

wherein the RNA virus polynucleotide is influenza B virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15), GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18), GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

wherein the RNA virus polynucleotide is bovine diarrhea virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCGGCCCACmTGTATTGCTmAmCmTmGmAmAmA

(SEQ ID NO: 22), and

GACTCGATATCGAGTCGGCCCACmTGCAGTGCTmAmCmTmAmAmAmA (SEQ ID NO: 23), and

Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC (SEQ ID NO: 24),

- (ii) a detectable probe that specifically binds an RNA virus amplicon,
- (iii) a reverse transcriptase enzyme,
- (iv) a nicking enzyme, and
- (v) a strand-displacement polymerase.

30

10. The kit of item 9,

wherein the RNA virus polynucleotide is EBOV and the probe comprises the following sequence: gctacACGACTTYGCTGAAGgtagc; optionally wherein the probe is

5'-CALRed_{610nm}- gctacACGACTTYGCTGAAGgtgc BHQ2- 3' or
5'-FAM or FITC - gctacACGACTTYGCTGAAGgtgc-BHQ1-3', optionally wherein the
3' quencher is replaced by DABsyl; or
wherein the RNA virus polynucleotide is HIV and the probe comprises the following
5 sequence: cgcaagGGAGAGAGATGGGTGcttgcg; or
wherein the RNA virus polynucleotide is Dengue virus and the probe comprises the
following sequence: cgcatcTGGTCTTCCCAGCgatgcg; or
wherein the RNA virus polynucleotide is influenza B virus and the probe comprises
the following sequence: gccaaGCTATGAACACAGCAAActtggc; or
0 wherein the RNA virus polynucleotide is bovine diarrhea virus and the probe
comprises the following sequence: cgctacATCTCTGCTGTACATGgtagcg.

11. The kit of item 9 or item 10, wherein the probe has a fluorescent dye at the 5' end and
a quencher at the 3' end or fluorescent dye at the 3' end and a quencher at the 5' end;
5 optionally,

wherein the quencher is BHQ1, BHQ2 or DABsyl; and/or
wherein the fluorescent dye is CALRed_{610nm}, FAM or FITC.

12. The kit of any one of items 9-11, wherein the kit further comprises a capillary tube
0 that may or may not comprise lyophilized lysis or RNA stabilization reagents for viral
polynucleotide extraction; and/or

wherein the kit further comprises one or more vessels comprising a buffer suitable for
carrying out a reverse transcriptase and/or amplification reaction; and/or
wherein the kit further comprises vessels comprising the reverse transcriptase
25 enzyme, nicking enzyme, and strand-displacement polymerase in lyophilized form.

Definitions

By "Ebola virus (EBOV)" is meant a Filoviridae virus having at least about 85%
amino acid sequence identity to an Ebola virus. Exemplary Ebola viruses include, but are not
30 limited to, Ebola-Zaire virus, Ebola-Sudan virus, Ebola-Ivory Coast virus, and Ebola-
Bundibugyo, which cause disease in humans, or Ebola-Reston virus, which affects non-
human primates.

The sequence of an exemplary Ebola Zaire genome is provided at NCBI Accession No. KC242800.1 (SEQ ID NO: 26), which is reproduced below:

1 cggacacacaca aaaagaaaaga agaattttta ggtattttg tgtgcgata actatgagga
61 agattaataa ttttcctctc attgaaattt atatcgaaat ttaaatttggaa attgttactg
121 taatcacacc tgggttggtt cagagccaca tcacaaagat agagaacagc ctaggtctcc
181 gaaggaaaca agggcaccag tgtgctcagt tggaaatccc ttgtcaacat ctaggtctta
241 tcacatcaca agttccaccc cagactctgc agggtgatcc aacaacccta atagaaaaat
301 tattgttaac ggacagcatt agttcacagt caaacaagca agattgagaa ttaaccttga
361 ttttgaactt caacacccat taggattggag attcaacaac cctaaaaactt gggtaaaaac
421 attggaaata gttgaaagac aaattgctcg gaatcacaaa attccgagta tggattctcg
481 tcctcagaaa gtctggatga cgccgagtct tactgaatct gacatggatt accacaagat
541 cttgacagca ggtctgtccg ttcaacaggg gattgttcgg caaagagtca tcccaagtgt
601 tcaagtaaac aatcttgagg aaatttgcac acttatacata caggcccttgg aagcagggt
661 tgattttcaa gagagtgcgg acagttccct tctcatgctt tgtcttcatc atgcgtacca
721 aggagatcac aaacttttct tggaaagtgg tgcagtcaag tatttggaa ggcacgggtt
781 ccgtttgaa gtcaagaaac gtgatgggtt gaagcgcctt gaggattgc tgccagcagt
841 atcttagtggaa aaaaacatttta agagaacact tgctgccatg ccggaaagagg agacgactga
901 agctaattgcc ggtcagtttc tctctttgc aagtctattc cttccgaaat tggtagtagg
961 agaaaaggct tgccttgaga aagttcaaag gcaaattcaa gtacatgcag agcaaggact
1021 gatacaataat ccaacagcattt ggcaatcagt aggacacatg atggtgattt tccgtttgat
1081 gcgaacaaat tttttgatca aatttctccct aatacacccaa gggatgcaca tgggtggccgg
1141 gcatgatgcc aacgatgctg tgatttcaaa ttcatgtggctt caagctcgat tttcagggtt
1201 attgattgtc aaaaacagtcc ttgatcatat cctacaaaag acagaacgag gagttcgct
1261 ccatccttgc gcaaggactg ccaaggtaaa aaatgaggtt aactccttta aggctgcact
1321 cagctccctg gccaaggcatg gagagtatgc tccttcgccc cgacttttga accttttgg
1381 agtaaataat cttgagcatg gtctttccc tcaactatcg gcaattgcac tcggagtcgc
1441 cacagcacac gggagcaccc tcgcaggagt aatgttgaa gaacagtatc aacagctcg
1501 agaggctgcc actgaagctg agaagcaact ccaacaataat gcagaatctc gcgaacttga
1561 ccatcttggaa cttgatgatc agaaaaagaa aatttctttagt aacttccatc agaaaaagaa
1621 cggaaatcagc ttccagcaaa caaacgctat ggttaactcta agaaaaagagc gcctggccaa

5

0

5

:0

:5

30

35

40

1681 gctgacagaa gctatcactg ctgcatcact gccaaaaca agtggacctt acgatgatga
 1741 tgacgacatt cccttccag gaccatcaa tcatgacgac aatcctggcc atcaagatga
 1801 tcatccgact gactcacagg atacgaccat tcccgtgtg gtggttgatc ccgatgatgg
 1861 aagctacggc gaataccaga gttactcgga aaacggcatg aatgcaccag atgacttgg
 1921 cctattcgat cttagacgagg acgacgagga cactaagcca gtgcctaaca gattgaccaa
 1981 gggtggacaa cagaaaaaca gtcaaaagg ccagcataca gagggcagac agacacaatc
 2041 caggccaaact caaaaatgtcc caggccctcg cagaacaatc caccacgcca gtgctccact
 2101 cacggacaac gacagaggaa atgaaccctc cggctcaacc agccctcgca tgctgacacc
 2161 aattaacgaa gaggcagacc cactggacga tgccgacgac gagacgtcta gtcttccgccc
 2221 cttggagtca gacgatgaag aacaggacag ggacgaaact tccaaccgca caccactgt
 2281 cgccccaccg gtcggcgat acagagatca ctctgaaaag aaagaactcc cgcaagatga
 2341 gcagcaagat caggaccaca ctcaagaggc caggaaccag gacagtgaca acacccagcc
 2401 agaacactct tttgaggaga tgtatcgcca cattctaaga tcacagggac catttcatgc
 2461 tgtttgtat tatcatatga tgaaggatga gcctgttagtt ttcagtacta gtgatggcaa
 2521 agagtacacg tatccggact cccttgaaga ggaatatcca ccatggctca ctgaaaaaga
 2581 ggccatgaat gaagagaata gatttggatc attggatggt caacaatttt attggccggt
 2641 aatgaatcac aagaataaaat tcatggcaat cctgcaacat catcagtgaa tgagaatggaa
 2701 ataatggat gatttaaccg acaaatacg aacattaaat agtcaagaaa cgcaaacagg
 2761 aagaattttt gatgtctaag gtgtgaatta ttatcacaat aaaagtgatt cttattttg
 2821 aatttaaagc tagcttatta ttactagccg ttttcaaag ttcaatttga gtcttaatgc
 2881 aaataggcgt taagccacag ttatagccat aattgtact caatatctt gctagcgatt
 2941 tatctaaatt aaattacatt atgctttat aacttaccta ctgcctgcc caacatttac
 3001 acgatcggtt tataattaag aaaaaactaa tcatgaaatgataaaacccatc atcatccctt
 3061 cgtcaattga attctctagc actcgaagct tattgtcttc aatgtaaaag aaaagctgg
 3121 ccaacaagat gacaactaga acaaaggca gggccatc tgcggccacg actcaaaacg
 3181 acagaatgcc aggcctgag cttcggct ggtatccga gcagctaattg accgaaagaa
 3241 ttccctgtaag cgacatcttc tgcgtatattg agaacaatcc aggattatgt tacgcattcc
 3301 aaatgcaaca aacaaagcca aacccgaaga tgcgcacag tcaaacccaa acggacccaa
 3361 ttgcataatca tagtttgag gaggtatgtac aaacattggc ttcatggct actgttgc
 3421 aacaacaaac tatcgcatca gaatcattag aacaacgtat tacgagtctt gagaatggc
 3481 taaagccagt ttatgatatg gaaaaacaa ttcctcatt gaacagggtt tgcgtgaga
 3541 tggttgcaaa atatgatctt ctgggtatga caaccggctg ggcaacagca accactgcgg
 3601 caactgagggc ttattggctt gacatggc aaccaccacc tggaccatca ctttatgaaag
 3661 aaagtgcataat tcggggtaag attgaatcta gagatgagac cgtccctcaa agtgttaggg
 3721 aggcatcaaa caatcttagac agtaccactt cactaactga gaaaaatttt gggaaacctg
 3781 acatttcagc aaaggatttg agaaacatta tgcgtatgc cttgcctgg tttggactg
 3841 cttccacca attagtacaa gtgatttgc aattggaaa agatagcaac tcattggata
 3901 tcattcatgc tgcgttccag gccagccctgg ctgcaggaga ctctccctcaa tgcgcctaa
 3961 ttcaattac aaaaagagtt ccaatcttc aagatgctgc tccacatgtc atccacatcc
 4021 gctctcgagg tgacattccc cgagcttgcc agaaaagctt gcgtccagtc cggccatcac
 4081 ccaagattga tcgagggttgg gtatgtgtt tccagctca agatggaaa acacttggac
 4141 tcaaaatttg agccaatctc cttccctcc gaaagaggcg accaatagca gaggcttcaa
 4201 ctgctgaact acagggtacg ttacattaaat gatacacttgc tgagtatgc ccctagataa
 4261 tataagtcaa ttaaacgacc aagccaaaat tggatcatatc ccgtacgacg cttaaaatat

4321 aaatggaaata ggagctatat ctctgacagt attataatca attgttatta agtaacccaa
4381 accaaaaatg atgaagatta agaaaaaacct acctcgactg agagagtg ttccattaa
4441 ccttcatctt gtaaaacgtt agcaaaaattt ttacgaatat gaggcgggtt atattgccta
4501 ctgctcctcc tgaatataat gaggccatat accctgtcag gtcaaattca acaattgcta
4561 ggggtggcaa caacaataca ggcttcctga caccggagtc agtcaatgga gacactccat
4621 cgaatccact cagggcaatt gctgatgaca ccatcgacca tgctagccac acaccaggca
4681 gtgtgtcatc agcattcatc cttgaagcta tggtaatgt catatcgggc cccaaagtgc
4741 taatgaagca aattccaatt tggcttcctc taggtgtcgc tgatcaaaag acctacagct
4801 ttgactcaac tacggccgcc atcatgctt cttcatatac tattcaccat ttggcaagg
4861 caaccaatcc acttgcaga gtcaatcgcc tggctcctgg aatcccgat caccctctca
4921 ggctcctgcg aattggaaac cagggcttcc tccaggagtt cggtctccg ccagtccaaac
4981 taccctcagta ttccaccttt gatttgacag cactcaaact gatcacccaa ccactgcctg
5041 ctgcaacatg gaccgatgac actccaacag gatcaaattgg agcgctgcgt ccaggaattt
5101 cgtttcatcc aaaacttcgc cccattctt tacctaacaa aagtggaaag aaggggaaaca
5161 gtgcccgtatc aacatctcca gagaaaaatcc aagaataat gacttcactc caggacttta
5221 agatcggttcc aattgatcca accaaaaata tcatgggtat cgaagtgcga gaaactctgg
5281 tccacaagct gaccggtaag aagggtactt cttttttatgg acaaccaatc atccctgttc
5341 ttttgccaaa gtacattggg ttggaccgg tggctccagg agacccacc atggtaatca
5401 cacaggattt tgacacgtgt catttcctt cttttttatgg acaaccaatc atccctgttc
5461 tgcaataatt gactcagatc cagtttaca gaatcttctc agggataatgt ataacatctca
5521 ttttagtaatc cgtctattag aggagatact tttttttatgg caatataacta aagggtcttt
5581 acaccattgt ctttttctc tcctaaatgt agaacttaac aaaagactca caatataactt
5641 gtcttaaaga gattgattga tgaaagatca tgactaataa cattacaat aatcctacta
5701 taatcaatac ggtgattcaa atattaatct ttcttaattgc acatactctc tgcccttac
5761 ctcaaattgc ctacatgcct acatctgagg atagccagtg tgacttggat tggagatgt
5821 gggaaagaaat cggaacccat ctccaggtt ttcacaatcc aagcacagac atcgcccttc
5881 taattaaagaa aaaatcgccg atgaagatta agccgacagt gagcgcatac ttcatctctc
5941 ttagattatt tgtttccag agtaggggtc atcaggtcct ttccatcat ataacaaaaaa
6001 taaaacttcac tagaaggata ttgtgaggca acaacacaat gggatttaca ggaatattgc
6061 agttacctcg tgatcgattc aagaggacat catttttct ttggtaatt atccctttcc
6121 aaagaacatt ttccatccca cttggagtc tccacaatag cacattacaa gttagtgatg
6181 tcgacaaact agtttgcgt gacaaactgt catccacaaa tcaatttgaga tcagttggac
6241 tgaatctcg agggaatgga gtggcaactg acgtgccatc tgcaactaaa agatggggct
6301 tcaggtccgg tgccttcac aagggtgtca attatgaagc tggtaatgg gctgaaaact
6361 gctacaatct tgaaatcaa aaacctgacg ggagttagt tctaccagca ggcggcagacg
6421 ggattcgaaa cttccccgg tgccggatg tgccacaaatg atcagggacg ggaccgtgt
6481 ccggagactt tgccttcac aaagagggtg ctttcttct gtatgatcga cttgcttcca
6541 cagttatcta ccgaggaacg actttcgctg aaggtgtcgt tgcatttctg atactgcccc
6601 aagctaagaa ggacttcttc agtcacacc ccttgagaga gcccgtcaat gcaacggagg
6661 acccgccatc tggctactat tctaccacaa ttagatatca ggctaccgg tttggaaacca
6721 atgagacgga gtacttgcgt gaggttgaca atttgaccta cgtccaactt gaatcaagat
6781 tcacgcccaca gttttgcgt cagctgaatg agacaatata tgcaagtggg aaaaggagca
6841 acaccacggg aaaactaatt tggaaaggta accccgaaat tgatacaaca atcgggggat
6901 gggcccttcgt ggaaactaaa aaaacctcac tagaaaaatt cgcagtgtaaag agttgtcttt

5

0

5

:0

:5

30

35

40

6961 cacagctgta toaaacggag ccaaagacat cagtggtcag agtccggcgc gaacttcttc
 7021 cgaccaggag acctacacaa caactgaaga ccacaaaatc atggcttcag aaaattcctc
 7081 tgcaatggtt caagtgcaca atcaaggaag ggaagctgca gtgtgcacatc tgataaccct
 7141 tgccacaatc tccacagagtc ctcacatcccc tacaacccaa ccaggtcagg acaacagcac
 7201 ccataataca cccgtgtata aacttgacat ctctgaggca actcaagttg aacaacatca
 7261 tcgcagaaca gacaacgaca gcacagcctc cgacactccc cccgcccacga cccgagccgg
 7321 acccccaaaa gcagagaaca tcaacacgag caagagcgct gactccctgg accccgcccac
 7381 cacgacaagt ccccaaaaact acagcgagac cgctggcaac aacaacactc atcacaaga
 7441 taccggagaa gagagtgccg gcagcggaa gctgggctt attgccaata ctattgtgg
 7501 agtcgcaggg ctgatcacag gcgggagaag aactcgaaga gaagcaattt tcaatgctca
 7561 acccaaattgc aaccccaatc tacattactg gactactcag gatgaagggtg ctgcaatcgg
 7621 attggcttgg ataccatatt tcgggcccagc agccgaggga atttacacag aggggcttaat
 7681 gcacaatcaa gatggtttaa tctgtggatt gaggcagctg gccaatgaga cgactcaagc
 7741 tcttcaactg ttccctgagag ccacaactga gctacgcacc ttttcaatcc tcaaccgtaa
 7801 ggcaatttgcatttgc agcgatgggg cggcacatgc cacatgggg gaccggactg
 7861 ctgtatcgaa ccacatgatt ggaccaagaa cataacagac aaaattgtac agattattca
 7921 tgattttgtt gataaaaaccc ttccggacca gggggacaat gacaatttggt ggactggatg
 7981 gagacaatgg ataccggcag gtattggagt tacaggcgtt ataattgcag ttattgttt
 8041 attctgtata tgcaaatttt tcttttagtt tttcttcaga ttgcttcatg gcaaagctca
 8101 gcctcaaattc aatgagatta ggatattt atatggatca cttgaatcta agattacttgc
 8161 acaaattgata atataataca ctggagcttt aaatatagcc aatgtgattt taactccccc
 8221 aaactcacaatc ttaatcataa acaaggttt acatcaatct agttatatct ttgagaatga
 8281 taaacttgcattt gaaatggattttttt tctttcgatt atcttttagtc ttcatcccttgc
 8341 attctacaat catgacagtt gtcttttagtgc acaaggggaaa gaaggcttt tagtaagttt
 8401 taataatcag atctgcgaac cggtagagtt taatttgcac ctaacacaca taaaggatttgc
 8461 gtcaaaaagt caatagaaat taaaacagtgc agtggagaca actttcaaat ggaagctcca
 8521 tacgagagag gacgcccccc agctgccaga cagcattcaa gggatggaca cgaccatcat
 8581 gttcgagcac gatcatcatc cagagagaat tatcgagggtg agtaccgtca atcaaggagc
 8641 gcctcacaatc tgcgcgttcc tactgtattt cataagagga gagttgaacc attaacagttt
 8701 cctccagcac ctaaaagacat atgtccgacc ttgaaaaaaag gattttgtt tgacagttagt
 8761 ttttgcaaaaaa aagatcacca gttggaaagt ttaactgata gggaaattact cctactaattc
 8821 gcccgtaaatc cttgtggatc agtagaacaa caattaaata taactgcacc caaggactcg
 8881 cgcttagcaa atccaaacggc tgatgatttc cagcaagagg aaggccaaa aattaccccttgc
 8941 ttgacactga tcaagacggc agaacaactgg gcgagacaag acatcaggac cacagaggat
 9001 tcaaaattaa gagcattgtt gactctatgt gctgtatgc cgaggaaattt ctc当地atcc
 9061 cagctgagtc ttttatgtt gacacacccgtt aggcgcgagg ggcttggca agatcaggca
 9121 gaaccggttc tcgaagtata tcaacgatta cacagtata aaggaggcag ttgc当地atgc
 9181 gcactatggc aacaatgggatc tgcacaatcc ctaattatgt ttatcactgc attcttgc当地
 9241 atcgctctcc agttaccgtt tgaaatgtt gctgtcgatc ttgc当地atgggtt aagaacatttgc
 9301 gttccctcaat cagataatgc ggaagcttca accaaccggg ggacatgctc atggctgtatgc
 9361 gatggtaccc cttataatagg ctgactaaaa cactatataa ctttctactt gatcacaata
 9421 ctccgtatac ctatcatcat atattcaatc aagacggat ctttccaaat ttattcactgc
 9481 ctataatcac ttcgtttca aattaataag atatgcataa ttgc当地atgc atatgaagag
 9541 gtatgataca acccttaacag tgatcaaaga aatcataat ctcttgc当地atgc tc当地atata

5

0

5

:0

:5

30

35

40

9601 acctgccaag catacctttt gcacaaaatgtt attcttgcac acaaataatgttttactcta
 9661 caggaggtttagt caacgatcca tcccatcaaa aaataagtat tttatgactt actaatgatc
 9721 tcttaaaaata ttaagaaaaaa ctgacggAAC acaaattttt tctgcttcaa gttgtggagg
 9781 aggtctttgg tattggctat tgttatatta caatcaataa caagcttgc aaaaatattgt
 9841 tcttgcgttca agaggttagat tggacccggAA aacgctaaac taatgtatgaa gattaatgcg
 9901 gaggtctgtat aagaataaaac cttatttttcc agattaggcc ccaagaggca ttcttcatct
 9961 ccttttagca aagtactatt tcagggttagt ccaattagtg acacgtctt tagctgtata
 10021 tcagtcgccc ctgagatacg ccacaaaatgtt gtctctaagc taaattggtc tgtacacatc
 10081 tcatacattt tatttaggggc aataatatct aattgaactt agccgtttaa aatttagtgc
 10141 ataaacctgg gctaactcca ccaggtcaac tccattggct gaaaagaagc ccacccatcaa
 10201 cgaacatcac tttgagcgcc cttacaatta aaaaatagga acgtcggtcc aacaatttgag
 10261 cgcaaggtttt caaggttgcctt ctgagagtgc ctaaacacca aatatcgat aattcagaca
 10321 ccaagcaaga cctgagaagg aaccatggct aaagctacgg gacgatacaa tctaataatcg
 10381 cccaaaaagg acctggagaa aggggttgc ttaagcgacc tctgtactt cctagtttagt
 10441 caaactattt aagggtggaa ggtctattgg gctggattt agtttgatgt gactcacaaa
 10501 ggaatggccc tattgcatag actgaaaact aatgactttt cccctgcattt gtcaatgaca
 10561 aggaatctat ttccctcattt atttcaaaaat ccgaatttca caatttgatgtt accactgtgg
 10621 gcattgagag tcatccttgc agcaggggtt caggaccagc tgattgacca gtctttgatt
 10681 gaacccttag caggagccct tggctgtatc tctgattggc tgcttacaac caacactaaac
 10741 catttcaaca tgcgaacaca acgtttaag gaacaatttgaa gcctaaaaat gctgtcggtt
 10801 attcgatcca atattctcaa gtttatttac caattggatg ctctacatgt cgtgaactac
 10861 aacgggttgt tgagcagtat tgaaatttggaa actcaaaaatc atacaatcat tataactcga
 10921 actaacatgg gttttctggt ggagctccaa gaaccgcaca aatccgaat gaaccgcgaag
 10981 aaggcctggc cggcgaaatt ttccctcattt catgagtcca cactgaaagc atttacacaa
 11041 gggcctcga cacgaatgca aagtttgattt cttgaatttta atagctctt tgcttatctt
 11101 ttaagatggaa atacttcata ttgagctaac tcatatatgc tgactcaata gttatcttga
 11161 catctctgtt ttcataatca gatataataag cataataaaat aaatactcat atttcttgc
 11221 aatttgttta accacagata aatccctaact gtaagccagc ttccaagttt acacccttac
 11281 aaaaaccagg actcagaatc cctcaaataa gagattccaa gacaacatca tagaatttgc
 11341 ttatttatgt aataagcatg ttatcaccag aaatccaata tactaaatag ttaatttgc
 11401 ctgaacccgc aggtcacgtt tgtaggtttt cacagattt atatattact aactccatc
 11461 ccgttaattaa cattagataa gtagattaa aaaaacgcctt gaggaagatt aagaaaaact
 11521 gcttatttggg tctttccgtt ttttagatgtt agcagtttgc attcttcctt ttgtatattaa
 11581 atggctacac aacataccca ataccagac gccaggttat catcaccaat tgtattggac
 11641 caatgtgacc tagtcaactt agcttgcggg ttatattcat catactccct taatccgc
 11701 ctacgcaact gtaaaactccc gaaacatatc taccgtttaa aatatgtatgt aactgttacc
 11761 aagttcttaa gtgtatgtacc agtggcgaca ttgccaatag atttcatatgtt cccatttt
 11821 ctcaaggcac tgcaggcaaa tgggttctgtt cctgttgc gcggtgtca acagttctt
 11881 gatgaaatca ttaagtttacac aatgcaagat gctctttcc tggaaatattt tctcaaaaat
 11941 gtgggtgctt aagaggactt gtttgcgttcc cactttcaag agaaaaatctt atcttcaatt
 12001 cagggcaatg aatttttaca tcaaattttcc ttctggatgtt acctggctat tttgactcga
 12061 aggggttagat taaatcgagg aaactcttaga tcaacatgtt ttgttcatgt tgatattata
 12121 gacatcttag gctatggggc ctatgtttt tggaaatgtcc caatttcaat gttacccttgc
 12181 aacacacaag gaatccccca tgctgtatgtt gattggatcc aggcacatgtt attcaaaaagaa

5

0

5

:0

:5

30

35

40

12241 gcggttcaag ggcatacaca cattgtttct gtttctactg ccgacgtctt gataatgtgc
 12301 aaagatttaa ttacatgtcg attcaacaca actctaattc caaagatgc agaggttag
 12361 gatccagttt gttctgatta tcccgatttt aagattgtgt ctatgctta ccagagcgga
 12421 gattacttac tctccatatt agggtctgtat gggtataaaa ttattaagtt cctcgaacca
 12481 ttgtgtttgg cccaaaattca attatgctca aagtacaccg agaggaaggg ccgattctta
 12541 acacaaatgc atttagctgt aaatcacacc ctggaagaaa ttacagaaaat gcgtgcacta
 12601 aagccttcac aggatcaaaa gatccgtgaa ttccatagaa cattgataag gctggagatg
 12661 acgccacaac aactttgtga gctattttcc attcaaaaac actggggca tcctgtgcta
 12721 catagtgaaa cagcaatcca aaaagttaaa aaacatgcca cggtgctaaa agcattacgc
 12781 cctatagtga ttttcgagac atattgtgtt tttaaatata gtattgcaaa acattatttt
 12841 gatagtcaag gatcttggta cagtgtaact tcagatagga atttaacgcc aggtcttaat
 12901 tcttatatca aaagaaatca attccccccg ttgccaatga ttaaagaact actatggaa
 12961 ttttaccacc ttgaccatcc tccacttttc tcaaccaaaa ttatttagtga cttaaagtatt
 13021 tttataaaaag acagagctac cgcagtgaa aggacatgct gggatgcagt attcgagcct
 13081 aatgttctag gatataatcc acctcacaaa ttcagtacta aacgtgtacc agaacaattt
 13141 ttagagcaag aaaacttttc tattgagaat gttctttcct acgcgcaaaa actcgagttat
 13201 ctactaccac aataccggaa ttttcttcc tcattgaaag agaaagagtt gaatgttaggt
 13261 agaactttcg gaaaattgcc ttatccgact cgcaatgttc aaacactttg tgaagctctg
 13321 ttagctgatg gtcttgctaa agcatttcct agcaatatga tggtagtcac agagcgttag
 13381 caaaaagaaa gcttattgca tcaagcatca tggcaccaca caagtgtatga ttttggtag
 13441 catgccacag ttagagggag tagcttgta actgatttag agaaatacaa tcttgcattt
 13501 agatatgagt ttacagcacc ttttatagaa tattgttaacc gttgctatgg tgttaagaat
 13561 gtttttaatt ggtatgcatta tacaatcccc cagtgttata tgcattgtcag tgattattat
 13621 aatccaccgc ataacctcac tctggaaaat cgagacaacc cccccgaagg gcccagttca
 13681 tacagaggc atatggagg gattgaagga ctgcaacaaa aactctggac aagtatttca
 13741 tgtgctcaaa tttcttttagt tgaaataaaag actggttta agttacgctc agctgtgatg
 13801 ggtgacaatc agtgcattac cgttttatca gtcttccct tagagactga cgcagacgag
 13861 caggaacaga ggcggaaaga caatgcagcg agggtggccg ccagcctagc aaaagttaca
 13921 agtgcctgtg gaatctttt aaaacctgtat gaaacatttg tacattcagg ttttatctat
 13981 tttggaaaaaa aacaatattt gaatgggtc caattgcctc agtcccttaa aacggctaca
 14041 agaatggcac cattgtctga tgcaattttt gatgatcttc aaggaccct ggcttagtata
 14101 ggcactgctt ttgaacgatc catctctgag acacgacata tcttccttg caggataacc
 14161 gcagcttcc atacgtttt ttcggtgaga atcttgcac acatcacct cgggttcaat
 14221 aagggtttg accttggaca gttgacactt ggcaaacctc tggatttcgg aacaatata
 14281 ttggcactag cggtaccgc ggtgcttggaa gggttatcct tcttgaatcc tgagaaatgt
 14341 ttctaccgga atttaggaga tccagttacc tcaggcttat tccagttaaa aacttatctc
 14401 cgaatgattt agatggatga tttattctt cctttaattt cgaagaaccc tgggaactgc
 14461 actgccatttgc actttgtgtaaatccttagc ggattaaatg tccccggc gcaagactta
 14521 acttcatttc tgcgccagat tgcgttggactatcaccc taagtgcgaa aaacaaactt
 14581 attaataactt tatttcatgc gtcagctgac ttcgaagacg aaatggttt gtaatggcta
 14641 ttatcatcaa ctcctgttat gagtcgtttt gcgccgata tcttttcacg cacgcccagt
 14701 gggaaagcgat tgcaaattctt aggataccgtt gaaaggacac gcacattatt agcctctaag
 14761 atcatcaaca ataatacaga aacaccgggtt ttggacagac tgaggaaaat aacattgca
 14821 aggtggagtc tatggtttag ttatctgtat cattgtgata atatcctggc agaggctta

5

0

5

:0

:5

30

35

40

14881 acccaaataa ctgcacagt tgatttagca cagatcctga gggaaatattc atgggcacat
 14941 attttagagg ggagaccttct tattggagcc acacttccat gtatgattga gcaattcaaa
 15001 gtggttggc taaaacccta cgaacaatgt ccgcagtgtt caaatgcaaa gcaacctgg
 15061 gggaaaccat tcgtgtcagt ggcagtcaag aaacatattt ttagtgcattt gccgaacgc
 15121 tcccgaataa gctggactat cggggatgga atcccataca ttggatcaag gacagaagat
 15181 aagataggac aacctgctat taaaccaaaa tgccttccg cagccttaag agaggccatt
 15241 gaactggcgt cccgttaac atgggtaact caaggcagtt cgaacagtga tttgctaata
 15301 aaaccatttt tggaaagcagc agtaaatttta agtgttcaag aaatacttca aatgaccct
 15361 tcacattact caggaaataat tgttcacagg tacaacgatc aatatagtcc tcatttttc
 15421 atggccaatc gtatgagtaa tttagcgacg cgattgattt tttctactaa cacttaggt
 15481 gagtttcag gaggtggcca gtctgcacgc gacagcaata ttatcccgaatgttata
 15541 aattatgcag ttgcactgtt cgatattaaa tttagaaaca ctgaggctac agatatccaa
 15601 tataatcggtt ctcacccatca tctaactaag tggtgcaccc gggaaagtacc agctcagtt
 15661 ttaacataca catctacatt ggatttagat ttaacaagat accgagaaaa cgaattgatt
 15721 tatgacaata atcctctaaa aggaggactc aattgcaata tctcattcga taacccattt
 15781 ttccaaggta aacggctaaa cattatagaa gatgatctt ttgcactgcc tcacttatct
 15841 ggtgggagc tagccaagac catcatgca tcaattattt cagatagcaa caattcgct
 15901 acagacccaa tttagcagtgg agaaacaaga tcattcaactt cccatttctt aacttatccc
 15961 aagataggac ttctgtacag ttttgggccc ttataagtt attatcttgg caatacaatt
 16021 cttagggacta agaaattaac acttgacaat tttttatatt acttaactac ccaaattcat
 16081 aatctaccac atcgctcatt gcgaataactt aagccaacat tcaaacatgc aagcggtatg
 16141 tcacggtaa tgagtatttgc tcctcatttt tctatattaca taggcggtgc ggcagggtac
 16201 agaggactt cagatgcggc caggttattt ttgagaacgt ccatttcattc ttttcttgc
 16261 ttataaaag agtggataat taatcgccg acaattgtcc ctatggat agtataatccg
 16321 cttaggggtc aaaacccaaac acctgttaat aatttcctcc atcagatcgta agaactgctg
 16381 gtgcatttgcattt catcaagaca acaggctttt aaaactacca taagtgtatca tgtacatcct
 16441 cacgacaatc ttgtttacac atgtaagagt acagccagca atttcttcca tgcgtcatttgc
 16501 gcgtactgga gaagcaggca cagaaacagc aatcgaaaat acttggcaag agactcttca
 16561 actggatcaa gcacaaacaa cagtgtatggt catattgaga gaagtcaaga acaaaccacc
 16621 agagatccac atgatggcac tgaacggaat ctgtcctac aaatgagcca tgaaataaaaa
 16681 agaacgacaa ttccacaaga aagcacgcac cagggtccgt cggtccagtc atttctaagt
 16741 gactctgcattt gtggatcagc aaatccaaaa ctaaatttgc atagatcgatc acataatgt
 16801 aaatctcagg atcataactc ggcattcaag agggaaaggc atcaaataat ctcacaccgt
 16861 ctgtcctac ctttcttac attgtctcaa gggacgcgcc aattaacgtc atccaatgag
 16921 tcacaaaccc aagacgagat atcaaagtac ttacggcaat tgagatccgt cattgatacc
 16981 acagtttattt gtaggtttac cggtagatgc tcgtccatgc attacaaact tgatgaggc
 17041 ctttggaaa tagagatgtt taagtcggct gtgacgctag cagaggaga aggtgctgg
 17101 gccttactat tgattcagaa ataccaagtt aagacctt tttcaacac gctagctact
 17161 gagtcagta tagagtcaga aatagatca ggaacgacta ctcctaggat gcttctac
 17221 gttatgtcaa aattccataa tgaccaaattt gagattttc ttaacaattc ggcaaggccaa
 17281 ataacagaca taacaaatcc tacttgggtc aaagacccaa gagcaaggct acctaggca
 17341 gtcgaggtta taaccatgga tgcagagacg acagaaaata taaacagatc gaaattgtac
 17401 gaagctgtat ataaatttgcattt cttacaccat attgtatccca gcgtattgaa agcagtggc
 17461 cttaaagtct ttcttaagtga tactgagggt atgttatggc taaatgataa tttagccccg

17521 ttttttgcctt aattaagcca ataacgtcaa gtgctagatc tagtgagtgg
17581 tatctttgtc tgacgaactt cttatcaact acacgtaaga tgccacacca aaaccatctc
17641 agttgtaaac aggtataact tacggcattt caactgcaaa ttcaacggag cccatactgg
17701 ctaagtcatcatt taactcagta tgctgactgc gatttacatt taagttatat ccgccttgg
17761 tttccatcat tagagaaaagt actataccac aggtataacc tcggtcgattc aaaaagaggt
17821 ccactagtct ctatcactca gcacttggca catcttagag cagagattcg agaattgact
17881 aatgattata atcaacagcg acaaagtcgg actcaaacat atcactttat tcgtactgca
17941 aaaggacgaa tcacaaaact agtcaatgat tattttaaat tctttctt ttgtcaagca
18001 tttaaaacata atgggacatg gcaagctgag tttaagaaat taccagagtt gattagtgtg
18061 tgcaataggt totatcatat tagagattgc aattgtgaag aacgtttctt agttcaaacc
18121 ttatatactac atagaatgca ggattctgaa gttaagctt tcgaaaaggct gacaggcctt
18181 ctgagtttat tcccgatgg tctctacagg tttgattgaa ttaccgtgca tagtacccct
18241 atacttgtga aggttgatta tcaacgtaca gattataaaa aactcacaaa ttgctctcat
18301 acatcatatt gatcgaattt caataaataa ctattttaaat aacgaaagaa gtccttatat
18361 tatacactat atttagcctc tctccctgcg tgataatcaa aaaattcaca atgcagcatg
18421 tgtgacatat tacttccgcg atgaatctaa cgcaacataa taaactctgc actctttata
18481 attaagctt aacaaaaggt ctgggctcat attgttattt atataataat gttgtatcaa
18541 tattctgtca gatggaatag tgttttgggt gataacacga cttcttaaaa caaaattgtat
18601 cttcaagatt aagttttta taattatcat tactttattt tgtcgattt aaaaatggta
18661 tagccttaat ctttgttaa aataagagat taggttaat aactttaca ttttgtctag
18721 taagctacta tttcatacag aatgataaaa tttaaaagaaa aggcatgact gtaaaatcag
18781 aaatacccttc tttacaatat agcagactag ataataatct tcgtgttaat gataattaag
18841 acattgacca cgctcatcag gaggctcgcc aggataaaacg ttgcaaaaag gattcctgga
18901 aaaatggtcg cacacaaaaaa tttaaaaata aatctatttc ttctttttg ttgtcctt

The invention further provides polynucleotides having at least about 85, 90, 95, 96, 97, 98, 99, or 100% identity to this sequence. Other Ebola Zaire genomes are known in the art and described, for example, by Baize et al., N Engl J Med 2014;371:1418-25., which is incorporated herein by reference.

By “Ribonuclease P RNA component H1 (RPPH1) is meant the RNA component of the RNase P ribonucleoprotein, an endoribonuclease that cleaves tRNA precursor molecules to form the mature 5-prime termini of their tRNA sequences. An exemplary nucleic acid sequence is provided at NCBI Accession No. NR_002312 (SEQ ID NO: 27).

1 atagggcgga gggaaagctca tcagtggggc cacgagctga gtgcgtcctg tcactccact
61 cccatgtccc ttggggaggt ctgagactag ggccagaggc ggcctctaaca gggctctccc
121 tgagcttcgg ggaggtgagt tcccagagaa cggggctccg cgcgaggtaa gactggcag
181 gagatgccgt ggaccccgcc cttcgaaaaag gggcccgccg gatgcctctt ttgcccggagc
241 ttggaacaga ctcacggcca gcgaagttagt ttcaatggct gaggtgaggt accccgcagg
301 ggacctcata acccaattca gactactctc ctccgccccat t

40

By "amplicon" is meant a polynucleotide generated during the amplification of a polynucleotide of interest. In one example, an amplicon is generated during a polymerase chain reaction.

5 By "amplification rate modifiers" is meant an agent capable of affecting the rate of polymerase extension.

By "base substitution" is meant a substituent of a nucleobase polymer that does not cause significant disruption of the hybridization between complementary nucleotide strands.

In this disclosure, "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean "includes," "including," and the like; "consisting essentially of" or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

5 By "complementary" or "complementarity" is meant that a nucleic acid can form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick or Hoogsteen base pairing. Complementary base pairing includes not only G-C and A-T base pairing, but also includes base pairing involving universal bases, such as inosine. A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule 0 that can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, or 10 nucleotides out of a total of 10 nucleotides in the first oligonucleotide being based paired to a second nucleic acid sequence having 10 nucleotides represents 50%, 60%, 70%, 80%, 90%, and 100% complementary respectively). To determine that a percent complementarity is of at least a certain percentage, the percentage of 25 contiguous residues in a nucleic acid molecule that can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence is calculated and rounded to the nearest whole number (e.g., 12, 13, 14, 15, 16, or 17 nucleotides out of a total of 23 nucleotides in the first oligonucleotide being based paired to a second nucleic acid sequence having 23 nucleotides represents 52%, 57%, 61%, 65%, 70%, and 74%, respectively; and has 30 at least 50%, 50%, 60%, 60%, 70%, and 70% complementarity, respectively). As used herein, "substantially complementary" refers to complementarity between the strands such that they are capable of hybridizing under biological conditions. Substantially complementary sequences have 60%, 70%, 80%, 90%, 95%, or even 100% complementarity.

Additionally, techniques to determine if two strands are capable of hybridizing under biological conditions by examining their nucleotide sequences are well known in the art.

As used herein, "duplex" refers to a double helical structure formed by the interaction of two single stranded nucleic acids. A duplex is typically formed by the pairwise hydrogen bonding of bases, i.e., "base pairing", between two single stranded nucleic acids which are oriented antiparallel with respect to each other. Base pairing in duplexes generally occurs by Watson-Crick base pairing, e.g., guanine (G) forms a base pair with cytosine (C) in DNA and RNA, adenine (A) forms a base pair with thymine (T) in DNA, and adenine (A) forms a base pair with uracil (U) in RNA. Conditions under which base pairs can form include physiological or biologically relevant conditions (e.g., intracellular: pH 7.2, 140 mM potassium ion; extracellular pH 7.4, 145 mM sodium ion). Furthermore, duplexes are stabilized by stacking interactions between adjacent nucleotides. As used herein, a duplex may be established or maintained by base pairing or by stacking interactions. A duplex is formed by two complementary nucleic acid strands, which may be substantially complementary or fully complementary. Single-stranded nucleic acids that base pair over a number of bases are said to "hybridize."

"Detect" refers to identifying the presence, absence or amount of the analyte to be detected. In one embodiment, the analyte is an Ebola polynucleotide or other RNA viral polynucleotide.

By "detectable moiety" is meant a composition that when linked to a molecule of interest renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, or haptens.

By "fragment" is meant a portion of a nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides. In one embodiment, the fragment comprises at least about 50, 75, 80, 85, 89, 90, or 100 nucleotides of an Ebola polynucleotide or other RNA viral polynucleotide.

By "free energy (ΔG)" is meant the net exchange of energy between the system and its environment at a constant temperature and pressure described by the formula: $\Delta G = \Delta H -$

TΔS. Free energy represents how thermodynamically stable a structure is, with formation of structures having a negative ΔG (e.g., expressed in kcal/mole) being thermodynamically stable (i.e., a structure having a lower ΔG is more stable than one having a higher ΔG). The thermodynamic potential is minimized when a system reaches equilibrium at constant pressure and temperature.

By "hybridize" is meant to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) *Methods Enzymol.* 152:399; Kimmel, A. R. (1987) *Methods Enzymol.* 152:507). Hybridization occurs by hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases. For example, adenine and thymine are complementary nucleobases that pair through the formation of hydrogen bonds.

By "isolated polynucleotide" is meant a nucleic acid (e.g., a DNA, RNA) that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid molecule of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In addition, the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.

The terms "isolated," "purified," or "biologically pure" refer to material that is free to varying degrees from components which normally accompany it as found in its native state.

"Isolate" denotes a degree of separation from original source or surroundings. "Purify" denotes a degree of separation that is higher than isolation. A "purified" or "biologically pure" protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, polyacrylamide gel electrophoresis or high performance liquid chromatography. The term

"purified" can denote that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated proteins, which can be separately purified.

5 By "melting temperature (Tm)" is meant the temperature of a system in equilibrium where 50% of the molecular population is in one state and 50% of the population is in another state. With regard to the nucleic acids of the invention, Tm is the temperature at which 50% of the population is single-stranded and 50% is double-stranded (e.g., intramolecularly or intermolecularly).

0 By "monitoring a reaction" is meant detecting the progress of a reaction. In one embodiment, monitoring reaction progression involves detecting polymerase extension and/or detecting the completion of an amplification reaction.

As used herein, "obtaining" as in "obtaining an agent" includes synthesizing, purchasing, or otherwise acquiring the agent.

5 As used herein, the term "nucleic acid" refers to deoxyribonucleotides, ribonucleotides, or modified nucleotides, and polymers thereof in single- or double-stranded form. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are 10 metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, 2' modified nucleotides (e.g., 2'-O-methyl ribonucleotides, 2'-F nucleotides).

25 As used herein, "modified nucleotide" refers to a nucleotide that has one or more modifications to the nucleoside, the nucleobase, pentose ring, or phosphate group. For example, modified nucleotides exclude ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate and deoxyribonucleotides containing deoxyadenosine monophosphate, deoxyguanosine monophosphate, deoxythymidine monophosphate, and deoxycytidine monophosphate. Modifications include those naturally occurring that result from 30 modification by enzymes that modify nucleotides, such as methyltransferases. Modified nucleotides also include synthetic or non-naturally occurring nucleotides. Synthetic or non-naturally occurring modifications in nucleotides include those with 2' modifications, e.g., 2'-O-methyl, 2'-methoxyethoxy, 2'-fluoro, 2'-hydroxyl (RNA), 2'-allyl, 2'-O-[2-(methylamino)-

2-oxoethyl], 4'-thio, 4'-CH₂-O-2'-bridge, 4'-(CH₂)₂-O-2'-bridge, and 2'-O-(N-methylcarbamate) or those comprising base analogs.

By “nucleotide adduct” is meant a moiety that is bound covalently or otherwise fixed to a standard nucleotide base.

By “nicking agent” is meant a chemical entity capable of recognizing and binding to a specific structure in double stranded nucleic acid molecules and breaking a phosphodiester bond between adjoining nucleotides on a single strand upon binding to its recognized specific structure, thereby creating a free 3'-hydroxyl group on the terminal nucleotide preceding the nick site. In preferred embodiments, the 3' end can be extended by an exonuclease deficient polymerase. Exemplary nicking agents include nicking enzymes, RNazymes, DNAzymes, and transition metal chelators.

By “palindromic” is meant nucleic acid sequences that are identical or substantially identical when read from 5' to 3' on one strand or 5' to 3' on the complementary strand. A perfect palindrome refers to a sequence having two adjacent subsequences, such that when one subsequence is read from the 5' to 3' direction, it is identical to the other subsequence read from the 3' to 5' direction.

By “polymerase-arresting molecule” is meant a moiety associated with a polynucleotide template/primer that prevents or significantly reduces the progression of a polymerase on the polynucleotide template. Preferably, the moiety is incorporated into the polynucleotide. In one preferred embodiment, the moiety prevents the polymerase from progressing on the template.

By “polymerase extension” is meant the forward progression of a polymerase that matches incoming monomers to their binding partners on a template polynucleotide.

As used herein, “primer-dimer” is meant a dimer of two monomer oligonucleotide primers. In the oligonucleotide primers of the invention, the 5' tail regions of monomer primers dimerize.

By “semi-quantitative” is meant providing an estimate of relative quantity based on an internal control.

By “specific product” is meant a polynucleotide product resulting from the hybridization of primer oligonucleotides to a complementary target sequence and subsequent polymerase mediated extension of the target sequence.

By “substantially isothermal condition” is meant at a single temperature or within a narrow range of temperatures that does not vary significantly. In one embodiment, a reaction

carried out under substantially isothermal conditions is carried out at a temperature that varies by only about 1-5°C (e.g., varying by 1, 2, 3, 4, or 5 degrees). In another embodiment, the reaction is carried out at a single temperature within the operating parameters of the instrument utilized.

5 By "quantity threshold method" is meant providing an estimate of quantity based on either exceeding or not exceeding in quantity a comparative standard.

By "reference" is meant a standard or control condition. As is apparent to one skilled in the art, an appropriate reference is where an element is changed in order to determine the effect of the element.

0 By "reverse transcriptase" is meant an enzyme that replicates a primed single-stranded RNA template strand into a complementary DNA strand in the presence of deoxyribonucleotides and permissive reaction medium comprising, but not limited to, a buffer (pH 7.0 – 9.0), sodium and/or potassium ions and magnesium ions. As is apparent to one skilled in the art, concentration and pH ranges of a permissive reaction media may vary 5 in regard to a particular reverse transcriptase enzyme. Examples of suitable "reverse transcriptases" well known in the art, but not limited to, are MmLV reverse transcriptase and its commercial derivatives "Superscript I, II and III" (Life Technologies), "MaxiScript" (Fermentas), RSV reverse transcriptase and its commercial derivative "OmniScript" (Qiagen), AMV reverse transcriptase and its commercial derivative "Thermoscript" (Sigma-Aldrich).

By "subject" is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.

25 By "target nucleic acid molecule" is meant a polynucleotide to be analyzed. Such polynucleotide may be a sense or antisense strand of the target sequence. The term "target nucleic acid molecule" also refers to amplicons of the original target sequence.

Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 30 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.

Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.

The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram illustrating the design of candidate assays for *Ebola* virus (EBOV). Assays 1 and 2 were tested for their ability to detect an EBOV polynucleotide (SEQ ID NO: 51).

Figure 2 shows the various probes and primers tested (SEQ ID NOs: 52-65, respectively, in order of appearance), as well as the Ebola gBlock sequence used in assay development (SEQ ID NO: 66). A gBlock is a synthetic, double-stranded fragment of DNA ranging in size from 100 bp to 1000 bp that is entirely assembled *in-vitro* from synthetic single-stranded oligonucleotides and which represents a sequence-verified synthetic block of genomic DNA. Unless specifically stated or obvious from context, as used herein, the “gBlock®” is used as a synthetic target nucleic acid whenever a native target sequence or target genome is not available and/or not useful. Sequence-verified blocks of genomic DNA for any target sequence can be procured as a custom-order service from IDT Technologies Inc. (1710 Commercial Park, Coralville, Iowa 52241, USA) and the term “gBlock®” is a registered trademark of that company.

Figures 3A-3X show amplification results obtained with Assay 1 and Assay 2.

Figure 4 shows detection of *Ebola* virus in a background of total human RNA in a one-step assay.

Figure 5 shows detection of synthetic *Ebola* virus RNA in a background of total human RNA in a one-step assay.

Figures 6A-6C provide flow charts illustrating sample processing for use in an amplification and detection instrument, including, for example, a hand-held device. Figure 6A indicates that a stabilization/lysis reagent (e.g., Guanidine isothiocyanate (GITC)) is lyophilized onto the inside of the capillary tube. Figure 6B illustrates use of a paper impregnated with lyophilized GITC and buffer (e.g., Whatman™ FTA™ Elute Cards). Figure 6C depicts a lyophilized assay procedure in multiplex (e.g., an 8-well strip) or single tube.

Figures 7A and 7B show sample preparation methods. Figure 7A depicts sample preparation from swab samples. Figure 7B depicts sample preparation from a blood sample.

Figure 8 is a graph showing results obtained in a one-step reaction process where the reverse transcriptase and polymerase are included in a single reaction.

Figure 9 is a graph showing results obtained in a two-step reaction process where the reverse transcriptase reaction is carried out at room temp or 56°C and the cDNA is transferred to a second tube where the amplification reaction is carried out at 56°C.

Figure 10 is a graph showing RT at 56°C, DNABle at 56°C on 1×10^4 copies.

Figures 11A and 11B show the detection of a target RNA in a sample containing total cellular RNA. Figure 11A is a graph showing detection of RPPH1 (RNase P RNA Component) in a 2-step reaction. Figure 11B is a graph showing detection of RPPH1 in a 1-step reaction.

Figure 12 is a graph showing the detection of Zaire Ebola in a crude blood preparation in a 1-step reaction.

Figure 13 is a graph depicting that the Zaire Ebola assay specifically detects Zaire Ebola Mayinga but not Sudan Ebola Boniface.

Figure 14 are graphs depicting instrument comparison for the detection of various dilutions of Zaire Ebolavirus Mayinga.

Figures 15A-15D depict the limit of detection of the *Ebola* virus assay. Figure 15A is a graph depicting detection in samples containing 100 copies of *Ebola* virus target RNA. Figure 15B is a graph depicting detection in samples containing 50 copies of *Ebola* virus target RNA. Figure 15C is a graph depicting detection in samples containing 25 copies of *Ebola* virus target RNA. Figure 15D is a graph depicting detection in samples containing 12 copies of *Ebola* virus target RNA.

Figures 16A and 16B show detection of human immunodeficiency virus (HIV) in a one-step assay. Figure 16A is an amplicon map showing sequences used in the design of

assay primers and probes (SEQ ID NOs: 67-68, respectively, in order of appearance). Population sequence variations in forward and reverse primers are indicated (SEQ ID NOs: 6-9, 43 and 10, respectively, in order of appearance). External primer sequence is specific to HIV subtype C (for the purified RNA sample used). Figure 16B shows real-time target specific amplification of HIV in a one-step assay. Cp values are shown across 5 technical replicates for each copy number (10 μ L reactions). Copies of purified HIV RNA (subtype C) (SeraCare) are indicated, as quantified by COBAS TaqMan HIV-1 v2.0 test

Figures 17A and 17B show detection of dengue virus type 4 (DENV-4) in a one-step assay. Figure 17A is an amplicon map showing sequences used in the design of assay primers and probes (SEQ ID NOs: 69-70, respectively, in order of appearance). Population sequence variations in reverse primers are indicated (SEQ ID NOs: 11-13, 44 and 14, respectively, in order of appearance). Figure 17B shows real-time target specific amplification of DENV-4 in a one-step assay. Cp values are shown across 4 technical replicates (10 μ L reactions). Isolated total RNA (20pg) from cell culture included both viral and host cell RNA and total copy number of viral RNA was unknown.

Figures 18A and 18B show detection of influenza B in a one-step assay. Figure 18A is an amplicon map showing sequences used in the design of assay primers and probes (SEQ ID NOs: 71-73, respectively, in order of appearance). Population sequence variations in forward and reverse primers and external primers are indicated (SEQ ID NOs: 15-20, 45, 46 and 21, respectively, in order of appearance). Figure 18B shows real-time target specific amplification of influenza B in a one-step assay. Cp values are shown across 4 technical replicates (10 μ L reactions). Isolated total RNA (20pg) from cell culture included both viral and host cell RNA and total copy number of viral RNA was unknown. Samples 1 and 2 are different viral isolates.

Figures 19A and 19B show detection of Bovine Viral Diarrhea Virus Genotype 1 (BVDV1) in a one-step assay. Figure 19A is an amplicon map showing sequences used in the design of assay primers and probes (SEQ ID NOs: 74-75, respectively, in order of appearance). Population sequence variations in forward primers are indicated (SEQ ID NOs: 22-24, 47 and 25, respectively, in order of appearance). Figure 19B shows real-time target specific amplification of Bovine Viral Diarrhea Virus Genotype 1 (BVDV1) in a one-step assay. Technical replicates (10 μ L reactions) are shown. Isolated total RNA (20pg) from cell culture included both viral and host cell RNA and total copy number of viral RNA was unknown. Cell culture crude lysate was used undiluted and at 1:100 dilution.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods for rapidly identifying an RNA viral infection (e.g., *Ebola* virus) using an isothermal nucleic acid amplification reaction that can be carried out on extracted RNA in the context of a crude biological sample.

Ebola is clinically difficult to diagnose and to distinguish. A rapid and reliable laboratory diagnosis is required in suspected cases of Ebola. The present invention provides such an assay. The invention is based, at least in part, on the discovery that an Ebola viral polynucleotide (e.g., RNA) can be detected in a one-step or two-step real-time reverse transcription-isothermal amplification assay for an Ebola viral polynucleotide.

Ebola Virus

The Ebola viruses are filamentous viruses with a negative-sense RNA genome. Virions are cylindrical/tubular containing a viral envelope, matrix, and nucleocapsid components, approximately 80 nm in diameter and 800–1000 nm in length. Ebola is classified as a biosafety level 4 agent. The period of incubation for the Ebola virus hemorrhagic fever is usually 5–18 days, but may extend from 2–21 days depending on the viral strain contracted and the condition of the infected individual. The Ebola virus acts quickly. Initial symptoms of Ebola resemble symptoms of malaria, influenza, or various bacterial infections. Therefore, days or weeks may pass before Ebola is diagnosed. Secondary symptoms include diarrhea, red eyes, vomiting blood, bleeding from the nose, mouth or rectum, and even bleeding in the brain. About 50%–90% of those infected with the virus go on to systemic multi-organ failure and death.

25 Patient Diagnosis and Monitoring

The condition of a patient as having or not having Ebola can be diagnosed by detecting an Ebola viral polynucleotide in a biological sample and correlating this detection with the existence of an Ebola infection. In one embodiment, a disease state of a patient having *Ebola* virus can be detected using the methods and compositions of the invention to detect *Ebola* virus in a biological sample of the patient. Exemplary biological samples include body fluids (e.g. saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma), tissue extracts, culture media (e.g., a

liquid in which a cell, such as a pathogen cell, has been grown), or environmental samples obtained, for example, from a material that may be contaminated with a biological fluid of a subject.

In one embodiment, the invention provides a method of amplifying a target polynucleotide in a reverse transcriptase and nicking amplification reaction involving:

(a) contacting a target RNA molecule (e.g., *Ebola* virus genome) with a reverse transcriptase (RT) primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA; and

(b) contacting the cDNA with forward and reverse primers carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically bind the cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons.

In one particular embodiment, the invention provides a method of detecting an *Ebola* virus in a biological sample involving:

(a) contacting a sample with an agent capable of extracting an *Ebola* RNA present in the sample (e.g., SDS, sodium lauryl sulfate, guanidium isothio-cyanate, guanidium hydrochloride) and an agent capable of stabilizing *Ebola* RNA against degradation (e.g., SDS, RNAase inhibitors, antibodies against RNAse, competitive RNAse inhibitor, or an agent capable of reversibly chemically modifying RNA in situ (e.g., acetic anhydride);

(b) contacting the *Ebola* RNA with a RT primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA copy of the *Ebola* RNA;

(c) contacting the *Ebola* cDNA with forward and reverse primers carrying at least one nicking enzyme recognition sequence within their respective 5'-terminal regions which specifically binds the *Ebola* cDNA with their respective 3'-terminal regions in the presence of a nicking enzyme, dNTPs, and a strand-displacement polymerase under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons; and

(d) detecting the amplicons, wherein the presence of an *Ebola* virus amplicon detects an *Ebola* virus infection in the sample and failure to detect the amplicon indicates the absence of an *Ebola* virus infection.

In one embodiment, the methods of the invention described herein provide results in no longer than 5, 7, 10, 15, 20, 25 or 30 minutes. Advantageously, the methods of the

invention can be applied to RNAs extracted—but not purified or isolated from—a crude biological sample (e.g., saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma). Because the test is carried out on-site (e.g., in a hospital, clinic, physician's office, urgent care center, home, community center, airport, ship (e.g., cruise ship or other vessel used for transporting humans or animals), train or train station, or point of entry into a nation (e.g., border crossing). Advantageously, in one embodiment, the testing is carried out in a portable battery powered device (e.g., Amplifire).

In one embodiment, the RNA is extracted from the biological sample using a chaotropic salt (e.g., GITC, GHCL) or a detergent (e.g., SDS, Tween and triton). If desired, an RNase inhibitor is added before, during, or after the extraction step.

In another embodiment, the reverse transcriptase enzyme and the strand-displacement DNA polymerase are one and the same.

In another embodiment, no separate primer is required or the RT primer same as forward and/or reverse primers.

In another embodiment, the invention provides for detection of an EBOV or other viral amplicon using a Dual FRET molecular beacon for mRNA detection (e.g., as described by Santagelo, Nucleic Acids Res. 2004; 32(6): e57), turbidity release of pyrophosphate from DNTPs and precipitation with magnesium or calcium.

In another embodiment, the invention provides for detection of an Ebola viral amplicon using a lateral flow device where the Ebola virus amplicon comprises one member of a pair of binding partners (e.g., biotin and streptavidin) and the lateral flow device comprises the other member of the pair, and provides a means of detection (e.g., colorimetric) for the amplicon.

Reverse transcriptases used in the methods of the invention include, but are not limited to, a Maloney murine leukemia virus reverse transcriptase enzyme (MMLV RT) and derivatives or variants thereof comprising a mutation relative to wild-type MMLV RT; avian myeloblastosis virus (AMV RT) and derivatives or variants thereof comprising a mutation relative to that render them thermostable, Rous sarcoma virus (RSV) RT (e.g., Omniscript, Qiagen) and derivatives or variants thereof, and a pyroreverse transcriptase (e.g., Pyroscript luceigen) and derivatives or variants thereof, an RT described in US Patent No. 7,094,539, which is incorporated herein by reference in its entirety, or a commercially available High-

fidelity Thermostable Reverse Transcriptase for RT PCR and Transcriptome analysis (e.g., Lucigen).

In one embodiment, at 56 degrees the primer and RNA or amplicon forms a stable complex. In one embodiment, more than 50% of primer sequence must be complementary to the target nucleic acid molecule. In one embodiment, the rT primer is about 18 bases in length. In one embodiment, the reverse transcriptase (RT) primer is a random primer (e.g., in each sequence position any one of four bases is possible, any of these primers hybridize with the target). In one embodiment, the rT primer is a hexamer, heptamer, octamer, or nonamer.

In one embodiment, the RT is derived from *Geobacillus stearothermophilus*, is M-MLV RT (i.e. Superscript/LifeTech, Maxima/Thermo-Fisher) and/or mutants/derivatives thereof, AMV RT (i.e. Thermoscript/LifeTech) and/or mutants/ derivatives thereof, RSV RT (i.e. OmniScript/Qiagen) and/or mutants/ derivatives thereof.

Methods of the invention provide a high degree of sensitivity. In one embodiment, EBOV is detected at 1×10^3 , 1×10^4 , 1×10^5 , 1×10^6 , 1×10^7 , or 1×10^9 copies of EBOV RNA per ml in blood. In another embodiment, the invention provides for the detection of between about 1-10 (e.g, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) copies of RNA per reaction.

EBOV (or other virus) is detected by obtaining a sample (e.g., biological sample) from a subject having or suspected of having an EBOV infection or by obtaining an environmental sample from a home, hospital room, means of transportation that is or is suspected of being contaminated with an Ebola virus or EBOV-containing biological fluid. In one embodiment, a biological sample is obtained by obtaining a blood sample, mucous sample, feces, or by swabbing an affected tissue. Swabs can be taken from the nose, throat, eyes, or other mucosal membrane. At necropsy, samples can be collected from blood or tissues of the deceased.

Advantageously, the diagnostic methods of the invention are suitable for use in virtually any setting. EBOV is endemic in much of west Africa including Liberia, Nigeria, Guinea, and Sierra Leone. Many areas within west Africa lack access to basic medical facilities and diagnostic laboratories. The present invention can be used in a battery powered hand held device that is well-suited to testing of biological samples in areas where access to electricity is non-existent. Moreover, the present methods are simple enough that they can easily be carried out by health workers who have limited training in the use of diagnostic technologies.

The present invention provides methods for rapidly identifying an EBOV or other viral infection using an isothermal nucleic acid amplification reaction that can be carried out on extracted RNA in the context of a crude biological sample.

5 Early in the disease process, only low levels of virus are present in a biological sample of the subject, such as a blood sample. If desired, the virions present in the sample are enriched using methods known in the art, for example, by precipitating the virions from the sample by adding PEG and NaCl then filtering virions out of the sample using a nanopore filter, thereby providing for early detection of a viral polynucleotide.

0 The disease state or treatment of a subject that may have been exposed to *Ebola* virus (or other virus) can be monitored using the methods and compositions of the invention. In one embodiment, the detection of an *Ebola* virus polynucleotide (or other virus polynucleotide) is present in a bodily fluid, such as saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma, is monitored.

5 Such monitoring may be useful, for example, in diagnosing the subject as having Ebola (or other virus), or determining the efficacy of a particular drug in a subject or in assessing disease progression.

Nucleic Acid Amplification Methods

:0 Nucleic acid amplification technologies have provided a means of understanding complex biological processes, detection, identification, and quantification of pathogenic organisms, such as EBOV or other RNA viruses. The present invention provides for the detection of an EBOV negative-sense RNA genome in a biological sample by using reverse transcriptase to synthesize an EBOV DNA molecule from the RNA genome and then 25 amplifying the DNA in an isothermal nicking amplification reaction.

The polymerase chain reaction (PCR) is a common thermal cycling dependent nucleic acid amplification technology used to amplify DNA consisting of cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA using a DNA polymerase. Real-Time quantitative PCR (qPCR) is a technique used to quantify the 30 number of copies of a given nucleic acid sequence in a biological sample. Currently, qPCR utilizes the detection of reaction products in real-time throughout the reaction and compares the amplification profile to the amplification of controls which contain a known quantity of nucleic acids at the beginning of each reaction (or a known relative ratio of nucleic acids to

the unknown tested nucleic acid). The results of the controls are used to construct standard curves, typically based on the logarithmic portion of the standard reaction amplification curves. These values are used to interpolate the quantity of the unknowns based on where their amplification curves compared to the standard control quantities.

5 In addition to PCR, non-thermal cycling dependent amplification systems or isothermal nucleic acid amplification technologies exist including, without limitation: Nicking Amplification Reaction, Rolling Circle Amplification (RCA), Helicase-Dependent Amplification (HDA), Loop-Mediated Amplification (LAMP), Strand Displacement Amplification (SDA), Transcription-Mediated Amplification (TMA), Self-Sustained 0 Sequence Replication (3SR), Nucleic Acid Sequence Based Amplification (NASBA), Single Primer Isothermal Amplification (SPIA), Q- β Replicase System, and Recombinase Polymerase Amplification (RPA).

Isothermal nicking amplification reactions have similarities to PCR thermocycling. Like PCR, nicking amplification reactions employ oligonucleotide sequences which are 5 complementary to a target sequences referred to as primers. In addition, nicking amplification reactions of target sequences results in a logarithmic increase in the target sequence, just as it does in standard PCR. Unlike standard PCR, the nicking amplification reactions progress isothermally. In standard PCR, the temperature is increased to allow the two strands of DNA to separate. In nicking amplification reactions, the target nucleic acid 10 sequence is nicked at specific nicking sites present in a test sample. The polymerase infiltrates the nick site and begins complementary strand synthesis of the nicked target nucleotide sequence (the added exogenous DNA) along with displacement of the existing complimentary DNA strand. The strand displacement replication process obviates the need for increased temperature. At this point, primer molecules anneal to the displaced 15 complementary sequence from the added exogenous DNA. The polymerase now extends from the 3' end of the template, creating a complementary strand to the previously displaced strand. The second oligonucleotide primer then anneals to the newly synthesized 20 complementary strand and extends making a duplex of DNA which includes the nicking enzyme recognition sequence. This strand is then liable to be nicked with subsequent strand 25 displacement extension by the polymerase, which leads to the production of a duplex of DNA which has nick sites on either side of the original target DNA. Once this is synthesized, the molecule continues to be amplified exponentially through replication of the displaced strands 30 with new template molecules. In addition, amplification also proceeds linearly from each

product molecule through the repeated action of the nick translation synthesis at the template introduced nick sites. The result is a very rapid increase in target signal amplification; much more rapid than PCR thermocycling, with amplification results in less than ten minutes.

5 **Nicking Amplification Assays**

The invention provides for the detection of EBOV target nucleic acid molecules amplified in an isothermal nicking amplification assay.

Polymerases useful in the methods described herein are capable of catalyzing the incorporation of nucleotides to extend a 3' hydroxyl terminus of an oligonucleotide (e.g., a 0 primer) bound to a target nucleic acid molecule and/or a 3' hydroxyl terminus at a nick site in a double-stranded DNA molecule in conjunction with strand displacement activity. Such polymerases also lack or have substantially reduced 5'-3' exonuclease activity and may include those that are thermophilic. DNA polymerases useful in methods involving primers having 2'-modified nucleotides in the primer region comprising the six 3'-terminal 5 nucleotides include derivatives and variants of the DNA polymerase I isolated from *Bacillus stearothermophilus*, also classified as *Geobacillus stearothermophilus*, and from closely related bacterial strains, isolates and species comprising the genus *Geobacillus*, which lack or have substantially reduced 5'-3' exonuclease activity and have strand-displacement activity. Exemplary polymerases include, but are not limited to, the large fragments of Bst DNA 0 polymerase I, Gst DNA polymerase I, and Gka DNA polymerase I.

A nicking agent useful in methods described herein is a chemical entity capable of recognizing and binding to a specific structure in double stranded nucleic acid molecules and breaking a phosphodiester bond between adjoining nucleotides on the top strand with a substantially higher rate than breaking the phosphodiester bond between adjoining 25 nucleotides on the bottom strand upon binding to its recognized specific structure, thereby creating a free 3'-hydroxyl group on the terminal nucleotide preceding the nick site that can be extended by a 5'-3'-exonuclease deficient strand displacement polymerase. In a preferred embodiment of the methods disclosed herein, the top strand phosphodiester bond cleavage rate of the “nicking agent” approaches 100%, while the cleavage rate of the bottom strand 30 phosphodiester bond approaches 0%. Nicking agents useful in methods described herein, can either be enzymes, i.e. self-regenerating catalysts turning over multiple substrate molecules, or non-regenerating catalysts turning over just a single substrate molecule at an equimolar ratio fashion.

A nicking enzyme binds double-stranded DNA and cleaves one strand of a double-stranded duplex. In the methods of the invention, the nicking enzyme cleaves the top stand (the strand comprising the 5'-3' sequence of the nicking agent recognition site). In a particular embodiment of the invention disclosed herein, the nicking enzyme cleaves the top strand only and 3' downstream of the recognition site. In exemplary embodiments, the reaction comprises the use of a nicking enzyme that cleaves or nicks downstream of the binding site such that the product sequence does not contain the nicking site. Using an enzyme that cleaves downstream of the binding site allows the polymerase to more easily extend without having to displace the nicking enzyme. Ideally, the nicking enzyme is functional under the same reaction conditions as the polymerase. Exemplary nicking enzymes include, but are not limited to, N.Bst9I, N.BstSEI, Nb.BbvCI(NEB), Nb.Bpu10I(Fermantas), Nb.BsmI(NEB), Nb.BsrDI(NEB), Nb.BtsI(NEB), Nt.AlwI(NEB), Nt.BbvCI(NEB), Nt.Bpu10I(Fermentas), Nt.BsmAI, Nt.BspD6I, Nt.BspQI(NEB), Nt.BstNBI(NEB), and Nt.CviPII(NEB). Sequences of nicking enzyme recognition sites are provided at Table 1.

Table 1. Nicking enzyme recognition sequences

N.Bst9I	5'-GAGTCNNNNNN-3' (Seq ID No: 28) 3'-CTCAGNNNNNN-5'
N.BstSEI	5'-GAGTCNNNNNN-3' (Seq ID No: 28) 3'-CTCAGNNNNNN-5'
Nb.BbvCI(NEB)	5'-CCTCA•GC-3' 3'-GGAGT↑CG-5'
Nb.Bpu10I(Fermantas)	5'-CCTNA•GC-3' 3'-GGANT↑CG-5'
Nb.BsmI(NEB)	5'-GAATG•CN-3' 3'-CTTAC↑GN-5'
Nb.BsrDI(NEB)	5'-GCAATG•NN-3' 3'-CGTTAC↑NN-5'
Nb.BtsI(NEB)	5'-GCAGTG•NN-3' 3'-CGTCAC↑NN-5'
Nt.AlwI(NEB)	5'-GGATCNNNNNN-3' (Seq ID No: 29) 3'-CCTAGNNNNNN-5'

Nt.BbvCI(NEB)	5'-CC↓TCAGC-3' 3'-GG•AGTCG-5'
Nt.Bpu10I(Fermentas)	5'-CC↓TNAGC-3' 3'-GG•ANTCG-5'
Nt.BsmAI	5'-GTCTCN↓N-3' 3'-CAGAGN•N-5'
Nt.BspD6I	5'-GAGTCNNNN↓N-3' (Seq ID No: 30) 3'-CTCAGNNNN•N-5'
Nt.BspQI(NEB)	5'-GCTCTTCN↓-3' 3'-CGAGAAAGN -5'
Nt.BstNBI(NEB)	5'-GAGTCNNNN↓N-3' (Seq ID No: 30) 3'-CTCAGNNNN•N-5'
Nt.CviPII(NEB)	5'-↓CCD-3' 3'- GGH-5'

Nicking enzymes also include engineered nicking enzymes created by modifying the cleavage activity of restriction endonucleases (NEB expressions July 2006, vol 1.2). when restriction endonucleases bind to their recognition sequences in DNA, two catalytic sites

5 within each enzyme for hydrolyzing each strand drive two independent hydrolytic reactions which proceed in parallel. Altered restriction enzymes can be engineered that hydrolyze only one strand of the duplex, to produce DNA molecules that are “nicked” (3'-hydroxyl, 5'-phosphate), rather than cleaved. Nicking enzymes may also include modified CRISPR/Cas proteins, Transcription activator-like effector nucleases (TALENs), and Zinc-finger nucleases

10 having nickase activity.

A nicking amplification reaction typically comprises nucleotides, such as, for example, dideoxyribonucleoside triphosphates (dNTPs). The reaction may also be carried out in the presence of dNTPs that comprise a detectable moiety including but not limited to a radiolabel (e.g., ^{32}P , ^{33}P , ^{125}I , ^{35}S) an enzyme (e.g., alkaline phosphatase), a fluorescent label (e.g., fluorescein isothiocyanate (FITC)), biotin, avidin, digoxigenin, antigens, haptens, or fluorochromes. The reaction further comprises certain salts and buffers that provide for the activity of the nicking enzyme and polymerase.

Advantageously, the nicking amplification reaction is carried out under substantially isothermal conditions where the temperature of the reaction is more or less constant during

the course of the amplification reaction. Because the temperature does not need to be cycled between an upper temperature and a lower temperature, the nicking amplification reaction can be carried out under conditions where it would be difficult to carry out conventional PCR. Typically, the reaction is carried out at about between 35 C and 90 C (e.g., about 35, 5 37, 42, 55, 60, 65, 70, 75, 80, or 85 °C). Advantageously, it is not essential that the temperature be maintained with a great degree of precision. Some variability in temperature is acceptable.

Sets of primers for amplification reactions are selected as having $\Delta\Delta G$'s $\leq -15, -16, 0 17, -18, -19, -20, -25, -30$ kcal/mole or more. The performance characteristics of amplification reactions may be altered by increasing the concentration of one or more oligonucleotides (e.g., one or more primers and/or probes) and/or their ratios. High concentrations of primers also favor primer-dimer formation. In various embodiments, concentration of a primers is 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 nM or more. Melt temperature (Tm) and reaction rate modifiers may also be used to lower the melting 5 temperature of the oligonucleotides, such as (but not limited to) ethylene glycol and glycerol. In addition, DNA polymerase reaction rate modifiers (such as dNTP and magnesium concentration) may be used to alter the reaction rate to lead to a greater quantification precision. In particular embodiments, the 5' tail sequences of the forward and reverse primers have the same nucleic acid sequence.

:0 This invention provides methods of monitoring a nicking amplification reaction in real time, including for example utilizing the amplification strategy as described herein. In one embodiment, quantitative nucleic acid amplification utilizes target nucleic acids amplification alongside a control amplification of known quantity. The amount of target nucleic acid can be calculated as an absolute quantification or a relative quantification (semi- 25 quantitative) based on the source of the control (exogenous or endogenous control).

Quantification of the unknown nucleotide sequence can be achieved either through comparison of logarithmic threshold amplification of the unknown to a series of known target sequences in either a separate set of reactions or in the same reaction; or as an internal endogenous or exogenous co-amplification product, which produces a threshold value, 30 indicative of either a positive result (if the unknown exceeds the threshold) or negative result (if the unknown does not exceed the threshold).

The invention also provides a method of designing a nicking agent-dependent isothermal strand-displacement amplification assay without experimental screening of a

multitude of combinations of candidate forward primers and/or candidate reverse primers. A 35 to 70 bp long region within the target sequence is identified having a 12 to 20 bp sequence in the central portion with a $T_m \geq$ the assay temperature (e.g., $\sim 55^\circ C$). Adjacent sequences 12 bp to 20 bp long immediately downstream and upstream of the 15 to 20 bp long central 5 region are identified, according to the above criteria. The T_m of the chosen double stranded downstream and upstream adjacent sequences deviate from each other by less than $\pm 3^\circ C$. A target-specific pair of forward and reverse primers are created by attaching a 5'-tail region for a stable dimer-forming primer to the 5'-terminus of the 12-20 base upstream adjacent sequence and to the 5'-terminus of the complementary strand of the 12-20 base downstream 0 adjacent sequence. When combining the forward primer, reverse primer, and a probe, the primer driving the synthesis of the strand complementary to the probe is in excess over the other primer at a molar ratio of about 1.1:1 to 10:1. The combined concentration of a primer in the assay is no higher than 1000 nM. The assay design method can also be used to convert a pre-validated PCR assay for an amplicon ≤ 70 bp to a nicking agent-dependent isothermal 5 strand-displacement amplification assay.

Primer Design

Conventional methods for primer design have focused on primer melting temperature, primer annealing temperature, GC (guanine and cytosine) content, primer length, and 0 minimizing interactions of the primer with all but the target nucleic acid (see e.g., www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html). Contrary to these methods, it has been found that primers that form stable primer/dimers, expressed in terms of free 25 energy of formation (ΔG), function predictably in nucleic acid amplification reactions. While Free Energy (ΔG) and Melting Temperature (T_m) share primary components Enthalpy (ΔH) and Entropy (ΔS), ΔG and T_m values are derived differently and have no correlative relationship, and the only way to relate a given ΔG with a given T_m value is to explicitly know the value of ΔH and ΔS from which they are derived (Manthey, "mFold, Delta G, and Melting Temperature" ©2005 and 2011 Integrated DNA Technologies). Figures 1-11 relate to the design of optimal primers.

30 The free energy of formation (ΔG) for intermolecular primer structures may be calculated using formulas known in the art. A number of programs are available for determining the formation of various intramolecular and intermolecular primer structures and calculating their ΔG 's, including for example mfold and UNAFold prediction algorithms (see

e.g., Markham and Zuker. UNAFold: Software for Nucleic Acid Folding and Hybridization. Bioinformatics: Volume 2, Chapter 1, pp 3-31, Humana Press Inc., 2008; Zuker et al. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide In RNA Biochemistry and Biotechnology, 11-43, NATO ASI Series, Kluwer 5 Academic Publishers, 1999; M. Zuker. Prediction of RNA Secondary Structure by Energy Minimization. Methods in Molecular Biology, 267-294, 1994; Jaeger et al. Predicting Optimal and Suboptimal Secondary Structure for RNA. In Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Methods in Enzymology 183, 281-306, 1990; Zuker. On Finding All Suboptimal Foldings of an RNA Molecule. Science 244, 48-52, 0 1989). OligoAnalyzer 3.1 is one such implementation of mfold for primer design (www.idtdna.com/analyizer/Applications/OligoAnalyzer/). For example, with reference to OligoAnalyzer 3.1, ΔG calculations may be performed using the following parameters: Target Type: DNA; Oligo Concentration 0.25 μ M; Na^+ Concentration: 60mM; Mg^{++} Concentration: 15mM; and dNTPs Concentration: 0.3 mM.

5

3' Recognition region

The invention provides a primer having a 3' recognition sequence whose primer-target formation is stable ($\Delta G \leq$ about -20 kcal/mol or more) and has the potential to enhance nucleic acid amplification reaction performance. The 3' recognition region specifically binds

:0 to the nucleic acid molecule, for example a complementary sequence of the nucleic acid molecule. In certain embodiments, the 3' recognition region has a sequence that is complementary to 12, 13, 14, 15, 16, 17, 18, 19, or 20 bases or more of a nucleic acid sequence. In particular embodiments, the 3' recognition region comprises one or more inosine bases. In specific embodiments, the 3' recognition region comprises no more than 25 2/12 inosines. In various embodiments, the primer-target melting temperature is equal to or greater than 8° or 6 °C below the reaction or extension temperature of the assay ($T_m \geq$ assay temperature - 8°). In particular embodiments, the 3' recognition sequence comprises 12-20, 12-17, or 12-14 bases. In particular embodiments, the primer-target formation is more stable than self dimer formation (e.g., $\Delta\Delta G \leq$ about -15, -16, -17, -18, -19, -20 kcal/mol or more). 30 Preferably, the 3' recognition sequence does not contain self-complementary sequences, short inverted repeats (e.g., >4 bases/repeat), or sequences that otherwise promote intramolecular interactions, which have the potential to interfere with primer-target annealing.

In one embodiment, a primer is designed having a Tm of 56°C with 4 sequence specific bases at the end of the primer that may not contribute to annealing. In one embodiment, the primer is a 16, 17, 18, 19, 20 or 21-mer.

In particular, a primer of the invention having a 3' recognition sequence is useful in nicking amplification assays. Additionally, the EBOV or other viral target specific 3' recognition region comprises one or more 2' modified nucleotides (e.g., 2'-O-methyl, 2'-methoxyethoxy, 2'-fluoro, 2'-alkyl, 2'-allyl, 2'-O-[2-(methylamino)-2-oxoethyl], 2'-hydroxyl (RNA), 4'-thio, 4'-CH₂-O-2'-bridge, 4'-(CH₂)₂-O-2'-bridge, and 2'-O-(N-methylcarbamate)). Without being bound to theory, it is hypothesized that incorporating one or more 2' modified nucleotides in the recognition regions reduces or eliminates intermolecular and/or intramolecular interactions of primers/templates (e.g., primer-dimer formation), and, thereby, reduces or eliminates the background signal in isothermal amplification. The 2' modified nucleotide preferably has a base that base pairs with the target sequence. In particular embodiments, two or more 2' modified nucleotides (e.g., 2, 3, 4, 5 or more 2' modified nucleotides) in the EBOV or other viral target specific recognition region are contiguous (e.g., a block of modified nucleotides). In some embodiments, the block of 2' modified nucleotides is positioned at the 3' end of the target specific recognition region. In other embodiments, the block of 2' modified nucleotides is positioned at the 5' end of the EBOV or other viral target specific recognition region. When the block of 2' modified nucleotides is positioned at the 5' end of the target specific recognition region, the 2' modified nucleotides may be separated from the nick site by one or more non-modified nucleotides (e.g., 2, 3, 4, 5 or more 2' unmodified nucleotides). Applicants have found that positioning of one or more 2' modified nucleotides or of a block of 2' modified nucleotides alters the kinetics of amplification. When the one or more 2' modified nucleotides or block of 2' modified nucleotides are positioned at or near the 5' end of the recognition region or proximal to the nick site, real-time amplification reactions showed decreased time to detection. Additionally, the signal curve is contracted and the slope of the curve shifted.

In a related embodiment, ratios of a primer having one or more 2' modified nucleotides can be used to alter the time-to-detection and/or the efficiency of the reaction for the 'tuning' of reactions, resulting in a predictable control over reaction kinetics. Increasing the ratio of primer having one or more 2' modified nucleotides at the 3' end of the recognition sequence to primer having one or more 2' modified nucleotides at the 5' end of the recognition sequence contracted the signal curve and shifted the slope of the curve. It is

advantageous to be able to “tune” a reaction providing a means to manipulate both the time-to-detection as well as the efficiency of the reaction. Relative quantification using an internal control requires that two important conditions be met. First, it is beneficial to be able to modify a reaction’s time-to-detection creating a non-competitive reaction condition. Thus, 5 by affecting the control reaction to be detectable at a later time-point (relative to the target of interest) the control reaction does not out-compete the specific target of interest even when the target of interest is in low initial abundance. Second, to ensure a true relative abundance calculation, it is required that the control and specific target reactions have matched 0 efficiencies. By controlling the efficiency of each reaction using a “tuning” condition enables reactions to be matched allowing for satisfactory relative quantification calculations. Tuning the reactions can be used to match efficiencies of target nucleic acid amplification and reference nucleic acid amplification (e.g., internal standard) in quantitative PCR (qPCR). Additionally, amplification curves of the target nucleic acid and the internal standard may be altered so time of detection of their amplification products are separated, while providing the 5 same efficiency for target nucleic acid amplification and internal standard amplification. Through the use of specific combinations and ratios of oligonucleotide structures within a reaction it is possible to create conditions which enable tuned reaction performance.

5' Tail Dimerization Region

0 The invention provides a primer having a 5' tail region capable of self-dimerization that enhances EBOV or other viral nucleic acid amplification reaction performance. Without being bound to theory, in a nucleic acid amplification reaction the primer anneals to the target nucleic acid as a primer-dimer. For example, nicking amplification primers have a nicking agent recognition site present at the 5' end that is unrelated to the binding specificity of the 25 primer for the target recognition sequence. Non-specific background products from non-specific primer interactions have the potential to sequester reaction components that would otherwise have been utilized for the amplification of the specific product. In various embodiments, homodimer formation is stable (e.g., $\Delta G \leq$ about -30, -35, -40, -45, -50, -55, -60 kcal/mol or more). In various embodiments, the homodimer has a melting temperature 30 higher than the extension reaction temperature. In particular embodiments, the 5' tail region has a sequence that is a palindrome. In further embodiments, the 5' tail region is at least 12 bases (e.g., 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 bases) in length. In additional embodiments, the 5' tail region has a GC content of 80-90%. In certain embodiments,

homodimer formation is more stable than formation of other less stable primer dimer conformations formation (e.g., $\Delta\Delta G \leq$ about -12, -13, -14, -15, -16, -17, -18, -19, -20, -25, -30, -35, -40 kcal/mol or more).

In particular, a primer of the invention having a 5' tail sequence is useful in nicking amplification reactions. For use in nicking amplification reactions, the 5' tail region comprises one or more nicking agent recognition sites and the 5' tail region has a symmetrically inverted sequence. In particular embodiments, the 5' tail region contains an even number of nucleotides (e.g., 22, 24 nucleotides). The nick site is designed to be positioned between the nucleotide at the 3' end of the 5' tail region and the nucleotide at the 5' end of the 3' recognition region. Without being bound to theory, the nicking enzyme does not cleave at the nick site when the 3' recognition is single-stranded. However, cleavage at the nick site occurs when the 3' recognition region is double stranded (e.g., when the primer is incorporated into a double-stranded target nucleic acid molecule during the course of the nucleic acid amplification reaction).

In various embodiments, the 5' tail sequence comprises from 5' to 3' an inverted nicking enzyme recognition sequence that is operatively linked to a palindromic sequence (or self-complementary sequence) that is operatively linked to a nicking enzyme recognition sequence. In certain embodiments, the spacer region is an even number of nucleotides (e.g., 2, 4, 6, etc.). Exemplary 5' tails based on the Nt.BstNBI nicking enzyme recognition sequence (5'-GAGTC-3') having a 2, 4, and 6 nucleotide spacers comprise a nucleic acid sequences according to the formula below:

5'- **GACTCN₁N₁GAGTC** -3' (SEQ ID NO: 31)

5'- **GACTCN₂N₁N₁N₂GAGTC** -3' (SEQ ID NO: 32)

5'- **GACTCN₃N₂N₁N₁N₂N₃GAGTC** -3' (SEQ ID NO: 33)

where "N" is any nucleotide (e.g., having an adenine (A), thymine (T), cytosine (C), or guanine (G) nucleobase), and N₁ is complementary to N₁', N₂ is complementary to N₂', and N₃ is complementary to N₃', etc.

Exemplary 5' tail region sequences 24 nucleotides in length having a Nt.BstNBI recognition sequence can be generated based on the following template 5'-NNNNGACTNNNNNNGAGTCNNNN-3' (SEQ ID NO: 34). Based on this template, there are 537,824 5' tail sequences having the following properties: $\Delta G = -48$ Kcal/mole to -62 kcal/mole; $\Delta\Delta G < -40$ kcal/mole; and GC content 68% to 84%. Of these, 1050

selected sequences are provided, representing 0.2% of the entire sequence space (248,832). Exemplary 5' tail region sequences 22 nucleotides in length having a Nt.BstNBI recognition sequence and based on the following template 5'- NNNNGACTCNNNGAGTCNNN -3' (SEQ ID NO: 35). Based on this template, there are 248,832 5' tail sequences having the following properties: $\Delta G = -47$ Kcal/mole to -55 kcal/mole; $\Delta \Delta G < -40$ kcal/mole; and GC content 72% to 82%. Of these, 200 selected sequences are provided, representing 0.08% of the entire sequence space (248,832).

Target Nucleic Acid Molecules

Methods and compositions of the invention are useful for the amplification and/or identification of an EBOV or other viral nucleic acid molecule in a test sample. The target sequences are amplified from virtually any samples that comprises a viral nucleic acid molecule, including a EBOV nucleic acid molecule. In particular, the methods and compositions of the invention are useful for the amplification and/or identification of RNA viruses. In addition to EBOV, exemplary RNA viruses that can be detected using the methods and compositions of the invention include, without limitation, Human Immunodeficiency Virus (HIV), Dengue virus, influenza virus (e.g., influenza B), Bovine Viral Diarrhea virus (e.g., BVDV Genotype 1), Yellow Fever virus, West Nile Virus, Hepatitis C, Lassa virus, Flaviviridae, Arenaviridae, and single-stranded RNA viruses.

Exemplary test samples include body fluids (e.g. bsaliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma), tissue extracts, culture media (e.g., a liquid in which a cell, such as a pathogen cell, has been grown), environmental samples, agricultural products or other foodstuffs, and their extracts, and DNA identification tags. If desired, the sample is purified prior to inclusion in a nicking amplification reaction using any standard method typically used for isolating a nucleic acid molecule from a biological sample.

In one embodiment, primers amplify a target nucleic acid of a pathogen to detect the presence of EBOV or other virus in a sample. For environmental applications, test samples may include water, liquid extracts of building materials (e.g., drywall, ceiling tiles, wall board, fabrics, wall paper, and floor coverings) that may have been exposed to a subject infected with EBOV, environmental swabs, or any other sample.

Methods of the invention provide for the detection of 1×10^3 , 1×10^4 , 1×10^5 , 1×10^6 , 1×10^7 , or 1×10^9 copies of EBOV RNA per ml in blood.

Applications

Target nucleic acid amplification using primers of the invention have characteristics useful for rapid detection of viral (e.g., EBOV) nucleic acid molecules. Compositions and methods of the invention are useful in human diagnostics, where a rapid diagnostic answer is desired (e.g., detectable amplification in under 20, 15, 10, 9, 8, 7, 6, 5 minutes or less). In particular embodiments, the invention provides for the use of an EBOV nicking amplification reaction assay in human or veterinary diagnostics in clinical settings or in the field. In other embodiments, the invention provides for the use of nicking amplification reaction assays in diagnostic field work, where access to thermocycling equipment is unavailable or would be prohibitively expensive. In still other embodiments, the invention provides for the use of nicking amplification reaction assays in a clinical setting where rapid quantitative answers are desired.

Detectable Oligonucleotide Probes

The present invention provides for the detection of target nucleic acid molecules or amplicons thereof in a nicking amplification reaction using non-amplifiable detectable polynucleotide probes comprising at least one polymerase-arresting molecule (e.g., nucleotide modification or other moiety that renders the oligonucleotide capable of binding a target nucleic acid molecule, but incapable of supporting polymerase extension utilizing the detectable oligonucleotide probe as a target). Without wishing to be bound by theory, the presence of one or more moieties which does not allow polymerase progression likely causes polymerase arrest in non-nucleic acid backbone additions to the oligonucleotide or through stalling of a replicative polymerase (i.e. C3-spacer, damaged DNA bases, other spacer moiety, O-2-Me bases). These constructs thus prevent or reduce illegitimate amplification of the probe during the course of a nicking amplification reaction. This distinguishes them from conventional detection probes, which must be added at the end of the nicking amplification reaction to prevent their amplification.

Conventional detection probes have proven impractical for detecting a nicking amplification reaction in real time. If conventional detection probes are incorporated into the nicking amplification reaction, these conventional detection probes are amplified

concurrently with the target. The amplification of these detection molecules masks the detection of legitimate target amplicons due to the number of starting molecules of the detection probe at the start of the reaction.

The invention provides non-amplifiable detectable polynucleotide probe that comprise at least one polymerase-arresting molecule. A polymerase-arresting molecule of the invention includes, but is not limited to, a nucleotide modification or other moiety that blocks extension by replicative DNA polymerases, thereby preventing the amplification of detection molecules; but can allow proper hybridization or nucleotide spacing to the target molecule or amplified copies of the target molecule. In one embodiment, a detectable oligonucleotide probe of the invention comprises a 3 carbon spacer (C3-spacer) that prevents or reduces the illegitimate amplification of a detection molecule.

In one embodiment, a detectable oligonucleotide probe comprises one or more modified nucleotide bases having enhanced binding affinity to a complementary nucleotide. Examples of modified bases include, but are not limited to 2' Fluoro amidites, and 2'OMe

RNA amidites (also functioning as a polymerase arresting molecule). Detectable oligonucleotide probes of the invention can be synthesized with different colored fluorophores and may be designed to hybridize with virtually any target sequence. In view of their remarkable specificity, a non-amplifiable detectable polynucleotide probe of the invention is used to detect a single target nucleic acid molecule in a sample, or is used in combination with detectable oligonucleotide probes each of which binds a different target nucleic acid molecule. Accordingly, the non-amplifiable detectable polynucleotide probes of the invention may be used to detect one or more target nucleic acid molecules in the same reaction, allowing these targets to be detected simultaneously. The present invention encompasses the use of such fluorophores in conjunction with the detectable oligonucleotide probes described herein.

Implementation in Hardware and/or Software

The methods described herein can be implemented on general-purpose or specially programmed hardware or software. For example, the methods can be implemented by a computer readable medium. Accordingly, the present invention also provides a software and/or a computer program product configured to perform the algorithms and/or methods according to any embodiment of the present invention. It is well-known to a skilled person in the art how to configure software which can perform the algorithms and/or methods provided

in the present invention. The computer-readable medium can be non-transitory and/or tangible. For example, the computer readable medium can be volatile memory (*e.g.*, random access memory and the like) or non-volatile memory (*e.g.*, read-only memory, hard disks, floppy discs, magnetic tape, optical discs, paper table, punch cards, and the like). The computer executable instructions may be written in a suitable computer language or combination of several languages. Basic computational biology methods are described in, for example Setubal and Meidanis et al., *Introduction to Computational Biology Methods* (PWS Publishing Company, Boston, 1997); Salzberg, Searles, Kasif, (Ed.), *Computational Methods in Molecular Biology*, (Elsevier, Amsterdam, 1998); Rashidi and Buehler, *Bioinformatics Basics: Application in Biological Science and Medicine* (CRC Press, London, 2000) and Ouellette and Bzevanis *Bioinformatics: A Practical Guide for Analysis of Gene and Proteins* (Wiley & Sons, Inc., 2nd ed., 2001).

The present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, analysis, and instrument operation. (See, US Patent Nos 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,911 and 6,308,170.)

Additionally, the present invention may have preferred embodiments that include methods for providing genetic information over networks such as the Internet as shown in US Ser Nos 10/197,621, 10/063,559 (US Pub No 20020183936), 10/065,856, 10/065,868, 10/328,818, 10/328,872, 10/423,403, and 60/482,389.

Kits

The invention also provides kits for the amplification of an EBOV or other RNA virus nucleic acid molecule. Such kits are useful for the detection or quantitation of an EBOV or other RNA nucleic acid in a biological sample obtained from a subject. Kits of the present invention may comprise, for example, one or more of reverse transcriptase, DNA polymerases, forward and reverse primers, and one or more nicking enzymes, as described herein, and a detectable probe. Where EBOV or other RNA is to be amplified, one or two nicking enzymes may be included in the kit. Where multiple pathogen sequences are to be amplified, and the templates designed for those target sequences comprise the nicking enzyme sites for the same nicking enzyme, then one or two nicking enzymes may be included. Where the templates are recognized by different nicking enzymes, more nicking enzymes may be included in the kit, such as, for example, 3 or more.

In one aspect, the invention provides a kit for nucleic acid amplification comprising a reverse transcriptase, DNA polymerase; a primary primer, a secondary primer, a nicking enzyme with specificity to a nicking enzyme binding site within the primers, and deoxynucleotide triphosphates (dNTP's) (e.g., in a buffered solution containing components sufficient for amplification. In various embodiments, the primary primer and secondary primer, each have a 3'-end specific recognition region sequence complementary or substantially complementary to the target sequence, where the end specific recognition region comprises one or more 2' modified nucleotides; a 5'-end tail region containing a nicking enzyme binding site upstream of the 3'-end specific recognition region sequences that is able to dimerize with itself (e.g., self-complementary). In particular embodiments, one or more primers are in a primer-dimer configuration (e.g., produced by heating about Tm and slow cooling).

The kits of the present invention may also comprise one or more of the components in any number of separate containers, packets, tubes (e.g., <0.2 ml, 0.2 ml, 0.6 ml, 1.5 ml, 5.0 ml, >5.0 ml), vials, microtiter plates (e.g., <96-well, 96-well, 384-well, 1536-well, >1536-well), ArrayTape, and the like, or the components may be combined in various combinations in such containers. In various embodiments, the kit further comprises a pair of primers capable of binding to and amplifying a reference sequence. In particular embodiments, the kit comprises one or more primers in a primer-dimer configuration (e.g., produced by heating about Tm and slow cooling). In yet other embodiments, the kit comprises a sterile container which contains the primers; such containers can be boxes, ampules, bottles, vials, tubes, bags, pouches, blister-packs, or other suitable container form known in the art. Such containers can be made of plastic, glass, laminated paper, metal foil, or other materials suitable for holding nucleic acids.

The components of the kit may, for example, be present in one or more containers, for example, all of the components may be in one container, or, for example, the enzymes may be in a separate container from the primers. The components may, for example, be dried (e.g., powder) or in a stable buffer (e.g., chemically stabilized, thermally stabilized). Dry components may, for example, be prepared by lyophilization, vacuum and centrifugal assisted drying and/or ambient drying. In various embodiments, the polymerase and nicking enzymes are in lyophilized form in a single container, and the primers are either lyophilized, freeze dried, or in buffer, in a different container. In some embodiments, the polymerase, nicking enzymes, and the primers are, in lyophilized form, in a single container. In other

embodiments, the polymerase and the nicking enzyme may be separated into different containers.

Kits may further comprise, for example, dNTPs used in the reaction, or modified nucleotides, cuvettes or other containers used for the reaction, or a vial of water or buffer for rehydrating lyophilized components. The buffer used may, for example, be appropriate for both polymerase and nicking enzyme activity.

The kits of the present invention may also comprise instructions for performing one or more methods described herein and/or a description of one or more compositions or reagents described herein. Instructions and/or descriptions may be in printed form and may be included in a kit insert. A kit also may include a written description of an Internet location that provides such instructions or descriptions.

The practice of the present invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook, 1989); "Oligonucleotide Synthesis" (Gait, 1984); "Animal Cell Culture" (Freshney, 1987); "Methods in Enzymology" "Handbook of Experimental Immunology" (Weir, 1996); "Gene Transfer Vectors for Mammalian Cells" (Miller and Calos, 1987); "Current Protocols in Molecular Biology" (Ausubel, 1987); "PCR: The Polymerase Chain Reaction", (Mullis, 1994); "Current Protocols in Immunology" (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.

EXAMPLES

Example 1. One-step and Two-step Real-time Reverse Transcription-Isothermal Amplification Assays for EBOV

A one-step reaction refers to a reverse transcriptase (RT) reaction in which reverse transcription and amplification occur in a single reaction protocol. A two-step reaction refers to a reverse transcriptase reaction in which the reverse transcription is carried out first; followed by a transfer to a second amplification reaction.

Assays 1 and 2 were tested for their ability to detect an EBOV polynucleotide EBOV (Figure 1). Primers for these assays are shown at Figure 2.

Figures 3A-3X show amplification results obtained with Assay 1 and Assay 2. The assays were used to detect copies of EBOV gBlock in a background of human cDNA. Reaction conditions are specified.

Figure 4 shows detection of EBOV in a background of total human RNA in a one-step assay.

Figure 5 shows detection of synthetic EBOV RNA in a background of total human RNA in a one-step assay.

Figures 6A-6C provide flow charts illustrating sample processing for use in an amplification and detection instrument.

Figures 7A and 7B show sample preparation methods from swabs and blood, respectively.

In one working example, *Ebola* virus was detected using the following primers and probe sequences:

Forward Primer	GAATCGATATCGAGTCGCTTCCA[MeOC]AGTTATC[MeOU][MeOA] [MeOC][MeOC][MeOG]	SEQ ID NO: 1
Reverse Primer	GAATCGATATCGAGTCGAAATGC[MeOA]ACGA[MeOC][MeOA][MeOC] [MeOC][MeOU]	SEQ ID NO: 2
Probe	gctac <u>ACGACTT</u> Y <u>GCTGAAG</u> gtac	SEQ ID NO: 3
External Primer	CTTCTTAGCTGGGGCAGTATCA	SEQ ID NO: 36

Primers: [MeON] indicates methoxy base

Probe sequence: lowercase = stems, uppercase = recognition

1:5 1000nM 0.3U/μl nicking enzyme

In the sequences above, GAGTC is the nicking enzyme recognition site.

Pyrimidine provides for degeneracy detection of Ebola strains including Zaire.

Synthetic DNA target (SEQ ID NO: 37):

AAGATGACTGCAGGAGTCAATGCGCAGTTGGTCCCAGCAGCAGGGAACATTACCGAATT
TTACAACAAGTCCCTTCATCCTACAAGGAGAATGAGGAGAACATCCAGTGTGGGGAGAACT
TCATGGACATGGAGTGCTTCATGATTCTGAACCCCAGTCAGCAGCTGGCAATTGCCGTCTG
TCTCTCACACTGGGCACCTTCACAGTTCTGGAGAACATTGCTGGTGTGTGTACCCAGT
5 TATCTACCGAGGAACGACTTCGCTGAAGGTGTCGTTGCATTCTGATTCTTCACTCCGC
AGCCTCCGCTGCCGCCCTTACCACTTCATCATTAGCCTGCCGTGCCGACCTCTGGG
GAGTGTCTACAGCTTGACTTCATGTGTTCCACCGCAAGGACAGCCCCA
ACGTCTTCTCTCAAATTGGGTGGGTCACCGCCTCCTCACGGCCTCTGTAGGCAGCCTC
TTCC

0 **Synthetic RNA target (SEQ ID NO: 38):**

rGrArCrUrGrCrArGrGrArGrUrCrUrGrCrUrUrCrCrArCrArGrUrUrArU
rCrUrArCrCrGrArGrGrArArCrGrArUrUrUrCrGrCrUrGrArArGrGrUrGrUrC
rGrUrUrGrCrArUrUrUrCrUrGrArUrUrCrCrUrUrCrArCrUrCrCrCrG

5 Both 1-step and 2-step reactions contained a final concentration of 166.7nM forward primer and a final concentration of 833.3nM reverse primer with 200nM concentration of Probe and 0.1X SYBR green (final concentration). In addition both 1 and 2 step reactions contained a final concentration of 1x Extract Buffer 2, comprising Tris pH 8.0, NH₄⁺, Na⁺, and Mg²⁺; dNTPs; 0.4 U/μl BST polymerase; and 0.3 U/ μl Nt.BSTnbi nicking enzyme. In addition to these components; the 1 step reactions contained 10U/ul of Maxima Reverse Transcriptase enzyme; 1.0 U/ μl of an RNase inhibitor (SUBERase IN by life technologies). Synthetic RNA had 1.0U/ μl of RNase inhibitor added as well to prevent degradation. All water used was purchased nuclease free.

25 Reactions were mixed on ice and kept cold until run on the Roche LC480. The Roche LC480 was run under a two color detection to detect the calfluor red 610 beacon signal (Abs 590nm/ Em 610nm) and the SYBR green signal (Abs 495nm/ Em 520nm).

1-Step reactions were carried out at 56°C for 20 minutes. Results are shown at Figure 8.

2-step reactions were carried out with the reverse transcriptase step at 56°C for 5 minutes (in a heat block) or at room temperature for 5 minutes following the setup condition outlined by New England Biolabs (www.neb.com/protocols/2012/10/03/first-strand-cdna-synthesis-kit-using-protoscript-ii-reverse-transcriptase-m0368) (Figure 9). Both these RT temperatures produced signal for 1x10⁵ copies of target per reaction. The reverse transcriptase step was followed by an amplification step at 56°C for 15 minutes on the

LC480. Results of this assay are shown at Figure 10. The copy number indicated per reaction was determined using the suppliers' calculations.

Example 2. Detection of a target RNA in a complex RNA mixture

To determine whether the 1-step and 2-step reactions could detect a target RNA in complex mixtures of RNA molecules, assays were designed for the detection of RPPH1 (RNase P RNA Component) in total human RNA. In one working example, RPPH1 was detected using the following primers and probe sequences:

Forward Primer	RPPH1.Fc	GAATCGATATCGAGTCCACGAGCmUGAGTGCmGmUmCmCmUmG	SEQ ID NO: 39
Reverse Primer	RPPH1.Rc	GAATCGATATCGAGTCAGACCTTmCCCAAGGmGmAmCmAmU	SEQ ID NO: 40
Probe	RPPH1.Probe.T	CCACGCCTGTCACTCCACTCCGCGTGG	SEQ ID NO: 41
External Primer	rpph1extprimR	CCTCTGGCCCTAGTCTCAG	SEQ ID NO: 42

Primers: **mN** indicates methoxy base

In a 2-step reaction, human RNA (10 ng) was converted to cDNA with random hexamer primer and RPPH1 was detected by amplification of a target specific sequence (Figure 11A). In a 1-step reaction, human RNA (20 ng) was detected by amplification of a target specific sequence using specific reverse transcription primers (Figure 11B).

Example 3: Detection of *Ebola* virus in a biological sample

In another working example, a synthetic *Ebola* virus RNA target was detected when mixed with a crude blood preparation using the 1-step assay. The crude blood preparation was prepared by mixing whole blood (20 μ l) and sodium dodecyl sulfate (0.5% SDS; 20 μ l) and incubating the mixture at room temperature (3 min.). After incubation, bovine serum albumin was added (2% BSA; 20 μ l) and the resulting mixture was incubated at room temperature (1 min.). The crude blood preparation (1 μ l) was spiked with a synthetic *Ebola* virus RNA target (1000 copies). Reactions were run in triplicate at 56°C on a Roche LC480. Results are shown at Figure 12.

In an additional experiment, the 1-step assay was able to distinguish between Zaire Ebolavirus Mayinga and Sudan Ebolavirus Boniface RNA molecules. Vero E6 cells were infected with Zaire Ebolavirus Mayinga or Sudan Ebolavirus Boniface virus and viral RNAs were purified. Sets of reactions were run using purified RNA Zaire Ebolavirus Mayinga (683 copies) or Sudan Ebolavirus Boniface virus (650 copies). For each set, quadruplicate reactions (10 μ l) were run on a Roche LC480. The assay detected Zaire Ebolavirus Mayinga RNA (Figure 13; set of curves denoted A) and did not detect Sudan Ebolavirus Boniface RNA (Figure 13; set of curves denoted B). Thus, the Zaire Ebola assay was specific for the detection of Zaire Ebola Mayinga.

An instrument comparison was run using various dilutions of Zaire Ebolavirus Mayinga RNA from about 10^1 - 10^7 copies of target RNA, including a no target control (NTC) sample. Instruments tested included the Roche Lightcycler 480 II, Axxin Detector, and Douglas Scientific Amplifire amplification and detection instruments. While some instrument variability was observed, all instruments could detect copies of EBOV RNA over a wide range (Figure 14).

To determine a lower limit of detection for the 1-step EBOV assay, serially diluted samples containing 100, 50, 25, and 12 copies of Zaire Ebolavirus Mayinga RNA were tested. The 1-step reactions (10 μ l) were run on the Roche LightCycler 480 using at least 10 technical replicates for each dilution. Twenty (20) technical replicates were run for the 100 and 50 copy reactions. Forty (40) technical replicates were run for the 25 copy reactions. A 100% (20/20) detection rate was observed for the detection of 100 and 50 copies per reaction (Figures 15A and 15B). A 95% (38/40) detection rate was observed for the detection of 25 copies per reaction (Figure 15C). Thus, these results show the sensitivity and specificity of the EBOV assay, even when performed as a 1-step assay.

Example 4: Detection of human immunodeficiency virus (HIV) in a biological sample

In one working example, human immunodeficiency virus (HIV) was detected in a 1-step RNABle® assay targeting a gag protein sequence. Purified HIV RNA (subtype C) was obtained (SeraCare), and known quantities of the HIV RNA, as quantified by COBAS TaqMan HIV-1 v2.0 test, were tested in the 1-step HIV RNABle® assay. The following primers and probe sequences were used:

Hgag (HIV gag target)

Primer	Sequence	SEQ ID NO
Hgag.F2a	GAATCGATATCGAGTCTGACTAGmCGGAGGmCmT mAmGmAmAmG	SEQ ID NO: 6
Hgag.F2b	GAATCGATATCGAGTCTGACTAGmCAGAGGmCmT mAmGmAmAmG	SEQ ID NO: 7
Hgag.R1a	GAATCGATATCGAGTCTATTGACmGCTCmTmCmG mCmAmC	SEQ ID NO: 8
Hgag.R1b	GAATCGATATCGAGTCTACTGACmGCTCmTmCmG mCmAmC	SEQ ID NO: 9
Hgag.rt3.subC*	GCATCTAATTTTCGCC (external primer)	SEQ ID NO: 43
Hgag.probe.T	cgcaagGGAGAGAGATGGGTGcttgcg	SEQ ID NO: 10

Primers: **mN** indicates methoxy base

Probe sequence: lowercase = stems, uppercase = recognition

*External primer sequence is specific to HIV subtype C (for the purified RNA sample used)

5

Figure 16A is a map of the amplicon showing the locations of the sequences used. The sequence of the external primer was specific to HIV subtype C (for the purified RNA sample used). The 1-step HIV RNABl[®] assay was designed with two sets of forward and reverse primers to account for sequence variations in the population. In the sequences above,

0 GAGTC is the nicking enzyme recognition site.

The 1-step reactions contained a final concentration of 9 nM forward primer (1:1 mix of Hgag.F2a+Hgag.F2b) and a final concentration of 91 nM reverse primer (1:1 mix of Hgag.R1a+Hgag.R1b) in a primer ratio of about 1:10 forward to reverse primers. Final concentrations of 200nM probe and 100nM external primer were used. In addition, the 1 step reactions contained a final concentration of 1x Run Buffer, comprising Tris, K⁺, and Mg²⁺; Guanidinium thiocyanate (GITC); dNTPs; 0.4 U/ µl BST polymerase; and 0.3 U/ µl Nt.BSTnbi nicking enzyme. In addition to these components; the 1 step reactions contained 0.2U/ µl of AMV Reverse Transcriptase High Spec Activity XL (Life Sciences Advanced Technologies) and 0.5 U/ µl of an RNase inhibitor (Superasin; Thermo Fisher). All water used was nuclease free.

Reactions were run using real-time detection of calfluor red 610 beacon signal (Abs 590nm/ Em 610nm). 1-Step reactions were carried out at 56°C for 20 minutes using 125, 250, 500, and 1000 copies of HIV RNA. Specific detection of HIV RNA at all copy numbers was demonstrated in the 1-step HIV RNABl[®] assay (Figure 16B).

25

Example 5: Detection of Dengue Virus type 4 (DENV-4) in a biological sample

In one working example, dengue virus type 4 (DENV-4) was detected in a 1-step RNABl[®] assay targeting a 3' UTR sequence. Total RNA was isolated from cell culture, which included both viral and host cell RNA, and used in the 1-step DENV-4 RNABl[®] assay. Thus, total copy number was unknown. The following primers and probe sequences were used:

Den4 (Dengue type 4)

Primer	Sequence	SEQ ID NO
Den4.F2	GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC	SEQ ID NO: 11
Den4.R1a	GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG	SEQ ID NO: 12
Den4.R1b	GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG	SEQ ID NO: 13
Den4.extRT1	TCTGTGCCTGGATTGAT (external primer)	SEQ ID NO: 44
Den4.probe.B	cgcacTGGTCTTCCCAGCgatgcg	SEQ ID NO: 14

Primers: mN indicates methoxy base

0 Probe sequence: lowercase = stems, uppercase = recognition

Figure 17A is a map of the amplicon showing the locations of the sequences used. The 1-step DENV-4 RNABl[®] assay was designed with two sets of reverse primers to account for sequence variations in the population. In the sequences above, GAGTC is the nicking 5 enzyme recognition site.

The 1-step reactions contained a final concentration of 83 nM forward primer and a final concentration of 17 nM reverse primer (1:1 mix of Den4.R1a+Den4.R1b) in a primer ratio of about 5:1 forward to reverse primers. Final concentrations of 200nM probe and 100nM external primer were used. In addition, the 1 step reactions contained a final 20 concentration of 1x Run Buffer, comprising Tris, K⁺, and Mg²⁺; dNTPs; 0.4 U/ µl BST polymerase; and 0.3 U/ µl Nt.BSTnbi nicking enzyme. In addition to these components; the 1 step reactions contained 0.2U/ µl of AMV Reverse Transcriptase High Spec Activity XL (Life Sciences Advanced Technologies) and 0.5 U/ µl of an RNase inhibitor (Superasin; Thermo Fisher). All water used was nuclease free.

25 Reactions were run using real-time detection of calfluor red 610 beacon signal (Abs 590nm/ Em 610nm). 1-Step reactions were carried out at 56°C for 20 minutes using 20pg

total RNA. Specific detection of Dengue 4 RNA was demonstrated in the 1-step DENV-4 RNABl[®] assay (Figure 17B).

Example 6: Detection of Influenza B in a biological sample

In one working example, influenza B was detected in a 1-step RNABl[®] assay targeting an influenza Segment 7 sequence. Total RNA was isolated from cell culture, which included both viral and host cell RNA, and used in the 1-step influenza B RNABl[®] assay. Thus, total copy number was unknown. The following primers and probe sequences were used:

FluB (influenza B)

Primer	Sequence	SEQ ID NO
FluB.F2a	GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA	SEQ ID NO: 15
FluB.F2b	GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA	SEQ ID NO: 16
FluB.F2c	GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA	SEQ ID NO: 17
FluB.R3a	GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT	SEQ ID NO: 18
FluB.R3b	GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT	SEQ ID NO: 19
FluB.R3c	GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT	SEQ ID NO: 20
FluB.extRT1a	TTTTGGACGTCTTCTCC (external primer)	SEQ ID NO: 45
FluB.extRT1b	TTTTGAACGTCTTCTCC (external primer)	SEQ ID NO: 46
FluB.probe.T	gccaaGCTATGAACACAGCAAActggc	SEQ ID NO: 21

Primers: mN indicates methoxy base

Probe sequence: lowercase = stems, uppercase = recognition

Figure 18A is a map of the amplicon showing the locations of the sequences used. The 1-step Influenza B RNABl[®] assay was designed with three sets of forward and reverse primers and two external primers to account for sequence variations in the population. In the sequences above, GAGTC is the nicking enzyme recognition site.

The 1-step reactions contained a final concentration of 9 nM forward primer (1:1:1 mix of FluB.F2a+FluB.F2b+FluB.F2c) and a final concentration of 91 nM reverse primer (1:1:1 mix of FluB.R3a+FluB.R3b+FluB.R3c) in a primer ratio of about 1:10 forward to reverse primers. Final concentrations of 200nM probe and 100nM external primer were used. In addition, the 1 step reactions contained a final concentration of 1x Run Buffer, comprising Tris, K⁺, and Mg²⁺; dNTPs; 0.4 U/ µl BST polymerase; and 0.3 U/ µl Nt.BSTnbi nicking enzyme. In addition to these components; the 1 step reactions contained 0.2U/ µl of AMV

Reverse Transcriptase High Spec Activity XL (Life Sciences Advanced Technologies) and 0.5 U/ μ l of an RNase inhibitor (Superasin; Thermo Fisher). All water used was nuclease free.

Reactions were run using real-time detection of calfluor red 610 beacon signal (Abs 590nm/ Em 610nm). 1-Step reactions were carried out at 56°C for 20 minutes using total RNA from different isolates. Specific detection of influenza B in all isolates was demonstrated in the 1-step influenza B RNABle® assay (Figure 18B).

Example 7: Detection of Bovine Viral Diarrhea Virus Genotype 1 (BVDV1) in a biological sample

In one working example, Bovine Viral Diarrhea Virus Genotype 1 (BVDV1) was detected in a 1-step RNABle® assay targeting an influenza Segment 7 sequence. Total RNA was isolated from cell culture, which included both viral and host cell RNA, and used in the 1-step BVDV1 RNABle® assay. Thus, total copy number was unknown. The following 5 primers and probe sequences were used:

Bovine Viral Diarrhea Virus Type 1 (BVDV1)

Primer	Sequence	SEQ ID NO
BVDV1.F1a	GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmAmA	SEQ ID NO: 22
BVDV1.F1b	GACTCGATATCGAGTCGGCCACmTGCAGTGCTmAmCmTmAmAmAmA	SEQ ID NO: 23
BVDV1.R1	GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC	SEQ ID NO: 24
BVDV1.RT1v	TATGTTTGATAAAAGTTCATTTG (external primer)	SEQ ID NO: 47
BVDV1.ProbeT	cgctacATCTCTGCTGTACATGgtacgc	SEQ ID NO: 25

Primers: mN indicates methoxy base

Probe sequence: lowercase = stems, uppercase = recognition

Figure 19A is a map of the amplicon showing the locations of the sequences used. The 1-step BVDV1 RNABle® assay was designed with two sets of forward primers to account for sequence variations in the population. In the sequences above, GAGTC is the nicking enzyme recognition site.

The 1-step reactions contained a final concentration of 9 nM forward primer (1:1 mix of BVDV1.F1a+BVDV1.F1b) and a final concentration of 91 nM reverse primer in a primer ratio of about 1:10 forward to reverse primers. Final concentrations of 200nM probe and

100nM external primer were used. In addition, the 1 step reactions contained a final concentration of 1x Run Buffer, comprising Tris, K⁺, and Mg²⁺; dNTPs; 0.4 U/ µl BST polymerase; and 0.3 U/ µl Nt.BSTnbi nicking enzyme. In addition to these components; the 1 step reactions contained 0.2U/ µl of AMV Reverse Transcriptase High Spec Activity XL (Life Sciences Advanced Technologies) and 0.5 U/ µl of an RNase inhibitor (Superasin; Thermo Fisher). All water used was nuclease free.

Reactions were run using real-time detection of calflour red 610 beacon signal (Abs 590nm/ Em 610nm). 1-Step reactions were carried out at 56°C for 20 minutes using purified RNA (20pg/technical replicate) from BVDV1 virus culture (mixed bovine host cell RNA and virus) and cell culture crude lysate (undiluted and 1:100 dilution). Specific detection of BVDV1 virus in all samples was demonstrated in the 1-step BVDV1 RNABle® assay (Figure 19B).

Example 8: Molecular beacon recognition of Ebola Strains

Exemplary Beacon BLAST Alignment Output and strains list:

Zaire ebolavirus isolate H.sapiens-tc/COD/1976/Yambuku-Ecran, complete genome
Sequence ID: [gb|KM655246.1](#) Length: 18797 Number of Matches: 5

Range 1: 6513 to 6528		GenBank	Graphics	▼ Next Match	▲ Previous Match
Score	Expect	Identities	Gaps	Strand	
29.4 bits(14)	0.017	15/16(94%)	0/16(0%)	Plus/Plus	
Query 1	ACGACTTTYGCTGAAG	16			
Sbjct 6513	ACGACTTTCGCTGAAG	6528			

Query 1 (SEQ ID NO: 48)
Subject (SEQ ID NO: 49)

Beacon Alone Strains List:

Zaire ebolavirus isolate H.sapiens-tc/COD/1976/Yambuku-Ecran, complete genome

29.4 89.2 100% 0.017 94% KM655246.1

25 Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Gueckedou-C05, complete genome
29.4 104 100% 0.017 94% KJ660348.2

Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Gueckedou-C07, complete genome
29.4 104 100% 0.017 94% KJ660347.2

30 Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Kissidougou-C15, complete genome
29.4 104 100% 0.017 94% KJ660346.2

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.3, partial genome

29.4 104 100% 0.017 94% KM233118.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.2, partial genome

29.4 104 100% 0.017 94% KM233117.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.1, partial genome

29.4 104 100% 0.017 94% KM233116.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3857, partial genome

29.4 104 100% 0.017 94% KM233115.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3856.3, partial genome

29.4 104 100% 0.017 94% KM233114.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3856.1, partial genome

29.4 104 100% 0.017 94% KM233113.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3851, partial genome

29.4 104 100% 0.017 94% KM233112.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3850, partial genome

29.4 104 100% 0.017 94% KM233111.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3848, partial genome

29.4 104 100% 0.017 94% KM233110.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3846, partial genome

29.4 104 100% 0.017 94% KM233109.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3841, partial genome

29.4	104	100%	0.017	94%	KM233107.1	
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3840, partial genome						
5	29.4	104	100%	0.017	94%	KM233106.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3838, partial genome						
0	29.4	104	100%	0.017	94%	KM233105.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3834, partial genome						
5	29.4	104	100%	0.017	94%	KM233104.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3831, partial genome						
10	29.4	104	100%	0.017	94%	KM233103.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3829, partial genome						
15	29.4	104	100%	0.017	94%	KM233102.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3827, partial genome						
20	29.4	104	100%	0.017	94%	KM233101.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3826, partial genome						
25	29.4	104	100%	0.017	94%	KM233100.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3825.2, partial genome						
30	29.4	104	100%	0.017	94%	KM233099.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3825.1, partial genome						
35	29.4	104	100%	0.017	94%	KM233098.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3823, partial genome						
40	29.4	104	100%	0.017	94%	KM233097.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3822, partial genome
29.4 104 100% 0.017 94% KM233096.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3821, partial genome
29.4 104 100% 0.017 94% KM233095.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3819, partial genome
29.4 104 100% 0.017 94% KM233093.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3818, partial genome
29.4 104 100% 0.017 94% KM233092.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3817, partial genome
29.4 104 100% 0.017 94% KM233091.1

15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3816, partial genome
29.4 104 100% 0.017 94% KM233090.1

20 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3814, partial genome
29.4 104 100% 0.017 94% KM233089.1

25 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3810.2, partial genome
29.4 104 100% 0.017 94% KM233088.1

30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3810.1, partial genome
29.4 104 100% 0.017 94% KM233087.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3809, partial genome
29.4 104 100% 0.017 94% KM233086.1

40 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3808, partial genome
29.4 104 100% 0.017 94% KM233085.1

	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3807, partial genome	29.4	104	100%	0.017	94%	KM233084.1
5	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3805.2, partial genome	29.4	104	100%	0.017	94%	KM233083.1
0	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3805.1, partial genome	29.4	104	100%	0.017	94%	KM233082.1
5	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3800, partial genome	29.4	104	100%	0.017	94%	KM233081.1
10	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3799, partial genome	29.4	104	100%	0.017	94%	KM233080.1
15	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3798, partial genome	29.4	104	100%	0.017	94%	KM233079.1
20	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3795, partial genome	29.4	104	100%	0.017	94%	KM233077.1
25	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3789.1, partial genome	29.4	104	100%	0.017	94%	KM233076.1
30	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3788, partial genome	29.4	104	100%	0.017	94%	KM233075.1
35	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3787, partial genome	29.4	104	100%	0.017	94%	KM233074.1
40	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3786, partial genome	29.4	104	100%	0.017	94%	KM233073.1

	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3782, partial genome	29.4	104	100%	0.017	94%	KM233072.1
5	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3771, partial genome	29.4	104	100%	0.017	94%	KM233071.1
10	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3770.2, partial genome	29.4	104	100%	0.017	94%	KM233070.1
15	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3770.1, partial genome	29.4	104	100%	0.017	94%	KM233069.1
20	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.3, partial genome	29.4	104	100%	0.017	94%	KM233067.1
25	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.2, partial genome	29.4	104	100%	0.017	94%	KM233066.1
30	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.1, partial genome	29.4	104	100%	0.017	94%	KM233065.1
35	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3765.2, partial genome	29.4	104	100%	0.017	94%	KM233064.1
40	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3764, partial genome	29.4	104	100%	0.017	94%	KM233063.1
45	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3758, partial genome	29.4	104	100%	0.017	94%	KM233062.1
50	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3752, partial genome	29.4	104	100%	0.017	94%	KM233061.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.3, partial genome

29.4 104 100% 0.017 94% KM233060.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.2, partial genome

29.4 104 100% 0.017 94% KM233059.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.1, partial genome

29.4 104 100% 0.017 94% KM233058.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3735.2, partial genome

29.4 104 100% 0.017 94% KM233057.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3735.1, partial genome

29.4 104 100% 0.017 94% KM233056.1

15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3734.1, partial genome

29.4 104 100% 0.017 94% KM233055.1

20 5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3729, partial genome

29.4 104 100% 0.017 94% KM233054.1

25 30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3724, partial genome

29.4 104 100% 0.017 94% KM233053.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.4, partial genome

29.4 104 100% 0.017 94% KM233052.1

40 40 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.3, partial genome

29.4 104 100% 0.017 94% KM233051.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.2, partial genome

29.4 104 100% 0.017 94% KM233050.1

5	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3707, partial genome	29.4	104	100%	0.017	94%	KM233049.1
10	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.4, partial genome	29.4	104	100%	0.017	94%	KM233048.1
15	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.3, partial genome	29.4	104	100%	0.017	94%	KM233047.1
20	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.2, partial genome	29.4	104	100%	0.017	94%	KM233046.1
25	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.1, partial genome	29.4	104	100%	0.017	94%	KM233045.1
30	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM121, partial genome	29.4	104	100%	0.017	94%	KM233044.1
35	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM120, partial genome	29.4	104	100%	0.017	94%	KM233043.1
40	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM119, partial genome	29.4	104	100%	0.017	94%	KM233042.1
45	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM115, partial genome	29.4	104	100%	0.017	94%	KM233041.1
50	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM113, partial genome	29.4	104	100%	0.017	94%	KM233040.1
55	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM112, partial genome	29.4	104	100%	0.017	94%	KM233039.1

29.4	104	100%	0.017	94%	KM233039.1	
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM111, partial genome						
5	29.4	104	100%	0.017	94%	KM233038.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM110, partial genome						
0	29.4	104	100%	0.017	94%	KM233037.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM106, partial genome						
5	29.4	104	100%	0.017	94%	KM233036.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM104, partial genome						
10	29.4	104	100%	0.017	94%	KM233035.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3687.1, partial genome						
15	29.4	104	100%	0.017	94%	KM034563.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3686.1, partial genome						
20	29.4	104	100%	0.017	94%	KM034562.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3683.1, partial genome						
25	29.4	104	100%	0.017	94%	KM034561.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3682.1, partial genome						
30	29.4	104	100%	0.017	94%	KM034560.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3680.1, partial genome						
35	29.4	104	100%	0.017	94%	KM034559.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3679.1, partial genome						
40	29.4	104	100%	0.017	94%	KM034558.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3677.2, partial genome

29.4 104 100% 0.017 94% KM034557.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3677.1, partial genome

29.4 104 100% 0.017 94% KM034556.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3676.2, partial genome

29.4 104 100% 0.017 94% KM034555.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3676.1, partial genome

29.4 104 100% 0.017 94% KM034554.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3670.1, partial genome

29.4 104 100% 0.017 94% KM034553.1

20 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM098, partial genome

29.4 104 100% 0.017 94% KM034552.1

25 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM096, partial genome

29.4 104 100% 0.017 94% KM034551.1

30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM095, partial genome

29.4 104 100% 0.017 94% KM034550.1

35 Zaire ebolavirus isolate H.sapiens-wt/SLE/2014/ManoRiver-EM095B, partial genome

29.4 104 100% 0.017 94% KM034549.1

40 Mutant Zaire ebolavirus, complete sequence

29.4 89.2 100% 0.017 94% KF827427.1

Amplicon Similarity Analysis Across Ebola Strains

45 Exemplary BLAST Alignment Output and strains list:

Zaire ebolavirus isolate H.sapiens-tc/COD/1976/Yambuku-Ecran, complete genome

Sequence ID: [gb|KM655246.1|](#) Length: 18797 Number of Matches: 1Range 1: 6492 to 6547 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score	Expect	Identities	Gaps	Strand
102 bits(112)	1e-23	56/56(100%)	0/56(0%)	Plus/Plus

Query 1 TCCACAGTTATCTACCGAGGAACGACTTCGCTGAAGGTGTCGTTGCATTCTGAT 56
 Sbjct 6492 TCCACAGTTATCTACCGAGGAACGACTTCGCTGAAGGTGTCGTTGCATTCTGAT 6547

(SEQ ID NO: 50)

Strains List:

5 Zaire ebolavirus isolate H.sapiens-tc/COD/1976/Yambuku-Ecran, complete genome
 102 102 100% 1e-23 100% KM655246.1

0 Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Gueckedou-C05, complete genome
 102 102 100% 1e-23 100% KJ660348.2

5 Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Gueckedou-C07, complete genome
 102 102 100% 1e-23 100% KJ660347.2

5 Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Kissidougou-C15, complete genome
 102 102 100% 1e-23 100% KJ660346.2

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.3, partial genome
 102 102 100% 1e-23 100% KM233118.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.2, partial genome
 102 102 100% 1e-23 100% KM233117.1

25 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-NM042.1, partial genome
 102 102 100% 1e-23 100% KM233116.1

30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3857, partial genome
 102 102 100% 1e-23 100% KM233115.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3856.3, partial genome
 102 102 100% 1e-23 100% KM233114.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3856.1, partial genome
 102 102 100% 1e-23 100% KM233113.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3851, partial genome
 102 102 100% 1e-23 100% KM233112.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3850, partial genome
 102 102 100% 1e-23 100% KM233111.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3848, partial genome
 102 102 100% 1e-23 100% KM233110.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3846, partial genome
 102 102 100% 1e-23 100% KM233109.1

15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3841, partial genome
 102 102 100% 1e-23 100% KM233107.1

20 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3840, partial genome
 102 102 100% 1e-23 100% KM233106.1

25 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3838, partial genome
 102 102 100% 1e-23 100% KM233105.1

30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3834, partial genome
 102 102 100% 1e-23 100% KM233104.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3831, partial genome
 102 102 100% 1e-23 100% KM233103.1

40 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3829, partial genome
 102 102 100% 1e-23 100% KM233102.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3827, partial genome

102 102 100% 1e-23 100% KM233101.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3826, partial genome

102 102 100% 1e-23 100% KM233100.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3825.2, partial genome

102 102 100% 1e-23 100% KM233099.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3825.1, partial genome

102 102 100% 1e-23 100% KM233098.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3823, partial genome

102 102 100% 1e-23 100% KM233097.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3822, partial genome

102 102 100% 1e-23 100% KM233096.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3821, partial genome

102 102 100% 1e-23 100% KM233095.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3819, partial genome

102 102 100% 1e-23 100% KM233093.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3818, partial genome

102 102 100% 1e-23 100% KM233092.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3817, partial genome

102 102 100% 1e-23 100% KM233091.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3816, partial genome

102 102 100% 1e-23 100% KM233090.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3814, partial genome

5 102 102 100% 1e-23 100% KM233089.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3810.2, partial genome

102 102 100% 1e-23 100% KM233088.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3810.1, partial genome

102 102 100% 1e-23 100% KM233087.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3809, partial genome

102 102 100% 1e-23 100% KM233086.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3808, partial genome

102 102 100% 1e-23 100% KM233085.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3807, partial genome

102 102 100% 1e-23 100% KM233084.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3805.2, partial genome

102 102 100% 1e-23 100% KM233083.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3805.1, partial genome

102 102 100% 1e-23 100% KM233082.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3800, partial genome

102 102 100% 1e-23 100% KM233081.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3799, partial genome

102 102 100% 1e-23 100% KM233080.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3798, partial genome
102 102 100% 1e-23 100% KM233079.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3795, partial genome
102 102 100% 1e-23 100% KM233077.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3789.1, partial genome
102 102 100% 1e-23 100% KM233076.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3788, partial genome
102 102 100% 1e-23 100% KM233075.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3787, partial genome
102 102 100% 1e-23 100% KM233074.1

15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3786, partial genome
102 102 100% 1e-23 100% KM233073.1

20 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3782, partial genome
102 102 100% 1e-23 100% KM233072.1

25 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3771, partial genome
102 102 100% 1e-23 100% KM233071.1

30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3770.2, partial genome
102 102 100% 1e-23 100% KM233070.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3770.1, partial genome
102 102 100% 1e-23 100% KM233069.1

40 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.3, partial genome
102 102 100% 1e-23 100% KM233067.1

5	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.2, partial genome	102	102	100%	1e-23	100%	KM233066.1
10	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3769.1, partial genome	102	102	100%	1e-23	100%	KM233065.1
15	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3765.2, partial genome	102	102	100%	1e-23	100%	KM233064.1
20	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3764, partial genome	102	102	100%	1e-23	100%	KM233063.1
25	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3758, partial genome	102	102	100%	1e-23	100%	KM233062.1
30	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3752, partial genome	102	102	100%	1e-23	100%	KM233061.1
35	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.3, partial genome	102	102	100%	1e-23	100%	KM233060.1
40	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.2, partial genome	102	102	100%	1e-23	100%	KM233059.1
45	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3750.1, partial genome	102	102	100%	1e-23	100%	KM233058.1
50	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3735.2, partial genome	102	102	100%	1e-23	100%	KM233057.1
55	Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3735.1, partial genome	102	102	100%	1e-23	100%	KM233056.1

102 102 100% 1e-23 100% KM233056.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3734.1, partial genome

5 102 102 100% 1e-23 100% KM233055.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3729, partial genome

102 102 100% 1e-23 100% KM233054.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3724, partial genome

102 102 100% 1e-23 100% KM233053.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.4, partial genome

102 102 100% 1e-23 100% KM233052.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.3, partial genome

102 102 100% 1e-23 100% KM233051.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3713.2, partial genome

102 102 100% 1e-23 100% KM233050.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3707, partial genome

102 102 100% 1e-23 100% KM233049.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.4, partial genome

102 102 100% 1e-23 100% KM233048.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.3, partial genome

102 102 100% 1e-23 100% KM233047.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.2, partial genome

102 102 100% 1e-23 100% KM233046.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM124.1, partial genome

102 102 100% 1e-23 100% KM233045.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM121, partial genome

102 102 100% 1e-23 100% KM233044.1

0 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM120, partial genome

102 102 100% 1e-23 100% KM233043.1

5 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM119, partial genome

102 102 100% 1e-23 100% KM233042.1

10 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM115, partial genome

102 102 100% 1e-23 100% KM233041.1

15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM113, partial genome

102 102 100% 1e-23 100% KM233040.1

20 15 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM112, partial genome

102 102 100% 1e-23 100% KM233039.1

25 30 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM111, partial genome

102 102 100% 1e-23 100% KM233038.1

35 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM110, partial genome

102 102 100% 1e-23 100% KM233037.1

40 40 Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM106, partial genome

102 102 100% 1e-23 100% KM233036.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM104, partial genome

102 102 100% 1e-23 100% KM233035.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3687.1, partial genome

102 102 100% 1e-23 100% KM034563.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3686.1, partial genome

102 102 100% 1e-23 100% KM034562.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3683.1, partial genome

102 102 100% 1e-23 100% KM034561.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3682.1, partial genome

102 102 100% 1e-23 100% KM034560.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3680.1, partial genome

102 102 100% 1e-23 100% KM034559.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3679.1, partial genome

102 102 100% 1e-23 100% KM034558.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3677.2, partial genome

102 102 100% 1e-23 100% KM034557.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3677.1, partial genome

102 102 100% 1e-23 100% KM034556.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3676.2, partial genome

102 102 100% 1e-23 100% KM034555.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3676.1, partial genome

102 102 100% 1e-23 100% KM034554.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-G3670.1, partial genome

102 102 100% 1e-23 100% KM034553.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM098, partial genome

5 102 102 100% 1e-23 100% KM034552.1

Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM096, partial genome

102 102 100% 1e-23 100% KM034551.1

0 102 102 100% 1e-23 100% KM034550.1
Zaire ebolavirus isolate Ebola virus H.sapiens-wt/SLE/2014/ManoRiver-EM095, partial genome

5 102 102 100% 1e-23 100% KM034549.1
Zaire ebolavirus isolate H.sapiens-wt/SLE/2014/ManoRiver-EM095B, partial genome

Mutant Zaire ebolavirus, complete sequence

102 102 100% 1e-23 100%

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

102 102 100% 1e-23 100%
The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

This application may be related to International Patent Application No.

30 PCT/US2013/035750, filed April 9, 2013, which claims the benefit of U.S. Provisional Application No.: 61/621,975, filed April 9, 2012, the entire contents of which are incorporated herein by reference.

This application may be related to International Patent Application No.

PCT/US2011/047049, filed August 9, 2011, which claims the benefit of U.S. Provisional Application No.: 61/373,695, filed August 13, 2010, the entire contents of which are incorporated herein by reference.

All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

Claims:

1. A method of detecting a specific target polynucleotide in an isothermal amplification reaction coupled with reverse transcription, the method comprising:

5 (a) contacting a target polynucleotide molecule in a sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;

(b) contacting the cDNA with

(i) forward and reverse primers each comprising a modified nucleotide (m);

0 wherein the polynucleotide molecule is Ebola virus (EBOV) and the forward and reverse primers for the detection of EBOV are selected from the group consisting of:

5 Forward primer:

6 GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ

10 ID NO: 1), and

15 Reverse Primer:

20 GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID

25 NO: 2); or

29 wherein the polynucleotide molecule is human immunodeficiency virus (HIV) and the forward and reverse primers for the detection of HIV are selected from the group consisting of:

30 Forward primers:

34 GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG

(SEQ ID NO: 6), and

38 GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ
42 ID NO: 7), and

47 Reverse Primers:

51 GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID

55 NO: 8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC
59 (SEQ ID NO: 9); or

63 wherein the polynucleotide molecule is dengue virus and the forward and reverse primers for the detection of dengue virus are selected from the group consisting of:

Forward primer:

5 GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

Reverse Primer:

10 GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

15 GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

20 wherein the polynucleotide molecule is influenza B virus and the forward and reverse primers for the detection of influenza B virus are selected from the group consisting of:

Forward primers:

25 GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

30 GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and

35 GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

40 GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18),

45 GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and

50 GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

55 wherein the polynucleotide molecule is bovine diarrhea virus and the forward and reverse primers for the detection of bovine diarrhea virus are selected from the group consisting of:

Forward primers:

60 GACTCGATATCGAGTCGGCCCACmTGTATTGCTmAmCmTmGmAmA mA (SEQ ID NO: 22), and

65 GACTCGATATCGAGTCGGCCCACmTGCAC TGCTmAmCmTmAmAmAmA (SEQ ID NO: 23), and

Reverse Primer:

5 GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC
(SEQ ID NO: 24) ,
(ii) dNTPs,
(iii) a detectable oligonucleotide probe, and
(iv) a strand-displacement polymerase
under conditions permissive for the isothermal amplification of the cDNA; and
0 (c) detecting a signal specific for detectable oligonucleotide probe hybridization to the amplicon, wherein detection of the signal indicates the presence or quantity of the target polynucleotide present in the sample and failure to detect the signal indicates the absence of target polynucleotide in the sample.

2. A method of detecting an RNA virus in a sample, the method comprising
5 (a) contacting an RNA virus polynucleotide molecule in a sample with a primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA;
0 (b) contacting the cDNA with
(i) forward and reverse primers each comprising a modified nucleotide (m);
wherein the RNA virus polynucleotide is Ebola virus (EBOV) and the forward and reverse primers for the detection of EBOV are selected from the group consisting of:
:0 Forward primer:
GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ
ID NO: 1), and
Reverse Primer:
25 GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID
NO: 2); or
wherein the RNA virus polynucleotide is human immunodeficiency virus (HIV) and the forward and reverse primers for the detection of HIV are selected from the group consisting of:

30 Forward primers:
GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG
(SEQ ID NO: 6), and
GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ
ID NO: 7), and

Reverse Primers:

5 GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or

10 wherein the RNA virus polynucleotide is dengue virus and the forward and reverse primers for the detection of dengue virus are selected from the group consisting of:

15 Forward primer:

20 GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

25 Reverse Primer:

30 GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

35 GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

40 wherein the RNA virus polynucleotide is influenza B virus and the forward and reverse primers for the detection of influenza B virus are selected from the group consisting of:

45 Forward primers:

50 GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

55 GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and

60 GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

65 Reverse Primers:

70 GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18),

75 GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and

80 GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

wherein the RNA virus polynucleotide is bovine diarrhea virus and the forward and reverse primers for the detection of bovine diarrhea virus are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmA
mA (SEQ ID NO: 22), and
GACTCGATATCGAGTCGGCCACmTGCACTGCTmAmCmTmAmAmAmA
(SEQ ID NO: 23), and

Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC
(SEQ ID NO: 24),
(ii) dNTPs,
(iii) a detectable oligonucleotide probe, and
(iv) a strand-displacement polymerase

under conditions permissive for the isothermal amplification of the cDNA; and

(c) detecting a signal specific for detectable oligonucleotide probe hybridization to the amplicon, wherein detection of the signal indicates the presence or quantity of the RNA virus polynucleotide molecule present in the sample and failure to detect the amplicon indicates the absence of an RNA virus.

3. A method of diagnosing a human or animal subject with an RNA virus, the method comprising

(a) contacting a sample of the subject with an agent capable of extracting an RNA virus present in the sample and an agent capable of stabilizing the extracted polynucleotide molecule against degradation;

(b) contacting the polynucleotide molecule with a reverse transcriptase primer in the presence of a reverse transcriptase and dNTPs under conditions permissive for cDNA synthesis, thereby generating a cDNA copy of the polynucleotide molecule;

(c) contacting the cDNA with

(i) forward and reverse primers each comprising a modified nucleotide (m);
wherein the polynucleotide molecule is Ebola virus (EBOV) and the forward and reverse primers are selected from the group consisting of:

Forward primer:

GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ ID NO: 1),

and

Reverse Primer:

GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID NO: 2); or

5 wherein the polynucleotide molecule is human immunodeficiency virus (HIV) and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO:

6), and GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ

0 ID NO: 7), and

Reverse Primers:

GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and

GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or

wherein the polynucleotide molecule is dengue virus and the forward and reverse primers are

5 selected from the group consisting of:

Forward primer: GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

Reverse Primer:

GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and

10 GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or

wherein the polynucleotide molecule is influenza B virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15),

25 GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16),

and GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO:

17), and

Reverse Primers:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO:

30 18), GACTCGATATCGAGTCCTCCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID

NO: 19), and GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT

(SEQ ID NO: 20); or

wherein the polynucleotide molecule is bovine diarrhea virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmAmA (SEQ ID NO: 22), and

GACTCGATATCGAGTCGGCCACmTGCAGTGCTmAmCmTmAmAmAmA (SEQ ID NO: 23), and

Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC (SEQ ID NO: 24),

ii) dNTPs,

iii) a detectable oligonucleotide probe, and

iv) a strand-displacement polymerase

under conditions permissive for the isothermal amplification of the cDNA, thereby generating amplicons; and

(d) detecting the amplicons, wherein the presence of an RNA viral amplicon diagnoses an

RNA viral infection in the subject and failure to detect the amplicon diagnoses the absence of an RNA viral infection in the subject.

4. The method of any one of claims 1-3, wherein the polynucleotide molecule is

0 obtained by contacting the sample with one or more of an agent capable of extracting an RNA molecule present in the sample and an agent capable of stabilizing an RNA molecule against degradation, optionally wherein the agent capable of extraction is one or a combination of sodium dodecyl sulfate, sodium lauryl sulfate, Guanidinium thiocyanate, and/or guanidine hydrochloride; and/or

25 wherein no detectable signal is present in a control assay lacking a target

polynucleotide at seven minutes, ten minutes, and/or fifteen minutes following initiation of the assay; and/or

wherein the primer used in step (a) has the same sequence or a different sequence than the forward or reverse primer used in step (b); and/or

30 wherein steps (a)-(c) are carried out in a single reaction; and/or

wherein the cDNA of step (a) is generated in a first reaction vessel, then transferred to a second reaction vessel where step (b) is carried out; and/or

wherein the reverse transcriptase enzyme used in step (a) and the strand-displacement DNA polymerase used in step (b) are the same or different enzyme; and/or

wherein the sample is a bodily fluid, optionally selected from the group consisting of saliva, sweat, tears, fluids accumulating in a bodily cavity, urine, ejaculate, vaginal secretion, cerebrospinal fluid, lymph, feces, sputum, decomposition fluid, vomit, sweat, breast milk, blood, serum, and plasma, optionally wherein the bodily cavity is peritoneal cavity or

5 pericardial cavity; and/or

wherein the limit of detection is 10 or 20 copies per reaction; and/or

wherein the method is carried out in about 5, 7, 10, 15, 20, 25 or thirty minutes; and/or

wherein steps (a)-(d) are carried out in the context of the biological sample; and/or wherein the polynucleotide molecule is not purified or isolated away from the biological sample.

5. The method of any one of claims 1-4, wherein the method is carried out at a point of care or diagnosis in a portable battery powered device; and/or

5 wherein no separate reverse transcriptase primer is required, but the forward and/or reverse primers are used; and/or

wherein the sample is a biological sample or an environmental sample, optionally wherein the biological sample is obtained from a subject, bat, bush meat, or a domestic animal; or wherein the biological sample is a swab of a mucosal membrane selected from the

10 group consisting of buccal, nasal, eye, rectal, and vaginal or skin; or wherein the biological sample is a tissue sample obtained from a subject, necropsy, or culture media, optionally wherein the necropsy is of a human, primate, bat, or other mammal; or wherein the environmental sample is a material that may be contaminated with a biological fluid of a subject having or having a propensity to develop an Ebola viral infection; or wherein the 25 environmental sample is bedding, a seat cushion, a rug, an air condition filter or other material; and/or

wherein the polymerase are 5'-exo⁻ derivatives of Bst DNA polymerase I, Gst DNA polymerase I, Gka DNA polymerase I, Gca DNA polymerase I, Gan DNA polymerase I, Gbo DNA polymerase I, Gsp70 DNA polymerase I, GspT3 DNA polymerase I, Gsp52 DNA 30 polymerase I and/or fragments thereof; and/or

wherein the nicking enzyme is one or more of Nt.BstNBI, Nt.BspD6I, Nt.BspQI, Nt.BsmAI, Nt.AlwI, N.Bst9I, or N.BstSEI; and/or

wherein the reverse transcriptase is M-MLV RT, AMV RT, RSV RT, and/or mutants/derivatives thereof.

6. The method of any one of claims 1-5, wherein the polynucleotide molecule is EBOV and the probe having the following sequence: gctacACGACTTYGCTGAAGgtgc; optionally

5 wherein the probe is
5'-CALRed610nm- gctacACGACTTYGCTGAAGgtgc BHQ2- 3' or
5'-FAM or FITC - gctacACGACTTYGCTGAAGgtgc-BHQ1-3'; or
wherein the polynucleotide molecule is HIV and the probe comprises the following sequence: cgcaagGGAGAGAGATGGGTGcttgcg; or

0 wherein the polynucleotide molecule is Dengue virus and the probe comprises the following sequence: cgcatcTGGTCTTCCCAGCgatgc; or
wherein the polynucleotide molecule is influenza B and the probe comprises the following sequence: gccaaGCTATGAACACAGCAAActggc; or
wherein the polynucleotide molecule is bovine diarrhea virus and the probe comprises the
5 following sequence: cgctacATCTCTGCTGTACATGgtagcg.

7. The method of any one of claims 1-6, wherein the detectable probe comprises a molecular beacon; or
wherein the detectable probe has a fluorescent dye at the 5' end, and a quencher at the
0 3' end or a fluorescent dye at the 3' end, and a quencher at 5' end; optionally,
wherein the quencher is BHQ1, BHQ2 or DABsyl; and/or
wherein the fluorescent dye is CALRed610nm, FAM or FITC.

8. The method of any one of claims 1-7, wherein the one or more 2' modified nucleotide
25 is one or more of 2'-O-methyl, 2'-methoxyethoxy, 2'-fluoro, 2'-hydroxyl, 2'-alkyl, 2'-allyl, 2'-
O-[2-(methylamino)-2-oxoethyl], 4'-CH₂-O-2'-bridge, 4'-(CH₂)₂-O-2'-bridge, 2'-LNA, and 2'-
O-(N-methylcarbamate).

9. A kit for detecting an RNA virus polynucleotide molecule comprising:
30 (i) forward and reverse primers each comprising a modified nucleotide (m), wherein
the RNA virus polynucleotide is Ebola virus (EBOV) and the forward and reverse primers are
selected from the group consisting of:

Forward primer:
GACTCGATATCGAGTCGCTTCCAmCAGTTATCmUmAmCmCmG (SEQ ID NO: 1), and

Reverse Primer:
GACTCGATATCGAGTCGAAATGCmAACGAmCmAmCmCmU (SEQ ID NO: 2); or
wherein the RNA virus polynucleotide is human immunodeficiency virus (HIV) and the forward and reverse primers are selected from the group consisting of:

Forward primers:
GACTCGATATCGAGTCTGACTAGmCGGAGGmCmTmAmGmAmAmG (SEQ ID NO: 6), and GACTCGATATCGAGTCTGACTAGmCAGAGGmCmTmAmGmAmAmG (SEQ ID NO: 7), and

Reverse Primers:
GACTCGATATCGAGTCTATTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 8), and GACTCGATATCGAGTCTACTGACmGCTCmTmCmGmCmAmC (SEQ ID NO: 9); or
wherein the RNA virus polynucleotide is dengue virus and the forward and reverse primers are selected from the group consisting of:

Forward primer:
GACTCGATATCGAGTCCAAAAACmAGCATATTmGmAmCmGmC (SEQ ID NO: 11), and

Reverse Primer:
GACTCGATATCGAGTCAGACAGCmAGGATCmTmCmTmGmG (SEQ ID NO: 12), and GACTCGATATCGAGTCAGACAGCmAGGATCmTmGmTmGmG (SEQ ID NO: 13); or
wherein the RNA virus polynucleotide is influenza B virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:
GACTCGATATCGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA (SEQ ID NO: 15), GACTCGATATCGAGTCAAATGCAmAATGGTCTCmAmGmCmTmA (SEQ ID NO: 16), and GACTCGATATCGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA (SEQ ID NO: 17), and

Reverse Primers:

GACTCGATATCGAGTCCTCCTTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 18), GACTCGATATCGAGTCCTCCCTmTCCCATTCCATmTmCmAmTmT (SEQ ID NO: 19), and GACTCGATATCGAGTCCTCCTTmCCCCATTCCATmTmCmAmTmT (SEQ ID NO: 20); or

5 wherein the RNA virus polynucleotide is bovine diarrhea virus and the forward and reverse primers are selected from the group consisting of:

Forward primers:

GACTCGATATCGAGTCGGCCACmTGTATTGCTmAmCmTmGmAmAmA (SEQ ID NO: 22), and

0 GACTCGATATCGAGTCGGCCACmTGCACTGCTmAmCmTmAmAmAmA (SEQ ID NO: 23), and

Reverse Primer:

GACTCGATATCGAGTCTGTGATCmAACTCCmAmTmGmTmGmCmC (SEQ ID NO: 24),

5 (ii) a detectable probe that specifically binds an RNA virus amplicon,

(iii) a reverse transcriptase enzyme,

(iv) a nicking enzyme, and

(v) a strand-displacement polymerase.

:0 10. The kit of claim 9,

wherein the RNA virus polynucleotide is EBOV and the probe comprises the following sequence: gctacACGACTTYGCTGAAGgtagc; optionally wherein the probe is

5'-CALRed_{610nm}- gctacACGACTTYGCTGAAGgtagc BHQ2- 3' or

5'-FAM or FITC - gctacACGACTTYGCTGAAGgtagc-BHQ1-3', optionally wherein the

25 3' quencher is replaced by DABsyl; or

wherein the RNA virus polynucleotide is HIV and the probe comprises the following sequence: cgcaagGGAGAGAGATGGGTGcttgcg; or

wherein the RNA virus polynucleotide is Dengue virus and the probe comprises the

30 following sequence: cgccatcTGGTCTTCCCAGCgatgcg; or

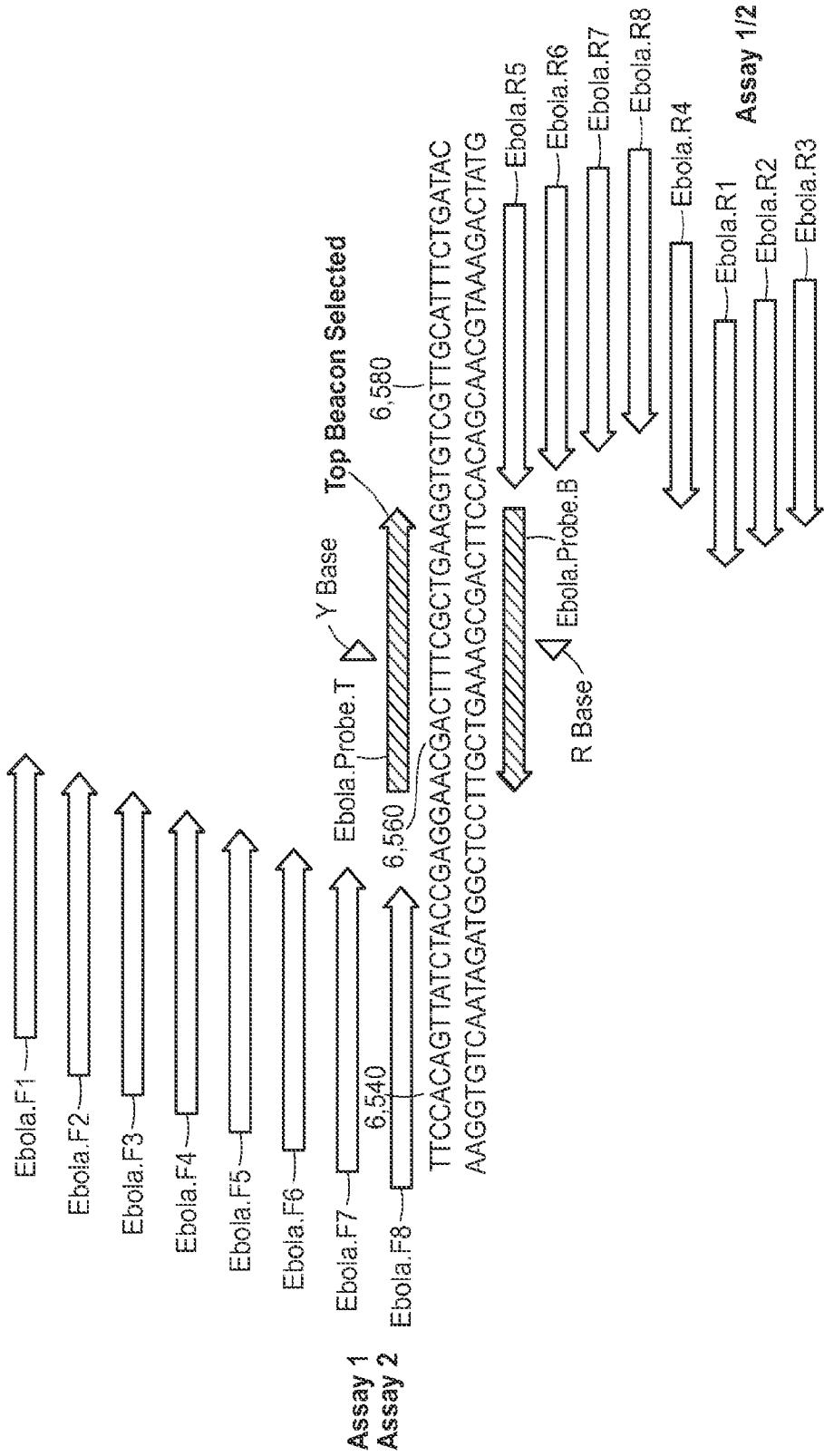
wherein the RNA virus polynucleotide is influenza B virus and the probe comprises the following sequence: gccaaGCTATGAACACAGCAAActggc; or

wherein the RNA virus polynucleotide is bovine diarrhea virus and the probe comprises the following sequence: cgctacATCTCTGCTGTACATGgtagcg.

11. The kit of claim 9 or claim 10, wherein the probe has a fluorescent dye at the 5' end and a quencher at the 3' end or fluorescent dye at the 3' end and a quencher at the 5' end; optionally,

wherein the quencher is BHQ1, BHQ2 or DABsyl; and/or

wherein the fluorescent dye is CALRed_{610nm}, FAM or FITC.

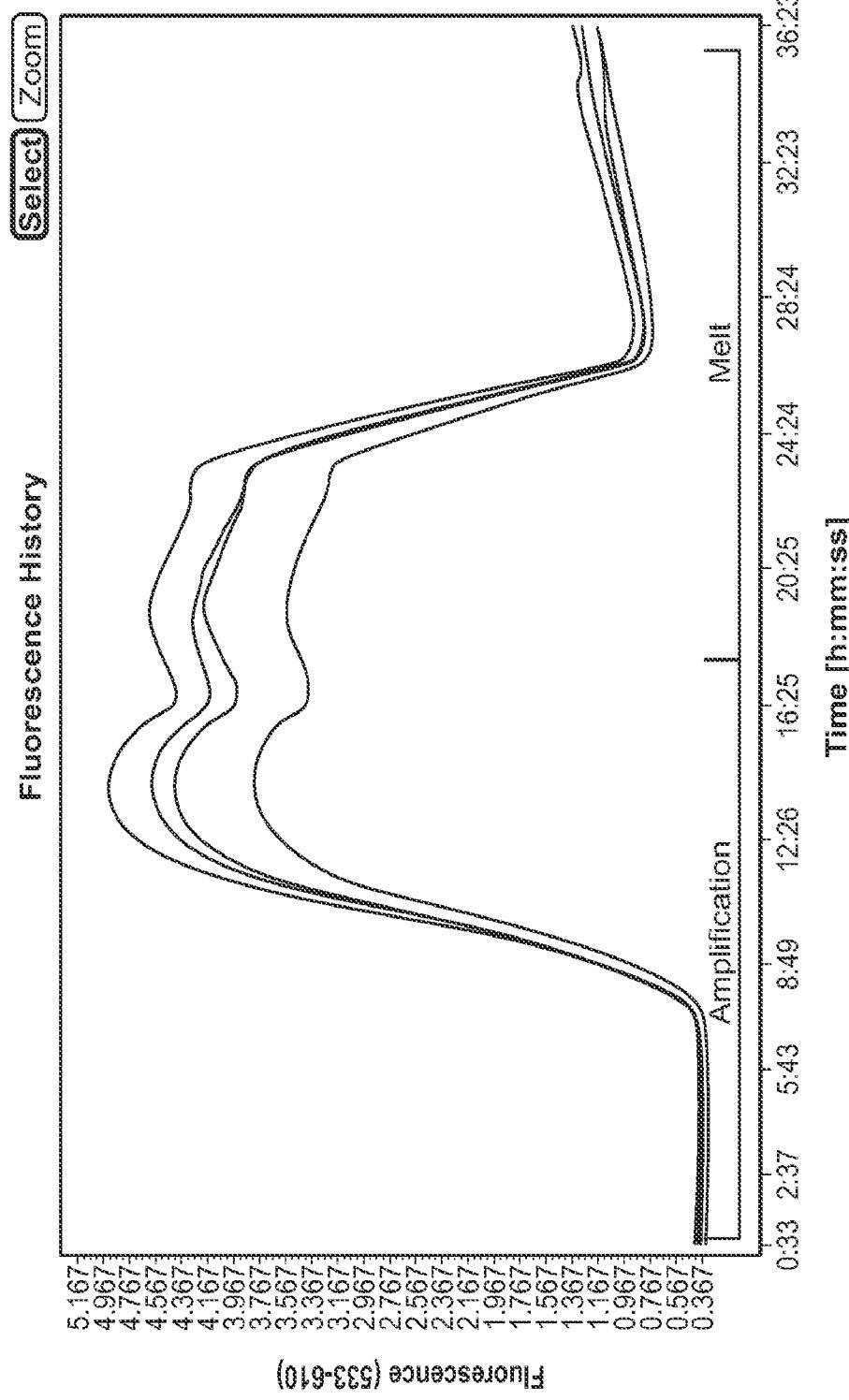

12. The kit of any one of claims 9-11, wherein the kit further comprises a capillary tube that may or may not comprise lyophilized lysis or RNA stabilization reagents for viral polynucleotide extraction; and/or

wherein the kit further comprises one or more vessels comprising a buffer suitable for carrying out a reverse transcriptase and/or amplification reaction; and/or

wherein the kit further comprises vessels comprising the reverse transcriptase enzyme, nicking enzyme, and strand-displacement polymerase in lyophilized form.

1/50

FIG. 1 Candidate Assays



2
119
上

Screened Assays

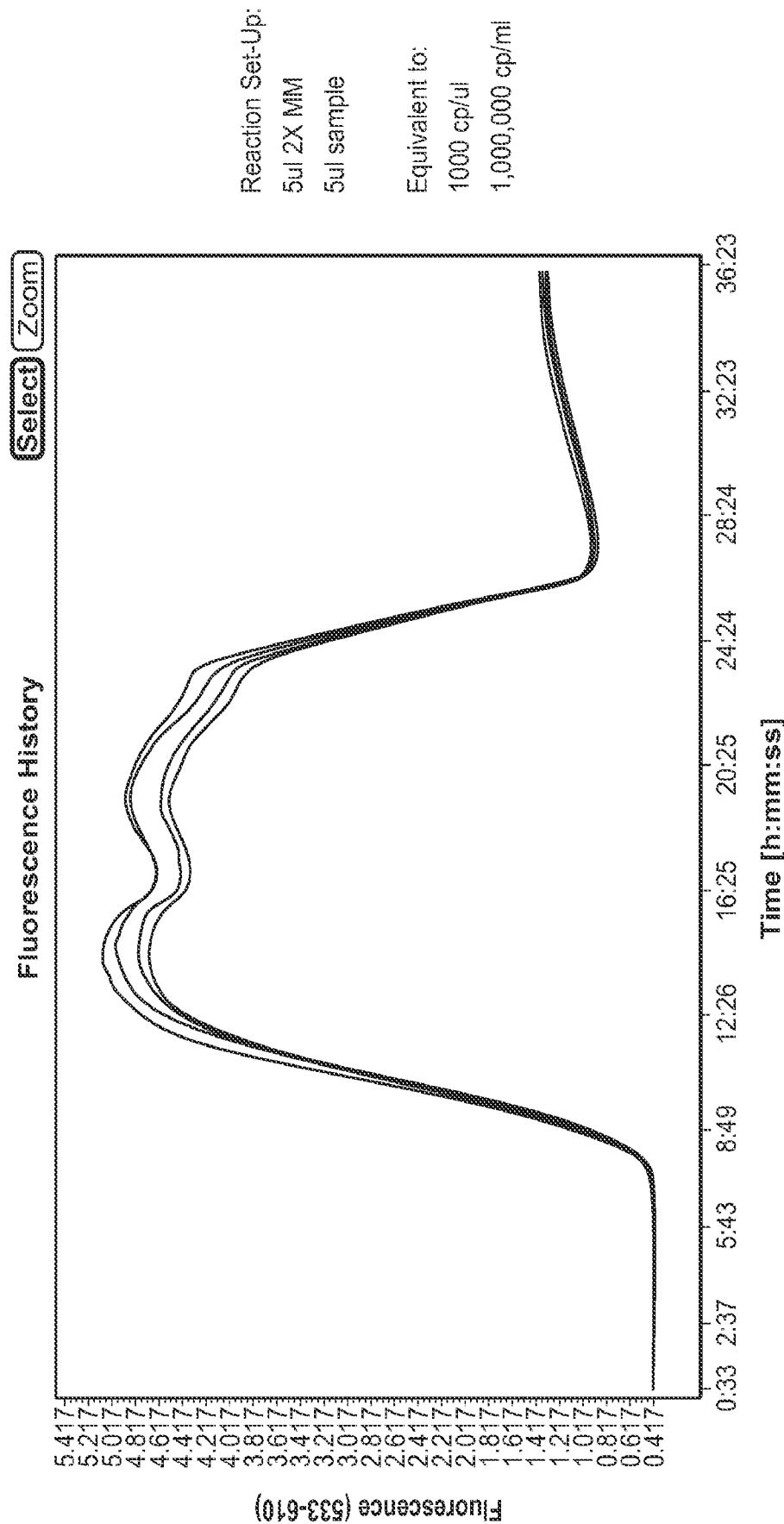

3/50

FIG. 3A
10k Copies gBlock in 18 ng Human cDNA
Assay 1

4/50

FIG. 3B
5k Copies gBlock in 18 ng Human cDNA
Assay 1

5/50

FIG. 3C
2.5K Copies gBlock in 18 ng Human cDNA
Assay 1

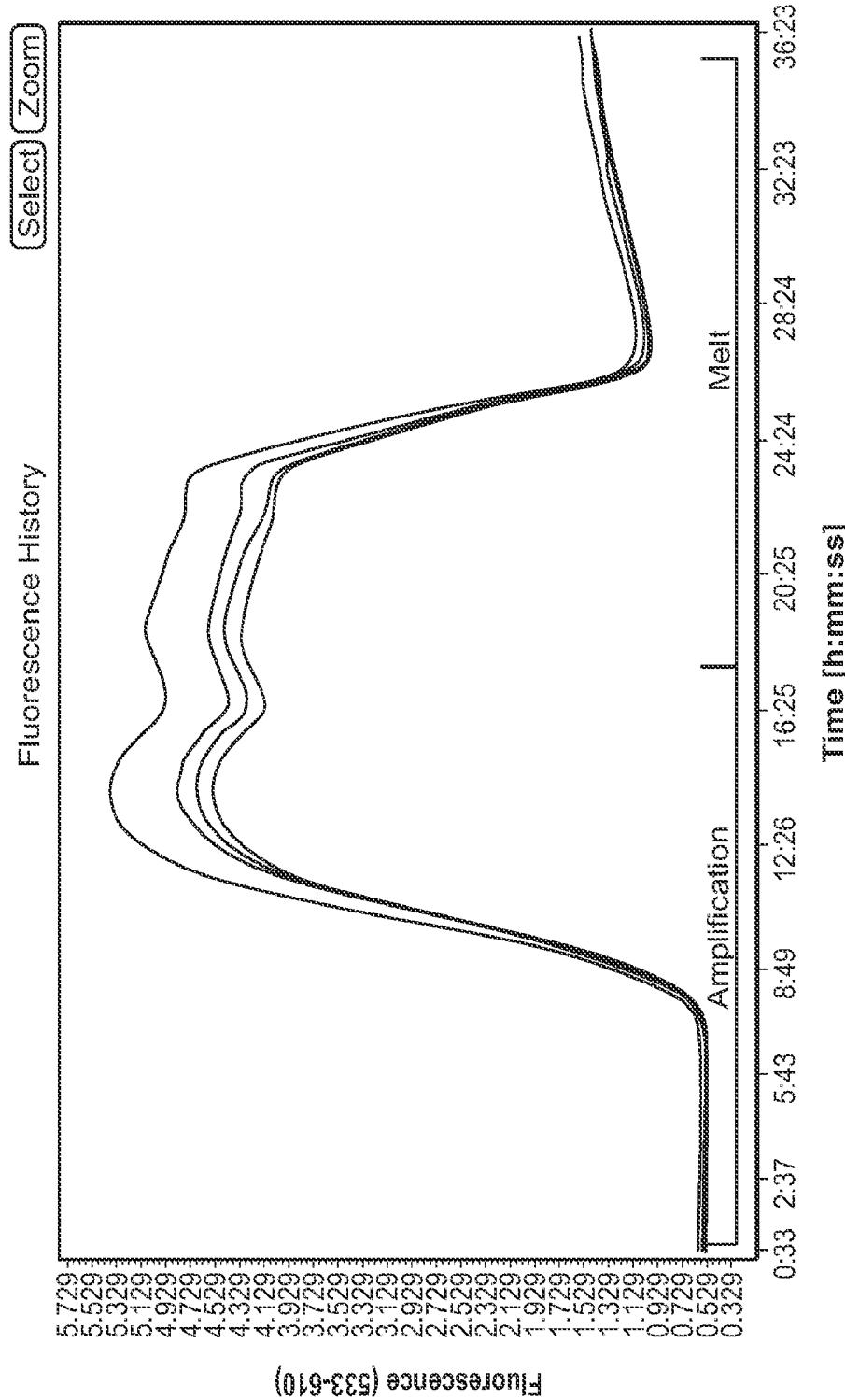
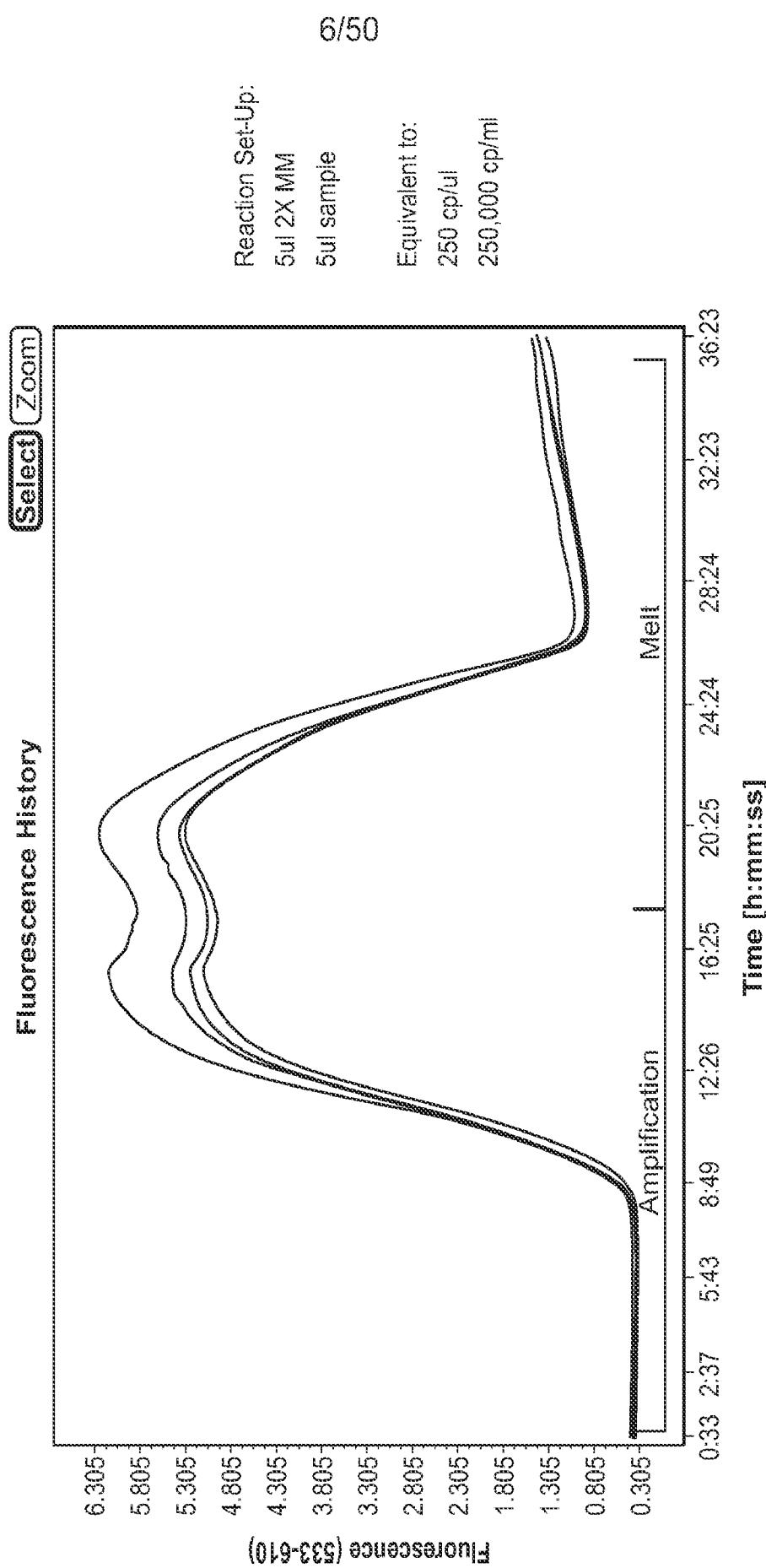



FIG. 3D

1.25k Copies gBlock in 18 ng Human cDNA
Assay 1

7/50

FIG. 3E
625 Copies gBlock in 18 ng Human cDNA
Assay 1

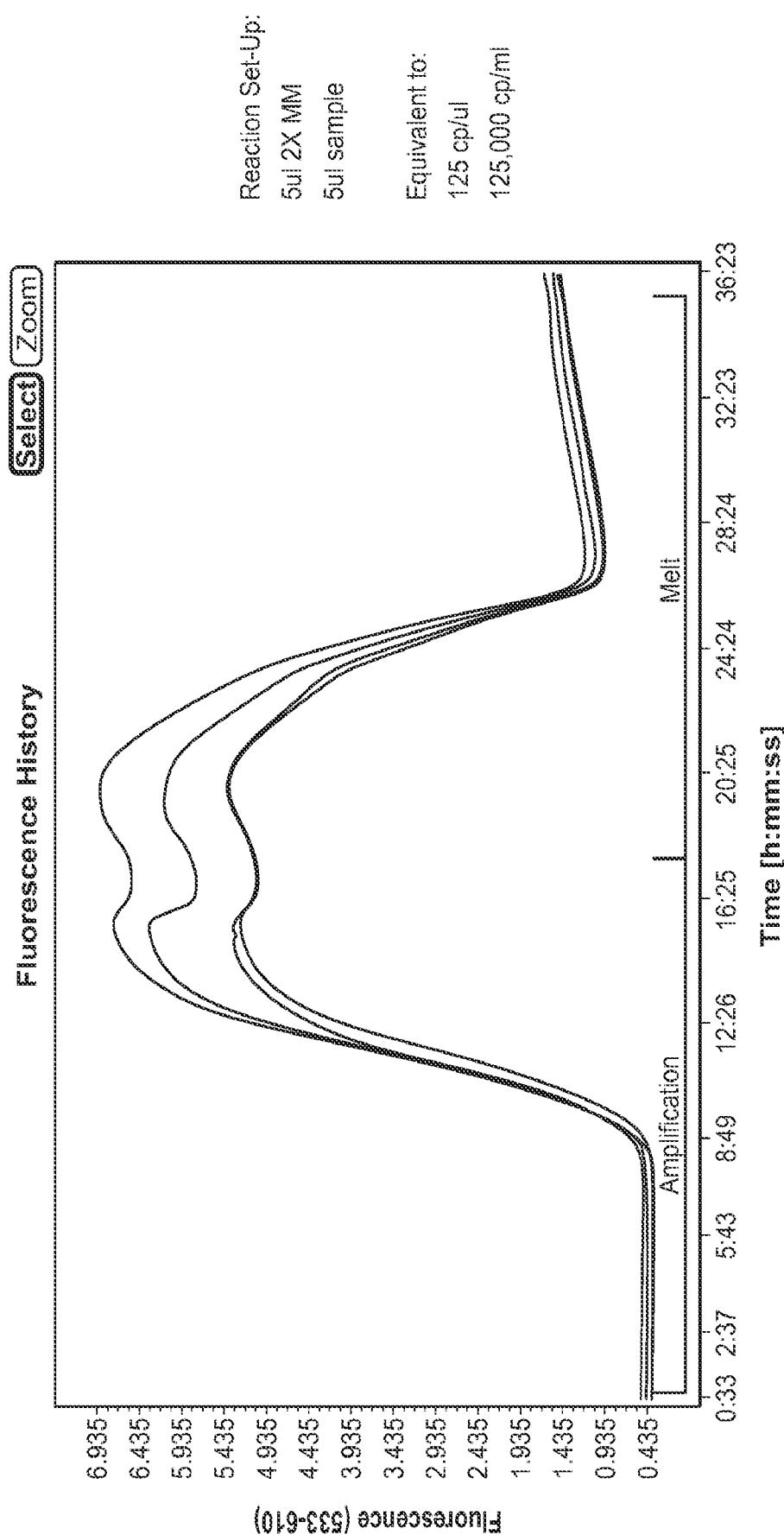


FIG. 3F

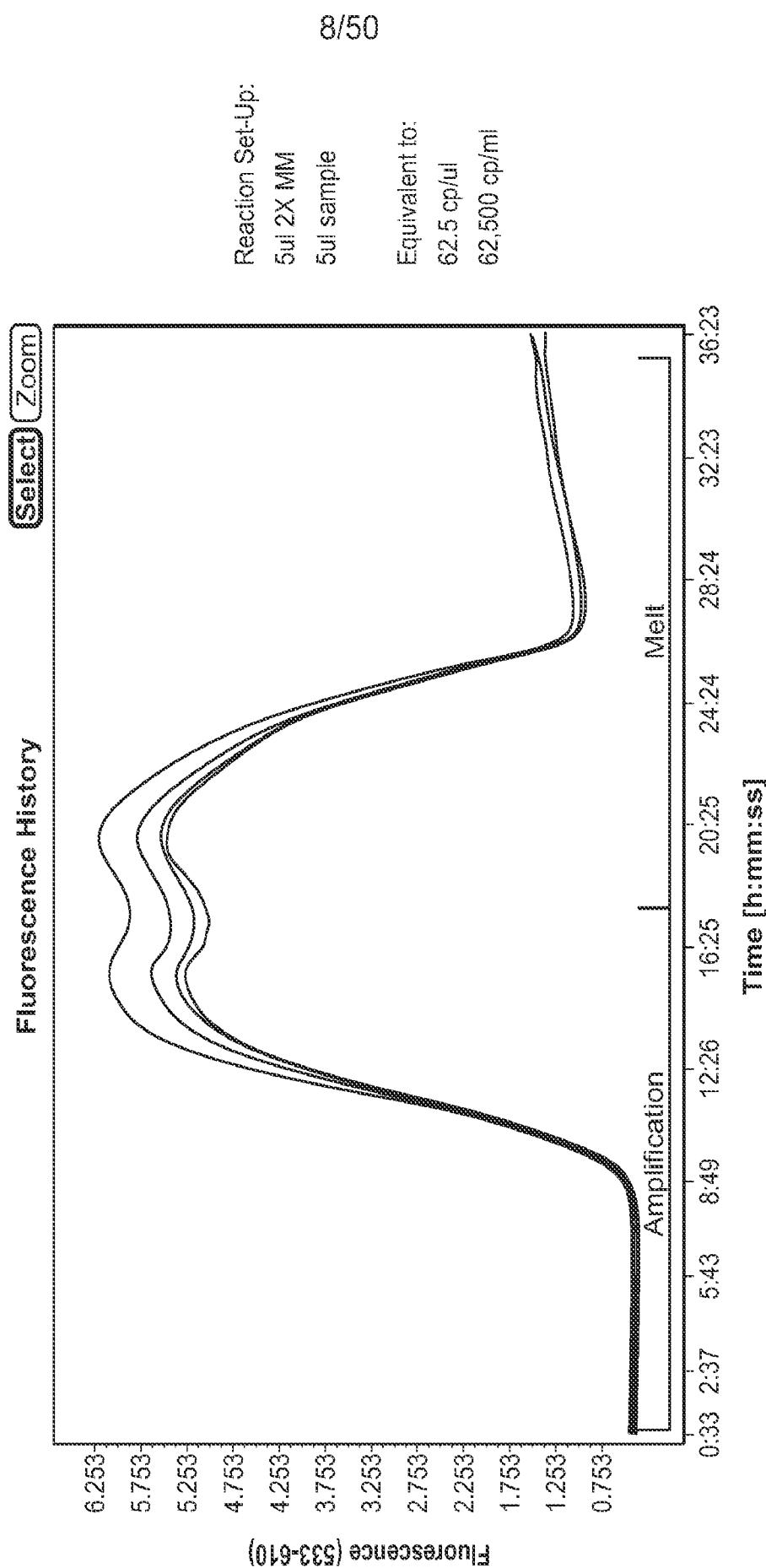

312 Copies gBlock in 18 ng Human cDNA
Assay 1

FIG. 3G

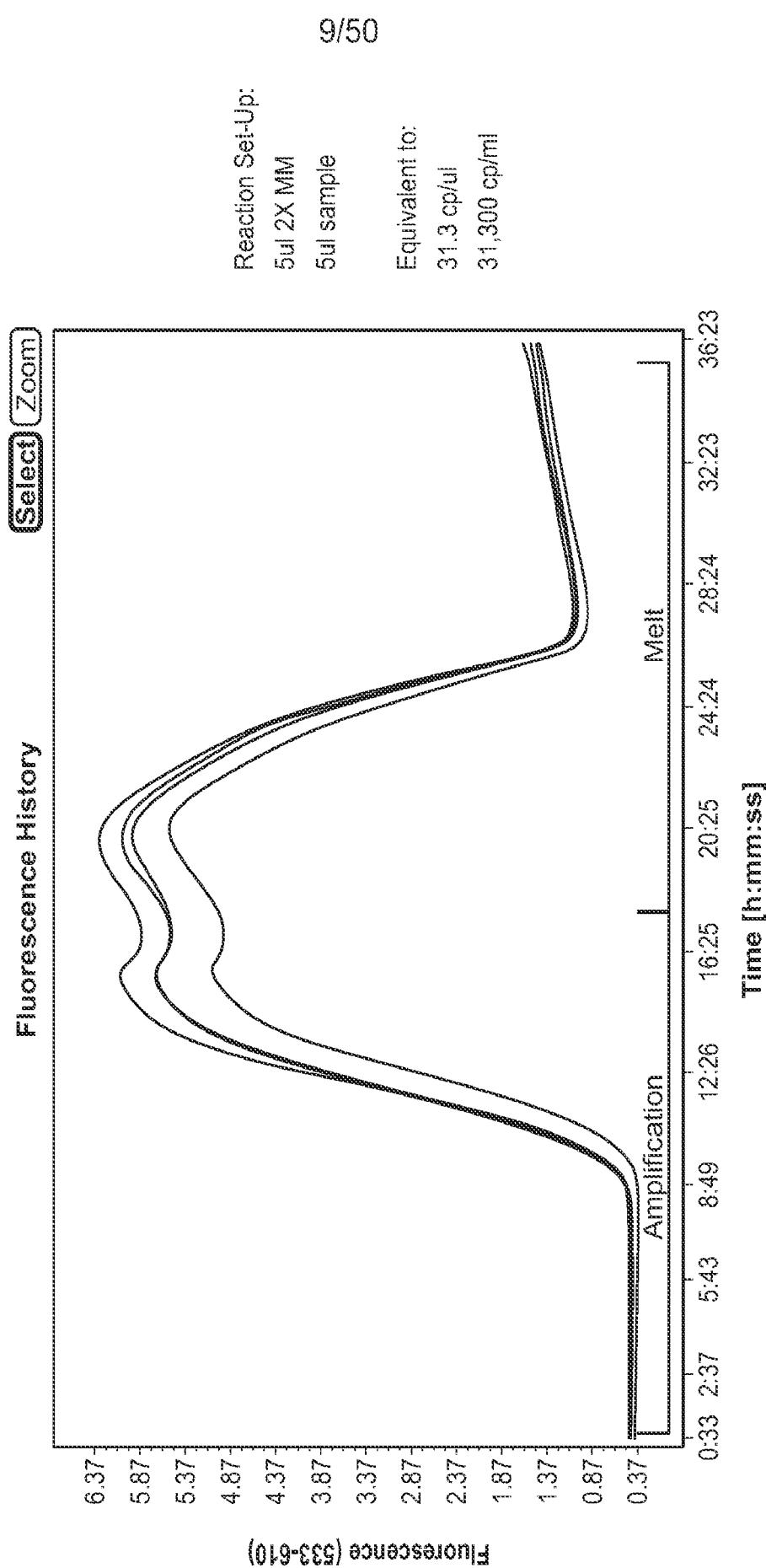
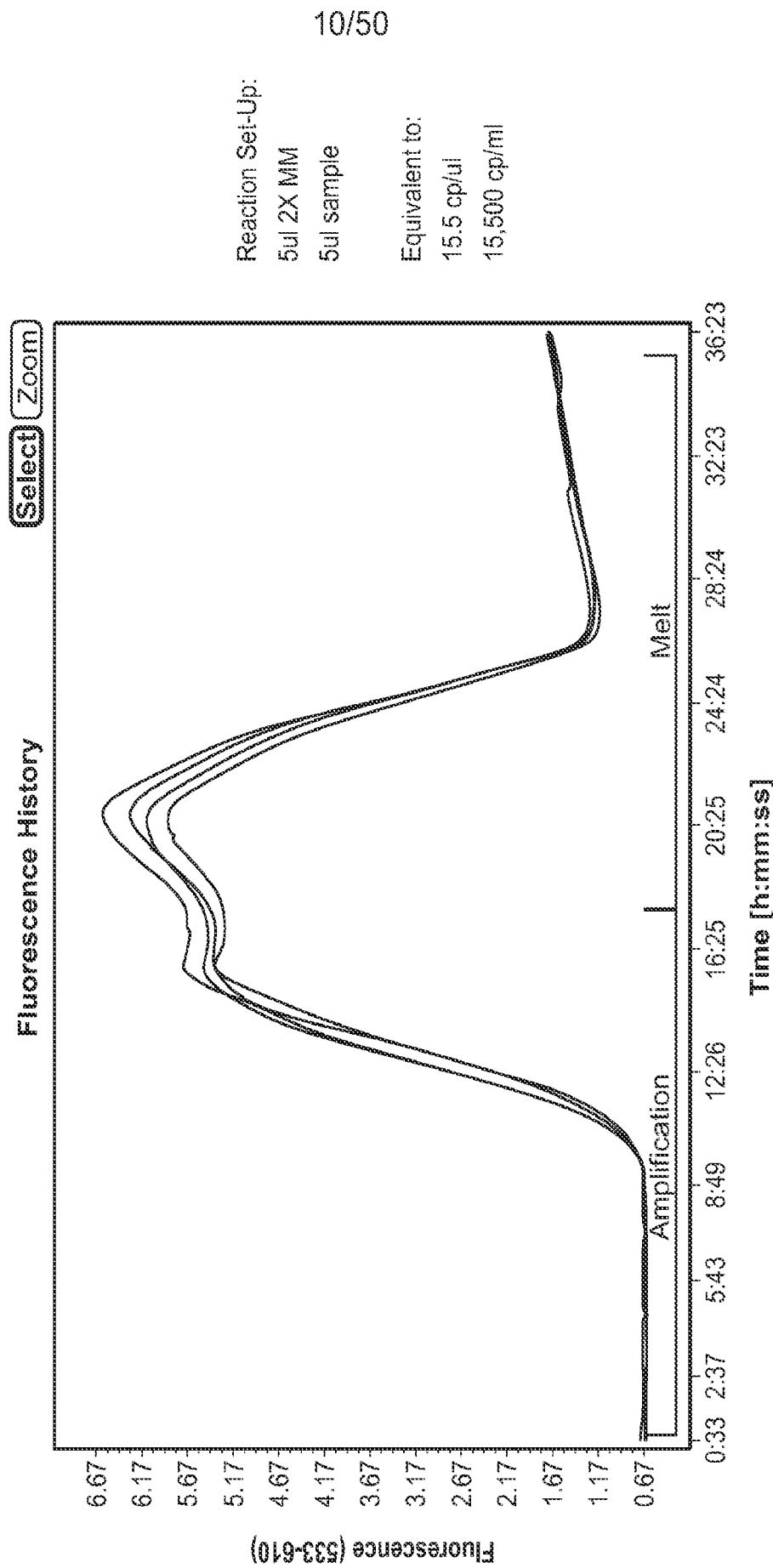
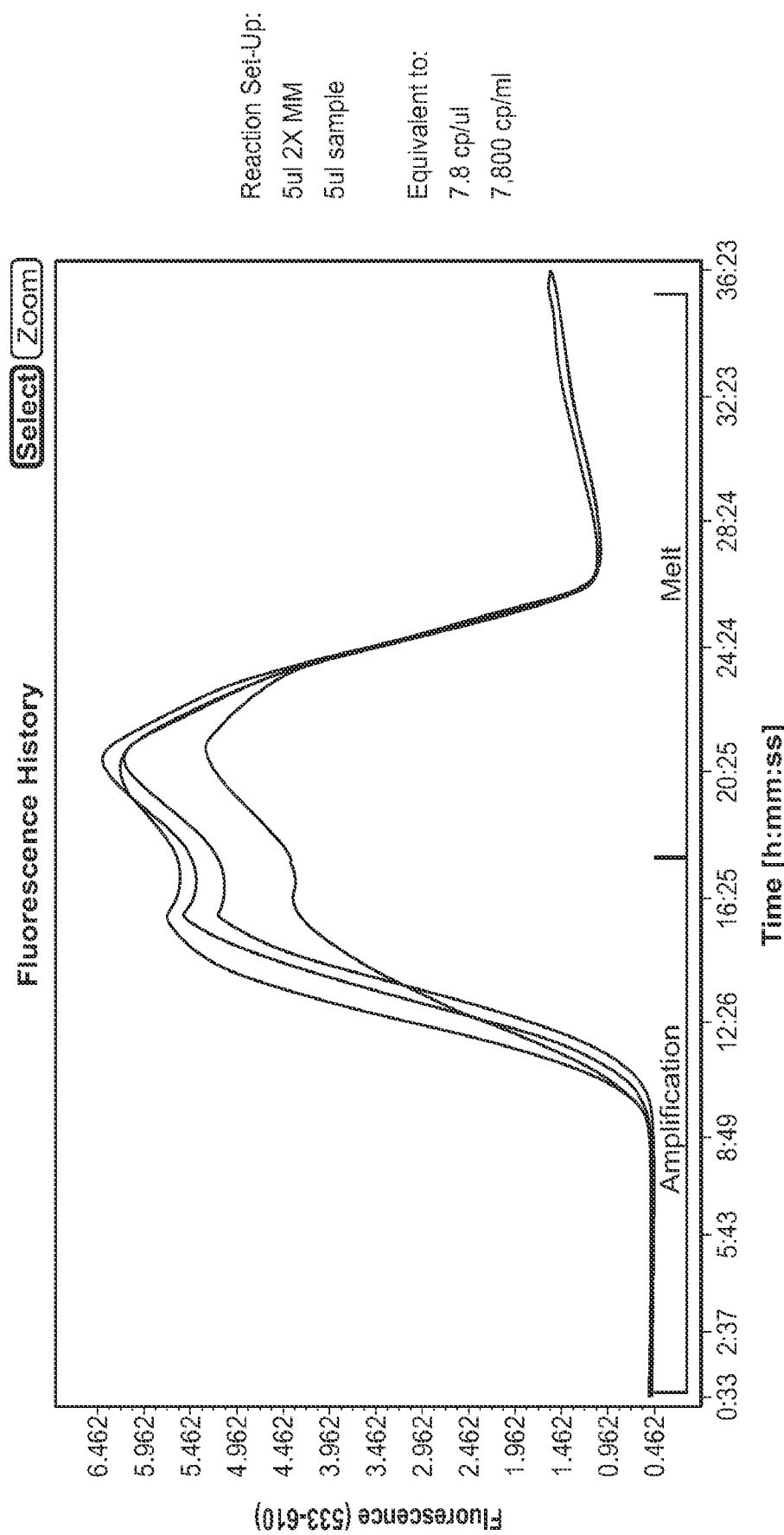
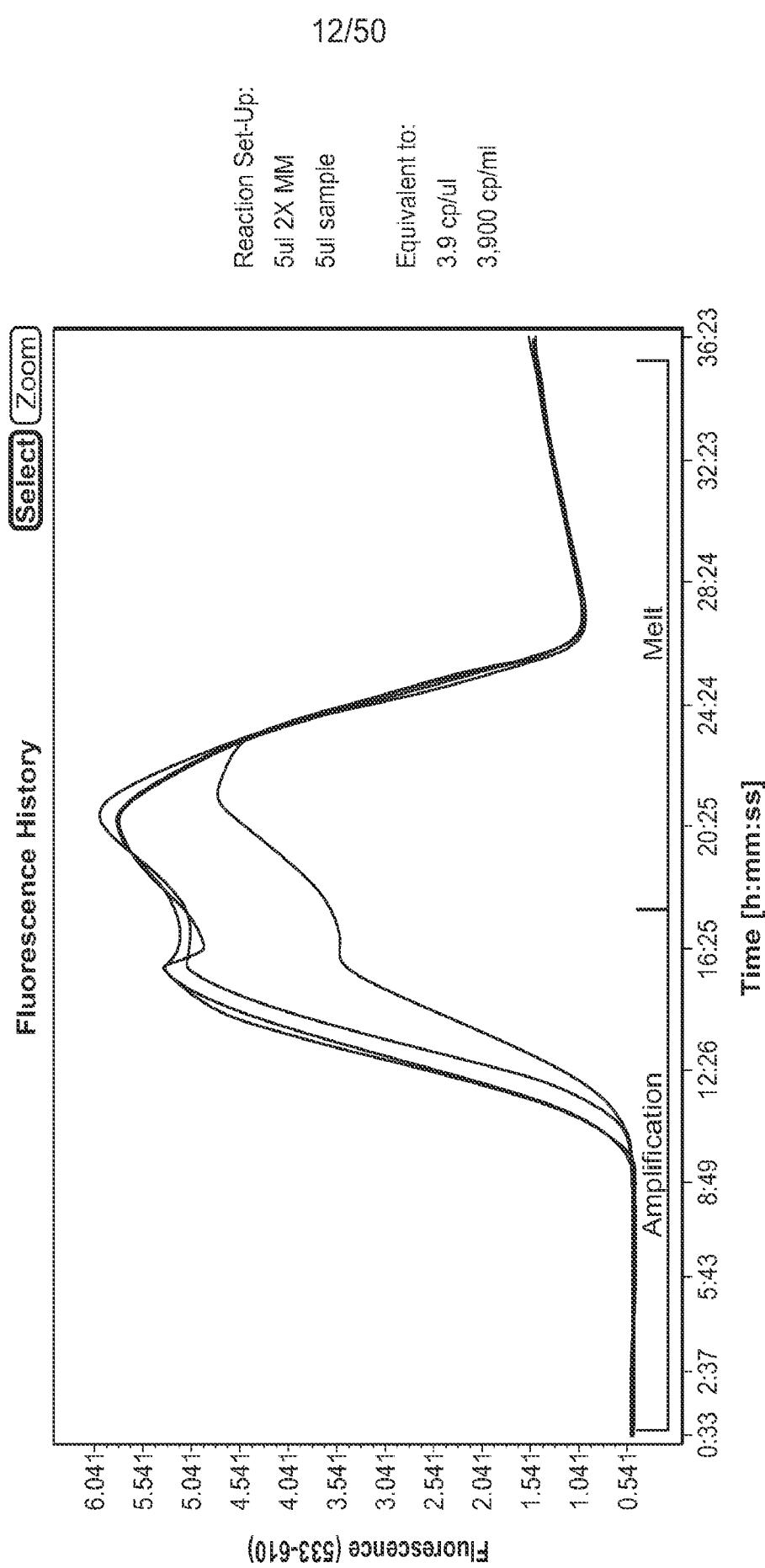
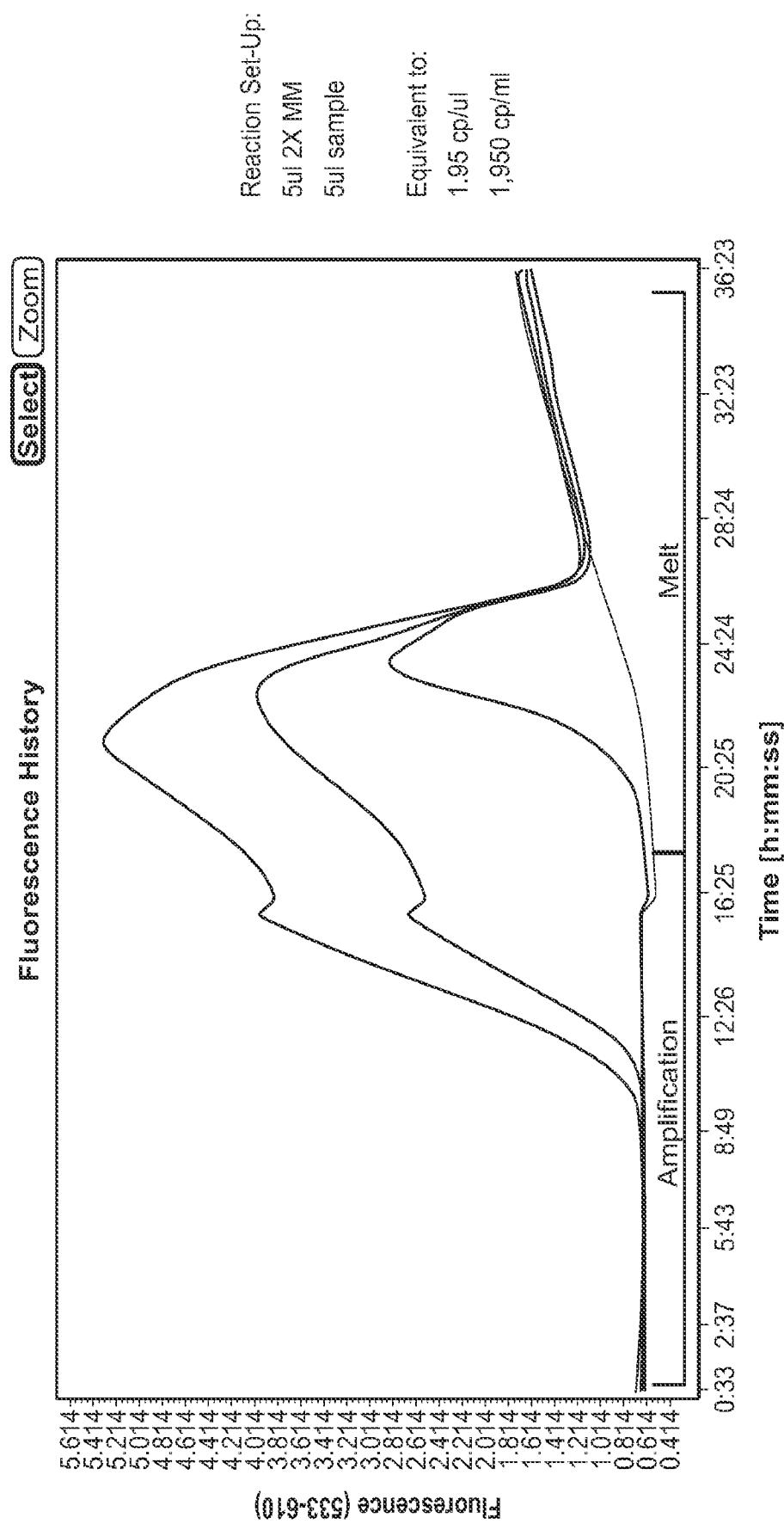


156 Copies gBlock in 18 ng Human cDNA
Assay 1

FIG. 3H
78 Copies gBlock in 18 ng Human cDNA
Assay 1

11/50

FIG. 3
39 Copies gBlock in 18 ng Human cDNA
Assay 1


FIG. 3J

19.5 Copies gBlock in 18 ng Human cDNA
Assay 1

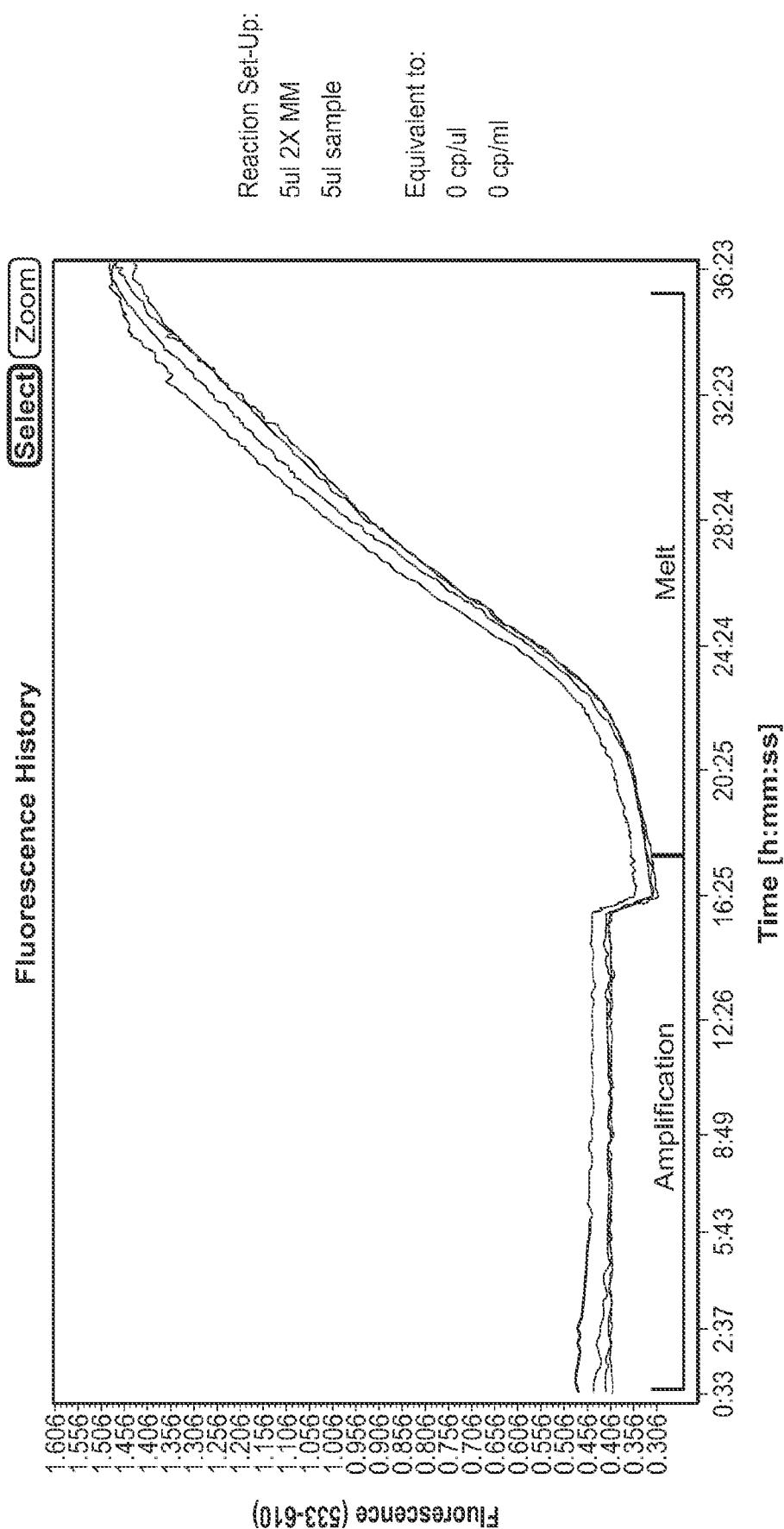

13/50

FIG. 3K
9.8 Copies gBlock in 18 ng Human cDNA
Assay 1

14/50

FIG. 3L
0 Copies gBlock in 18 ng Human cDNA
Assay 1

15/50

FIG. 3M
10K Copies gBlock in 18 ng Human cDNA
Assay 2

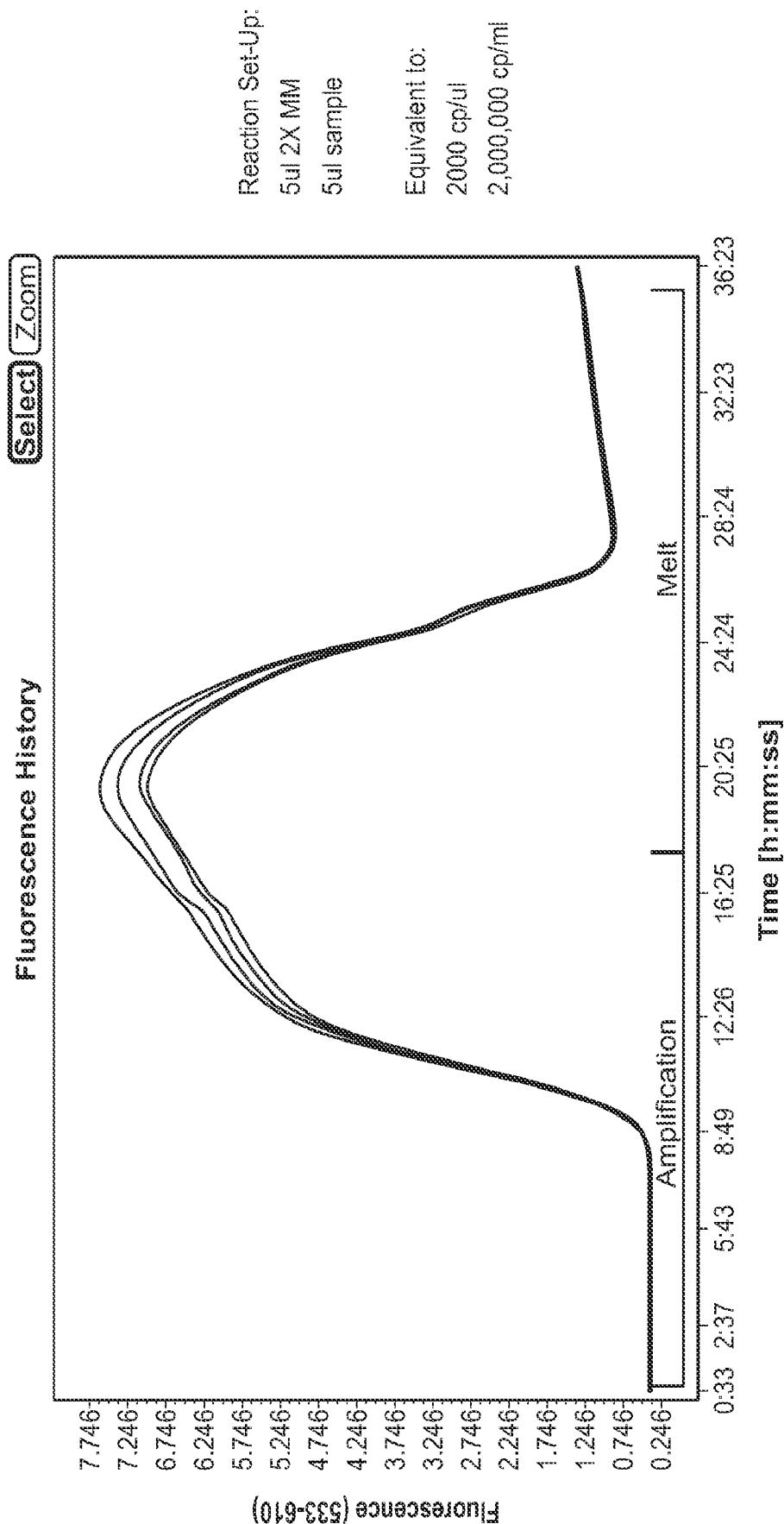
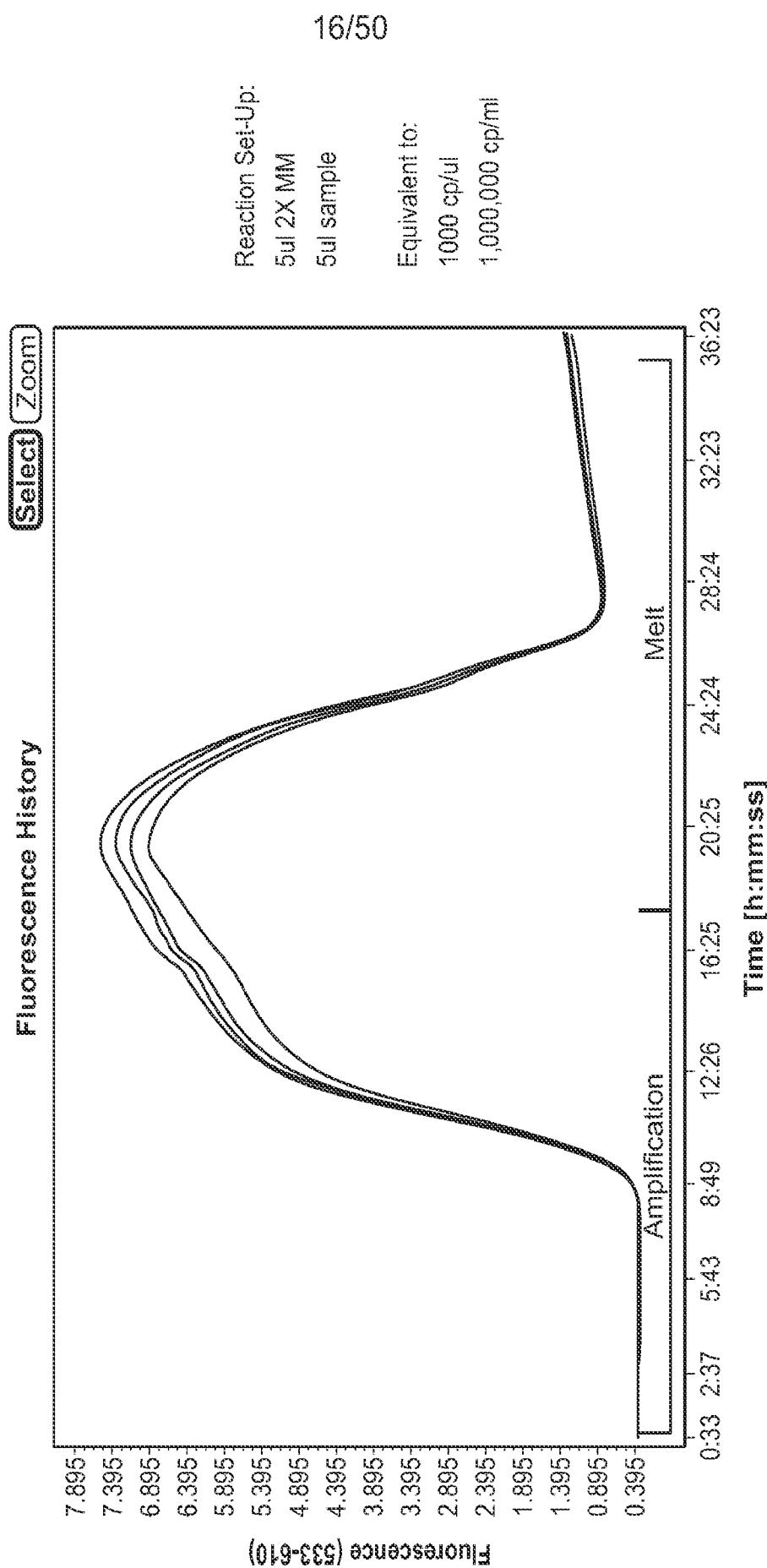
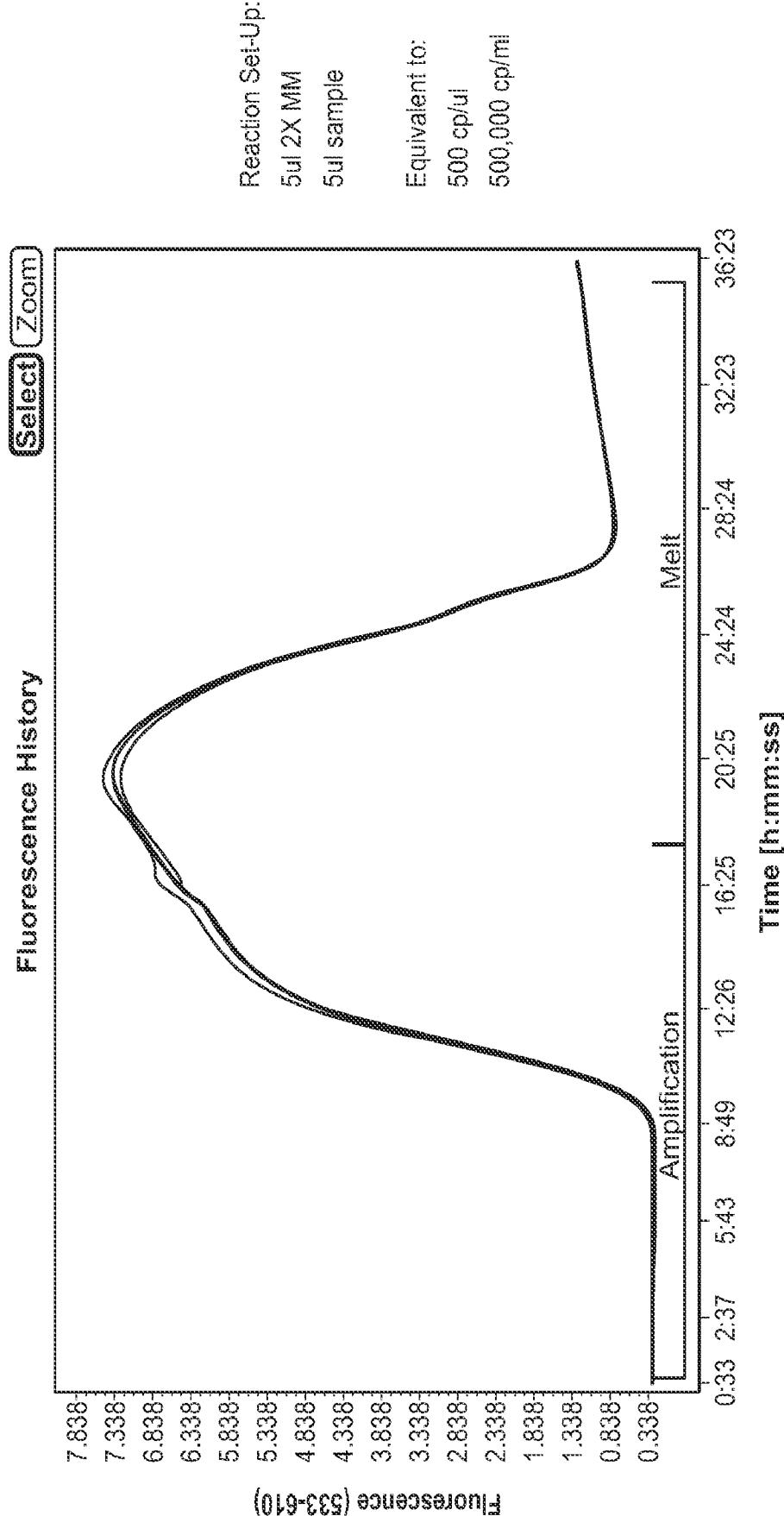




FIG. 3N
5K Copies gBlock in 18 ng Human cDNA
Assay 2

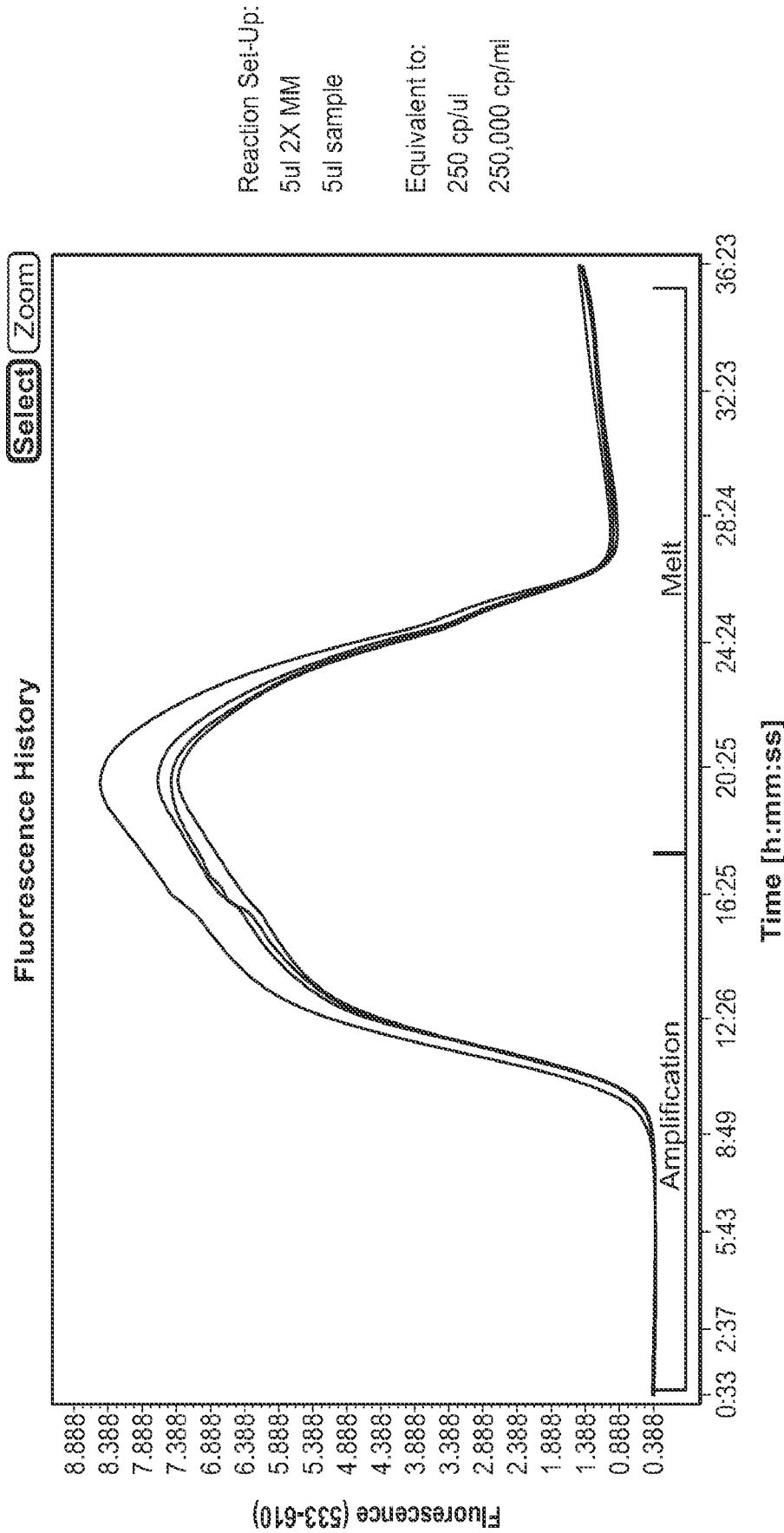

17/50

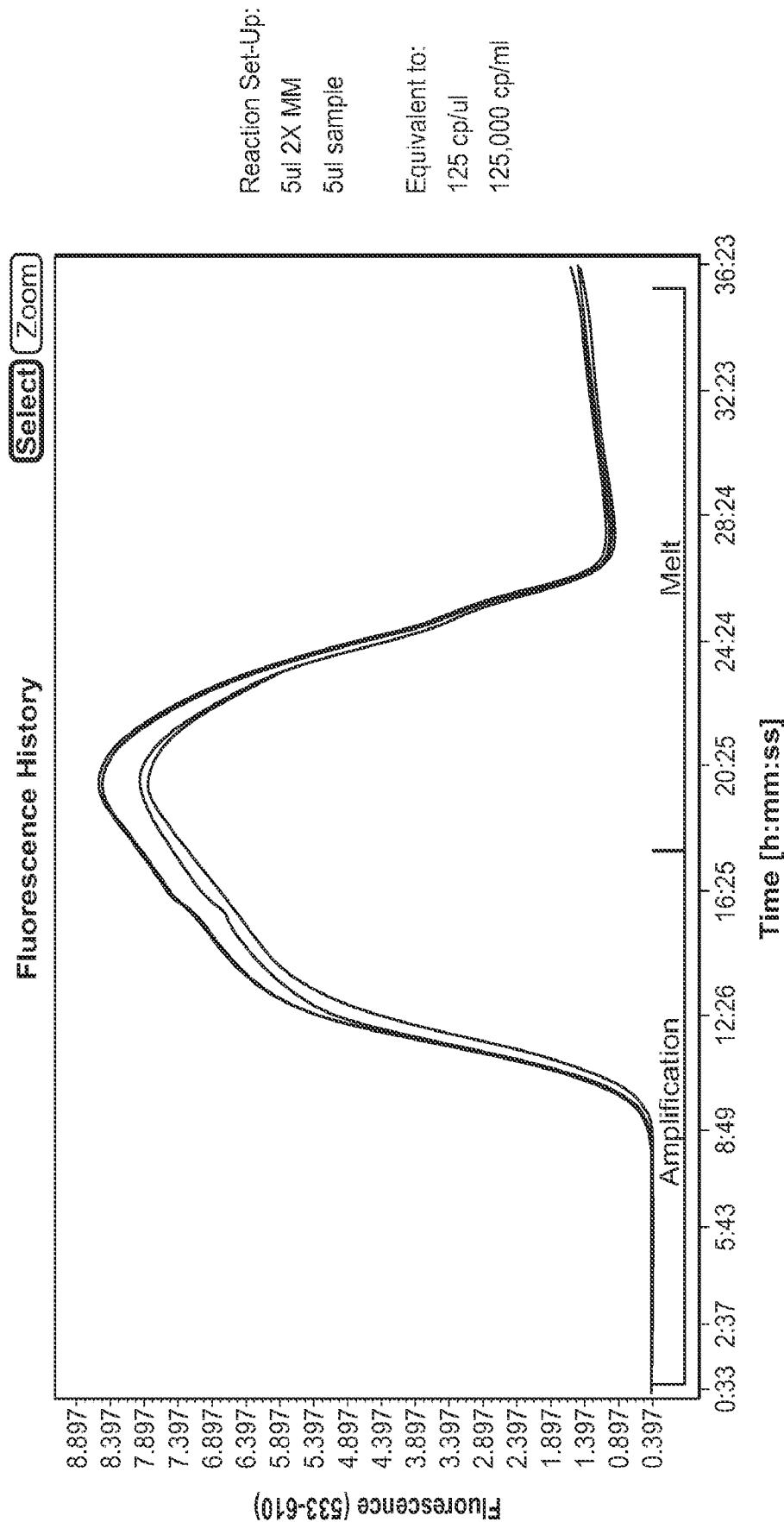
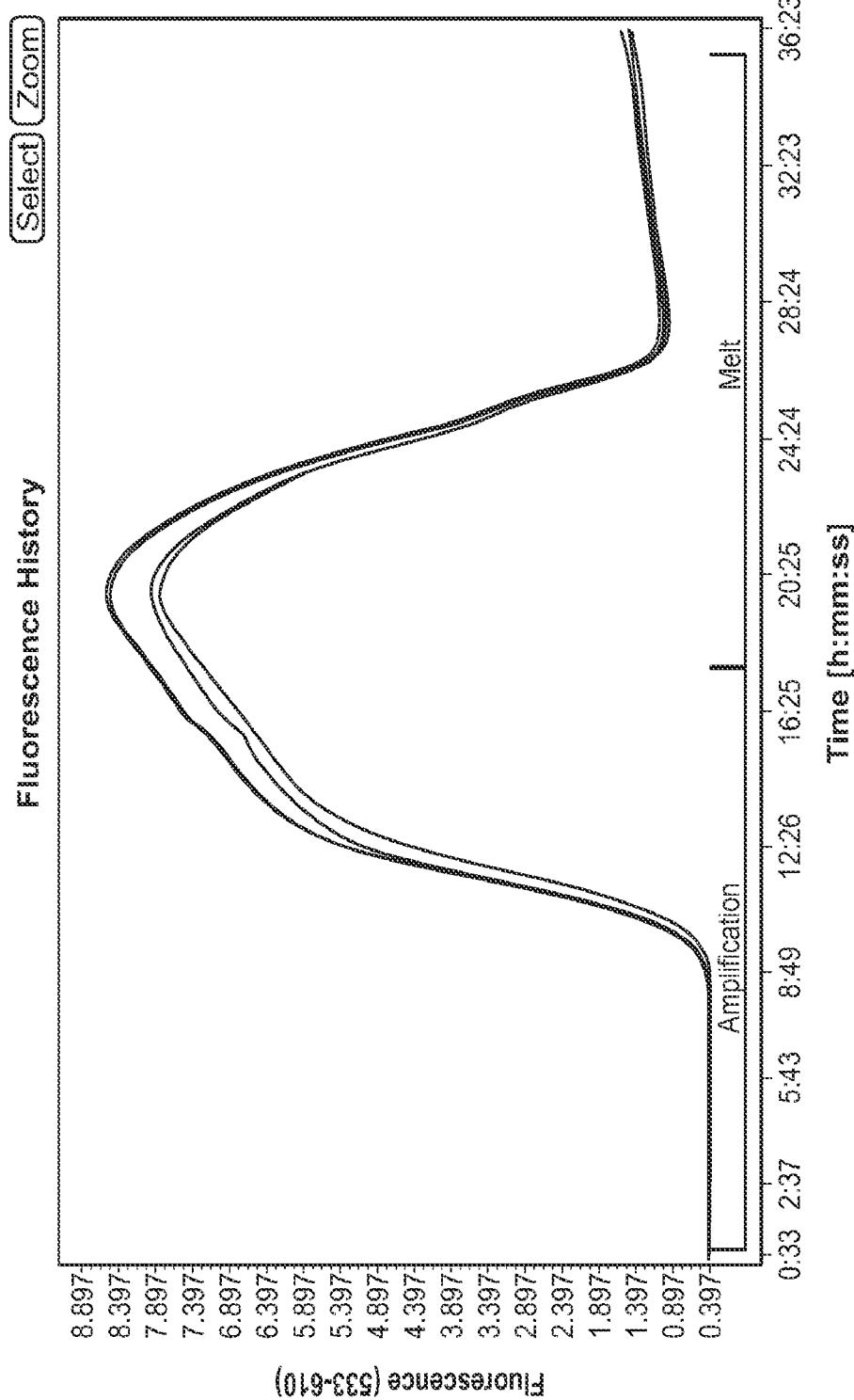
FIG. 30 2.5K Copies gBlock in 18 ng Human cDNA
Assay 2

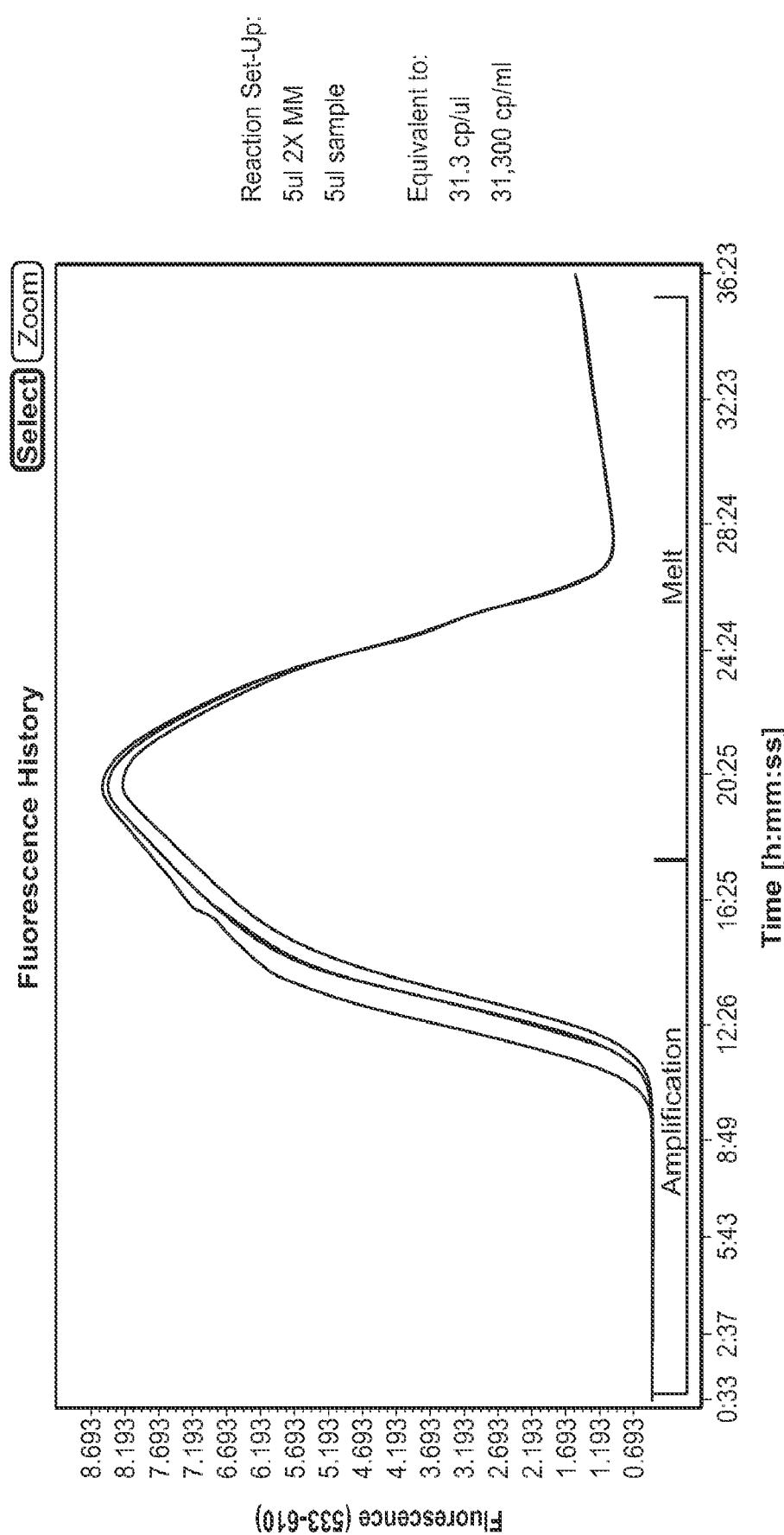
18/50

FIG. 3P 1.25K Copies gBlock in 18 ng Human cDNA
Assay 2

19/50

FIG. 3Q
625 Copies gBlock in 18 ng Human cDNA
Assay 2


FIG. 3R

312 Copies gBlock in 18 ng Human cDNA
Assay 2

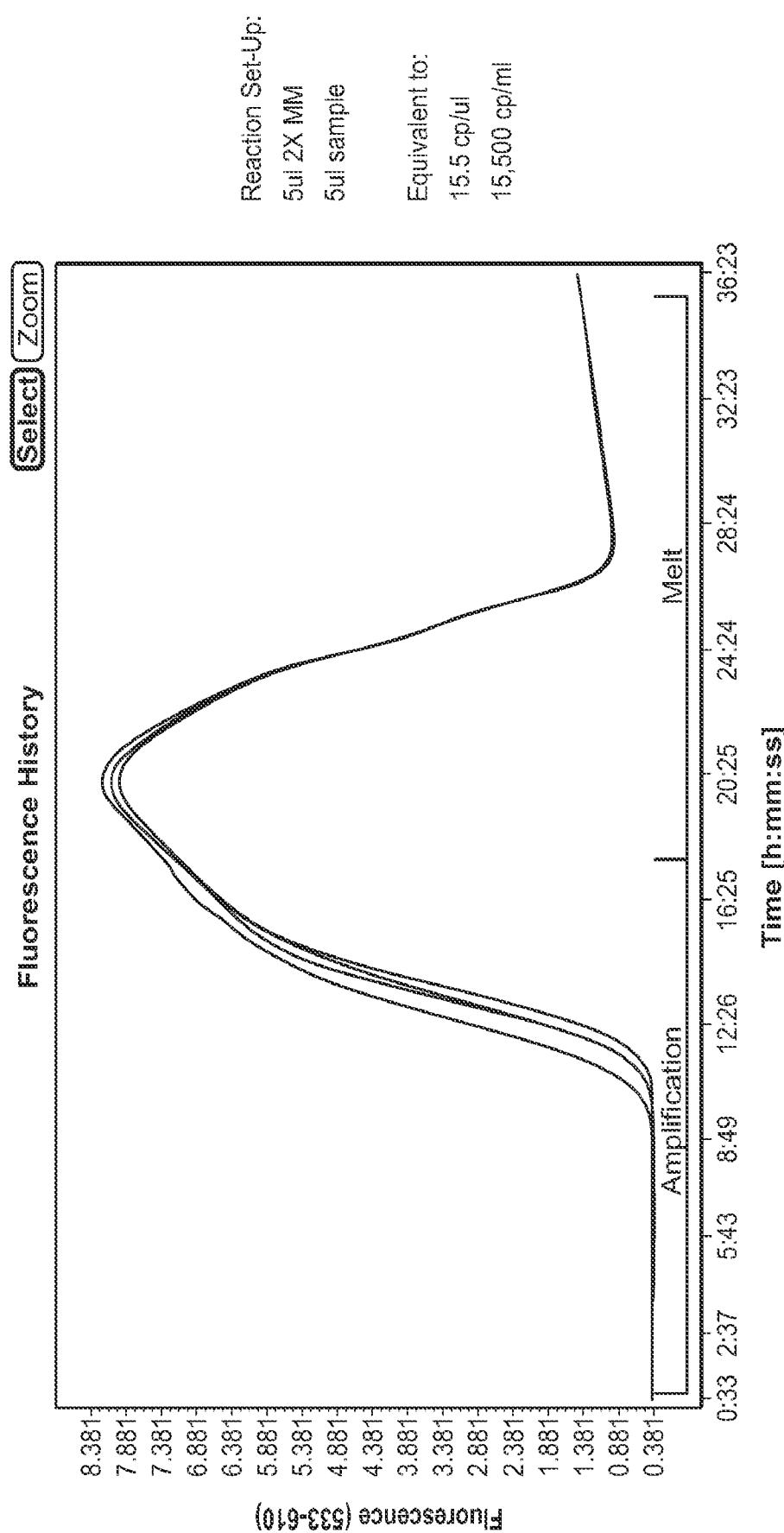

21/50

FIG. 3S
156 Copies gBlock in 18 ng Human cDNA
Assay 2

22/50

FIG. 3T
78 Copies gBlock in 18 ng Human cDNA
Assay 2

23/50

FIG. 3U
39 Copies gBlock in 18 ng Human cDNA
Assay 2

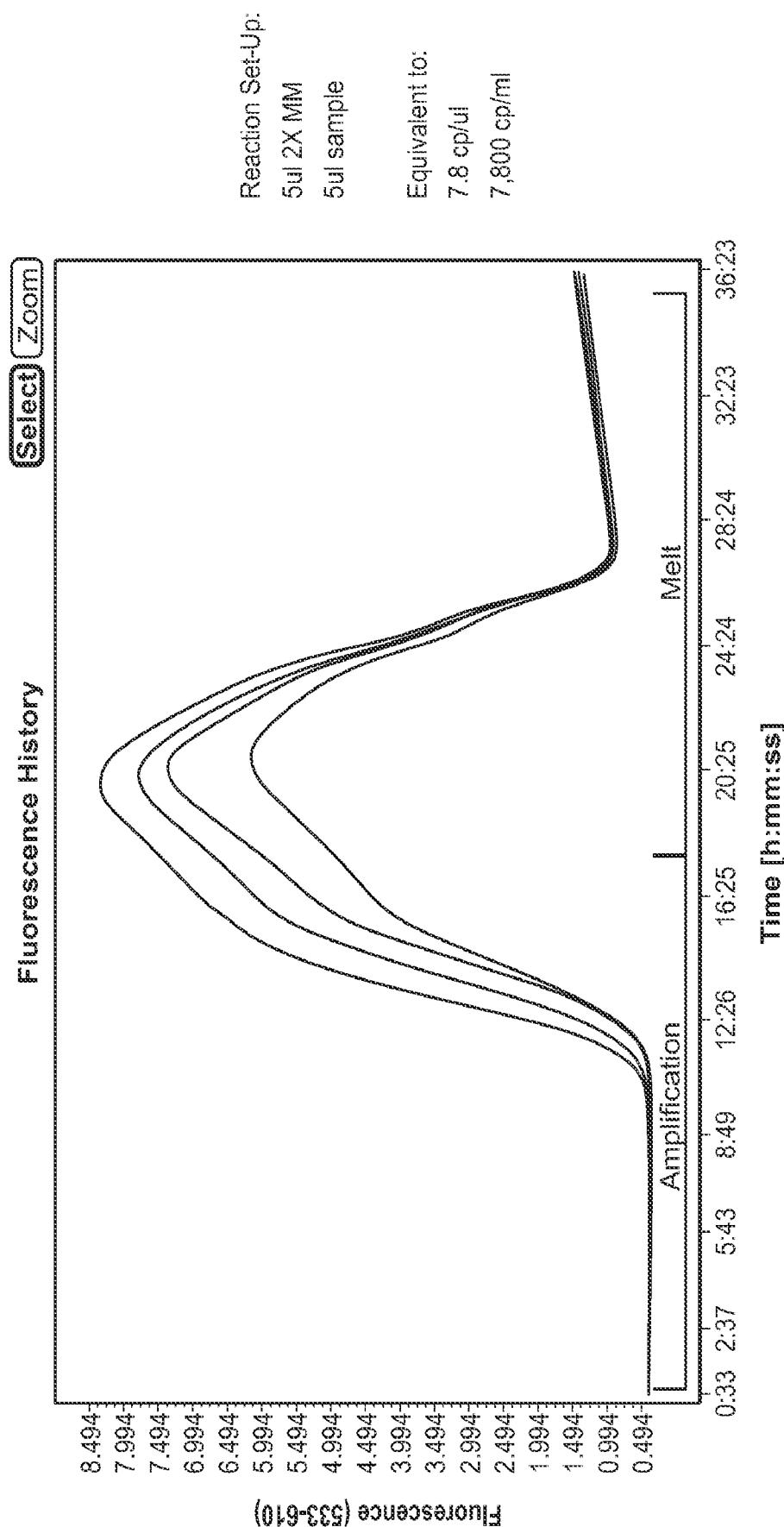


FIG. 3V
19.5 Copies gBlock in 18 ng Human cDNA
Assay 2

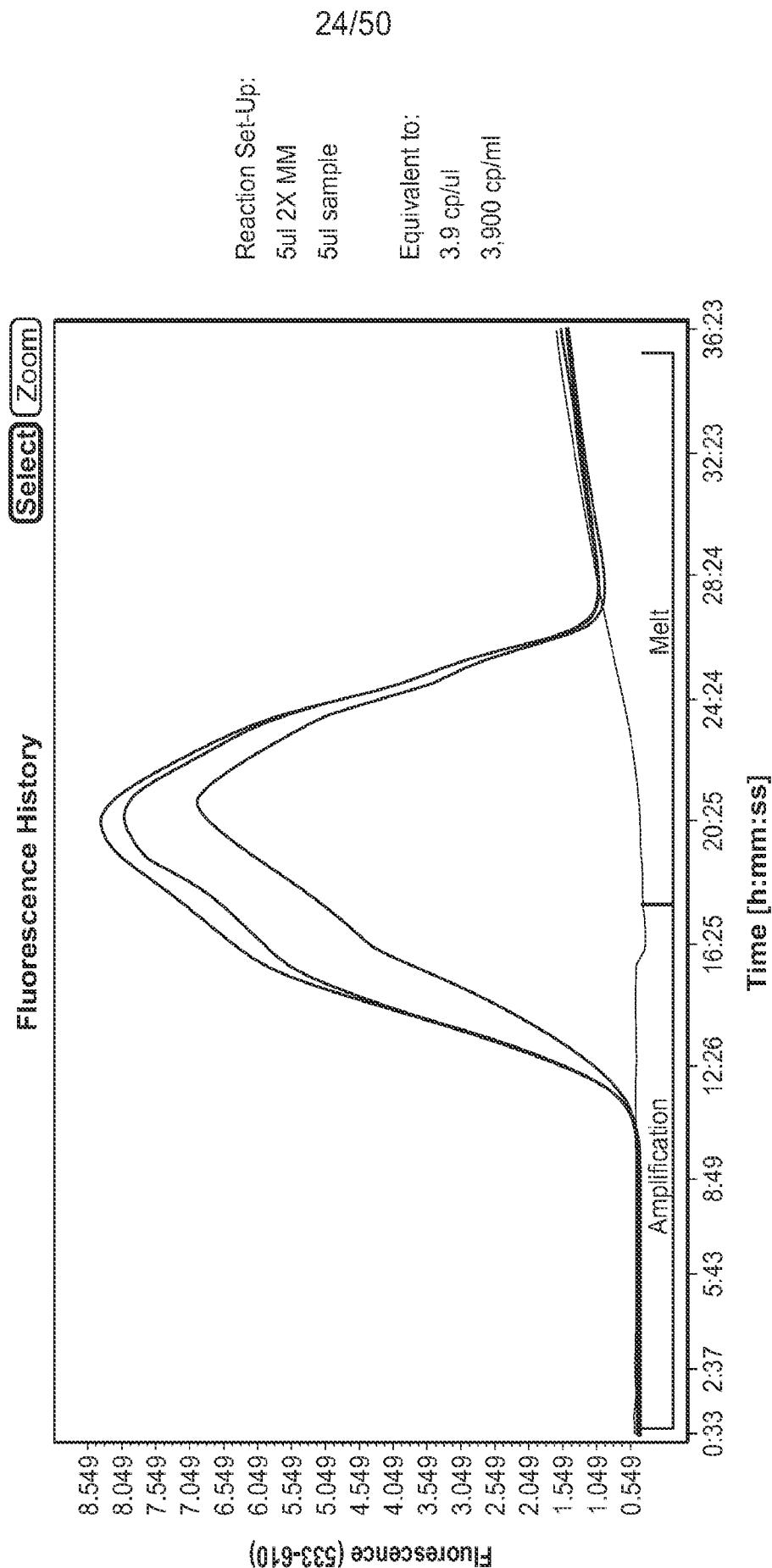
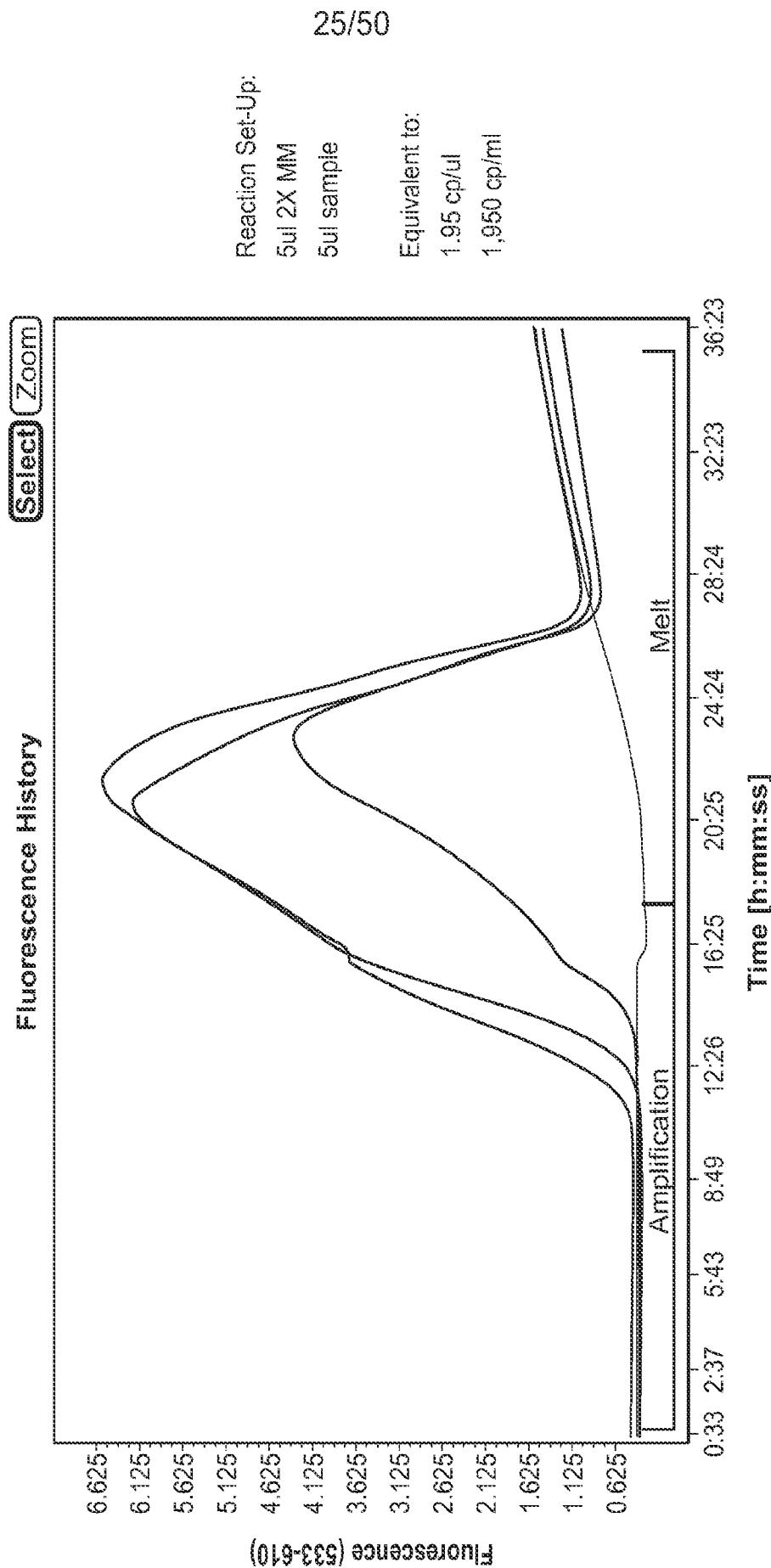
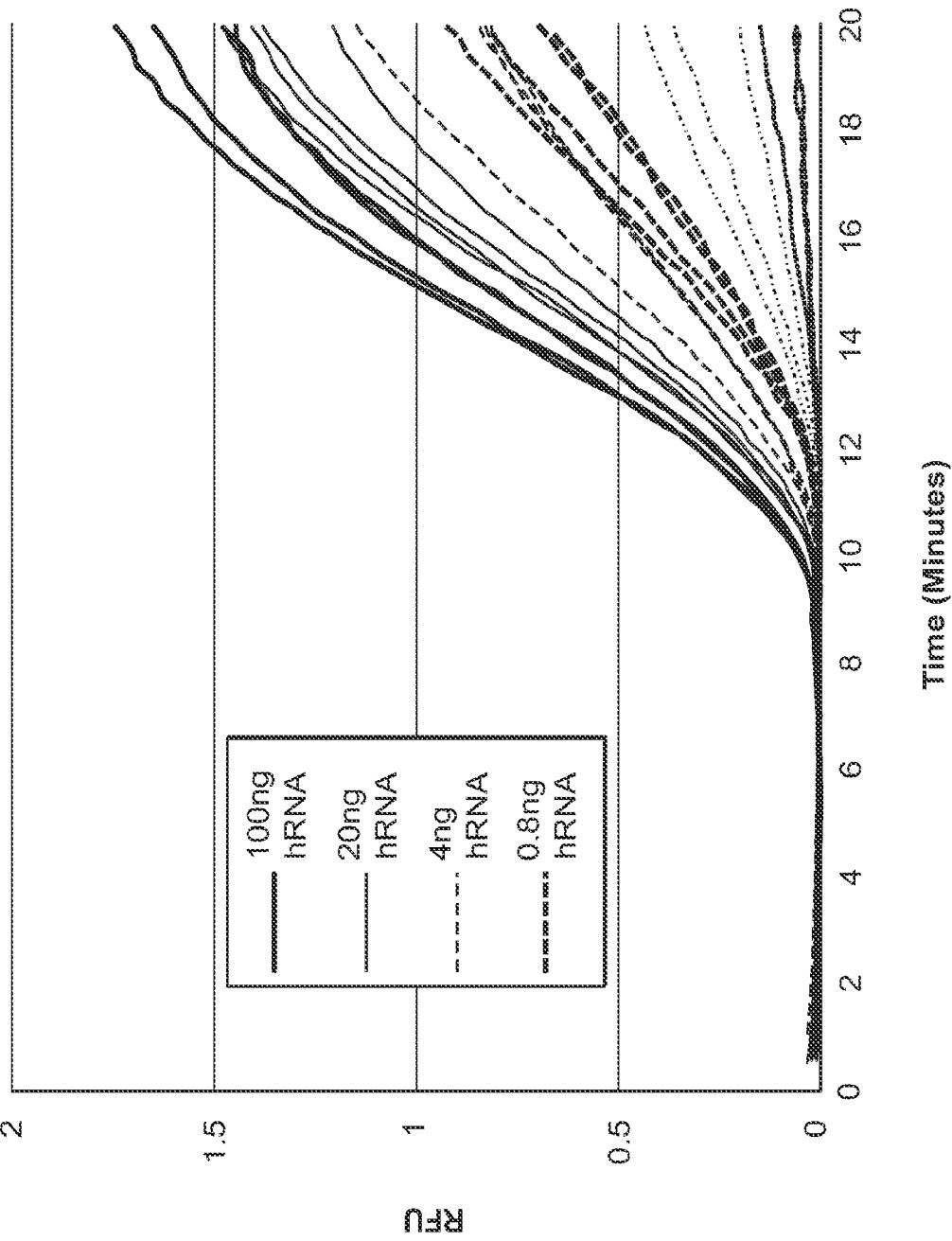



FIG. 3W
9.8 Copies gBlock in 18 ng Human cDNA
Assay 2

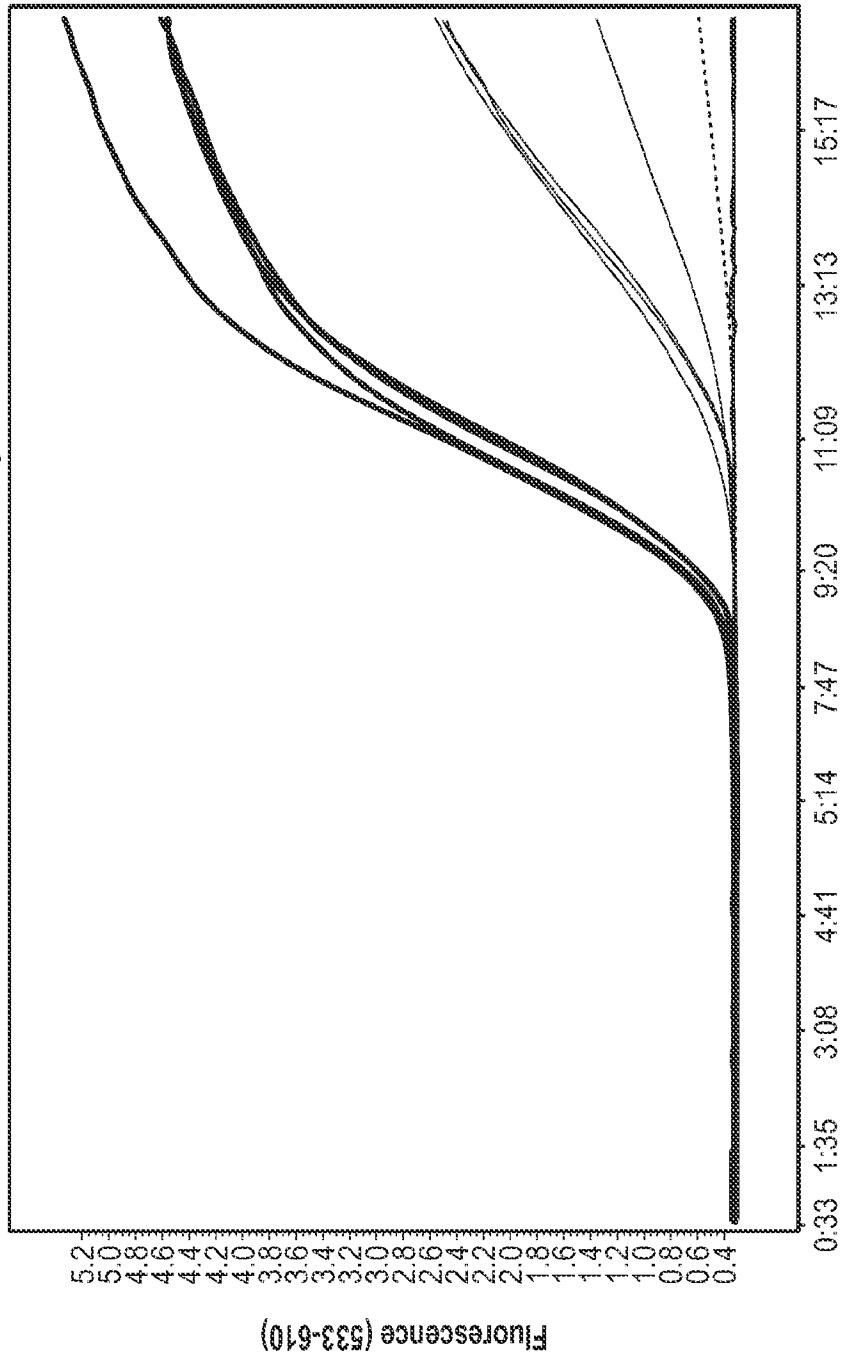
26/50


FIG. 3X
0 Copies gBlock in 18 ng Human cDNA
Assay 2

27/50

FIG. 4

One-Step RNAble® Example
Detection of a Human Expressed Gene in a Background of Total
Human RNA



28/50

FIG. 5

Example One-Step RNABle Using a Synthetic RNA in an Excess Background of Total Human RNA

Fluorescence History

ZEB filtration starting at 1×10^6 copies per reaction (—), 1×10^4 per reaction (···); 1×10^2 per reaction (—); and 1×10^0 per reaction (—), synthetic RNA in a background of a 1ug human RNA. Target specific first strand RT (Maxima) in a homogeneous reaction

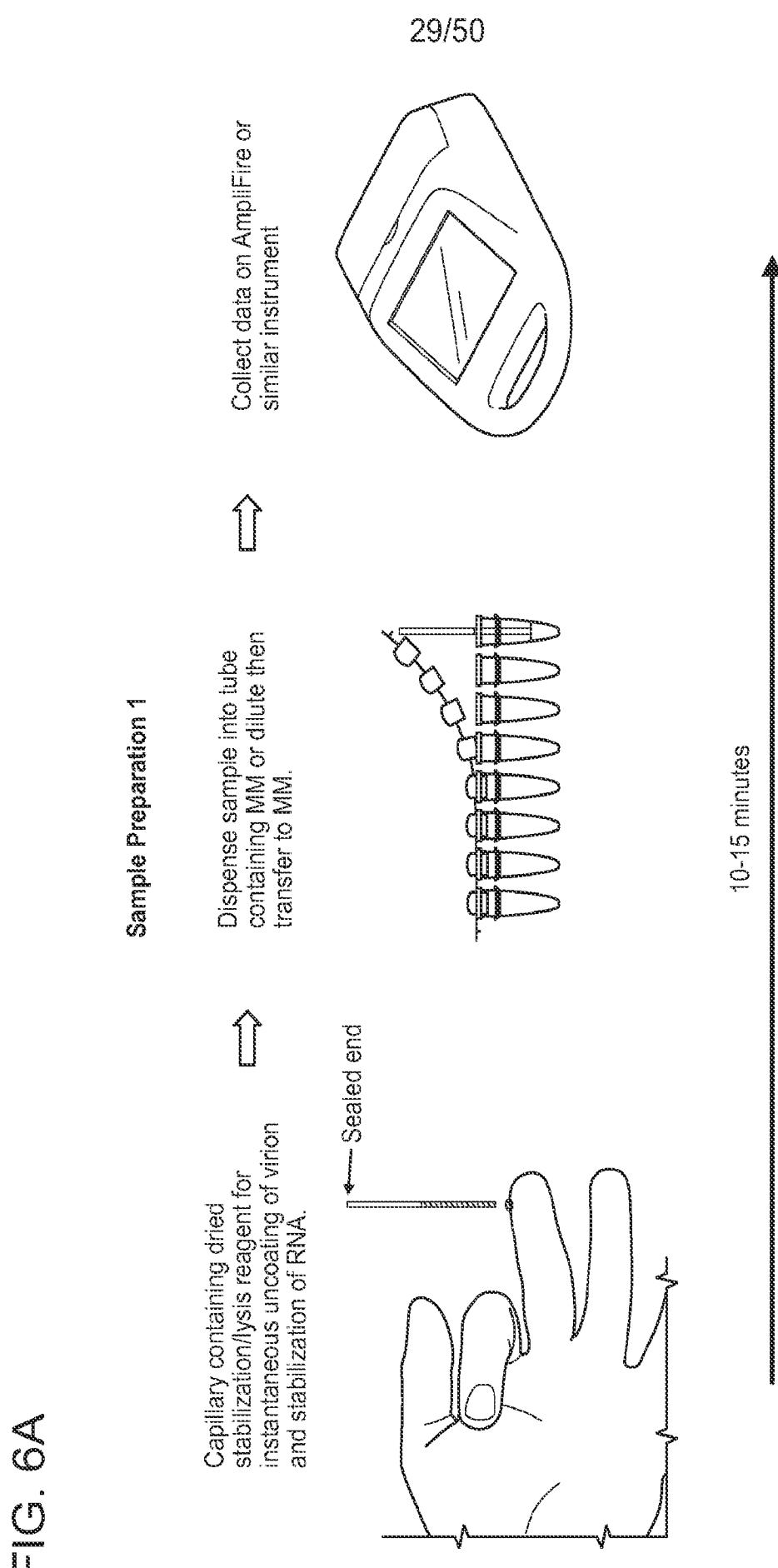


FIG. 6B

Sample Preparation 2

Capillary-based collection of blood.

FTA elute punch in well, load blood, dry
wash, load assay, run with the punch in tube.

Collect data on AmpliFire or
similar instrument

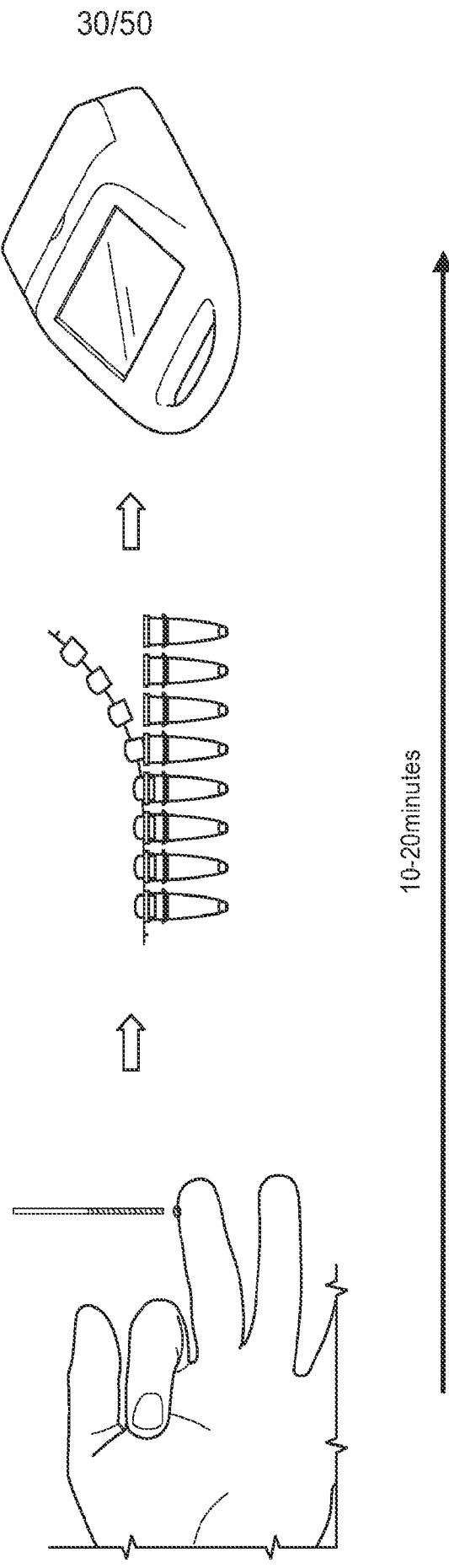
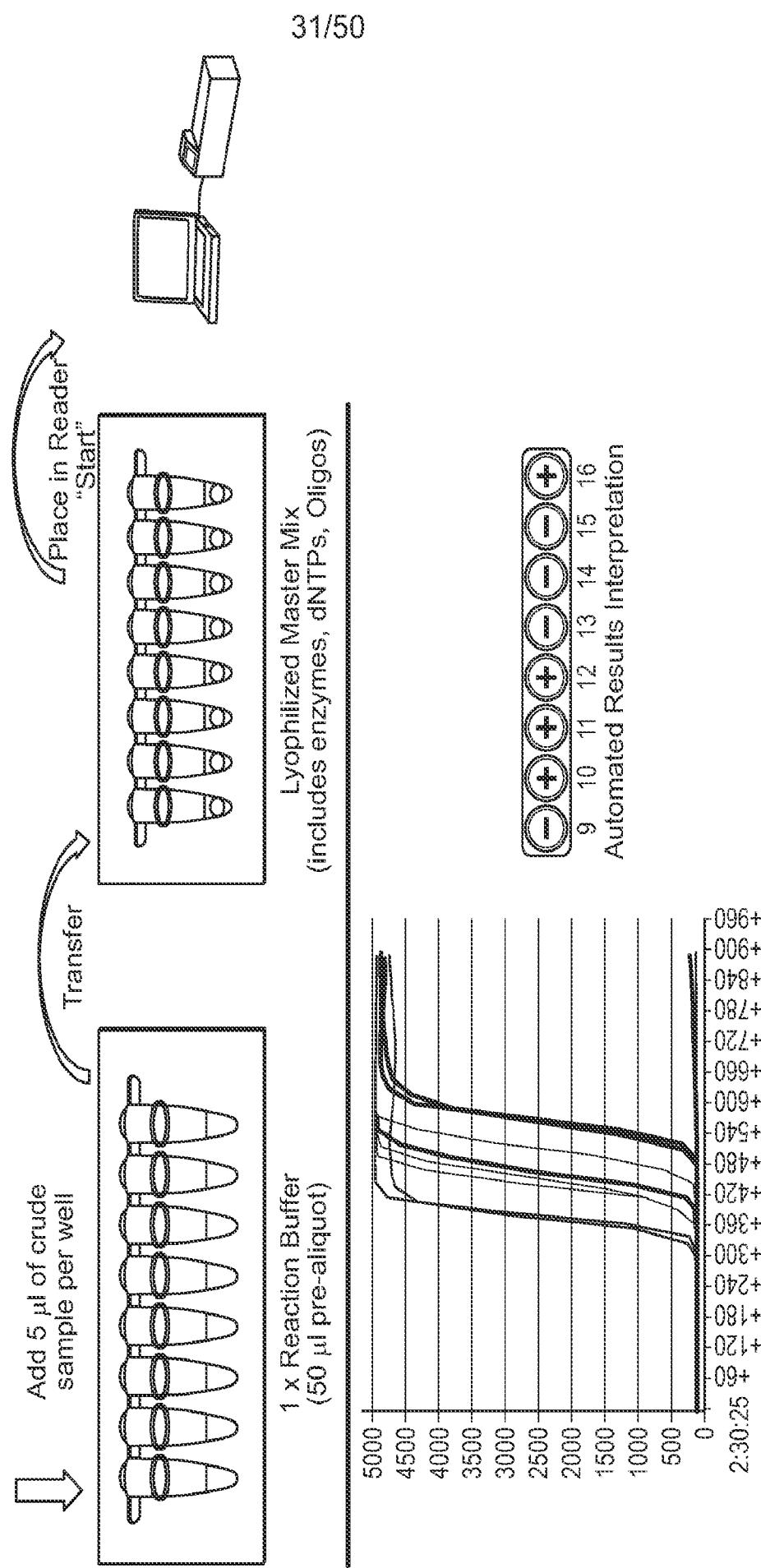



FIG. 6C

Lyophilized Assay Procedure 8-well Strip (or single tube)

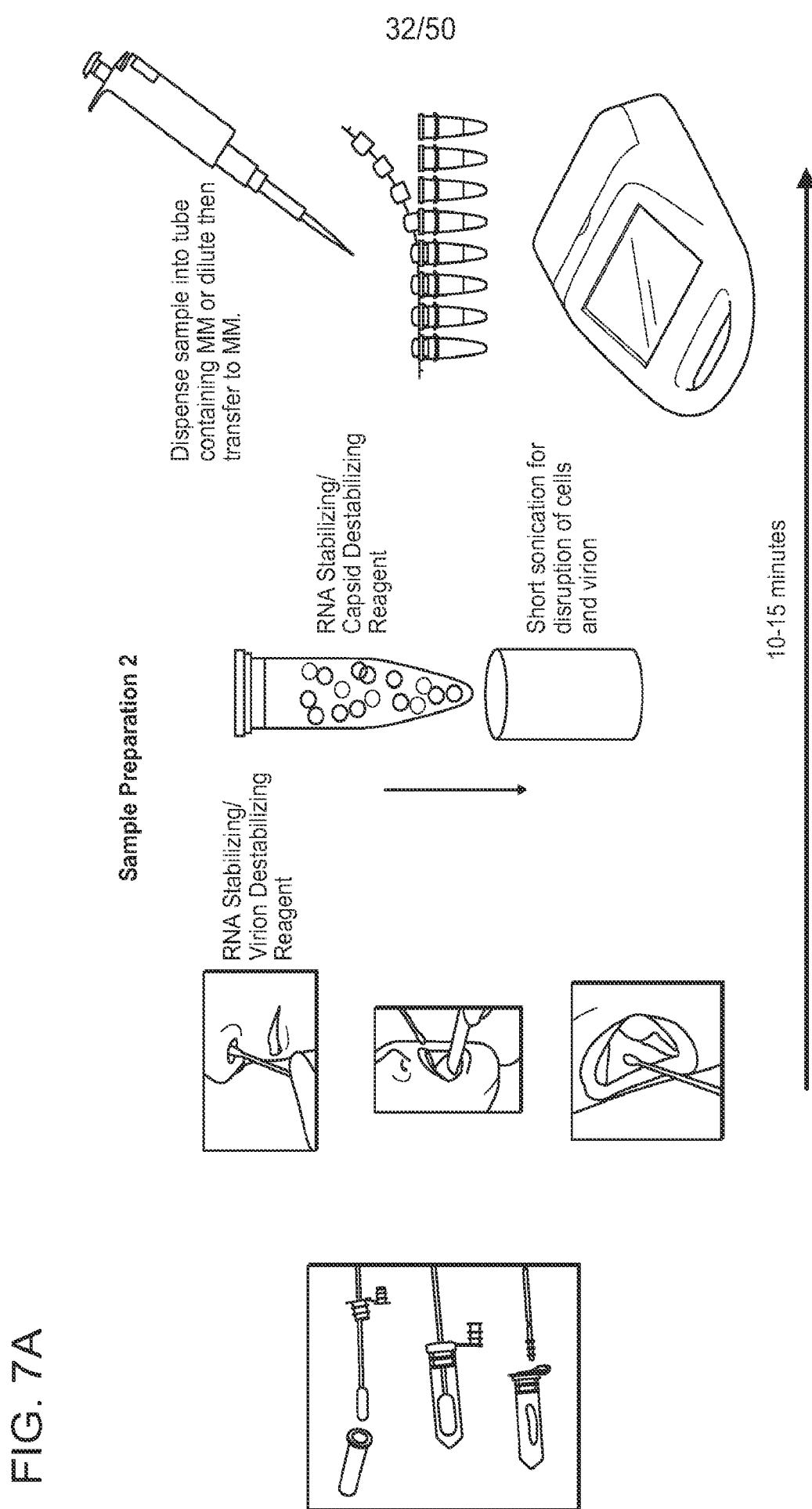


FIG. 7A

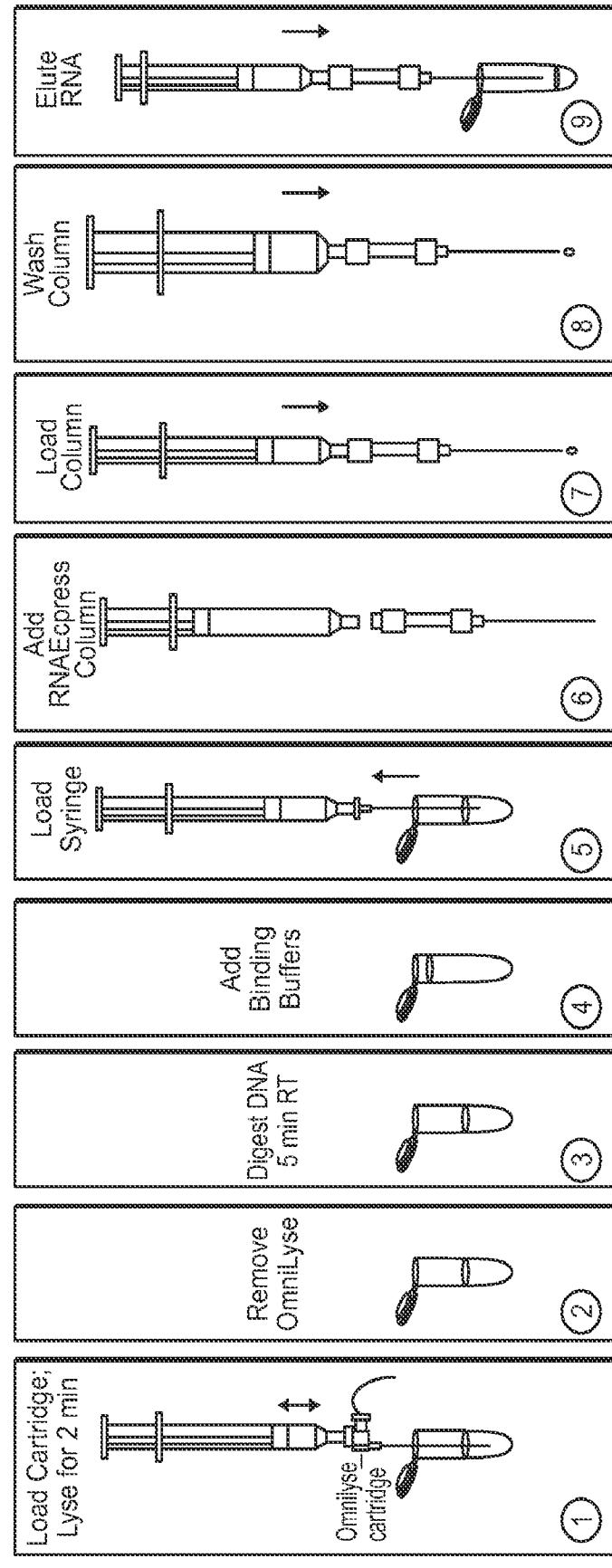
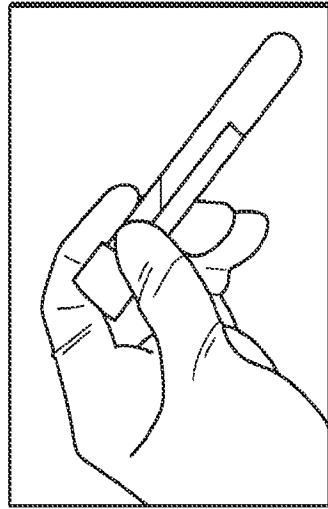
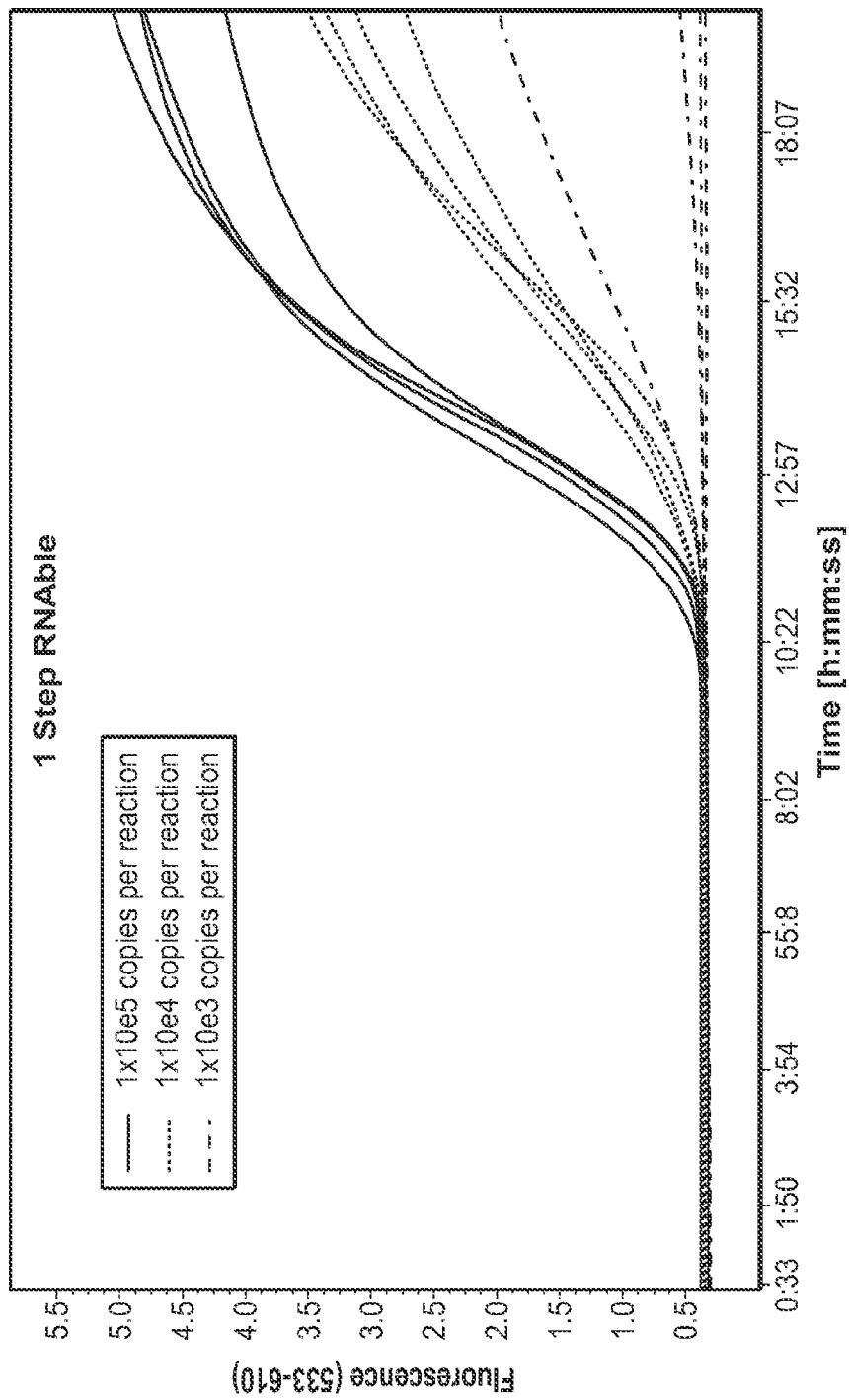

33/50

FIG. 7B


ClaremontBio
Solutions

Protocol for Rapid RNA Isolation

Visual Protocol



*Includes optional DNase 1 step for DNA-free RNA

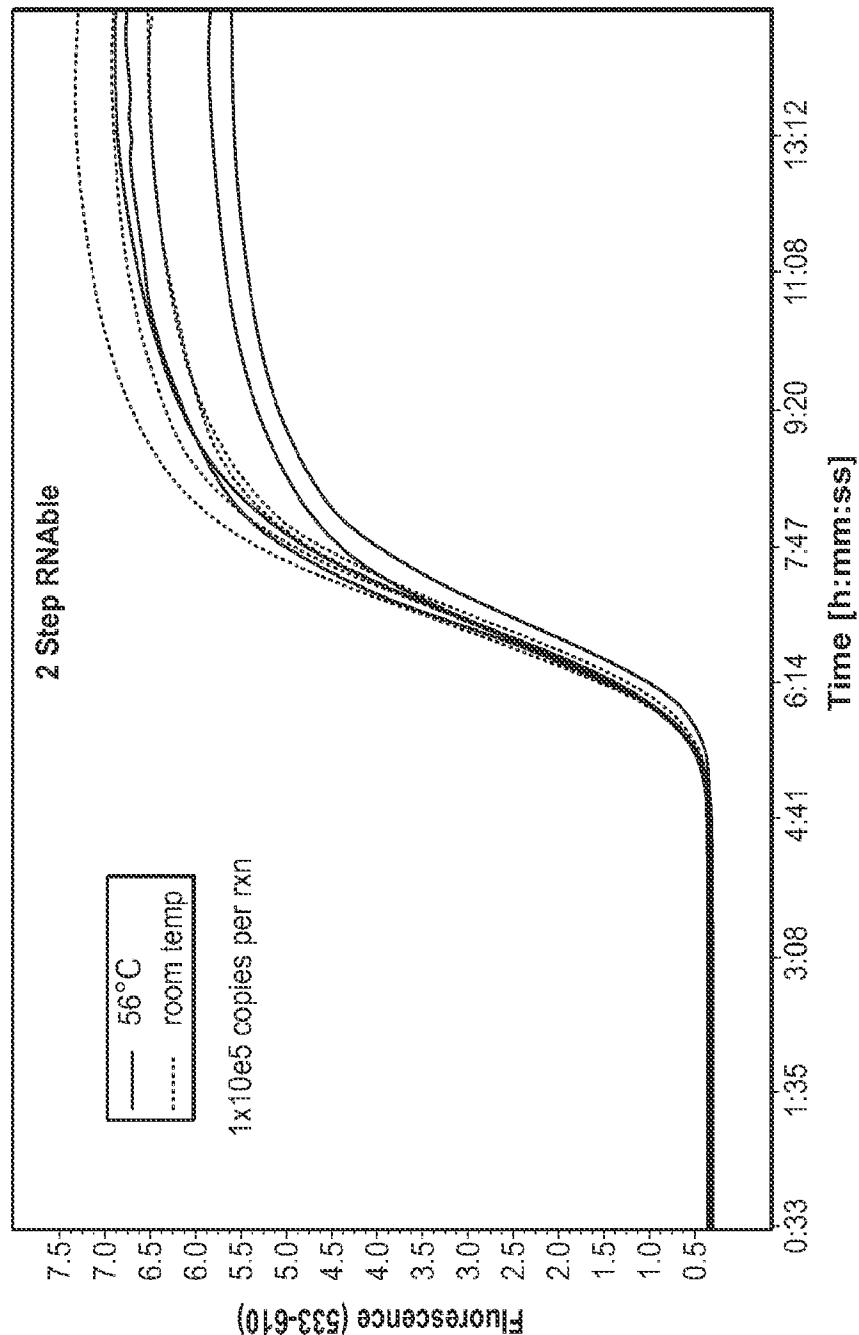
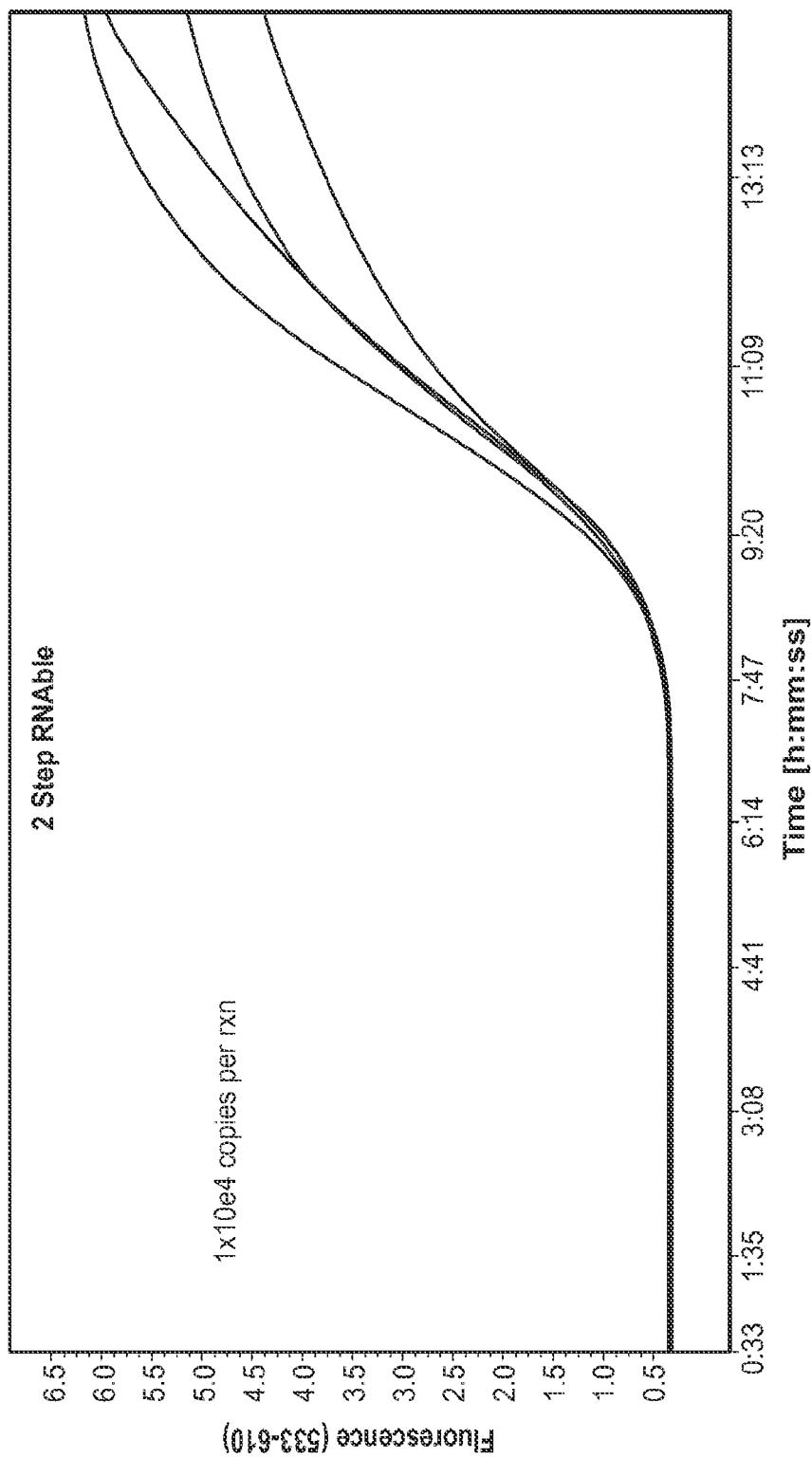

34/50

FIG. 8



35/50

FIG. 9

36/50

FIG. 10
Fluorescence History

37/50

FIG. 11A

A. Two-Step RNAble® Reaction with cDNA
GENE ID: 85495 RPPH1 (RNase P RNA component)
Fluorescence History

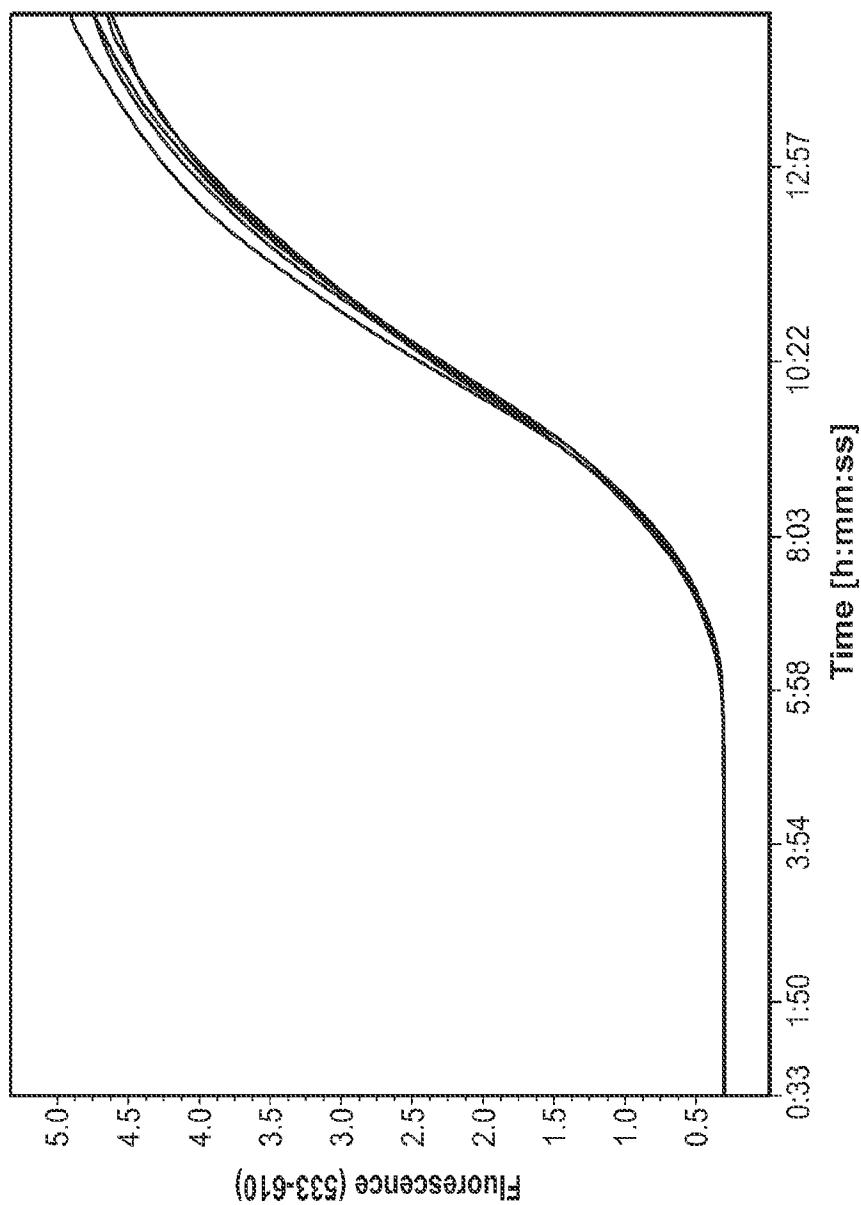
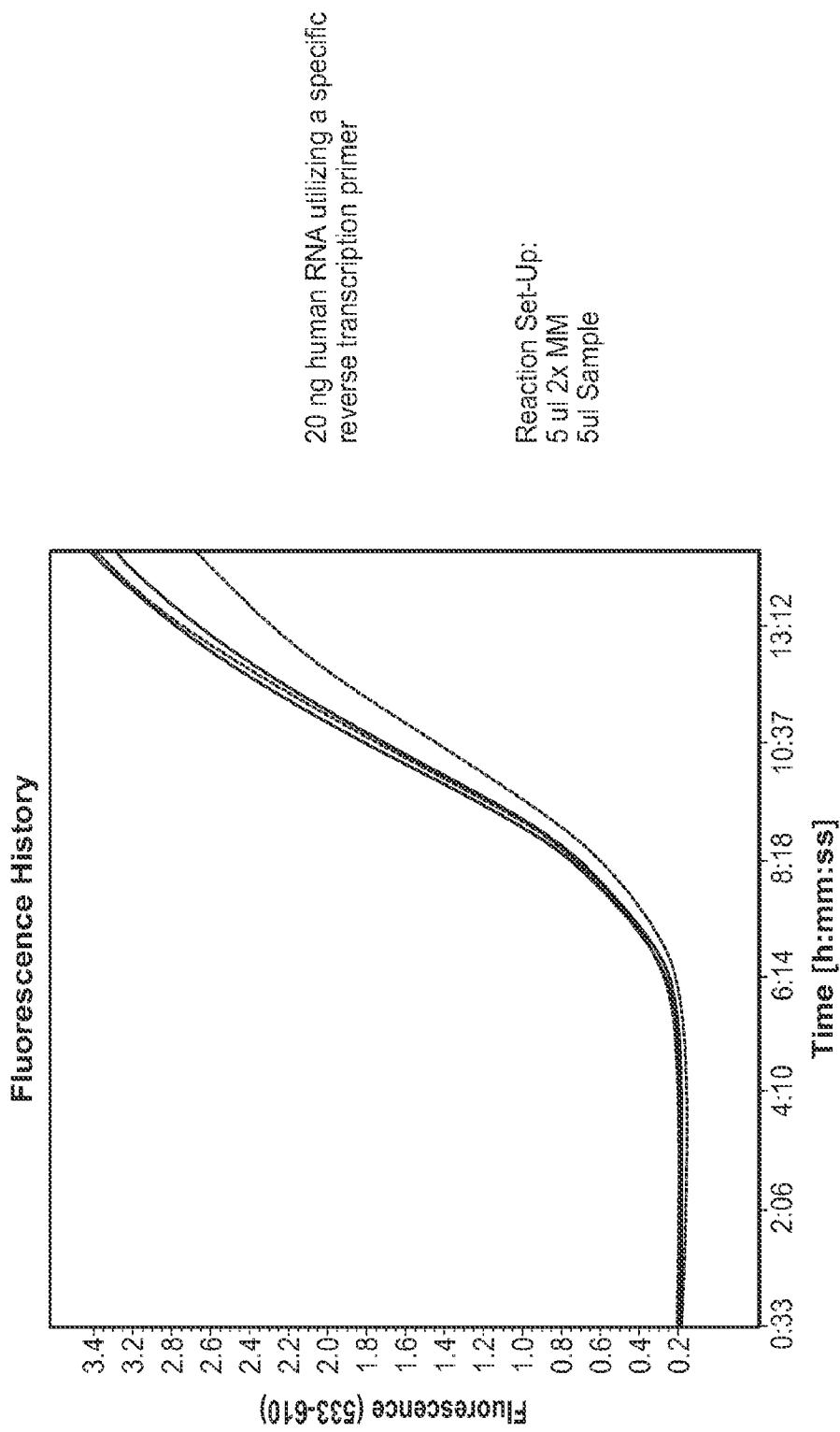



FIG. 11B

B. One-Step RNAble® RPPH1 Detection with Purified Human RNA

39/50

FIG. 12

Zaire Ebola One-Step RNABlue® Reaction in a Crude Blood Prep #4

Crude Blood Prep Method #4

To 20 μ L whole blood, add:
 20 μ L 0.5% SDS in H₂O.
 Mix.
 Incubate for 3 minutes at room
 temperature.
 Add 20 μ L 2% BSA in H₂O.
 Mix.
 Incubate for 1 minute at room
 temperature.
 Add 1 μ L of crude blood prep. to a
 10 μ L reaction with 1000 copies
 synthetic RNA target. Run reaction
 in triplicate at 56° C on LC480.

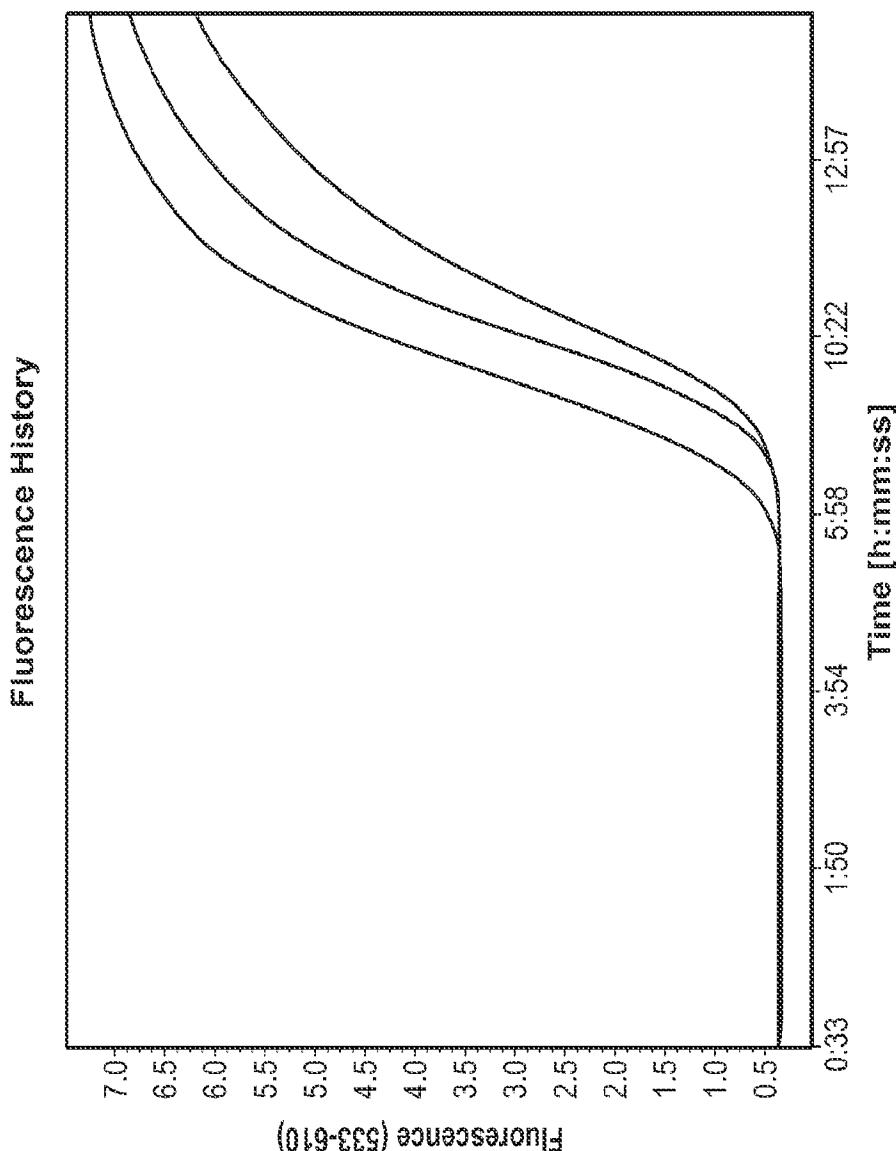


FIG. 13

One-Step RNABl[®]
Zaire Ebolavirus Mayinga vs. Sudan Ebolavirus Boniface Specificity Example

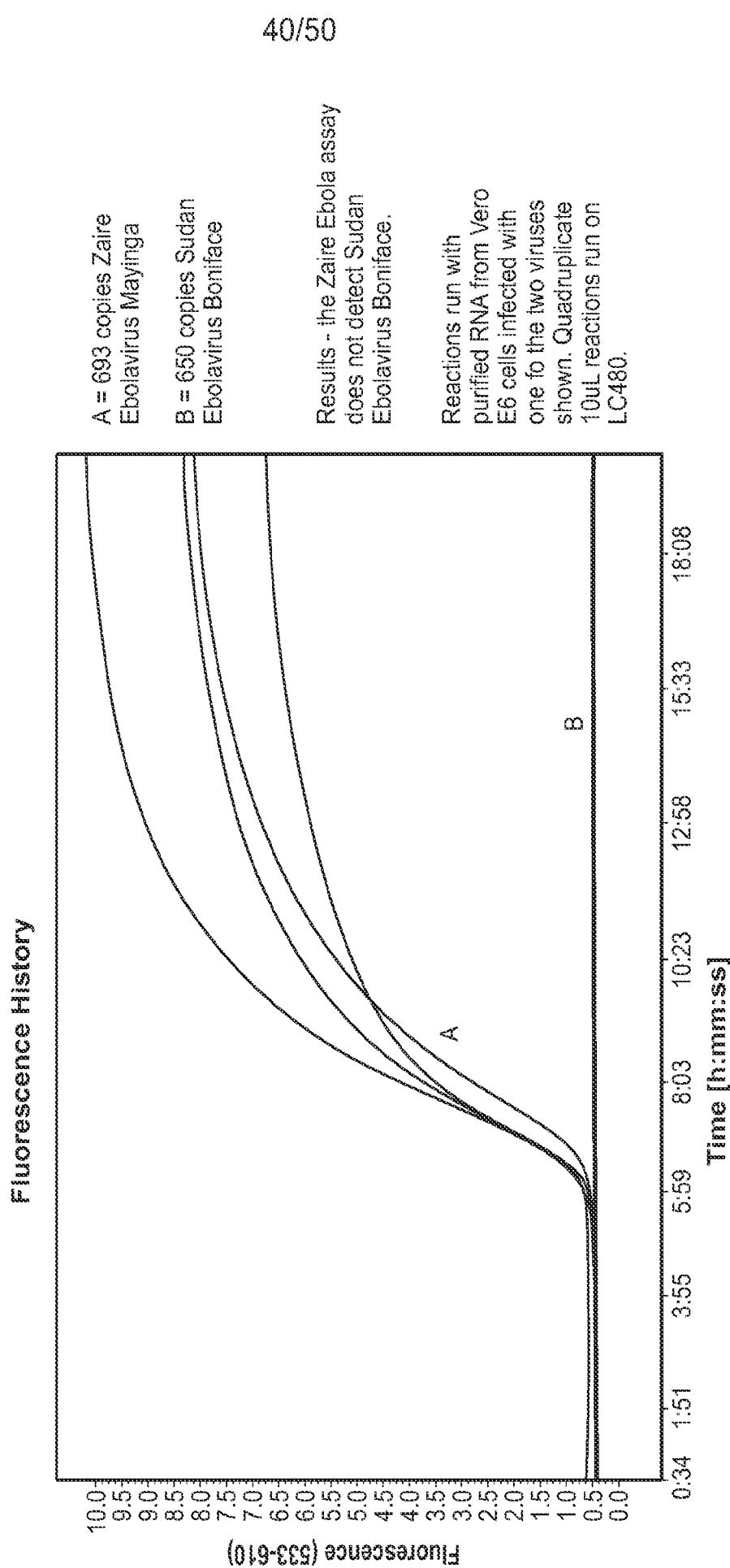
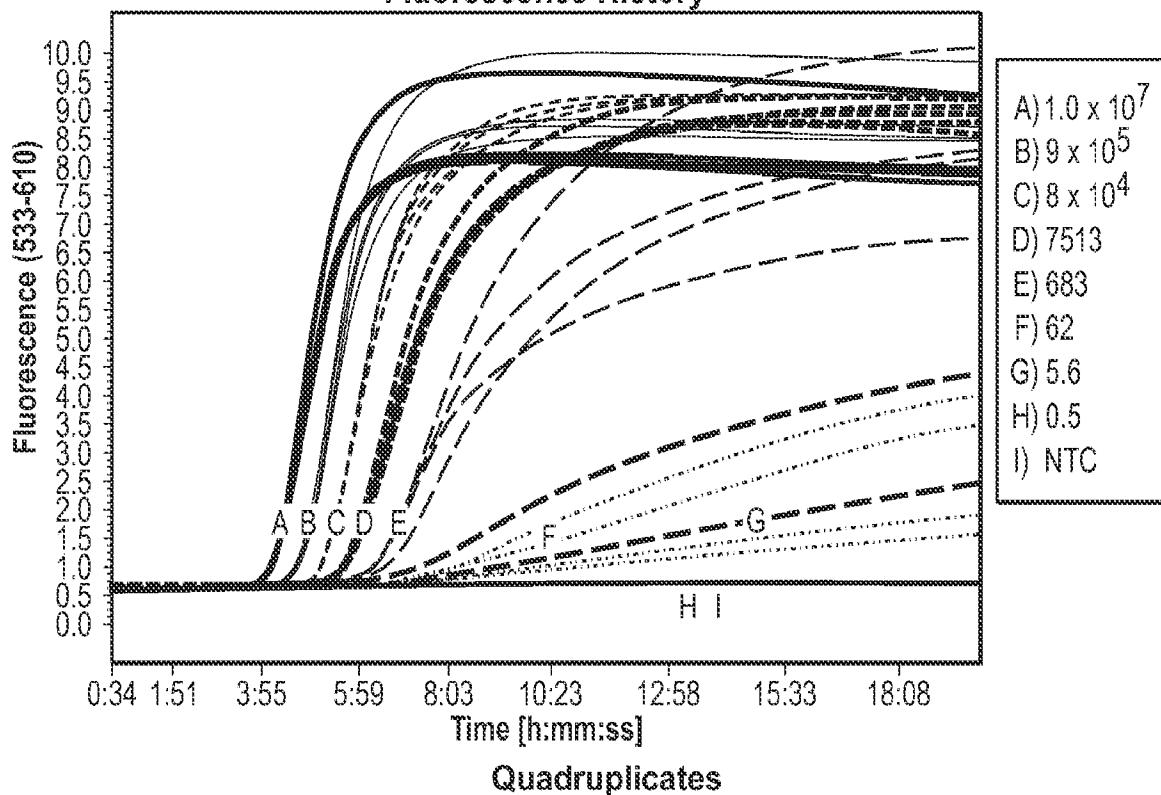
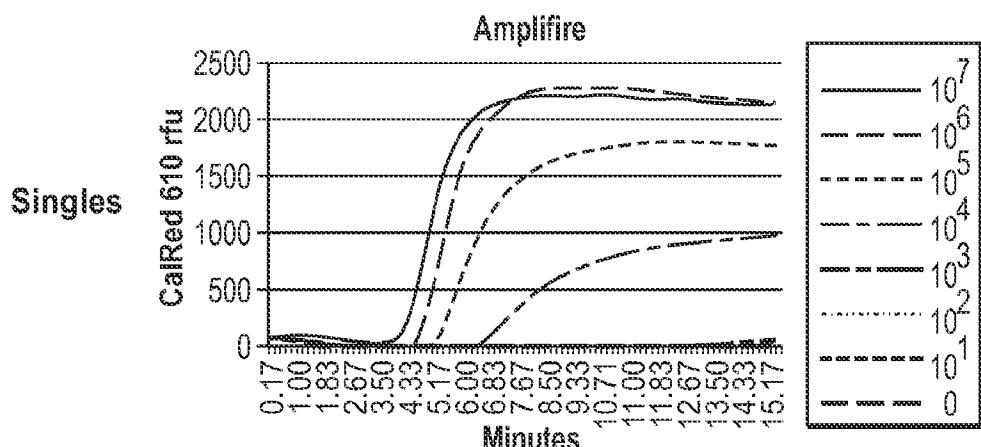
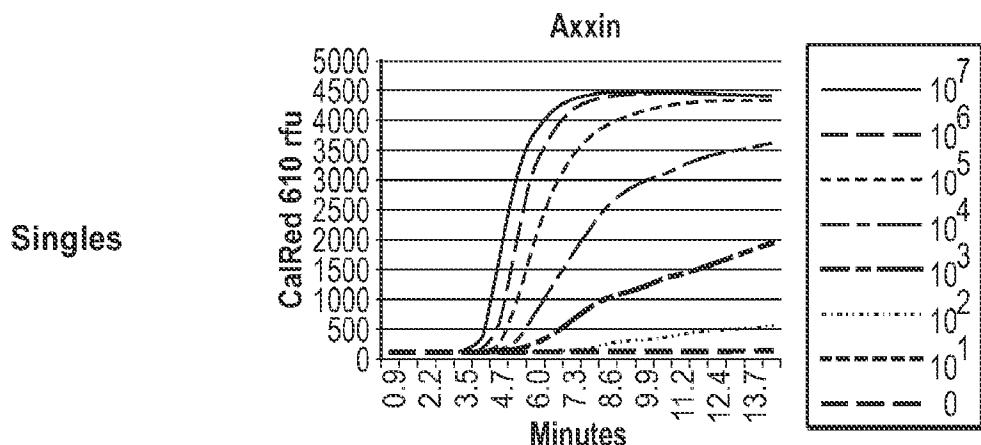
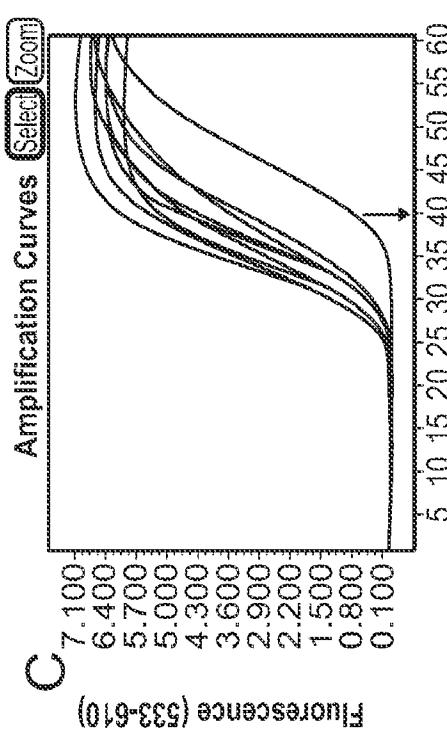
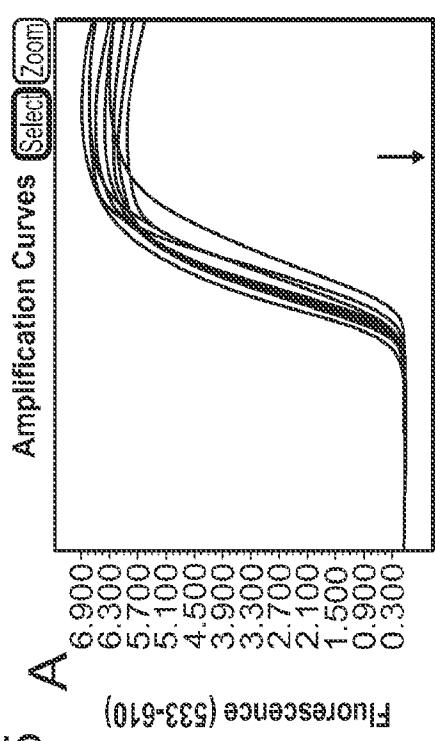



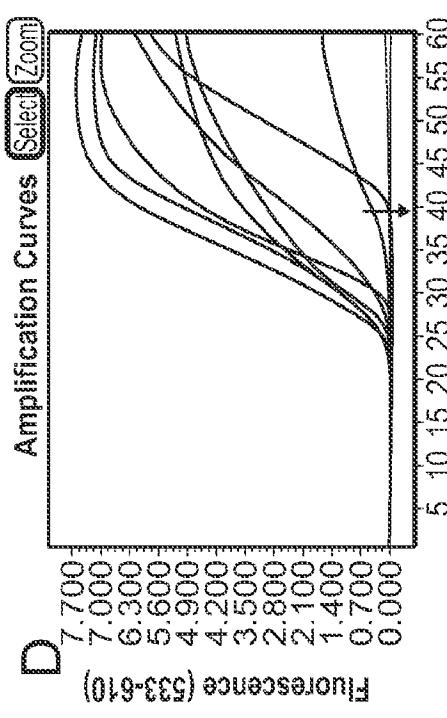
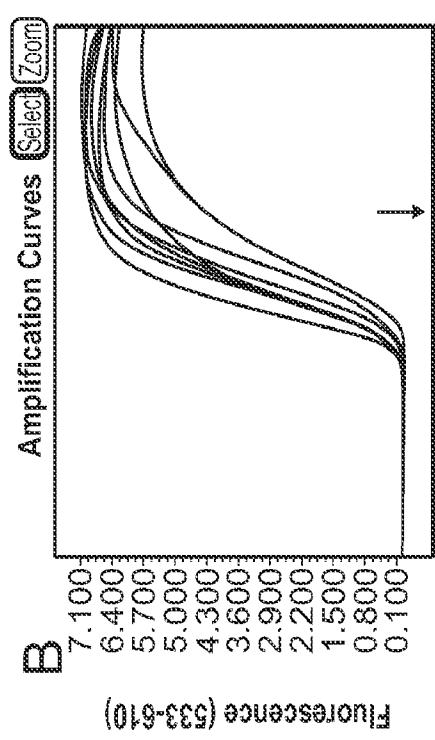
FIG. 14



41/50

Instrument Comparison Zaire Ebolavirus Mayinga
Roche LightCycler 480 II

Fluorescence History



Quadruplicates



42/50

Example Amplification Curves Representing Serially Diluted One-Step RNAble® Zaire Ebolavirus Mayinga RNA

FIG. 15 A

10 Technical Replicates Each

12 Copies

164

HIV One-step RNA^l
Candidate assay
gag protein target

F2/R1 Amplicon Map

三

Reverse Probe ↑

External printer

5' TGACTAGCTAGAAGGAGAGATGGGTGGCGAGAGGGTCAATTAAAGAGGGGAAAAATTAGATGC
5' TGACTAGCTAGAAGGAGAGATGGGTGGCGAGAGGGTCAAGTA

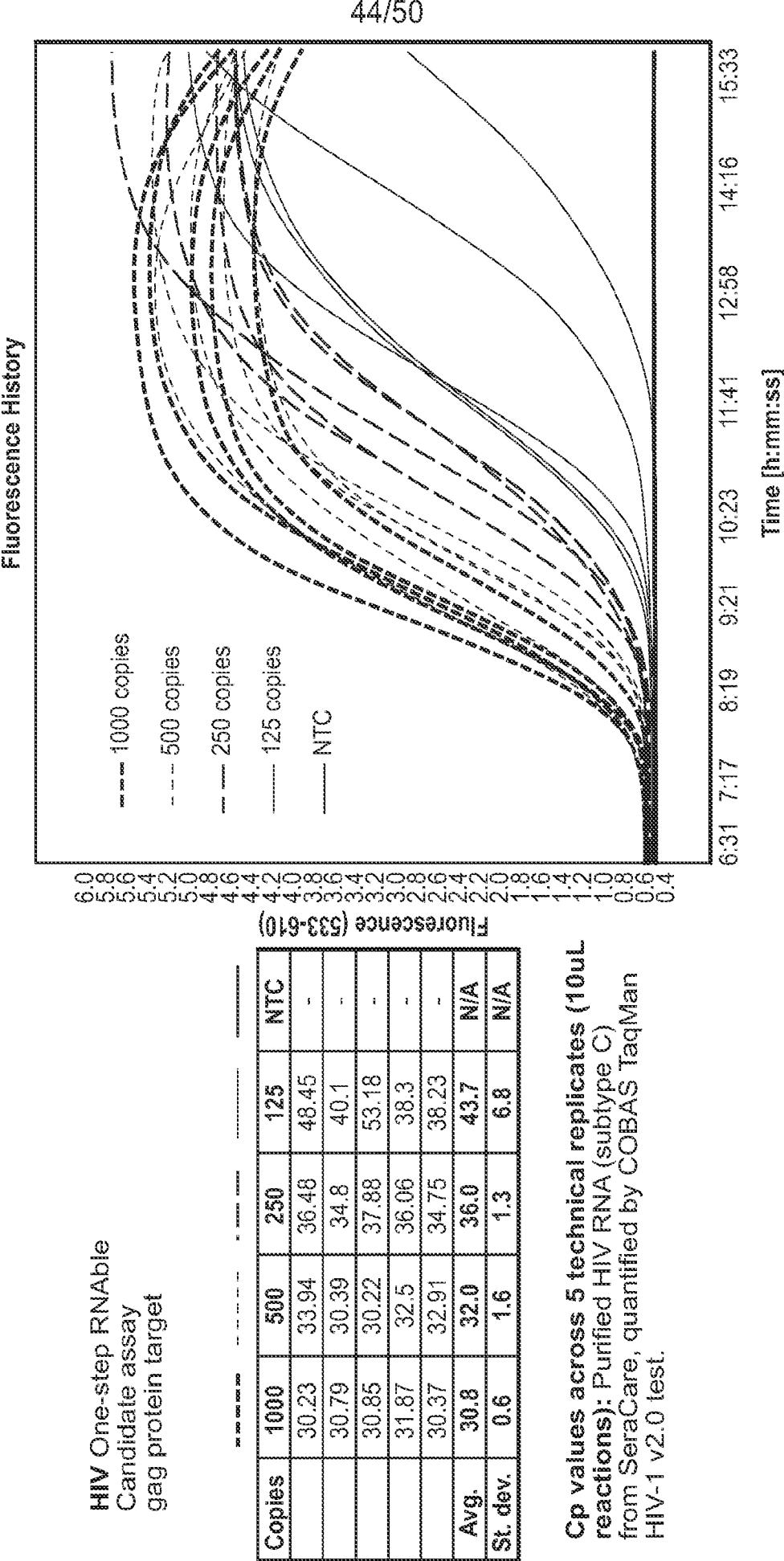
Space¹ 11 bp

Amico

*Note: bold bases indicate nonnull sequence variations

Hachette Book Group

卷之三


Primer	Sequence
Hgag.F2a	GACTCGATAATCGAGTCGACTAGmCGGAGGmCmTmAmGmAmG
Hgag.F2b	GAATCGATAATCGAGTCGACTAGmCGAGGmCmTmAmGmAmG
Hgag.R1a	GAATCGATAATCGAGTCGACTAGmGCTCmTmCmGmAmC
Hgag.R1b	GAATCGATAATCGAGTCGACTGACmGCTCmTmCmGmAmC
Hgag.rt3.subC*	GCATCTAAATTTCGCC (ecternal)
Hgag.probe.T	cgcaaqGGAGAGAGATGGGTGtttgtcg

Brimmers: mN indicates methoxy base

Brooks sequences: leaves = stems leaves = recognition

*External primer sequence is specific to HIV subtype C (for the purified RNA sample used).

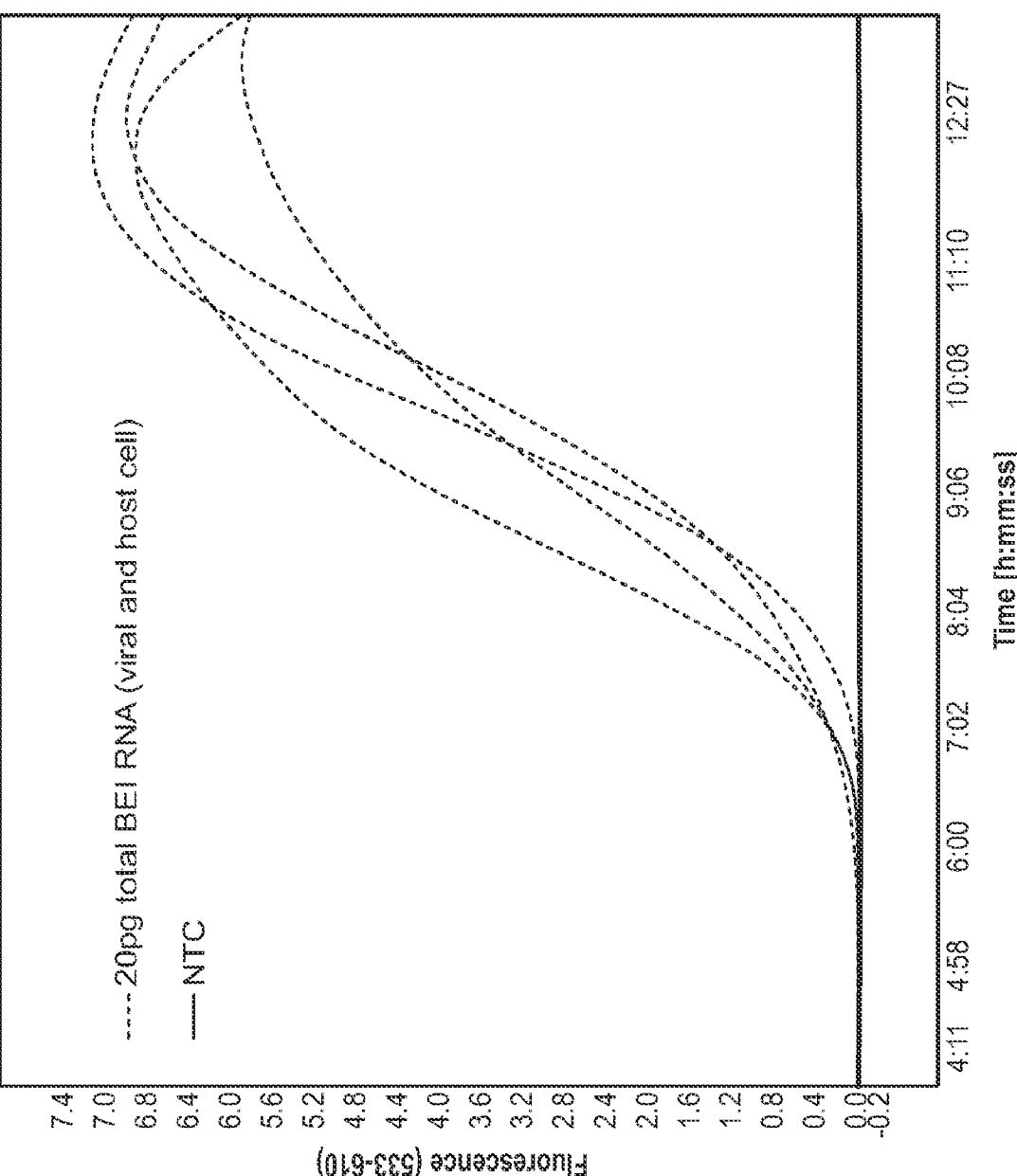
FIG. 16B

NAME
EIG.

Dengue 4 One-step RTNAble Candidate assay 3' UTR target

Amplicon Map

Forward \longleftrightarrow Probe B \longleftrightarrow Reverse
CAAAACAGCATATTGACGCTGGAAAGACCAAGAGATCCCTGCTGTC
CAAAACAGCATATTGACGCTGGAAAGACCAAGAGATCCCTGCTGTC
Spacer: \dots 9bp \dots 39bp
Amplicon: \dots 39bp


Den4 (Dengue type 4)

Primer	Sequence
Den4.F2	GACTCGATAATCGAGTCAAAAACmAGGCAATTmGmAmCmGmC
Den4.R1a	GACTCGATAATCGAGTCAGACAGCmAGGATCm1mCm1mGmG
Den4.R1b	GACTCGATAATCGAGTCAGACAGCmAGGATCm1mGm1mGmG
Den4.extRT1	TCTGTGCCCTGGATTGAT (external primer)
Den4.probe.B	ccgcattGGTCCTTCCCCAGCgatgcg

Primers: mW indicates methoxy base
Probe sequence: lowercase = stems, uppercase = recognition

FIG. 17B

Fluorescence History

	20pg RNA	NTC
	27.90	-
	32.19	-
	27.97	-
	34.00	-
Avg.	30.5	N/A
St. dev.	3.1	N/A

Dengue 4 One-step RNAable
Candidate assay
3' UTR target
*Preliminary data

	20pg RNA	NTC
	27.90	-
	32.19	-
	27.97	-
	34.00	-
Avg.	30.5	N/A
St. dev.	3.1	N/A

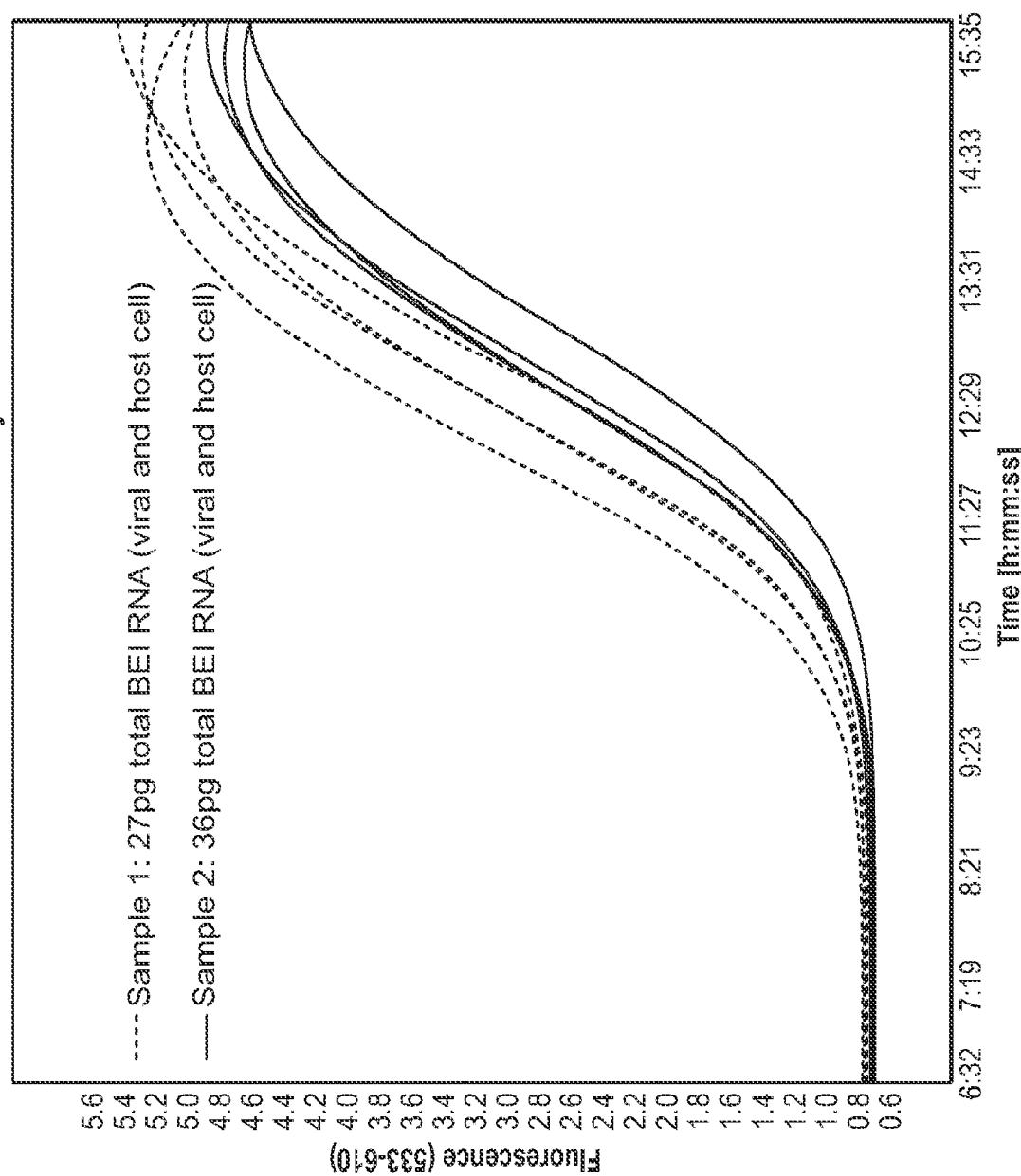
Cp values across 4 technical replicates ($10\mu\text{L}$ reactions): Isolated total RNA from cell culture includes both viral and host cell RNA, total copy number is unknown.

184

Influenza B One-step RNABle
Candidate assay
Segment 7 target

Amplicon Map

47


Forward	Probe T →	Reverse
		External primer
AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA	AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA	AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA
AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA	AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA	AAATGCAGATGGTCTCAGCTATGAAACACAGCAAA
		Spacer:
		13bp
		48bp
		Amplicon:

FluB (influenza B)

Primer	Sequence
FluB.F2a	GAATCGGATATGGAGTCAAATGCAmGATGGTCTCmAmGmCmTmA
FluB.F2b	GAATCGGATATGGAGTCAAATGCAmAAATGGTCTCmAmGmCmTmA
FluB.F2c	GAATCGGATATGGAGTCAAATGCAmGATGGTTTCmAmGmCmTmA
FluB.R3a	GAATCGGATATGGAGTCCTCTTmTCCCATCCATmTmCmAmTmT
FluB.R3b	GAATCGGATATGGAGTCCTCCCTTmTCCCATCCATmTmCmAmTmT
FluB.R3c	GAATCGGATATGGAGTCCTCTTmCCCATCCATmTmCmAmTmT
FluB.exRT1a	TTTGGACGGTCCTCTCC
FluB.exRT1b	TTTGAACGGTCCTCTCC
FluB.probe.T	ggcaAGCTATGAAACACAGCAAACtgcc

FIG. 18B

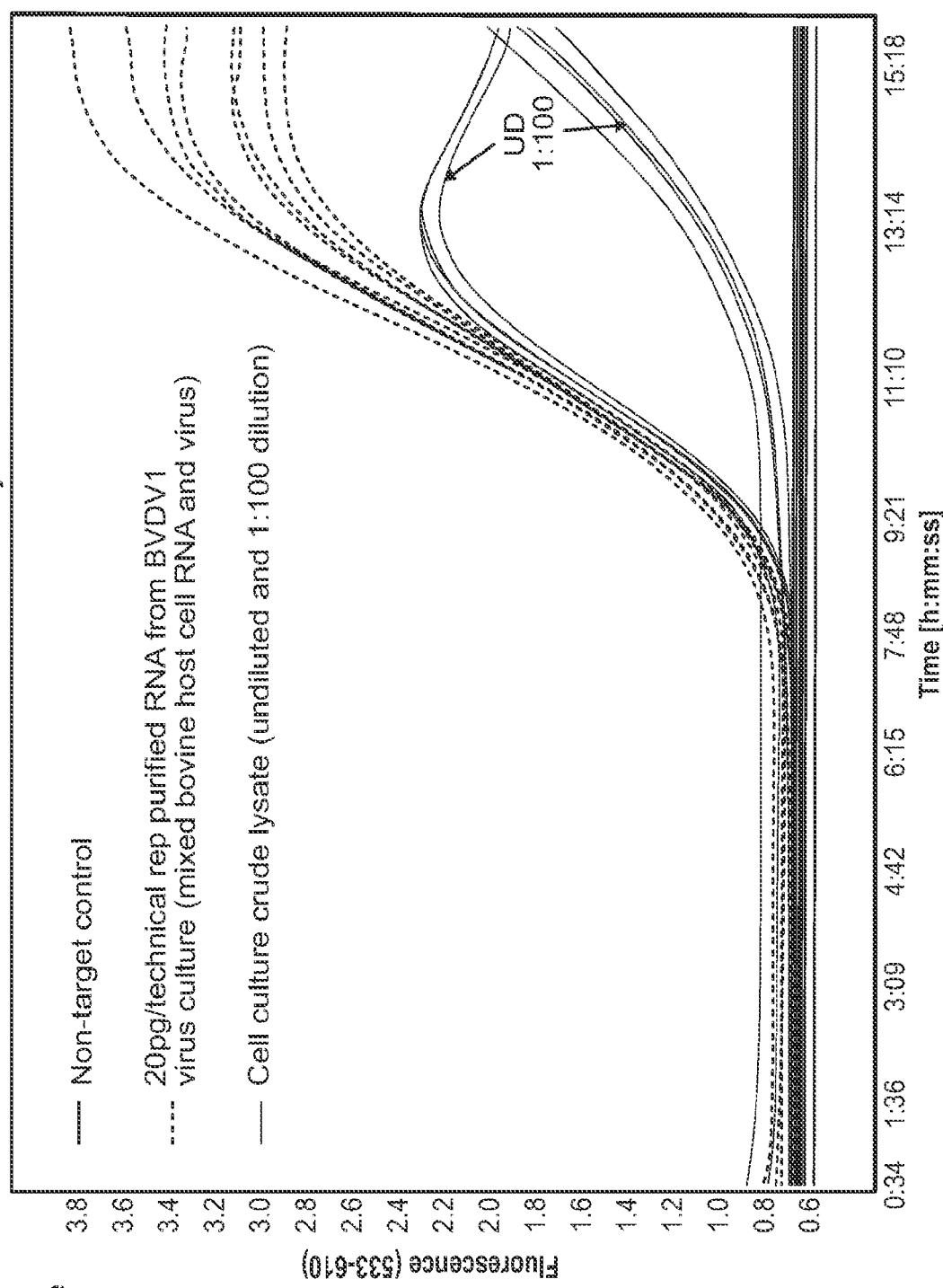
Fluorescence History

Influenza B One-step RNA Amplification
Candidate assay
Segment 7 target
*Preliminary data

	Sample 1	Sample 2
	39.89	42.05
	40.83	41.72
	41.29	43.92
	42.75	42.77
Avg.	41.2	42.6
St. dev.	1.2	1.0

Cp values across 4 technical replicates (10¹pfu reactions): Isolated total RNA from cell culture includes both viral and host cell RNA, total copy number is unknown. Samples 1 and 2 are different viral isolates.

49/50


FIG. 19A

BVDV1 One-step RNABle Candidate assay Polyprotein gene target

FIG. 19B

BVDV1 One-step RNAble
Candidate assay
Polyprotein gene target

Fluorescence History

2015336086 16 Nov 2020

8969417_1
SEQUENCE LISTING

<110> ENVIROLOGIX INC.
<120> COMPOSITIONS AND METHODS FOR DETECTING AN RNA VIRUS
<130> 049224.1047W01 (00102)
<140> PCT/US2015/056491
<141> 2015-10-20
<150> 62/104,008
<151> 2015-01-15
<150> 62/066,277
<151> 2014-10-20
<160> 75
<170> PatentIn version 3.5
<210> 1
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<220>
<223> Description of Combined DNA/RNA Molecule: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 1
gactcgtatat cgagtcgctt ccacagttat cuaccg

36

<210> 2
<211> 33
<212> DNA

2015336086 16 Nov 2020

8969417_1

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<223> Description of Combined DNA/RNA Molecule: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 2
gactcgatat cgagtcgaaa tgcaacgaca ccu

33

<210> 3
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic probe

<400> 3
gctacacgac tttygctgaa ggtagc

26

<210> 4
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic probe

<220>
<223> 5'-CALRed610nm-modified

<220>

<223> 3'-BHQ2-modified
<400> 4
gctacacgac tttygctgaa ggttagc

26

<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
probe

<220>
<223> 5'-FAM or FITC-modified

<220>
<223> 3'-BHQ1-modified

<400> 5
gctacacgac tttygctgaa ggttagc

26

<210> 6
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (30)..(36)
<223> Methoxy base

<400> 6
gactcgatat cgagtctgac tagcggaggc tagaag

36

<210> 7
<211> 36

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (30)..(36)
<223> Methoxy base

<400> 7
gactcgatat cgagtctgac tagcagaggc tagaag

36

<210> 8
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (28)..(33)
<223> Methoxy base

<400> 8
gactcgatat cgagtctatt gacgctctcg cac

33

<210> 9
<211> 33
<212> DNA
<213> Artificial Sequence

<220>

16 Nov 2020

2015336086

8969417_1
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (28)..(33)
<223> Methoxy base

<400> 9
gactcgatat cgagtctact gacgctctcg cac

33

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
probe

<400> 10
cgcaagggag agagatgggt gcttgcg

27

<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 11

2015336086 16 Nov 2020

8969417_1
gactcgatat cgagtccaaa aacagcatat tgacgc 36

<210> 12
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (30)..(34)
<223> Methoxy base

<400> 12
gactcgatat cgagtccagac agcaggatct ctgg 34

<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (30)..(34)
<223> Methoxy base

<400> 13
gactcgatat cgagtccagac agcaggatct gtgg 34

<210> 14

<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
probe

<400> 14
cgcatctggc ctttcccagc gatgcg

26

<210> 15
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (33)..(37)
<223> Methoxy base

<400> 15
gactcgatat cgagtcaaat gcagatggtc tcagcta

37

<210> 16
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>

<221> modified_base
<222> (33)..(37)
<223> Methoxy base

<400> 16
gactcgatat cgagtcaaat gcaaatggtc tcagcta

37

<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (33)..(37)
<223> Methoxy base

<400> 17
gactcgatat cgagtcaaat gcagatggtt tcagcta

37

<210> 18
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (35)..(39)
<223> Methoxy base

16 Nov 2020

2015336086

8969417_1

<400> 18
gactcgatat cgagtcctcc ttttcccatt ccattcatt 39

<210> 19
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (35)..(39)
<223> Methoxy base

<400> 19
gactcgatat cgagtcctcc ctttcccatt ccattcatt 39

<210> 20
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (35)..(39)
<223> Methoxy base

<400> 20
gactcgatat cgagtcctcc tttcccccatt ccattcatt 39

16 Nov 2020
2015336086

8969417_1

<210> 21
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic probe

<400> 21
gccaagctat gaacacagca aacttggc 28

<210> 22
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (33)..(39)
<223> Methoxy base

<400> 22
gactcgatat cgagtcggcc cactgtattg ctactgaaa 39

<210> 23
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

2015336086 16 Nov 2020

8969417_1

<220>
<221> modified_base
<222> (33)..(39)
<223> Methoxy base

<400> 23
gactcgatat cgagtcggcc cactgcactg ctactaaaa

39

<210> 24
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (30)..(36)
<223> Methoxy base

<400> 24
gactcgatat cgagtctgtg atcaactcca tgtgcc

36

<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
probe

<400> 25
cgctacatct ctgctgtaca tggtagcg

28

<210> 26
<211> 18958
<212> DNA
<213> Zaire ebolavirus

<400> 26

8969417_1

cggacacaca aaaagaaaaga agaattttta ggatctttg tgtgcgaata actatgagga 60
agattaataa tttcctctc attgaaattt atatcggaat ttaaattgaa attgttactg 120
taatcacacc tggttgttt cagagccaca tcacaaagat agagaacagc ctaggtctcc 180
gaagggaca agggcaccag tgtgctcagt tgaaaatccc ttgtcaacat ctaggtctta 240
tcacatcaca agttccacct cagactctgc agggtgatcc aacaacccta atagaaaaat 300
tattgttaac ggacagcatt agttcacagt caaacaagca agattgagaa ttaaccttga 360
tttgaacct caacacctag aggattggag attcaacaac cctaaaactt gggtaaaac 420
attggaaata gttgaaagac aaattgctcg gaatcacaaa attccgagta tggattctcg 480
tcctcagaaa gtctggatga cgccgagtct tactgaatct gacatggatt accacaagat 540
cttgacagca ggtctgtccg ttcaacaggg gattttcgg caaagagtca tcccagtgt 600
tcaagtaaac aatcttgagg aaatttgc当地 acttatcata cagggctttg aagcaggtgt 660
tgattttcaa gagagtgc当地 acagttcct tctcatgctt tgtcttc当地 atgcgtacca 720
aggagatcac aaactttct tggaaagtgg tgc当地caag tatttggaaag ggc当地ggg 780
ccgaaaaaa gtcaagaaac gtgatggggt gaagcgc当地 gaggaattgc tgccagc当地 840
atcttagtgg aaaaacatta agagaacact tgctgccatg cc当地gaagagg agacgactga 900
agctaataat ggtcagttc tctctttgc aagtcttattc cttcc当地aaat tggtagtagg 960
agaaaaggct tgc当地tggaga aagttcaaag gcaaattcaa gtacatgc当地 agcaaggact 1020
gatacaataat ccaacagctt ggcaatc当地t aggacacatg atggtgattt tccgaaaat 1080
gc当地acaat ttttggatca aatttctc当地t aatacaccaa gggatgc当地a tggttgc当地gg 1140
gcatgatgcc aacgatgctg tgatttcaaag ttc当地ggct caagctc当地t tttc当地gg 1200
attgattgtc aaaacagtcc ttgatc当地at cctacaaaag acagaacgag gagttc当地t 1260
ccatcctctt gcaaggactg ccaaggtaaa aatgaggtg aactc当地tta aggctgc当地t 1320
cagctccctg gccaaggcatg gagagtatgc tc当地tgc当地t c当地actt当地tga acctt当地tgg 1380
agtaaataat cttgagcatg gtctttccc tcaactatcg gcaattgc当地 tc当地ggatgc当地 1440
cacagcacac gggagcaccc tc当地caggagtaatgttggaa gaacagtatc aacagctc当地 1500
agaggctgcc actgaagctg agaagcaact ccaacaatat gc当地aaatctc gc当地aaattga 1560

8969417_1	
ccatcttgg a cttgatgatc aggaaaagaa aattcttatg aacttccatc agaaaaagaa	1620
c gaaatcagc ttccagcaaa caaacgctat ggtaactcta agaaaagagc gcctggccaa	1680
gctgacagaa gctatcactg ctgcatcaact gccc aaaaaca agtggacctt acgatgatga	1740
tgacgacatt cccttccag gacccatcaa tgatgacgac aatcctggcc atcaagatga	1800
tgatccgact gactcacagg atacgaccat tccc gatgtg gtgggtgatc ccgatgatgg	1860
aagctacggc gaataccaga gttactcgga aaacggcatg aatgcaccag atgacttggt	1920
cctattcgat ctagacgagg acgacgagga cactaagcca gtgcctaaca gattgaccaa	1980
gggtggacaa cagaaaaaca gtcaaaaggg ccagcataca gagggcagac agacacaatc	2040
caggccaact caaaatgtcc caggccctcg cagaacaatc caccacgcca gtgctccact	2100
cacggacaac gacagaggaa atgaaccctc cggctcaacc agccctcgca tgctgacacc	2160
aattaacgaa gaggcagacc cactggacga tgccgacgac gagacgtcta gtcttccgccc	2220
cttggagtca gacgatgaag aacaggacag ggacgaaact tccaaccgca cacccactgt	2280
cgccccaccg gctcccgat acagagatca ctctgaaaag aaagaactcc cgcaagatga	2340
gcagcaagat caggaccaca ctcaagaggc caggaaccag gacagtgaca acacccagcc	2400
agaacactct tttgaggaga tgtatgcca cattctaaga tcacagggac catttgatgc	2460
tgttttgat tatcatatga tgaaggatga gcctgttagtt ttcatgacta gtgatggcaa	2520
agagtacacg tatccggact cccttgaaga ggaatatcca ccatggctca ctgaaaaaga	2580
ggccatgaat gaagagaata gattgttac attggatggt caacaattt attggccggt	2640
aatgaatcac aagaataaat tcatggcaat cctgcaacat catcagtcaa tgagaatgga	2700
ataatggat gatttaaccg acaaatacg aacatcaaattt agtcaagaaa cgcaaacagg	2760
aagaattttt gatgtctaag gtgtgaatta ttatcacaat aaaagtgatt cttattttg	2820
aatttaaagc tagtttattttt ttactagccg ttttcaaag ttcaatttga gtcttaatgc	2880
aaataggcgt taagccacag ttatagccat aattgtaaact caatatctt gctagcgatt	2940
tatctaaattt aaattacatt atgcttttat aacttaccta ctagcctgccc caacatttac	3000
acgatcgttt tataattaag aaaaaactaa tgatgaagat taaaaccttc atcatccttta	3060
cgtcaattga attctctagc actcgaagct tattgtcttc aatgtaaaag aaaagctggt	3120

8969417_1	
ccaacaagat gacaactaga acaaagggca gggccatac tgtggccacg actcaaaacg	3180
acagaatgcc aggccctgag cttcgggct ggatctccga gcagctaatt accggaagaa	3240
ttcctgttaag cgacatcttc tgtgatattt agaacaatcc aggattatgt tacgcattcc	3300
aaatgcaaca aacaaagcca aacccgaaga tgcgcaacag tcaaacccaa acggacccaa	3360
tttgcataatca tagtttgag gaggttagtac aaacattggc ttcattggct actgttgtgc	3420
aacaacaaac tatcgcatca gaatcattag aacaacgtat tacgagtctt gagaatggtc	3480
taaagccagt ttatgatatg gcaaaaacaa ttccttcatt gaacagggtt tgtgctgaga	3540
tggttgcaaa atatgatctt ctggtgatga caaccggtcg ggcaacagca accactgcgg	3600
caactgagggc ttattggctt gaacatggtc aaccaccacc tggaccatca ctttatgaag	3660
aaagtgcata tcgggtaag attgaatcta gagatgagac cgtccctcaa agtgttaggg	3720
aggcattcaa caatctagac agtaccactt cactaactga ggaaaatttt gggaaacctg	3780
acatttcagc aaaggatttg agaaacatta tgtatgatca cttgcctggc tttggactg	3840
ctttccacca attagtacaa gtgatttgta aattggaaa agatagcaac tcattggata	3900
tcattcatgc tgagttccag gccagcctgg ctgaaggaga ctctcctcaa tgtgccctaa	3960
ttcaaattac aaaaagagtt ccaatcttcc aagatgctgc tccacctgtc atccacatcc	4020
gctctcgagg tgacattccc cgagcttgcc agaaaagctt gcgtccagtc ccgccatcac	4080
ccaagattga tcgaggttgg gtagtgttt tccagcttca agatggtaaa acacttggac	4140
tcaaaatttg agccaatctc cttccctcc gaaagaggcg accaatagca gaggcttcaa	4200
ctgctgaact acagggtacg ttacattaat gatacacttg tgagtatcag ccctagataa	4260
tataagtcaa tttaaacgacc aagccaaaat tgttcatatc ccgctagcag cttaaaatata	4320
aaatgaaata ggagctatat ctctgacagt attataatca attgttatta agtaacccaa	4380
acccaaaatg atgaagatta agaaaaacct acctcgactg agagagtgtt tttccattaa	4440
ctttcattt gtaaacgttg agccaaaattt ttacgaatata gaggcgggtt atattgcata	4500
ctgctcctcc tgaatataatg gaggccatat accctgtcag gtcaaattca acaattgcta	4560
ggggtggcaa caacaataca ggcttcctga caccggagtc agtcaatgga gacactccat	4620
cgaatccact caggccattt gctgatgaca ccatcgacca tgctagccac acaccaggca	4680

2015336086 16 Nov 2020

8969417_1
gtgtgtcatc agcattcatc cttgaagcta tggtaatgt catatcgggc cccaaagtgc 4740
taatgaagca aattccaatt tggttccctc taggtgtcgc tgatcaaaag acctacagct 4800
ttgactcaac tacggccgcc atcatgcttg cttcatatac tatcacccat ttccggcaagg 4860
caaccaatcc acttgcaga gtcaatcggc tgggtcctgg aatcccggat cacccctca 4920
ggctcctgca aattggaaac caggcattcc tccaggagtt cggttcccg ccagtccaac 4980
tacccagta tttcaccttt gatttgacag cactcaaact gatcacccaa ccactgcctg 5040
ctgcaacatg gaccgatgac actccaacag gatcaaattgg agcgctgcgt ccaggaattt 5100
cgtttcatcc aaaacttcgc cccattctt tacctaacaa aagtggaaag aaggggaaca 5160
gtgccgatct aacatctcca gagaaaaatcc aagcaataat gacttcactc caggacttta 5220
agatcgttcc aattgatcca accaaaaata tcatgggtat cgaagtgcga gaaactctgg 5280
tccacaagct gaccggtaag aaggtgactt ctaaaaatgg acaaccaatc atccctgttc 5340
tttgccaaa gtacattggg ttggacccgg tggctccagg agacctcacc atggtaatca 5400
cacaggattg tgacacgtgt cattctcctg caagtcttcc agctgtgatt gagaagtaat 5460
tgcaataatt gactcagatc cagtttaca gaatcttctc agggatagtg ataacatcta 5520
tttagtaatc cgtctattag aggagatact tttaattgat caatatacta aaggtgcttt 5580
acaccattgt ctttttctc tcctaaatgt agaacttaac aaaagactca caatatactt 5640
gtcttaaaga gattgattga tgaaagatca tgactaataa cattacaaat aatcctacta 5700
taatcaataac ggtgattcaa atattaatct ttcttaattgc acatactctc tgccctatc 5760
ctcaaattgc ctacatgcct acatctgagg atagccagtg tgacttggat tggagatgta 5820
ggaaagaaat cggaacccat ctccaggttg ttccacaatcc aagcacagac atcgcccttc 5880
taattaagaa aaaatcggcg atgaagatta agccgacagt gagcgcaatc ttcatctctc 5940
tttagatttt tgttttccag agtaggggtc atcaggtcct ttccaatcat ataaccaaaa 6000
taaacttcac tagaaggata ttgtgaggca acaacacaat gggatttaca ggaatattgc 6060
agttacctcg tgatcgattc aagaggacat cattcttct ttgggttaatt atcctttcc 6120
aaagaacatt ttccatccca cttggagtca tccacaatag cacattacaa gtttagtgatg 6180
tcgacaaact agttgtcgt gacaaactgt catccacaaa tcaattgaga tcagttggac 6240

8969417_1

tgaatctcg agggaatgga gtggcaactg acgtgccatc tgcaactaaa agatggggct 6300
 tcaggtccgg tgtccctcca aaggtggtca attatgaagc tggtaatgg gctgaaaact 6360
 gctacaatct tgaaatcaaa aaacctgacg ggagtgagtg tctaccagca gcgcagacg 6420
 ggattcgggg cttcccccgg tgccggtatg tgcacaaagt atcaggaacg ggaccgtgt 6480
 ccggagactt tgccttccac aaagagggtg ctttcttccct gtatgatcga cttgcttcca 6540
 cagttatcta ccgaggaacg actttcgctg aagggtgtcg tgcatttctg atactgcccc 6600
 aagctaagaa ggacttcttc agtcacacc ctttgagaga gccggtaat gcaacggagg 6660
 acccgtccag tggctactat tctaccacaa ttagatatca ggctaccggg tttggaacca 6720
 atgagacgga gtacttgttc gaggttgaca atttgaccta cgtccaactt gaatcaagat 6780
 tcacgccaca gttttgctc cagctgaatg agacaatata tgcaagtggg aaaaggagca 6840
 acaccacggg aaaactaatt tggaaggtca accccgaaat tgataacaaca atcggggagt 6900
 gggccttctg ggaaactaaa aaaacctcac tagaaaaatt cgcagtgaag agttgtctt 6960
 cacagctgta tcaaacggag ccaaagacat cagtggtcag agtccggcgc gaacttcttc 7020
 cgaccaggag acctacacaa caactgaaga ccacaaaatc atggcttcag aaaattcctc 7080
 tgcaatggtt caagtgcaca atcaaggaag ggaagctgca gtgtcgcatc tgataaccct 7140
 tgccacaatc tccacgagtc ctcaatcccc tacaaccaaa ccaggtcagg acaacagcac 7200
 ccataataca cccgtgtata aacttgacat ctctgaggca actcaagttg aacaacatca 7260
 tcgcagaaca gacaacgaca gcacagcctc cgacactccc cccgcccacga ccgcagccgg 7320
 acccccaaaa gcagagaaca tcaacacgag caagagcgct gactccctgg accccgccac 7380
 cacgacaagt ccccaaaact acagcgagac cgctggcaac aacaacactc atcaccaga 7440
 taccggagaa gagagtgccg gcagcgggaa gctgggcttg attgccaata ctattgctgg 7500
 agtcgcaggg ctgatcacag gcgggagaag aactcgaaga gaagcaattt tcaatgctca 7560
 accccaaatgc aaccccaatc tacattactg gactactcag gatgaagggtg ctgcaatcgg 7620
 attggcctgg ataccatatt tcgggccagc agccgaggga atttacacag aggggctaatt 7680
 gcacaatcaa gatggttaa tctgtggatt gaggcagctg gccaatgaga cgactcaagc 7740
 tcttcaactg ttcctgagag ccacaactga gctacgcacc ttttcaatcc tcaaccgtaa 7800

8969417_1

ggcaatttat ttcttgctgc agcgatgggg cggcacatgc cacatttgg gaccggactg 7860
 ctgtatcgaa ccacatgattt ggaccaagaa cataacagac aaaattgatc agattattca 7920
 tgatTTGTT gataaaaccc ttccggacca gggggacaat gacaattgggt ggactggatg 7980
 gagacaatgg ataccggcag gtattggagt tacaggcgtt ataattgcag ttattgcttt 8040
 attctgtata tgcaaatttg tcttttagtt tttcttcaga ttgcttcatg gcaaagctca 8100
 gcctcaaattc aatgagatta ggatttaattt atatggatca cttgaatcta agattacttg 8160
 acaaattgata atataataca ctggagcttt aaatatagcc aatgtgattc taactccctt 8220
 aaactcacaat ttaatcataa acaagggttt acatcaatct agttatatct ttgagaatga 8280
 taaaacttgcgtt gaagattaag aaaaaggtaa tctttcgattt atcttttagtc ttcatccctt 8340
 attctacaat catgacagtt gtcttttagtg acaaggggaaa gaaggccttt tagtaagttg 8400
 taataatcag atctgcgaac cggtagagtt taattgcaac ctaacacaca taaagcattt 8460
 gtcaaaaaagt caatagaaat ttaaacagtg agtggagaca actttcaaat ggaagctcca 8520
 tacgagagag gacgcccccg agctgccaga cagcattcaa gggatggaca cgaccatcat 8580
 gttcgagcac gatcatcatc cagagagaat tatcgaggtg agtaccgtca atcaaggagc 8640
 gcctcacaat tgcgcgttcc tactgttattt cataagagga gagttgaacc attaacagtt 8700
 cctccagcac ctaaagacat atgtccgacc ttgaaaaaaag gatTTTGTG tgacagtagt 8760
 ttttgcaaaa aagatcacca gttggaaagt ttaactgata gggaaattact cctactaattc 8820
 gcccgtaaat cttgtggatc agtagaaacaa caattaaata taactgcacc caaggactcg 8880
 cgcttagcaa atccaaacggc tgatgatttc cagcaagagg aaggtccaaa aattacccctt 8940
 ttgacactga tcaagacggc agaacactgg gcgagacaag acatcaggac cacagaggat 9000
 tcaaaattaa gagcattgtt gactctatgt gctgtatgtca cgaggaaattt ctcaaaatcc 9060
 cagctgagtc ttttatgtga gacacacctg aggccgcagg ggcttggca agatcaggca 9120
 gaacccgttc tcgaagtata tcaacgatta cacagtata aaggaggcag tttcgaagct 9180
 gcactatggc aacaatggga tcgacaatcc ctaattatgt ttatcactgc attcttgaat 9240
 atcgctctcc agttaccgtg tgaaagttct gctgtcggtt tttcagggtt aagaacattg 9300
 gttcctcaat cagataatga ggaagcttca accaaccgg ggacatgctc atggtctgat 9360

2015336086 16 Nov 2020

8969417_1
gatggtaccc cttataagg ctgactaaaa cactatataa ccttctactt gatcacaata 9420
ctccgtatac ctatcatcat atattcaatc aagacggtat cctttaaaac ttattcagta 9480
ctataatcac tctcgttca aattaataag atatgcataa ttgcttaat atatgaagag 9540
gtatgataca accctaacag tgatcaaaga aaatcataat ctcttatcgc tcgtaatata 9600
acctgccaag cataccttt gcacaaagtg attctgtac acaaataatg ttttactcta 9660
caggaggtag caacgatcca tcccataaaa aaataagtat tttatgactt actaatgatc 9720
tcttaaaata ttaagaaaaa ctgacggaac acaaattctt tctgcttcaa gttgtggagg 9780
aggctttgg tattggctat tgttatatta caatcaataa caagcttga aaaatattgt 9840
tcttgttca agaggttagat tgtgaccgga aacgctaaac taatgatgaa gattaatgcf 9900
gaggctgtat aagaataaac cttattattc agattaggcc ccaagaggca ttcttcattt 9960
ccttttagca aagtactatt tcaggtagt ccaatttagt acacgtctt tagctgtata 10020
tcagtcgccc ctgagatacg ccacaaaagt gtctctaagc taaattggtc tgtacacatc 10080
tcatacattt tattagggc aataatatct aattgaactt agccgtttaa aatttagtgc 10140
ataaacctgg gctaactcca ccaggtcaac tccatggct gaaaagaagc ccacctacaa 10200
cgaacatcac tttgagcgcc cttacaatta aaaaatagga acgtcggtcc aacaatttag 10260
cgcaagggtt caaggttcaa ctgagagtgc ctaaacacca aaatatcgat aattcagaca 10320
ccaagcaaga cctgagaagg aaccatggct aaagctacgg gacgatacaa tctaatacg 10380
cccaaaaagg acctggagaa aggggttgtc ttaagcgacc tctgttaactt cctagttgt 10440
caaactattc aagggtggaa ggtctattgg gctggattt agtttgatgt gactcacaaa 10500
ggaatggccc tattgcatag actgaaaact aatgactttt cccctgcattt gtcaatgaca 10560
aggaatctat ttcctcattt atttcaaaat ccgaattcca caattgagtc accactgtgg 10620
gcattgagag tcattcatttgc agcagggta caggaccagc tgattgacca gtctttgatt 10680
gaacccttag caggagccct tggctgtatc tctgattggc tgctaaacaac caacactaac 10740
catttcaaca tgcgaacaca acgtgttaag gaacaattga gcctaaaaat gctgtcggt 10800
attcgatcca atattctcaa gtttattaac caattggatg ctctacatgt cgtgaactac 10860
aacgggttgt tgagcagtat tgaaattgga actcaaaatc atacaatcat tataactcga 10920

8969417_1	
actaacatgg	10980
gttttctgg	
ggagctccaa	
gaaccgcaca	
aatcggaat	
gaaccgcaag	
aagcctggc	11040
cggcgaatt	
ttccctcctt	
catgagtcca	
cactgaaagc	
atttacacaa	
gggtcctcg	11100
acgaatgca	
aagtttgatt	
cttgaattta	
atagctctc	
tgctatctaa	
ttaagatgga	11160
atacttcata	
ttgagctaac	
tcatatatgc	
tgactcaata	
gttatcttga	
catctctgct	11220
ttcataatca	
gataatataag	
cataataaat	
aaataactcat	
atttcttgat	
aatttgttta	11280
accacagata	
aatcctaact	
gtaagccagc	
ttccaagttg	
acacccttac	
aaaaaccagg	11340
actcagaatc	
cctcaaataa	
gagattccaa	
gacaacatca	
tagaattgct	
ttattatatg	11400
aataagcatg	
ttatcaccag	
aatccaata	
tactaaatag	
ttaattgtaa	
ctgaacccgc	11460
aggtcacgt	
tgtaggttt	
cacagattat	
atataattact	
aactccatac	
ccgtaattaa	11520
cattagataa	
gtagattaag	
aaaaacgctt	
gaggaagatt	
aagaaaaact	
gcttattggg	11580
tcttccgt	
tttttagatga	
agcagttgac	
attcttcctc	
ttgatattaa	
atggctacac	11640
aacataccca	
atacccagac	
gccaggttat	
catcaccaat	
tgtattggac	
caatgtgacc	11700
tagtcactag	
agcttgcggg	
ttatattcat	
catactccct	
taatccgcaa	
ctacgcaact	11760
gtaaactccc	
gaaacatatc	
taccgtttaa	
aatatgtgt	
aactgttacc	
aagttcttaa	11820
gtgatgtacc	
agtggcgaca	
ttgccaatag	
atttcatagt	
cccaattctt	
ctcaaggcac	11880
tgtcaggcaa	
tgggttctgt	
cctgttgagc	
cgcggtgtca	
acagttctta	
gatgaaatca	11940
ttaagtacac	
aatgcaagat	
gctctttcc	
tgaaatatta	
tctcaaaaat	
gtgggtgctc	12000
aagaggactg	
tgttgatgac	
cacttcaag	
agaaaaatctt	
atcttcaatt	
cagggcaatg	12060
aattttaca	
tcaaatgttc	
ttctggatg	
acctggctat	
tttgactcga	
aggggtagat	12120
taaatcgagg	
aaactctaga	
tcaacatggt	
ttgttcatga	
tgatttaata	
gacatcttag	12180
gctatgggga	
ctatgtttt	
tggaagatcc	
caatttcaat	
gttaccctg	
aacacacaag	12240
gaatccccca	
tgctgctatg	
gattggtatac	
aggcatcagt	
attcaaagaa	
gcgggtcaag	12300
ggcatacaca	
cattgtttct	
gtttctactg	
ccgacgtctt	
gataatgtgc	
aaagatttaa	12360
ttacatgtcg	
attcaacaca	
actctaattct	
caaagatagc	
agaggttgag	
gatccagttt	12420
gttctgatta	
tcccgatttt	
aagattgtgt	
ctatgcttta	
ccagagcgg	
gattacttac	12480
tctccatatt	
agggtctgat	
gggtataaaa	
ttattaagtt	
cctcgaacca	

8969417_1	
tttgcttgg ccaaaattca attatgctca aagtacaccg agaggaaggg ccgattctta	12540
acacaaatgc atttagctgt aaatcacacc ctggaagaaa ttacagaaaat gcgtgcacta	12600
aagcctcac aggtcaaaa gatccgtgaa ttccatagaa cattgataag gctggagatg	12660
acgccacaac aactttgtga gctatttcc attcaaaaac actgggggca tcctgtctaa	12720
catagtgaaa cagcaatcca aaaagttaaa aaacatgcc a cggcgtctaaa agcattacgc	12780
cctatagtga tttcgagac atattgtgtt tttaatata gtattgcaaa acattattt	12840
gatagtcaag gatcttggta cagtgttact tcagatagga atttaacgcc aggtcttaat	12900
tcttatataca aaagaaatca attccccccg ttgccaatga ttaaagaact actatggaa	12960
ttttaccacc ttgaccatcc tccactttc tcaaccaaaa ttattagtga cttaagtatt	13020
tttataaaag acagagctac cgcagtggaa aggacatgct gggatgcagt attcgagcct	13080
aatgttctag gatataatcc acctcacaaa ttcaagtacta aacgtgtacc agaacaattt	13140
tttagagcaag aaaacttttc tattgagaat gttcttcct acgcgcacaaa actcgagtt	13200
ctactaccac aataccggaa ttttctttc tcattgaaag agaaagagtt gaatgttaggt	13260
agaactttcg gaaaattgcc ttatccgact cgcaatgttc aaacactttg tgaagctctg	13320
ttagctgatg gtcttgctaa agcatttcct agcaatatga tggtagtcac agagcgttag	13380
caaaaagaaa gcttattgca tcaagcatca tggcaccaca caagtgtatga tttggtag	13440
catgccacag ttagagggag tagctttgtt actgatttttag agaaatacaa tcttcattt	13500
agatatgagt ttacagcacc ttttatagaa tattgtatcc gttgctatgg tgttaagaat	13560
tttttaatt ggatgcatta tacaatcccc cagtgttata tgcattgtcag tgattattat	13620
aatccaccgc ataacccac tctggaaaat cgagacaacc ccccccgaagg gcccagttca	13680
tacagaggtc atatgggagg gattgaagga ctgcaacaaa aactctggac aagtatttca	13740
tgtgctcaaa tttcttttagt tgaaataaaag actggttta agttacgctc agctgtgatg	13800
ggtgacaatc agtgcattac cgttttatca gtcttccct tagagactga cgcagacgag	13860
caggaacaga ggcgcgaaga caatgcagcg aggggtggccg ccagcctagc aaaagttaca	13920
agtgcctgtg gaatctttt aaaacctgtat gaaacatttg tacattcagg ttttatctat	13980
tttggaaaaa aacaatattt gaatggggtc caattgcctc agtccctaa aacggctaca	14040

8969417_1

agaatggcac cattgtctga tgcaattttt gatgatcttc aagggaccct ggctagtata 14100
 ggcactgctt ttgaacgatc catctctgag acacgacata tctttccttg caggataacc 14160
 gcagcttcc atacgttttt ttcggtgaga atcttgcaac atcatcacct cgggttcaat 14220
 aagggttttg accttggaca gttgacactt ggcaaaccctc tggatttcgg aacaatatca 14280
 ttggcactag cggtaccgca ggtgcttggaa gggttatcct tcttgaatcc tgagaaatgt 14340
 ttctaccgga atttaggaga tccagttacc tcaggcttat tccagttaaa aacttatctc 14400
 cgaatgattt agatggatga tttattctta ccttaattt cgaagaaccc tgggaactgc 14460
 actgccattt actttgtgct aaatcctagc ggattaaatg tccccgggtc gcaagactta 14520
 acttcatttc tgcccgat tgcgtttagg actatcaccc taagtgcgaa aaacaaactt 14580
 attaatactt tatttcatgc gtcagctgac ttcgaagacg aaatggttt taaatggcta 14640
 ttatcatcaa ctccgttat gagtcgtttt gcggccgata tctttcacg cacgcccagt 14700
 gggaaagcgt tgcaaattctt aggatacctg gaaggaacac gcacattatt agcctctaag 14760
 atcatcaaca ataatacaga aacaccgggtt ttggacagac tgaggaaaat aacattgcaa 14820
 aggtggagtc tatggtttag ttatcttgat cattgtgata atatcctggc agaggcttta 14880
 acccaaataa cttgcacagt tgatttagca cagatcctga gggaaatattc atgggcacat 14940
 attttagagg ggagacctct tattggagcc acactccat gtatgattga gcaattcaaa 15000
 gtgggttggc tgaaacccta cgaacaatgt ccgcagtgtt caaatgc当地 gcaacctgg 15060
 gggaaaccat tcgtgtcagt ggcagtcaag aaacatattt ttagtgc当地 gccgaacgc当地 15120
 tccccaaataa gctggactat cggggatgga atcccataca ttggatcaag gacagaagat 15180
 aagataggac aacctgctat taaaccaaaa tgccttccg cagccttaag agaggccatt 15240
 gaactggcgt cccgttaac atgggttaact caaggcagtt cgaacagtga tttgcttaata 15300
 aaaccatttt tggaaagcacg agtaaatttta agtgttcaag aaataacttca aatgaccct 15360
 tcacattact cagggaaatat tggcacagg tacaacgatc aatatagtcc tcatttttc 15420
 atggccaatc gtatgagtaa ttgcgc当地 cgattgattt tttctactaa cacttttaggt 15480
 gagttttcag gaggtggcca gtctgc当地 gacagaata ttatttcca gaatgttata 15540
 aattatgc当地 ttgcactgtt cgatattaaa ttttagaaaca ctgaggctac agatatccaa 15600

2015336086 16 Nov 2020

8969417_1

tataatcggt	ctcaccttca	tctaactaag	tgtgcaccc	gggaagtacc	agctcagtat	15660
ttaacataca	catctacatt	ggattttagat	ttaacaagat	accgagaaaa	cgaattgatt	15720
tatgacaata	atcctctaaa	aggaggactc	aattgcaata	tctcattcga	taaccattt	15780
ttccaaggta	aacggctaaa	cattatagaa	gatgatctta	ttcgactgcc	tcacttatct	15840
ggatgggagc	tagccaagac	catcatgcaa	tcaatttattt	cagatagcaa	caattcgtct	15900
acagacccaa	ttagcagtgg	agaaacaaga	tcattcacta	cccatttctt	aacttatccc	15960
aagataggac	ttctgtacag	ttttggggcc	tttataagtt	attatcttgg	caatacaatt	16020
cttcggacta	agaaattaac	acttgacaat	tttttatatt	acttaactac	ccaaattcat	16080
aatctaccac	atcgctcatt	gccaatactt	aagccaacat	tcaaacatgc	aagcgttatg	16140
tcacggttaa	ttagtattga	tcctcatttt	tctatttaca	taggcggtgc	ggcaggtgac	16200
agaggactct	cagatgcggc	caggttattt	ttgagaacgt	ccatttcatc	tttcttgca	16260
tttataaaag	agtggataat	taatgcgga	acaattgtcc	ctttatggat	agtatatccg	16320
ctagagggtc	aaaacccaac	acctgttaat	aatttcctcc	atcagatcgt	agaactgctg	16380
gtgcatgatt	catcaagaca	acaggctttt	aaaactacca	taagtgatca	tgtacatcct	16440
cacgacaatc	ttgtttacac	atgtaagagt	acagccagca	atttcttcca	tgcgtcattg	16500
gcgtactgga	gaagcaggca	cagaaacagc	aatcgaaaat	acttggcaag	agactcttca	16560
actggatcaa	gcacaaacaa	cagtgtatgg	catattgaga	gaagtcaaga	acaaaccacc	16620
agagatccac	atgatggcac	tgaacggaat	ctagtcctac	aaatgagcca	tgaataaaaa	16680
agaacgacaa	ttccacaaga	aagcacgcac	cagggccgt	cgttccagtc	atttctaagt	16740
gactctgctt	gtggtacagc	aaatccaaaa	ctaaatttcg	atagatcgag	acataatgtg	16800
aaatctcagg	atcataactc	ggcatccaag	aggaaaggtc	atcaaataat	ctcacaccgt	16860
ctagtcctac	ctttcttac	attgtctcaa	gggacgcgcc	aattaacgtc	atccaatgag	16920
tcacaaaccc	aagacgagat	atcaaagtac	ttacggcaat	tgagatccgt	cattgatacc	16980
acagtttatt	gtaggtttac	cggtatagtc	tcgtccatgc	attacaaact	tgtgagggtc	17040
ctttgggaaa	tagagagttt	taagtcggct	gtgacgctag	cagagggaga	aggtgctggt	17100
gccttactat	tgattcagaa	ataccaagtt	aagaccttat	tttcaacac	gctagctact	17160

8969417_1

gagtccagta tagagtcaga aatagtatca ggaacgacta ctcctaggat gcttctacct 17220
 gttatgtcaa aattccataa tgaccaaatt gagattattc ttaacaattc ggcaagccaa 17280
 ataacagaca taacaaatcc tacttggttc aaagacccaa gagcaaggct acctaggcaa 17340
 gtcgaggta taaccatgga tgcagagacg acagaaaata taaacagatc gaaattgtac 17400
 gaagctgtat ataaattgtat cttacaccat attgatccca gcgtattgaa agcagtggtc 17460
 cttaaagtct ttctaagtga tactgagggt atgttatggc taaatgataa tttagccccg 17520
 tttttgcca ctggttattt aattaagcca ataacgtcaa gtgctagatc tagtgagtgg 17580
 tatctttgtc tgacgaactt cttatcaact acacgtaaga tgccacacca aaaccatctc 17640
 agttgtaaac aggttaatact tacggcattt caactgcaaa ttcaacggag cccatactgg 17700
 ctaagtcatt taactcagta tgctgactgc gatttacatt taagttatat ccgccttggt 17760
 tttccatcat tagagaaagt actataaccac aggtataacc tcgtcgattc aaaaagaggt 17820
 ccactagtct ctatcactca gcacttggca catcttagag cagagattcg agaattgact 17880
 aatgattata atcaacagcg acaaagtcgg actcaaacat atcactttat tcgtactgca 17940
 aaaggacgaa tcacaaaact agtcaatgat tatttaaaat tctttcttat tgtgcaagca 18000
 ttaaaacata atgggacatg gcaagctgag tttaagaaat taccagagtt gattagtgtg 18060
 tgcaataggt tctatcatat tagagattgc aattgtgaag aacgtttctt agttcaaacc 18120
 ttatatctac atagaatgca ggattctgaa gttaagctta tcgaaaggct gacagggctt 18180
 ctgagtttat tcccggatgg tctctacagg tttgattgaa ttaccgtgca tagtacctg 18240
 atacttgtga aggttgatta tcaacgtaca gattataaaa aactcacaaa ttgctctcat 18300
 acatcatatt gatcgaattt caataaataa ctatttaaaat aacgaaagaa gtccttat 18360
 tatacactat atttagcctc tctccctgcg tgataatcaa aaaattcaca atgcagcatg 18420
 tgtgacatat tacttccgcg atgaatctaa cgcaacataa taaactctgc actctttata 18480
 attaagctt aacaaaaggt ctgggctcat attgttattt atataataat gttgtatcaa 18540
 tatcctgtca gatgaaatag tgtttgggtt gataacacga cttcttaaaa caaaattgtat 18600
 cttcaagatt aagttttta taattatcat tacttaatt tgtcgattt aaaaatggtga 18660
 tagccttaat ctttgttaa aataagagat taggtgtaat aactttaaca ttttgtctag 18720

16 Nov 2020

2015336086

8969417_1
taagctacta tttcatacag aatgataaaaa ttaaaagaaaa aggcatgact gtaaaatcag 18780
aaatacccttc tttacaatat agcagactag ataataatct tcgtgttaat gataattaag 18840
acattgacca cgctcatcag gaggctcgcc aggataaacg ttgcaaaaag gattcctgga 18900
aaaatggtcg cacacaaaaaa tttaaaaata aatctatttc ttctttttg tgtgtcca 18958

<210> 27
<211> 341
<212> DNA
<213> Homo sapiens

<400> 27
atagggcggga gggaaagctca tcagtggggc cacgagctga gtgcgtcctg tcactccact 60
cccatgtccc ttgggaaggt ctgagactag ggccagaggc ggccctaaca gggctctccc 120
tgagcttcgg ggaggtgagt tcccagagaa cggggctccg cgcgaggtca gactgggcag 180
gagatgccgt ggaccccgcc cttcggggag gggcccgcg gatgcctcct ttgccggagc 240
ttggaacaga ctcacggcca gcgaagttag ttcaatggct gaggtgaggt accccgcagg 300
ggacctcata acccaattca gactactctc ctccgcccatt 341

<210> 28
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<220>
<221> modified_base
<222> (6)..(12)
<223> a, c, t, g, unknown or other

<400> 28
gagtcnnnnnn nn 12

<210> 29
<211> 10
<212> DNA
<213> Artificial Sequence

2015336086 16 Nov 2020

8969417_1

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<220>
<221> modified_base
<222> (6)..(10)
<223> a, c, t, g, unknown or other

<400> 29
ggatcnnnn

10

<210> 30
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<220>
<221> modified_base
<222> (6)..(10)
<223> a, c, t, g, unknown or other

<400> 30
gagtcnnnn

10

<210> 31
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<220>
<221> modified_base
<222> (6)..(7)
<223> a, c, t, g, unknown or other

<400> 31
gactcnngag tc

12

16 Nov 2020

2015336086

8969417_1

<210> 32
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<220>
<221> modified_base
<222> (6)..(9)
<223> a, c, t, g, unknown or other

<400> 32
gactcnnnng agtc

14

<210> 33
<211> 16
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<220>
<221> modified_base
<222> (6)..(11)
<223> a, c, t, g, unknown or other

<400> 33
gactcnnnnn ngagtc

16

<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<220>
<221> modified_base
<222> (1)..(4)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (10)..(15)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (21)..(24)
<223> a, c, t, g, unknown or other

<400> 34
nnnngactcn nnnnngagtc nnnn

24

<210> 35
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<220>
<221> modified_base
<222> (1)..(4)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (10)..(13)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (19)..(22)
<223> a, c, t, g, unknown or other

<400> 35
nnnngactcn nnngagtcnn nn

22

<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 36
cttcttagct tggggcagta tca 23

<210> 37
<211> 500
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic polynucleotide

<400> 37
aagatgactg caggagtcaa tgcgcagttg gtcccgccag accaggcgaa cattaccgaa 60
ttttacaaca agtccctttc atcctacaag gagaatgagg agaacatcca gtgtggggag 120
aacttcatgg acatggagtg cttcatgatt ctgaacccca gtcagcagct ggcaattgcc 180
gtcttgcgtc tcacactggg cacccataa gttctggaga acttgctggt gctgtgtc 240
accacagtta tctaccgagg aacgactttc gctgaaggtg tcgttgcatt tctgattcct 300
tcactccgc agcctccgct gccggccctc ttaccacttc atcattagcc tggccgtggc 360
cgaccttctg gggagtgtca ttttgcata cagcttgcgtt gactttcatg tggccaccg 420
caaggacagc cccaaacgtct ttcttttcaa attgggtggg gtcaccgcct cttcacggc 480
ctctgttaggc agcctttcc 500

<210> 38
<211> 89
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 38
gacugcagga gugcugcugcu uccacaguua ucuaccgagg aacgacuuuc gcugaaggug 60
ucguugcauu ucugauuccu ucacucccg 89

<210> 39
<211> 36
<212> DNA

2015336086 16 Nov 2020

8969417_1

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic primer
<220>
<223> Description of Combined DNA/RNA Molecule: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (31)..(36)
<223> Methoxy base

<400> 39
gactcgatat cgagtcacg agcugagtgc guccug

36

<210> 40
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<223> Description of Combined DNA/RNA Molecule: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (31)..(35)
<223> Methoxy base

<400> 40
gactcgatat cgagtcagac cttcccaagg gacau

35

<210> 41	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
probe	
<400> 41	
ccacgcctgt cactccactc cgcggtgg	27
<210> 42	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 42	
cctctggccc tagtctcag	19
<210> 43	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 43	
gcatctaatt tttcgcc	17
<210> 44	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 44	
tctgtgcctg gattgat	17

<210> 45	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 45	
ttttggacgt cttctcc	17
<210> 46	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 46	
ttttgaacgt cttctcc	17
<210> 47	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
primer	
<400> 47	
tatgttttgt ataaaagttc atttg	25
<210> 48	
<211> 16	
<212> DNA	
<213> Zaire ebolavirus	
<400> 48	
acgactttagt ctgaag	16
<210> 49	
<211> 16	
<212> DNA	

2015336086 16 Nov 2020

	8969417_1	
<213> Zaire ebolavirus		
<400> 49		
acgactttcg ctgaag		16
<210> 50		
<211> 56		
<212> DNA		
<213> Zaire ebolavirus		
<400> 50		
tccacagtta tctaccgagg aacgactttc gctgaaggtg tcgttgcatt tctgat		56
<210> 51		
<211> 59		
<212> DNA		
<213> Zaire ebolavirus		
<400> 51		
ttccacagtt atctaccgag gaacgacttt cgctgaaggt gtcgttgcat ttctgatac		59
<210> 52		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic probe		
<220>		
<221> modified_base		
<222> (14)..(14)		
<223> Methoxy base		
<400> 52		
gctacacgac tttggctgaa ggttagc		26
<210> 53		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic probe		

2015336086 16 Nov 2020

8969417_1

<400> 53
gctaccttca gcraaagtcg gtagc 25

<210> 54
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 54
gactcgatat cgagtccttc cacagttatc taccga 36

<210> 55
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 55
gactcgatat cgagtcgctt ccacagttat ctaccg 36

16 Nov 2020

2015336086

8969417_1

<210> 56
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 56
gactcgatat cgagtcacag ttatctaccg aggaac

36

<210> 57
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 57
gactcgatat cgagtcataat gcaacgacac ctt

33

<210> 58
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 58
gactcgatat cgagtcgaaa tgcaacgaca cct

33

<210> 59
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 59
gactcgatat cgagtcagaa atgcaacgac acc

33

<210> 60
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

```
<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 60
gactcgcgca gtagtcacag ttatctaccg aggaac 36

<210> 61
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 61
gactcgcgca gtagtccaca gttatctacc gagaa 36

<210> 62
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<220>
<221> modified_base
```

<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (32)..(36)
<223> Methoxy base

<400> 62
gactcgcgcg cgagtccac agttatctac cgagga

36

<210> 63
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 63
gactcgcgcg cgagtcaaat gcaacgacac ctt

33

<210> 64
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>

2015336086 16 Nov 2020

8969417_1

<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 64
gactcgcgcg cgagtcgaaa tgcaacgaca cct

33

<210> 65
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<220>
<221> modified_base
<222> (24)..(24)
<223> Methoxy base

<220>
<221> modified_base
<222> (29)..(33)
<223> Methoxy base

<400> 65
gactcgcgcg cgagtcgaaa atgcaacgac acc

33

<210> 66
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 66
ccacagttat ctaccgagga acgactttcg ctgaagggtgt cg

48

<210> 67
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

8969417_1

oligonucleotide

<400> 67
tgactagcgaggctagaag gagagagatggtgcgagag cgtcaatatt aagaggcgaa 60
aaatttagatgc 71

<210> 68
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 68
tgactagcaggctagaag gagagagatggtgcgagag cgtcagta 48

<210> 69
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 69
caaaaacagc atattgacgc tgggaaagac cagagatcct gctgtctctr caacatcaat 60
ccagggcacag a 71

<210> 70
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 70
caaaaacagc atattgacgc tgggaaagac cacagatcct gctgtct 47

<210> 71
<211> 73
<212> DNA

2015336086 16 Nov 2020

8969417_1

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 71

aatgcagat ggtctcagct atgaacacag caaaaacaat gaatggaatg ggaaaaggag

60

aagacgtcca aaa

73

<210> 72

<211> 73

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 72

aatgcaaat ggtctcagct atgaacacag caaagacaat gaatggaatg ggaaagggag

60

aagacgttca aaa

73

<210> 73

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 73

aatgcagat ggtttcagct atgaacacag caaaagcaat gaatggaatg gggaaaggag

60

<210> 74

<211> 81

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 74

ggcccactgt attgctactg aaaatctctg ctgtacatgg cacatggagt tgatcacaaa

60

2015336086 16 Nov 2020

8969417_1

81

tgaactttta tacaaaacat a

<210> 75

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 75

ggcccactgc actgctacta aaaatctctg ctgtacatgg cacatggagt tgatcaca

58