

(19) DANMARK

(10) DK/EP 3386550 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **A 61 K 48/00 (2006.01)** **C 12 N 9/22 (2006.01)** **C 12 N 15/113 (2010.01)**
C 12 N 15/115 (2010.01) **C 12 N 15/32 (2006.01)** **C 12 N 15/62 (2006.01)**
C 12 N 15/63 (2006.01) **C 12 N 15/79 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2021-04-26**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2021-01-20**

(86) Europæisk ansøgning nr.: **16873782.3**

(86) Europæisk indleveringsdag: **2016-12-07**

(87) Den europæiske ansøgnings publiceringsdag: **2018-10-17**

(86) International ansøgning nr.: **US2016065420**

(87) Internationalt publikationsnr.: **WO2017100343**

(30) Prioritet: **2015-12-07 US 201562264262 P** **2016-02-23 US 201662298963 P**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV**
MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(73) Patenthaver: **Arc Bio, LLC., 16 Cherry Street, Cambridge, Massachusetts 02139, USA**

(72) Opfinder: **GOURGUECHON, Stephane, B., c/o ARC BIO, LLC, 16 Cherry Street, Cambridge, MA 02139, USA**

(74) Fuldmægtig i Danmark: **Holme Patent A/S, Valbygåardsvej 33, 2500 Valby, Danmark**

(54) Benævnelse: **Fremgangsmåder til fremstilling og anvendelse af guide nukleinsyrer**

(56) Fremdragne publikationer:
WO-A1-2015/050501
WO-A1-2015/089473
WO-A1-2015/173436
US-A1- 2006 088 821
US-A1- 2011 256 593
US-A1- 2014 087 378
US-A1- 2014 357 523
US-A1- 2015 059 010
JOANA A. VIDIGAL ET AL: "Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries",
NATURE COMMUNICATIONS, vol. 6, no. 1, 17 August 2015 (2015-08-17) , XP055560017, DOI:
10.1038/ncomms9083
YUEXIN ZHOU ET AL: "High-throughput screening of a CRISPR/Cas9 library for functional genomics in human
cells", NATURE, vol. 509, no. 7501, 9 April 2014 (2014-04-09), pages 487-491, XP055234634, London ISSN: 0028-
0836, DOI: 10.1038/nature13166
HIROKO KOIKE-YUSA ET AL: "Genome-wide recessive genetic screening in mammalian cells with a lentiviral
CRISPR-guide RNA library", NATURE BIOTECHNOLOGY, vol. 32, no. 3, 23 December 2013 (2013-12-23), pages
267-273, XP055115706, ISSN: 1087-0156, DOI: 10.1038/nbt.2800

Fortsættes ...

TOBIAS SCHMIDT ET AL: "Synthesis of an arrayed sgRNA library targeting the human genome", SCIENTIFIC REPORTS, vol. 5, no. 1, 8 October 2015 (2015-10-08) , XP055406733, DOI: 10.1038/srep14987

Description

[0001] This application claims the benefit of U.S. Provisional Application No. 62/264,262, filed December 7, 2015, and of U.S. Provisional Application No. 62/298,963, filed February 23, 2016,

5 [0002] The present application is being filed with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 750592000340SeqList.txt, created December 5, 2016, which is 816,451 bytes in size.

BACKGROUND

10 [0003] Human clinical DNA samples and sample libraries such as cDNA libraries derived from RNA contain highly abundant sequences that have little informative value and increase the cost of sequencing. While methods have been developed to deplete these unwanted sequences (e.g., via hybridization capture), these methods are often time-consuming and can be inefficient.

15 [0004] Although a guide nucleic acid (gNA) mediated nuclease systems (such as guide RNA (gRNA)-mediated Cas systems) can efficiently deplete any target DNA, targeted depletion of very high numbers of unique DNA molecules is not feasible. For example, a sequencing library derived from human blood may contain >99% human genomic DNA. Using a gRNA-mediated Cas9 system-based method to deplete this genomic DNA to detect an infectious agent circulating in the human blood would require extremely high numbers of gRNAs (about 10-100 million gRNAs), in order to ensure that a gRNA will be present every 30-50 base pairs (bp), and that no target DNA will be missed. Very large numbers of gRNAs can be predicted computationally and then synthesized chemically, but at a prohibitively expensive cost.

20 [0005] Therefore, there is a need in the art to provide a cost-effective method of converting any DNA into a gNA (e.g., gRNA) library to enable, for example, genome-wide depletion of unwanted DNA sequences from those of interest, without prior knowledge about their sequences. Provided herein are methods and compositions that address this need.

SUMMARY

25 [0006] Provided herein are methods to generate gNAs and collections of gNAs from any source nucleic acid. For example, gRNAs and collections of gRNAs can be generated from source DNA, such as genomic DNA. Such gNAs and collections of the same are useful for a variety of applications, including depletion, partitioning, capture, or enrichment of target sequences of interest, genome-wide labeling, genome-wide editing, genome-wide functional screens, and genome-wide regulation.

30 [0007] In one aspect, the invention described herein provides a method of making a collection of nucleic acids, a plurality of the nucleic acids in the collection comprising: a first segment comprising a regulatory region; a second segment encoding a targeting sequence; and a third segment encoding a nucleic acid-guided nuclease system protein-binding sequence, wherein at least 10% of the nucleic acids in the collection vary in size. In another aspect, the invention described herein provides a collection of nucleic acids, a plurality of the nucleic acids in the collection comprising: a first segment comprising a regulatory region; a second segment encoding a targeting sequence, wherein the size of the second segment is greater than 21 bp; and a third segment encoding a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease system protein is a CRISPR/Cas system protein. In some embodiments, the size of the second segment varies from 15-250 bp across the collection of nucleic acids. In some embodiments, at least 10% of the second segments in the collection are greater than 21 bp. In some embodiments, the size of the second segment is not 20 bp. In some embodiments, the size of the second segment is not 21 bp. In some embodiments, the collection of nucleic acids used in the method is a collection of DNA. In some embodiments, the second segment is single stranded DNA. In some embodiments, the third segment is single stranded DNA. In some embodiments, the second segment is double stranded DNA. In some embodiments, the third segment is double stranded DNA. In some embodiments, the regulatory region is a region capable of binding a transcription factor. In some embodiments, the regulatory region comprises a promoter. In some embodiments, the promoter is selected from the group consisting of T7, SP6, and T3. In some embodiments, the targeting sequence is directed at a mammalian genome, eukaryotic genome, prokaryotic genome, or a viral genome. In some embodiments, the targeting sequence is directed at repetitive or abundant DNA. In some embodiments, the targeting sequence is directed at mitochondrial DNA, ribosomal DNA, Alu DNA, centromeric DNA, SINE DNA, LINE DNA, or STR DNA. In some embodiments, the sequence of the second segments is selected from Table 3 and/or Table 4. In some embodiments, the collection comprises at least 10² unique nucleic acid molecules. In some embodiments, the targeting sequence is at least 80% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the collection comprises targeting sequences directed to sequences of interest spaced about every 10,000 bp or less across the genome of an organism. In some embodiments, the PAM sequence is AGG, CGG, or TGG. In some embodiments, the PAM sequence is specific for a CRISPR/Cas system protein selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Csel, Csy1, Csn2, Cas4, Csm2, and Cm5. In some embodiments, the third segment comprises DNA

encoding a gRNA stem-loop sequence. In some embodiments, the third segment encodes for a RNA comprising the sequence GUUUUAGAGCUAGAAAUAAGCAAGUUAAAUAAGGUAGUCCGUUAUCUACUUGAAAAAG UGGCAC-
 5 CGAGUCGGUGCUUUUUU (SEQ ID NO: 1) or encodes for a RNA comprising the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAUAAGGUAGUCCGUUAUCAA CUUGAAAAAGUG-
 10 GCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 2). In some embodiments, the sequence of the third segment encodes for a crRNA and a tracrRNA. In some embodiments, the nucleic acid-guided nuclease system protein is from a bacterial species. In some embodiments, the nucleic acid-guided nuclease system protein is from an archaea species. In some embodiments, the CRISPR/Cas system protein is a Type I, Type II, or Type III protein. In some embodiments, the CRISPR/Cas system protein is selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cm5, dCas9 and cas9 nickase. In some embodiments, the third segment comprises DNA encoding a Cas9-binding sequence. In some embodiments, a plurality of third segments of the collection encode for a first nucleic acid-guided nuclease system protein binding sequence, and a plurality of the third segments of the collection encode for a second nucleic acid-guided nuclease system protein binding sequence. In some embodiments, the third segments of the collection encode for a plurality of different binding sequences of a plurality of different binding sequences of a plurality of different nucleic acid-guided nuclease system proteins.

[0008] In another aspect, the invention described herein provides for a method of making a collection of guide RNAs (gRNAs), comprising: a first RNA segment a targeting sequence; and a second RNA segment comprising a nucleic acid-guided nuclease system protein-binding sequence, wherein at least 10% of the gRNAs in the collection vary in size. In some embodiments, the nucleic acid-guided nuclease system protein is a CRISPR/Cas system protein. In some embodiments, the size of the first segment varies from 15-250 bp across the collection of gRNAs. In some embodiments, the at least 10% of the first segments in the collection are greater than 21 bp. In some embodiments, the size of the first segment is not 20 bp. In some embodiments, the size of the first segment is not 21 bp. In some embodiments, the targeting sequence is directed at a mammalian genome, eukaryotic genome, prokaryotic genome, or viral genome. In some embodiments, the targeting sequence is directed at repetitive or abundant DNA. In some embodiments, the targeting sequence is directed at mitochondrial DNA, ribosomal DNA, Alu DNA, centromeric DNA, SINE DNA, LINE DNA, or STR DNA. In some embodiments, the sequence of the first segments is RNA encoded by sequences selected from Table 3 and/or Table 4. In some embodiments, the collection comprises at least 10^2 unique gRNAs. In some embodiments, the gRNAs comprise cytosine, guanine, and adenine. In some embodiments, a subset of the gRNAs further comprises thymine. In some embodiments, a subset of the gRNAs further comprises uracil. In some embodiments, the first segment is at least 80% complementary to a target genomic sequence of interest. In some embodiments, the targeting sequence is at least 80% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments the PAM sequence is AGG, CGG, or TGG. In some embodiments, the PAM sequence is specific for a CRISPR/Cas system protein selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, and Cm5. In some embodiments, the second segment comprises a gRNA stem-loop sequence. In some embodiments, the third segment comprises DNA encoding a gRNA stem-loop sequence. In some embodiments, the third segment comprises the sequence GUUUUAGAGCUAGAAAUAAGCAAGUUAAAUAAGGUAGUCCGUUAUCUACUUGAAAAAG UGGCAC-
 25 CGGUAGUCCGUUAUCUACUUGAAAAAG UGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 1) or comprises the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAUAAGGUAGUCCGUUAUCAA CUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 2). In some embodiments, the second segment comprises a crRNA and a tracrRNA. In some embodiments, the nucleic acid-guided nuclease system protein is from a bacterial species. In some embodiments, the nucleic acid-guided nuclease system protein is from an archaea species. In some embodiments, the CRISPR/Cas system protein is a Type I, Type II, or Type III protein. In some embodiments, the CRISPR/Cas system protein is selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cm5, dCas9 and cas9 nickase. In some embodiments, the second segment comprises a Cas9-binding sequence. In some embodiments, at least 10% of the gRNAs in the collection vary in their 5' terminal-end sequence. In some embodiments, the collection comprises targeting sequences directed to sequences of interest spaced every 10,000 bp or less across the genome of an organism. In some embodiments, a plurality of second segments of the collection comprise a first nucleic acid-guided nuclease system protein binding sequence, and a plurality of the second segments of the collection comprise a second nucleic acid-guided nuclease system protein binding sequence. In some embodiments, the second segments of the collection comprise a plurality of different binding sequences of a plurality of different nucleic acid-guided nuclease system proteins. In some embodiments, a plurality of the gRNAs of the collection are attached to a substrate. In some embodiments, a plurality of the gRNAs of the collection comprise a label. In some particular embodiments, a plurality of the gRNAs of the collection comprise different labels.

[0009] In another aspect, the invention described herein provides methods using nucleic acid comprising: a first segment comprising a regulatory region; a second segment encoding a targeting sequence, wherein the targeting sequence is greater than 30bp; and a third segment encoding a nucleic acid encoding a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease is a CRISPR/Cas system protein. In some embodiments, the nucleic acid is DNA. In some embodiments, the second segment is single stranded DNA. In

some embodiments, the third segment is single stranded DNA. In some embodiments, the second segment is double stranded DNA. In some embodiments, the third segment is double stranded DNA. In some embodiments, the regulatory region is a region capable of binding a transcription factor. In some embodiments, the regulatory region comprises a promoter. In some embodiments, the promoter is selected from the group consisting of T7, SP6, and T3. In some embodiments, the targeting sequence is directed at a mammalian genome, eukaryotic genome, prokaryotic genome, or a viral genome. In some embodiments, the targeting sequence is directed at abundant or repetitive DNA. In some embodiments, the targeting sequence is directed at mitochondrial DNA, ribosomal DNA, Alu DNA, centromeric DNA, SINE DNA, LINE DNA, or STR DNA. In some embodiments, the sequence of the second segments is selected from Table 3 and/or Table 4. In some embodiments, the targeting sequence is at least 80% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the target genomic sequence of interest is 5' upstream of a PAM sequence. In some embodiments, the PAM sequence is specific for a CRISPR/Cas system protein selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, and Cm5. In some embodiments, the third segment comprises DNA encoding a gRNA stem-loop sequence. In some embodiments, the third segment comprises DNA encoding a gRNA stem-loop sequence. In some embodiments, the third segment encodes for a RNA comprising the sequence GUUUUAGAGCUAGAAAAGCAAGUUAAAAAG-GCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 1) or encodes for a RNA comprising the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAAGGUAGUCCGU-UAUCAA CUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2). In some embodiments, the nucleic acid-guided nuclease system protein is from a bacterial species. In some embodiments, the nucleic acid-guided nuclease system protein is from an archaea species. In some embodiments, the CRISPR/Cas system protein is a Type I, Type II, or Type III protein. In some embodiments, the CRISPR/Cas system protein is selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cm5, dCas9 and cas9 nickase. In some embodiments, the third segment comprises DNA encoding a Cas9-binding sequence.

[0010] In another aspect, the invention described herein provides methods for making a guide RNA comprising a first segment comprising a targeting sequence, wherein the size of the first segment is greater than 30 bp; and a second segment comprising a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease is a CRISPR/Cas system protein. In some embodiments, the gRNA comprises an adenine, a guanine, and a cytosine. In some embodiments, the gRNA further comprises a thymine. In some embodiments, the gRNA further comprises a uracil. In some embodiments, the size of the first RNA segment is between 30 and 250 bp. In some embodiments, the targeting sequence is directed at a mammalian genome, eukaryotic genome, prokaryotic genome, or viral genome. In some embodiments, the targeting sequence is directed at repetitive or abundant DNA. In some embodiments, the targeting sequence is directed at mitochondrial DNA, ribosomal DNA, Alu DNA, centromeric DNA, SINE DNA, LINE DNA, or STR DNA. In some embodiments, the first segment is at least 80% complementary to the target genomic sequence of interest. In some embodiments, the targeting sequence is at least 80% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the second segment comprises a gRNA stem-loop sequence. In some embodiments, the sequence of the second segment comprises GUUUUAGAGCUAGAAAAGCAAGUUAAAAGGUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCG-GUGCUUUUUU (SEQ ID NO: 1) or comprises the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAG-UUAAAAGGUAGUCCGUUAUCAA CUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2). In some embodiments, the sequence of the third segment comprises a crRNA and a tracrRNA. In some embodiments, the nucleic acid-guided nuclease system protein is from a bacterial species. In some embodiments, the nucleic acid-guided nuclease system protein is from an archaea species. In some embodiments, the CRISPR/Cas system protein is a Type I, Type II, or Type III protein. In some embodiments, the CRISPR/Cas system protein is selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cm5, dCas9 and cas9 nickase. In some embodiments, the second segment is a Cas9-binding sequence.

[0011] In another aspect, the invention provides methods for making a complex comprising a nucleic acid-guided nuclease system protein and a comprising a first segment comprising a targeting sequence, wherein the size of the first segment is greater than 30 bp; and a second segment comprising a nucleic acid-guided nuclease system protein-binding sequence.

[0012] In another aspect, the invention described herein provides a method for depleting and partitioning of targeted sequences in a sample, enriching a sample for non-host nucleic acids, or serially depleting targeted nucleic acids in a sample comprising: providing nucleic acids extracted from a sample; and contacting the sample with a plurality of complexes comprising (i) any one of the collection of gRNAs provided herein; and (ii) nucleic acid-guided nuclease system proteins. In some embodiments, the nucleic acid-guided nuclease system proteins are CRISPR/Cas system proteins. In some embodiments, the CRISPR/Cas system proteins are Cas9 proteins.

[0013] In another aspect, the invention provides a method of making a collection of nucleic acids, each comprising a DNA encoding a targeting sequence ligated to a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence, comprising: (a) providing double-stranded DNA molecules, each comprising a sequence of interest 5' to a

PAM sequence, and its reverse complementary sequence on the opposite strand; (b) performing an enzymatic digestion reaction on the double stranded DNA molecules, wherein cleavages are generated at the PAM sequence and/or its reverse complementary sequence on the opposite strand, but never completely remove the PAM sequence and/or its reverse complementary sequence on the opposite strand from the double stranded DNA; (c) ligating adapters comprising a recognition sequence to the resulting DNA molecules of step b; (d) contacting the DNA molecules of step c with an restriction enzyme that recognizes the recognition sequence of step c, whereby generating DNA fragments comprising blunt-ended double strand breaks immediately 5' to the PAM sequence, whereby removing the PAM sequence and the adapter containing the enzyme recognition site; and (e) ligating the resulting double stranded DNA fragments of step d with a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence, whereby generating a plurality of DNA fragments, each comprising a DNA encoding a targeting sequence ligated to a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease is a CRISPR/Cas nucleic acid-guided nuclease system protein. In some embodiments, the starting DNA molecules of the collection further comprise a regulatory sequence upstream of the sequence of interest 5' to the PAM sequence. In some embodiments, the regulatory sequence comprises a promoter. In some embodiments, the promoter comprises a T7, Sp6, or T3 sequence. In some embodiments, the double stranded DNA molecules are genomic DNA, intact DNA, or sheared DNA. In some embodiments, the genomic DNA is human, mouse, avian, fish, plant, insect, bacterial, or viral. In some embodiments, the DNA segments encoding a targeting sequence are at least 22 bp. In some embodiments, the DNA segments encoding a targeting sequence are 15-250 bp in size range. In some embodiments, the PAM sequence is AGG, CGG, or TGG. In some embodiments, the PAM sequence is specific for a CRISPR/Cas system protein selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Csel, Csy1, Csn2, Cas4, Csm2, and Cm5. In some embodiments, step (b) further comprises (1) contacting the DNA molecules with an enzyme capable of creating a nick in a single strand at a CCD site, whereby generating a plurality of nicked double stranded DNA molecules, each comprising a sequence of interest followed by an HGG sequence, wherein the DNA molecules are nicked at the CCD sites; and (2) contacting the nicked double stranded DNA molecules with an endonuclease, whereby generating a plurality of double stranded DNA fragments, each comprising a sequence of interest followed by an HGG sequence wherein residual nucleotides from HGG and/or CCD sequences is (are) left behind. In some embodiments, step (d) further comprises PCR amplification of the adaptor-ligated DNA fragments from step (c) before cutting with the restriction enzyme recognizing the recognition sequence of step (c), wherein after PCR, the recognition sequence is positioned 3' of the PAM sequence, and a regulatory sequence is positioned at the 5' distal end of the PAM sequence. In some embodiments, the enzymatic reaction of step (b) comprises the use of a Nt.CviPII enzyme, and a T7 Endonuclease I enzyme. In some embodiments, step (c) further comprises a blunt-end reaction with a T4 DNA Polymerase, if the adapter to be ligated does not comprise an overhang. In some embodiments, the adapter of step (c) is either (1) double stranded, comprising a restriction enzyme recognition sequence in one strand, and a regulatory sequence in the other strand, if the adapter is Y-shaped and comprises an overhang; or (2) has a palindromic enzyme recognition sequence in both strands, if the adapter is not Y-shaped. In some embodiments, the restriction enzyme of step (d) is MlyI. In some embodiments, the restriction enzyme of step (d) is Bael. In some embodiments, step (d) further comprises contacting the DNA molecules with an Xhol enzyme. In some embodiments, in step (e) the DNA encoding a nucleic acid-guided nuclease system-protein binding sequence encodes for a RNA comprising the sequence GUUUUAGAGCUAGAAAUAGCAAGGUAAAAUAAGGCUAGUCCGUUAUCACUUGAAAAAG UGGCACCGAGUCG-GUGCUUUUUU (SEQ ID NO: 1) or encodes for a RNA comprising the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGGUAAAAUAAGGCUAGUCCGUUAUCAA CUUGAAAAAGUG-GCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2). In some embodiments, the targeted sequences of interest are spaced every 10,000 bp or less across the genome of an organism.

[0014] In another aspect, the invention provides a method of making a collection of nucleic acids, each comprising a DNA encoding a targeting sequence ligated to a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence, comprising: (a) providing a plurality of double stranded DNA molecules, each comprising a sequence of interest, an NGG site, and its complement CCN site; (b) contacting the molecules with an enzyme capable of creating a nick in a single strand at a CCN site, whereby generating a plurality of nicked double stranded DNA molecules, each comprising a sequence of interest 5' to the NGG site, wherein the DNA molecules are nicked at the CCD sites; (c) contacting the nicked double stranded DNA molecules with an endonuclease, whereby generating a plurality of double stranded DNA fragments, each comprising a sequence of interest, wherein the fragments comprise an terminal overhang; (d) contacting the double stranded DNA fragments with an enzyme without 5' to 3' exonuclease activity to blunt end the double stranded DNA fragments, whereby generating a plurality of blunt ended double stranded fragments, each comprising a sequence of interest; (e) contacting the blunt ended double stranded fragments of step d with an enzyme that cleaves the terminal NGG site; and (f) ligating the resulting double stranded DNA fragments of step e with a DNA encoding a nucleic acid-guided nuclease system-protein binding sequence, whereby generating a plurality of DNA fragments, each comprising a targeting sequence ligated to a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease is a CRISPR/Cas system protein. In some embod-

iments, the plurality of double stranded DNA molecules have a regulatory sequence 5' upstream of the NGG sites. In some embodiments, the regulatory sequence comprises a T7, SP6, or T3 sequence. In some embodiments, the NGG site comprises AGG, CGG, or TGG, and the CCN site comprises CCT, CCG, or CCA. In some embodiments, the plurality of double stranded DNA molecules, each comprising a sequence of interest comprise sheared fragments of genomic DNA. In some embodiments, the genomic DNA is mammalian, prokaryotic, eukaryotic, avian, bacterial or viral. In some embodiments, the plurality of double stranded DNA molecules in step (a) are at least 500 bp. In some embodiments, the enzyme in step b is a Nt.CviPII enzyme. In some embodiments, the enzyme in step c is a T7 Endonuclease I. In some embodiments, the enzyme in step d is a T4 DNA Polymerase. In some embodiments, in step f the DNA encoding a nucleic acid-guided nuclease system-protein binding sequence encodes for a RNA comprising the sequence GUUUUAGAGCUAGAAAAGCAAGGUAAAAAAGGCCUAGGUCCGUUAUCACUUGAAAAAG UGGCACCGAGUCG-GUGCUUUUUUU (SEQ ID NO: 1) or encodes for a RNA comprising the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGGUAAAAAAGGCCUAGGUCCGUUAUCAA CUUGAAAAAGUG-GCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2). In some embodiments, the step e additionally comprises ligating adaptors carrying a Mlyl recognition site and digesting with Mlyl enzyme. In some embodiments, the sequence of interest is spaced every 10,000 bp or less across the genome.

[0015] In another aspect, the invention provides a method of making a collection of nucleic acids, each comprising a DNA encoding a targeting sequence and a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence, comprising: (a) providing genomic DNA comprising a plurality of sequences of interest, comprising NGG and CCN sites; (b) contacting the genomic DNA with an enzyme capable of creating nicks in the genomic DNA, whereby generating nicked genomic DNA, nicked at CCN sites; (c) contacting the nicked genomic DNA with an endonuclease, whereby generating double stranded DNA fragments, with an overhang; (d) ligating the DNA with overhangs from step c to a Y-shaped adapter, thereby introducing a restriction enzyme recognition sequence only at 3' of the NGG site and a regulatory sequence 5' of the sequence of interest; (e) contacting the product from step d with an enzyme that cleaves away the NGG site together with the adaptor carrying the enzyme recognition sequence; and (f) ligating the resulting double stranded DNA fragments of step e with a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence, whereby generating a plurality of DNA fragments, each comprising a sequence of interest ligated to a DNA encoding a nucleic acid-guided nuclease system protein-binding sequence. In some embodiments, the nucleic acid-guided nuclease is a CRISPR/Cas system protein. In some embodiments, the NGG site comprises AGG, CGG, or TGG, and CCN site comprises CCT, CCG, or CCA. In some embodiments, the regulatory sequence comprises a promoter sequence. In some embodiments, the promoter sequence comprises a T7, SP6, or T3 sequence. In some embodiments, the DNA fragments are sheared fragments of genomic DNA.

[0016] In some embodiments, the genomic DNA is mammalian, prokaryotic, eukaryotic, or viral. In some embodiments, the fragments are at least 200 bp. In some embodiments, the enzyme in step b is a Nt.CviPII enzyme. In some embodiments, the enzyme in step c is a T7 Endonuclease I. In some embodiments, step d further comprises PCR amplification of the adaptor-ligated DNA. In some embodiments, in step f, the DNA encoding nucleic acid-guided nuclease system protein-binding sequence encodes for a RNA comprising the sequence GUUUUAGAGCUAGAAAAGCAAGGUAAAAAAGGCCUAGGUCCGUUAUCACUUGAAAAAG UGGCACCGAGUCG-GUGCUUUUUUU (SEQ ID NO: 1) or encodes for a RNA comprising the sequence GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGGUAAAAAAGGCCUAGGUCCGUUAUCAA CUUGAAAAAGUG-GCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2). In some embodiments, the enzyme removing NGG site in step e is Mlyl. In some embodiments, the target of interest of the collection is spaced every 10,000 bp or less across the genome.

[0017] In another aspect, the invention described herein provides a method of making a collection of guide nucleic acids, comprising: a. obtaining abundant cells in a source sample; b. collecting nucleic acids from said abundant cells; and c. preparing a collection of guide nucleic acids (gNAs) from said nucleic acids. In some embodiments, said abundant cells comprise cells from one or more most abundant bacterial species in said source sample. In some embodiments, said abundant cells comprise cells from more than one species. In some embodiments, said abundant cells comprise human cells. In some embodiments, said abundant cells comprise animal cells. In some embodiments, said abundant cells comprise plant cells. In some embodiments, said abundant cells comprise bacterial cells. In some embodiments, the method further comprises contacting nucleic acid-guided nucleases with said library of gNAs to form nucleic acid-guided nuclease-gNA complexes. In some embodiments, the method further comprises using said nucleic acid-guided nuclease-gNA complexes to cleave target nucleic acids at target sites, wherein said gNAs are complementary to said target sites. In some embodiments, said target nucleic acids are from said source sample. In some embodiments, a species of said target nucleic acids is the same as a species of said source sample. In some embodiments, said species of said target nucleic acids and said species of said source sample is human. In some embodiments, said species of said target nucleic acids and said species of said source sample is animal. In some embodiments, said species of said target nucleic acids and said species of said source sample is plant.

[0018] In another aspect, the invention described herein provides a method of making a collection of nucleic acids, each comprising a targeting sequence, comprising: a. obtaining source DNA; b. nicking said source DNA with a nicking

enzyme at nicking enzyme recognition sites, thereby producing double-stranded breaks at proximal nicks; and c. repairing overhangs of said double-stranded breaks, thereby producing a double-stranded fragment comprising (i) a targeting sequence and (ii) said nicking enzyme recognition site. In another aspect, the invention described herein provides a method of making a collection of nucleic acids, each comprising a targeting sequence, comprising: a. obtaining source DNA; b. nicking said source DNA with a nicking enzyme at nicking enzyme recognition sites, thereby producing a nick; and c. synthesizing a new strand from said nick, thereby producing a single-stranded fragment of said source DNA comprising a targeting sequence. In some embodiments, the method further comprises producing a double-stranded fragment comprising said targeting sequence from said single-stranded fragment. In some embodiments, said producing said double-stranded fragment comprises random priming and extension. In some embodiments, said random priming is conducted with a primer comprising a random n-mer region and a promoter region. In some embodiments, said random n-mer region is a random hexamer region. In some embodiments, said random n-mer region is a random octamer region. In some embodiments, said promoter region is a T7 promoter region. In some embodiments, the method further comprises ligating a nuclease recognition site nucleic acid comprising a nuclease recognition site to said double-stranded fragment. In some embodiments, said nuclease recognition site corresponds to a nuclease that cuts at a distance from said nuclease recognition site equal to the length of said nicking enzyme recognition sites. In some embodiments, said nuclease recognition site is a M_{lyl} recognition site. In some embodiments, said nuclease recognition site is a BaeI recognition site. In some embodiments, the method further comprises digesting said double-stranded fragment with said nuclease, thereby removing said nicking enzyme recognition site from said double-stranded fragment. In some embodiments, the method further comprises ligating said double-stranded fragment to a nucleic acid-guided nuclease system protein recognition site nucleic acid comprising a nucleic acid-guided nuclease system protein recognition site. In some embodiments, said nucleic acid-guided nuclease system protein recognition site comprises a guide RNA stem-loop sequence. In some embodiments, said nuclease recognition site corresponds to a nuclease that cuts at a distance from said nuclease recognition site equal to a length of said targeting sequence. In some embodiments, said length of said targeting sequence is 20 base pairs. In some embodiments, said nuclease recognition site is a M_{mel} recognition site. In some embodiments, the method further comprises digesting said double-stranded fragment with said nuclease. In some embodiments, said nuclease recognition site corresponds to a nuclease that cuts at a distance from said nuclease recognition site equal to a length of said targeting sequence plus a length of said nicking enzyme recognition sites. In some embodiments, said length of said targeting sequence plus a length of said nicking enzyme recognition sites is 23 base pairs. In some embodiments, said nuclease recognition site is a EcoP15I recognition site. In some embodiments, the method further comprises digesting said double-stranded fragment with said nuclease. In some embodiments, the method further comprises ligating said double-stranded fragment to a nucleic acid-guided nuclease system protein recognition site nucleic acid comprising a nucleic acid-guided nuclease system protein recognition site. In some embodiments, said nucleic acid-guided nuclease system protein recognition site comprises a guide RNA stem-loop sequence.

35 BRIEF DESCRIPTION OF THE DRAWINGS

[0019]

40 **FIG. 1** illustrates an exemplary scheme for producing a collection of gRNAs (a gRNA library) from genomic DNA.
FIG. 2 illustrates another exemplary scheme for producing a collection of gRNAs (a gRNA library) from genomic DNA.
FIG. 3 illustrates an exemplary scheme for nicking of DNA and subsequent treatment with polymerase to generate blunt ends.
FIG. 4 illustrates an exemplary scheme for sequential production of a library of gNAs using three adapters.
FIG. 5 illustrates an exemplary scheme for sequential production of a library of gNAs using one adapter and one oligo.
45 **FIG. 6** illustrates an exemplary scheme for generation of a large pool of DNA fragments with blunt ends using Nicking Enzyme Mediated DNA Amplification (NEMDA).
FIG. 7 illustrates an exemplary scheme for generation of a large pool of gNAs using Nicking Enzyme Mediated DNA Amplification (NEMDA).

50 DETAILED DESCRIPTION OF THE INVENTION

[0020] There is a need in the art for a scalable, low-cost approach to generate large numbers of diverse guide nucleic acids (gNAs) (e.g., gRNAs, gDNAs) for a variety of downstream applications.
[0021] Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.
[0022] Numeric ranges are inclusive of the numbers defining the range.

[0023] As used herein, the singular form "a", "an", and "the" includes plural references unless indicated otherwise.

[0024] It is understood that aspects and embodiments of the invention described herein include "comprising," "consisting," and "consisting essentially of" aspects and embodiments.

[0025] The term "about" as used herein refers to the usual error range for the respective value readily known to the skilled person in this technical field. Reference to "about" a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se.

[0026] The term "nucleic acid," as used herein, refers to a molecule comprising one or more nucleic acid subunits. A nucleic acid can include one or more subunits selected from adenosine (A), cytosine (C), guanine (G), thymine (T) and uracil (U), and modified versions of the same. A nucleic acid comprises deoxyribonucleic acid (DNA), ribonucleic acid (RNA), combinations, or derivatives thereof. A nucleic acid may be single-stranded and/or double-stranded.

[0027] The nucleic acids comprise "nucleotides", which, as used herein, is intended to include those moieties that contain purine and pyrimidine bases, and modified versions of the same. Such modifications include methylated purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles. In addition, the term "nucleotide" or "polynucleotide" includes those moieties that contain hapten or fluorescent labels and may contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides, nucleotides or polynucleotides also include modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.

[0028] The term "nucleic acids" and "polynucleotides" are used interchangeably herein. Polynucleotide is used to describe a nucleic acid polymer of any length, e.g., greater than about 2 bases, greater than about 10 bases, greater than about 100 bases, greater than about 500 bases, greater than 1000 bases, up to about 10,000 or more bases composed of nucleotides, e.g., deoxyribonucleotides or ribonucleotides, and may be produced enzymatically or synthetically (e.g., PNA as described in U.S. Patent No. 5,948,902 and the references cited therein) which can hybridize with naturally occurring nucleic acids in a sequence specific manner analogous to that of two naturally occurring nucleic acids, e.g., can participate in Watson-Crick base pairing interactions. Naturally-occurring nucleotides include guanine, cytosine, adenine and thymine (G, C, A and T, respectively). DNA and RNA have a deoxyribose and ribose sugar backbones, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. In PNA various purine and pyrimidine bases are linked to the backbone by methylene carbonyl bonds. A locked nucleic acid (LNA), often referred to as inaccessible RNA, is a modified RNA nucleotide. The ribose moiety of an LNA nucleotide is modified with an extra bridge connecting the 2' oxygen and 4' carbon. The bridge "locks" the ribose in the 3'-endo (North) conformation, which is often found in the A-form duplexes. LNA nucleotides can be mixed with DNA or RNA residues in the oligonucleotide whenever desired. The term "unstructured nucleic acid," or "UNA," is a nucleic acid containing non-natural nucleotides that bind to each other with reduced stability. For example, an unstructured nucleic acid may contain a G' residue and a C' residue, where these residues correspond to non-naturally occurring forms, i.e., analogs, of G and C that base pair with each other with reduced stability, but retain an ability to base pair with naturally occurring C and G residues, respectively. Unstructured nucleic acid is described in US20050233340, which is incorporated by reference herein for disclosure of UNA.

[0029] The term "oligonucleotide" as used herein denotes a single-stranded multimer of nucleotides.

[0030] Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively.

[0031] The term "cleaving," as used herein, refers to a reaction that breaks the phosphodiester bonds between two adjacent nucleotides in both strands of a double-stranded DNA molecule, thereby resulting in a double-stranded break in the DNA molecule.

[0032] The term "nicking" as used herein, refers to a reaction that breaks the phosphodiester bond between two adjacent nucleotides in only one strand of a double-stranded DNA molecule, thereby resulting in a break in one strand of the DNA molecule.

[0033] The term "cleavage site," as used herein, refers to the site at which a double-stranded DNA molecule has been cleaved.

[0034] The "nucleic acid-guided nuclease-gNA complex" refers to a complex comprising a nucleic acid-guided nuclease protein and a guide nucleic acid (gNA, for example a gRNA or a gDNA). For example the "Cas9-gRNA complex" refers to a complex comprising a Cas9 protein and a guide RNA (gRNA). The nucleic acid-guided nuclease may be any type of nucleic acid-guided nuclease, including but not limited to wild type nucleic acid-guided nuclease, a catalytically dead nucleic acid-guided nuclease, or a nucleic acid-guided nuclease-nickase.

[0035] The term "nucleic acid-guided nuclease-associated guide NA" refers to a guide nucleic acid (guide NA). The nucleic acid-guided nuclease-associated guide NA may exist as an isolated nucleic acid, or as part of a nucleic acid-guided nuclease-gNA complex, for example a Cas9-gRNA complex.

[0036] The terms "capture" and "enrichment" are used interchangeably herein, and refer to the process of selectively isolating a nucleic acid region containing: sequences of interest, targeted sites of interest, sequences not of interest, or targeted sites not of interest.

[0037] The term "hybridization" refers to the process by which a strand of nucleic acid joins with a complementary strand through base pairing as known in the art. A nucleic acid is considered to be "selectively hybridizable" to a reference nucleic acid sequence if the two sequences specifically hybridize to one another under moderate to high stringency hybridization and wash conditions. Moderate and high stringency hybridization conditions are known (see, e.g., Ausubel, et al., *Short Protocols in Molecular Biology*, 3rd ed., Wiley & Sons 1995 and Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Third Edition, 2001 Cold Spring Harbor, N.Y.). One example of high stringency conditions includes hybridization at about 42 °C in 50% formamide, 5X SSC, 5X Denhardt's solution, 0.5% SDS and 100 µg/ml denatured carrier DNA followed by washing two times in 2X SSC and 0.5% SDS at room temperature and two additional times in 0.1 X SSC and 0.5% SDS at 42 °C.

[0038] The term "duplex," or "duplexed," as used herein, describes two complementary polynucleotides that are base-paired, i.e., hybridized together.

[0039] The term "amplifying" as used herein refers to generating one or more copies of a target nucleic acid, using the target nucleic acid as a template.

[0040] The term "genomic region," as used herein, refers to a region of a genome, e.g., an animal or plant genome such as the genome of a human, monkey, rat, fish or insect or plant. In certain cases, an oligonucleotide used in the method described herein may be designed using a reference genomic region, i.e., a genomic region of known nucleotide sequence, e.g., a chromosomal region whose sequence is deposited at NCBI's Genbank database or other databases, for example.

[0041] The term "genomic sequence," as used herein, refers to a sequence that occurs in a genome. Because RNAs are transcribed from a genome, this term encompasses sequence that exist in the nuclear genome of an organism, as well as sequences that are present in a cDNA copy of an RNA (e.g., an mRNA) transcribed from such a genome.

[0042] The term "genomic fragment," as used herein, refers to a region of a genome, e.g., an animal or plant genome such as the genome of a human, monkey, rat, fish or insect or plant. A genomic fragment may be an entire chromosome, or a fragment of a chromosome. A genomic fragment may be adapter ligated (in which case it has an adapter ligated to one or both ends of the fragment, or to at least the 5' end of a molecule), or may not be adapter ligated.

[0043] In certain cases, an oligonucleotide used in the method described herein may be designed using a reference genomic region, i.e., a genomic region of known nucleotide sequence, e.g., a chromosomal region whose sequence is deposited at NCBI's Genbank database or other databases, for example. Such an oligonucleotide may be employed in an assay that uses a sample containing a test genome, where the test genome contains a binding site for the oligonucleotide.

[0044] The term "ligating," as used herein, refers to the enzymatically catalyzed joining of the terminal nucleotide at the 5' end of a first DNA molecule to the terminal nucleotide at the 3' end of a second DNA molecule.

[0045] If two nucleic acids are "complementary," each base of one of the nucleic acids base pairs with corresponding nucleotides in the other nucleic acid. The term "complementary" and "perfectly complementary" are used synonymously herein.

[0046] The term "separating," as used herein, refers to physical separation of two elements (e.g., by size or affinity, etc.) as well as degradation of one element, leaving the other intact. For example, size exclusion can be employed to separate nucleic acids, including cleaved targeted sequences.

[0047] In a cell, DNA usually exists in a double-stranded form, and as such, has two complementary strands of nucleic acid referred to herein as the "top" and "bottom" strands. In certain cases, complementary strands of a chromosomal region may be referred to as "plus" and "minus" strands, the "first" and "second" strands, the "coding" and "noncoding" strands, the "Watson" and "Crick" strands or the "sense" and "antisense" strands. The assignment of a strand as being a top or bottom strand is arbitrary and does not imply any particular orientation, function or structure. Until they become covalently linked, the first and second strands are distinct molecules. For ease of description, the "top" and "bottom" strands of a double-stranded nucleic acid in which the top and bottom strands have been covalently linked will still be described as the "top" and "bottom" strands. In other words, for the purposes of this disclosure, the top and bottom strands of a double-stranded DNA do not need to be separated molecules. The nucleotide sequences of the first strand of several exemplary mammalian chromosomal regions (e.g., BACs, assemblies, chromosomes, etc.) is known, and may be found in NCBI's Genbank database, for example.

[0048] The term "top strand," as used herein, refers to either strand of a nucleic acid but not both strands of a nucleic acid. When an oligonucleotide or a primer binds or anneals "only to a top strand," it binds to only one strand but not the other. The term "bottom strand," as used herein, refers to the strand that is complementary to the "top strand." When an oligonucleotide binds or anneals "only to one strand," it binds to only one strand, e.g., the first or second strand, but not the other strand. If an oligonucleotide binds or anneals to both strands of a double-stranded DNA, the oligonucleotide may have two regions, a first region that hybridizes with the top strand of the double-stranded DNA, and a second region that hybridizes with the bottom strand of the double-stranded DNA.

[0049] The term "double-stranded DNA molecule" refers to both double-stranded DNA molecules in which the top and bottom strands are not covalently linked, as well as double-stranded DNA molecules in which the top and bottom stands

are covalently linked. The top and bottom strands of a double-stranded DNA are base paired with one other by Watson-Crick interactions.

[0050] The term "denaturing," as used herein, refers to the separation of at least a portion of the base pairs of a nucleic acid duplex by placing the duplex in suitable denaturing conditions. Denaturing conditions are well known in the art. In one embodiment, in order to denature a nucleic acid duplex, the duplex may be exposed to a temperature that is above the T_m of the duplex, thereby releasing one strand of the duplex from the other. In certain embodiments, a nucleic acid may be denatured by exposing it to a temperature of at least 90°C for a suitable amount of time (e.g., at least 30 seconds, up to 30 mins). In certain embodiments, fully denaturing conditions may be used to completely separate the base pairs of the duplex. In other embodiments, partially denaturing conditions (e.g., with a lower temperature than fully denaturing conditions) may be used to separate the base pairs of certain parts of the duplex (e.g., regions enriched for A-T base pairs may separate while regions enriched for G-C base pairs may remain paired). Nucleic acid may also be denatured chemically (e.g., using urea or NaOH).

[0051] The term "genotyping," as used herein, refers to any type of analysis of a nucleic acid sequence, and includes sequencing, polymorphism (SNP) analysis, and analysis to identify rearrangements.

[0052] The term "sequencing," as used herein, refers to a method by which the identity of consecutive nucleotides of a polynucleotide are obtained.

[0053] The term "next-generation sequencing" refers to the so-called parallelized sequencing-by-synthesis or sequencing-by-ligation platforms, for example, those currently employed by Illumina, Life Technologies, and Roche, etc. Next-generation sequencing methods may also include nanopore sequencing methods or electronic-detection based methods such as Ion Torrent technology commercialized by Life Technologies.

[0054] The term "complementary DNA" or cDNA refers to a double-stranded DNA sample that was produced from an RNA sample by reverse transcription of RNA (using primers such as random hexamers or oligo-dT primers) followed by second-strand synthesis by digestion of the RNA with RNaseH and synthesis by DNA polymerase.

[0055] The term "RNA promoter adapter" is an adapter that contains a promoter for a bacteriophage RNA polymerase, e.g., the RNA polymerase from bacteriophage T3, T7, SP6 or the like.

[0056] Other definitions of terms may appear throughout the specification.

[0057] For any of the structural and functional characteristics described herein, methods of determining these characteristics are known in the art.

30 Guide Nucleic Acids (gNAs)

[0058] Provided herein are methods for making guide nucleic acids (gNAs) derivable from any nucleic acid source. The gNAs can be guide RNAs (gRNAs) or guide DNAs (gDNAs). The nucleic acid source can be DNA or RNA. Provided herein are methods to generate gNAs from any source nucleic acid, including DNA from a single organism, or mixtures of DNA from multiple organisms, or mixtures of DNA from multiple species, or DNA from clinical samples, or DNA from forensic samples, or DNA from environmental samples, or DNA from metagenomic DNA samples (for example a sample that contains more than one species of organism). Examples of any source DNA include, but are not limited to any genome, any genome fragment, cDNA, synthetic DNA, or a DNA collection (e.g. a SNP collection, DNA libraries). The gNAs provided herein can be used for genome-wide applications.

[0059] In some embodiments, the gNAs are derived from genomic sequences (e.g., genomic DNA). In some embodiments, the gNAs are derived from mammalian genomic sequences. In some embodiments, the gNAs are derived from eukaryotic genomic sequences. In some embodiments, the gNAs are derived from prokaryotic genomic sequences. In some embodiments, the gNAs are derived from viral genomic sequences. In some embodiments, the gNAs are derived from bacterial genomic sequences. In some embodiments, the gNAs are derived from plant genomic sequences. In some embodiments, the gNAs are derived from microbial genomic sequences. In some embodiments, the gNAs are derived from genomic sequences from a parasite, for example a eukaryotic parasite.

[0060] In some embodiments, the gNAs are derived from repetitive DNA. In some embodiments, the gNAs are derived from abundant DNA. In some embodiments, the gNAs are derived from mitochondrial DNA. In some embodiments, the gNAs are derived from ribosomal DNA. In some embodiments, the gNAs are derived from centromeric DNA. In some embodiments, the gNAs are derived from DNA comprising Alu elements (Alu DNA). In some embodiments, the gNAs are derived from DNA comprising long interspersed nuclear elements (LINE DNA). In some embodiments, the gNAs are derived from DNA comprising short interspersed nuclear elements (SINE DNA). In some embodiments the abundant DNA comprises ribosomal DNA. In some embodiments, the abundant DNA comprises host DNA (e.g., host genomic DNA or all host DNA). In an example, the gNAs can be derived from host DNA (e.g., human, animal, plant) for the depletion of host DNA to allow for easier analysis of other DNA that is present (e.g., bacterial, viral, or other metagenomic DNA). In another example, the gNAs can be derived from the one or more most abundant types (e.g., species) in a mixed sample, such as the one or more most abundant bacteria species in a metagenomic sample. The one or more most abundant types (e.g., species) can comprise the two, three, four, five, six, seven, eight, nine, ten, or more than ten

most abundant types (e.g., species). The most abundant types can be the most abundant kingdoms, phyla or divisions, classes, orders, families, genera, species, or other classifications. The most abundant types can be the most abundant cell types, such as epithelial cells, bone cells, muscle cells, blood cells, adipose cells, or other cell types. The most abundant types can be non-cancerous cells. The most abundant types can be cancerous cells. The most abundant types can be animal, human, plant, fungal, bacterial, or viral. gNAs can be derived from both a host and the one or more most abundant non-host types (e.g., species) in a sample, such as from both human DNA and the DNA of the one or more most abundant bacterial species. In some embodiments, the abundant DNA comprises DNA from the more abundant or most abundant cells in a sample. For example, for a specific sample, the highly abundant cells can be extracted and their DNA can be used to produce gNAs; these gNAs can be used to produce depletion library and applied to original sample to enable or enhance sequencing or detection of low abundance targets.

[0061] In some embodiments, the gNAs are derived from DNA comprising short terminal repeats (STRs).

[0062] In some embodiments, the gNAs are derived from a genomic fragment, comprising a region of the genome, or the whole genome itself. In one embodiment, the genome is a DNA genome. In another embodiment, the genome is a RNA genome.

[0063] In some embodiments, the gNAs are derived from a eukaryotic or prokaryotic organism; from a mammalian organism or a non-mammalian organism; from an animal or a plant; from a bacteria or virus; from an animal parasite; from a pathogen.

[0064] In some embodiments, the gNAs are derived from any mammalian organism. In one embodiment the mammal is a human. In another embodiment the mammal is a livestock animal, for example a horse, a sheep, a cow, a pig, or a donkey. In another embodiment, a mammalian organism is a domestic pet, for example a cat, a dog, a gerbil, a mouse, a rat. In another embodiment the mammal is a type of a monkey.

[0065] In some embodiments, the gNAs are derived from any bird or avian organism. An avian organism includes but is not limited to chicken, turkey, duck and goose.

[0066] In some embodiments, the gNAs are derived from a plant. In one embodiment, the plant is rice, maize, wheat, rose, grape, coffee, fruit, tomato, potato, or cotton.

[0067] In some embodiments, the gNAs are derived from a species of bacteria. In one embodiment, the bacteria are tuberculosis-causing bacteria.

[0068] In some embodiments, the gNAs are derived from a virus.

[0069] In some embodiments, the gNAs are derived from a species of fungi.

[0070] In some embodiments, the gNAs are derived from a species of algae.

[0071] In some embodiments, the gNAs are derived from any mammalian parasite.

[0072] In some embodiments, the gNAs are derived from any mammalian parasite. In one embodiment, the parasite is a worm. In another embodiment, the parasite is a malaria-causing parasite. In another embodiment, the parasite is a Leishmaniasis-causing parasite. In another embodiment, the parasite is an amoeba.

[0073] In some embodiments, the gNAs are derived from a nucleic acid target. Contemplated targets include, but are not limited to, pathogens; single nucleotide polymorphisms (SNPs), insertions, deletions, tandem repeats, or translocations; human SNPs or STRs; potential toxins; or animals, fungi, and plants. In some embodiments, the gRNAs are derived from pathogens, and are pathogen-specific gNAs.

[0074] In some embodiments, a guide NA of the invention comprises a first NA segment comprising a targeting sequence, wherein the targeting sequence is 15-250 bp; and a second NA segment comprising a nucleic acid guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence. In some embodiments, the targeting sequence is greater than 21 bp, greater than 22 bp, greater than 23 bp, greater than 24 bp, greater than 25 bp, greater than 26 bp, greater than 27 bp, greater than 28 bp, greater than 29 bp, greater than 30 bp, greater than 40 bp, greater than 50 bp, greater than 60 bp, greater than 70 bp, greater than 80 bp, greater than 90 bp, greater than 100 bp, greater than 110 bp, greater than 120 bp, greater than 130 bp, greater than 140 bp, or even greater than 150 bp. In an exemplary embodiment, the targeting sequence is greater than 30 bp. In some embodiments, the targeting sequences of the present invention range in size from 30-50 bp. In some embodiments, targeting sequences of the present invention range in size from 30-75 bp. In some embodiments, targeting sequences of the present invention range in size from 30-100 bp. For example, a targeting sequence can be at least 15 bp, 20 bp, 25 bp, 30 bp, 35 bp, 40 bp, 45 bp, 50 bp, 55 bp, 60 bp, 65 bp, 70 bp, 75 bp, 80 bp, 85 bp, 90 bp, 95 bp, 100 bp, 110 bp, 120 bp, 130 bp, 140 bp, 150 bp, 160 bp, 170 bp, 180 bp, 190 bp, 200 bp, 210 bp, 220 bp, 230 bp, 240 bp, or 250 bp. In specific embodiments, the targeting sequence is at least 22 bp. In specific embodiments, the targeting sequence is at least 30 bp.

[0075] In some embodiments, target-specific gNAs can comprise a nucleic acid sequence that is complementary to a region on the opposite strand of the targeted nucleic acid sequence 5' to a PAM sequence, which can be recognized by a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein. In some embodiments the targeted nucleic acid sequence is immediately 5' to a PAM sequence. In specific embodiments, the nucleic acid sequence of the gNA that is complementary to a region in a target nucleic acid is 15-250 bp. In specific embodiments, the nucleic acid sequence of the gNA that is complementary to a region in a target nucleic acid is 22, 23, 24, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80,

90, or 100 bp.

[0076] In some particular embodiments, the targeting sequence is not 20 bp. In some particular embodiments, the targeting sequence is not 21 bp.

[0077] In some embodiments, the gNAs comprise any purines or pyrimidines (and/or modified versions of the same).

5 In some embodiments, the gNAs comprise adenine, uracil, guanine, and cytosine (and/or modified versions of the same). In some embodiments, the gNAs comprise adenine, thymine, guanine, and cytosine (and/or modified versions of the same). In some embodiments, the gNAs comprise adenine, thymine, guanine, cytosine and uracil (and/or modified versions of the same).

10 [0078] In some embodiments, the gNAs comprise a label, are attached to a label, or are capable of being labeled. In some embodiments, the gNA comprises is a moiety that is further capable of being attached to a label. A label includes, but is not limited to, enzyme, an enzyme substrate, an antibody, an antigen binding fragment, a peptide, a chromophore, a lumiphore, a fluorophore, a chromogen, a hapten, an antigen, a radioactive isotope, a magnetic particle, a metal nanoparticle, a redox active marker group (capable of undergoing a redox reaction), an aptamer, one member of a binding pair, a member of a FRET pair (either a donor or acceptor fluorophore), and combinations thereof.

15 [0079] In some embodiments, the gNAs are attached to a substrate. The substrate can be made of glass, plastic, silicon, silica-based materials, functionalized polystyrene, functionalized polyethyleneglycol, functionalized organic polymers, nitrocellulose or nylon membranes, paper, cotton, and materials suitable for synthesis. Substrates need not be flat. In some embodiments, the substrate is a 2-dimensional array. In some embodiments, the 2-dimensional array is flat. In some embodiments, the 2-dimensional array is not flat, for example, the array is a wave-like array. Substrates 20 include any type of shape including spherical shapes (e.g., beads). Materials attached to substrates may be attached to any portion of the substrates (e.g., may be attached to an interior portion of a porous substrates material). In some embodiments, the substrate is a 3-dimensional array, for example, a microsphere. In some embodiments, the microsphere is magnetic. In some embodiments, the microsphere is glass. In some embodiments, the microsphere is made of polystyrene. In some embodiments, the microsphere is silica-based. In some embodiments, the substrate is an array with 25 interior surface, for example, is a straw, tube, capillary, cylindrical, or microfluidic chamber array. In some embodiments, the substrate comprises multiple straws, capillaries, tubes, cylinders, or chambers.

Nucleic Acids Encoding gNAs

30 [0080] Also provided herein are methods for making nucleic acids encoding for gNAs (e.g., gRNAs or gDNAs). In some embodiments, by encoding it is meant that a gNA results from the transcription of a nucleic acid encoding for a gNA (e.g., gRNA). In some embodiments, by encoding, it is meant that the nucleic acid is a template for the transcription of a gNA (e.g., gRNA). In some embodiments, by encoding, it is meant that a gNA results from the reverse transcription of a nucleic acid encoding for a gNA. In some embodiments, by encoding, it is meant that the nucleic acid is a template for the reverse transcription of a gNA. In some embodiments, by encoding, it is meant that a gNA results from the 35 amplification of a nucleic acid encoding for a gNA. In some embodiments, by encoding, it is meant that the nucleic acid is a template for the amplification of a gNA.

[0081] In some embodiments the nucleic acid encoding for a gNA comprises a first segment comprising a regulatory region; a second segment comprising targeting sequence, wherein the second segment can range from 15 bp - 250 bp; 40 and a third segment comprising a nucleic acid encoding a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence.

[0082] In some embodiments, the nucleic acids encoding for gNAs comprise DNA. In some embodiments, the first segment is double stranded DNA. In some embodiments, the first segment is single stranded DNA. In some embodiments, the second segment is single stranded DNA. In some embodiments, the third segment is single stranded DNA. In some 45 embodiments, the second segment is double stranded DNA. In some embodiments, the third segment is double stranded DNA.

[0083] In some embodiments, the nucleic acids encoding for gNAs comprise RNA.

[0084] In some embodiments the nucleic acids encoding for gNAs comprise DNA and RNA.

[0085] In some embodiments, the regulatory region is a region capable of binding a transcription factor. In some 50 embodiments, the regulatory region comprises a promoter. In some embodiments, the promoter is selected from the group consisting of T7, SP6, and T3.

Collections of gNAs

55 [0086] Provided herein are methods for making collections (interchangeably referred to as libraries) of gNAs.

[0087] As used herein, a collection of gNAs denotes a mixture of gNAs containing at least 10^2 unique gNAs. In some embodiments a collection of gNAs contains at least 10^2 , at least 10^3 , at least 10^4 , at least 10^5 , at least 10^6 , at least 10^7 , at least 10^8 , at least 10^9 , at least 10^{10} unique gNAs. In some embodiments a collection of gNAs contains a total of at

least 10², at least 10³, at least 10⁴, at least 10⁵, at least 10⁶, at least 10⁷, at least 10⁸, at least 10⁹, at least 10¹⁰ gNA.

[0088] In some embodiments, a collection of gNA comprises a first NA segment comprising a targeting sequence; and a second NA segment comprising a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence, wherein at least 10% of the gNA in the collection vary in size. In some embodiments, the first and second segments are in 5'- to 3'-order'.

[0089] In some embodiments, the size of the first segment varies from 15-250 bp, or 30-100 bp, or 22-30 bp, or 15-50 bp, or 15-75 bp, or 15-100 bp, or 15-125 bp, or 15-150 bp, or 15-175 bp, or 15-200 bp, or 15-225 bp, or 15-250 bp, or 22-50 bp, or 22-75 bp, or 22-100 bp, or 22-125 bp, or 22-150 bp, or 22-175 bp, or 22-200 bp, or 22-225 bp, or 22-250 bp across the collection of gNA.

[0090] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the first segments in the collection are greater than 21 bp.

[0091] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the first segments in the collection are greater than 25 bp.

[0092] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the first segments in the collection are greater than 30 bp.

[0093] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the first segments in the collection are 15-50 bp.

[0094] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the first segments in the collection are 30-100 bp.

[0095] In some particular embodiments, the size of the first segment is not 20 bp.

[0096] In some particular embodiments, the size of the first segment is not 21 bp.

[0097] In some embodiments, the gNA and/or the targeting sequence of the gNA in the collection of gRNAs comprise unique 5' ends. In some embodiments, the collection of gNA exhibit variability in sequence of the 5' end of the targeting sequence, across the members of the collection. In some embodiments, the collection of gNA exhibit variability at least 5%, or at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75% variability in the sequence of the 5' end of the targeting sequence, across the members of the collection.

[0098] In some embodiments, the 3' end of the gNA targeting sequence can be any purine or pyrimidine (and/or modified versions of the same). In some embodiments, the 3' end of the gNA targeting sequence is an adenine. In some embodiments, the 3' end of the gNA targeting sequence is a guanine. In some embodiments, the 3' end of the gNA targeting sequence is a cytosine. In some embodiments, the 3' end of the gNA targeting sequence is a uracil. In some embodiments, the 3' end of the gNA targeting sequence is a thymine. In some embodiments, the 3' end of the gNA targeting sequence is not cytosine.

[0099] In some embodiments, the collection of gNA comprises targeting sequences which can base-pair with the targeted DNA, wherein the target of interest is spaced at least every 1 bp, at least every 2 bp, at least every 3 bp, at least every 4 bp, at least every 5 bp, at least every 6 bp, at least every 7 bp, at least every 8 bp, at least every 9 bp, at least every 10 bp, at least every 11 bp, at least every 12 bp, at least every 13 bp, at least every 14 bp, at least every 15 bp, at least every 16 bp, at least every 17 bp, at least every 18 bp, at least every 19 bp, 20 bp, at least every 25 bp, at least every 30 bp, at least every 40 bp, at least every 50 bp, at least every 100 bp, at least every 200 bp, at least every 300 bp, at least every 400 bp, at least every 500 bp, at least every 600 bp, at least every 700 bp, at least every 800 bp, at least every 900 bp, at least every 1000 bp, at least every 2500 bp, at least every 5000 bp, at least every 10,000 bp, at least every 15,000 bp, at least every 20,000 bp, at least every 25,000 bp, at least every 50,000 bp, at least every 100,000 bp, at least every 250,000 bp, at least every 500,000 bp, at least every 750,000 bp, or even at least every 1,000,000 bp across a genome of interest.

[0100] In some embodiments, the collection of gNA comprises a first NA segment comprising a targeting sequence; and a second NA segment comprising a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence, wherein the gNA in the collection can have a variety of second NA segments with various specificities for protein members of the nucleic acid-guided nuclease system (e.g., CRISPR/Cas system). For example a collection of

gNAs as provided herein, can comprise members whose second segment comprises a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence specific for a first nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein; and also comprises members whose second segment comprises a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence specific for a second nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein, wherein the first and second nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins are not the same. In some embodiments a collection of gNAs as provided herein comprises members that exhibit specificity to at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or even at least 20 nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins. In one specific embodiment, a collection of gNAs as provided herein comprises members that exhibit specificity for a Cas9 protein and another protein selected from the group consisting of Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, and Cm5.

[0101] In some embodiments, a plurality of the gNA members of the collection are attached to a label, comprise a label or are capable of being labeled. In some embodiments, the gNA comprises is a moiety that is further capable of being attached to a label. A label includes, but is not limited to, enzyme, an enzyme substrate, an antibody, an antigen binding fragment, a peptide, a chromophore, a lumiphore, a fluorophore, a chromogen, a hapten, an antigen, a radioactive isotope, a magnetic particle, a metal nanoparticle, a redox active marker group (capable of undergoing a redox reaction), an aptamer, one member of a binding pair, a member of a FRET pair (either a donor or acceptor fluorophore), and combinations thereof.

[0102] In some embodiments, a plurality of the gNA members of the collection are attached to a substrate. The substrate can be made of glass, plastic, silicon, silica-based materials, functionalized polystyrene, functionalized polyethylene-glycol, functionalized organic polymers, nitrocellulose or nylon membranes, paper, cotton, and materials suitable for synthesis. Substrates need not be flat. In some embodiments, the substrate is a 2-dimensional array. In some embodiments, the 2-dimensional array is flat. In some embodiments, the 2-dimensional array is not flat, for example, the array is a wave-like array. Substrates include any type of shape including spherical shapes (e.g., beads). Materials attached to substrates may be attached to any portion of the substrates (e.g., may be attached to an interior portion of a porous substrates material). In some embodiments, the substrate is a 3-dimensional array, for example, a microsphere. In some embodiments, the microsphere is magnetic. In some embodiments, the microsphere is glass. In some embodiments, the microsphere is made of polystyrene. In some embodiments, the microsphere is silica-based. In some embodiments, the substrate is an array with interior surface, for example, is a straw, tube, capillary, cylindrical, or microfluidic chamber array. In some embodiments, the substrate comprises multiple straws, capillaries, tubes, cylinders, or chambers.

Collections of Nucleic Acids Encoding gNAs

[0103] Provided herein are methods for making collections (interchangeably referred to as libraries) of nucleic acids encoding for gNAs (e.g., gRNAs or gDNAs). In some embodiments, by encoding it is meant that a gNA results from the transcription of a nucleic acid encoding for a gNA. In some embodiments, by encoding, it is meant that the nucleic acid is a template for the transcription of a gNA.

[0104] As used herein, a collection of nucleic acids encoding for gNAs denotes a mixture of nucleic acids containing at least 10^2 unique nucleic acids. In some embodiments a collection of nucleic acids encoding for gNAs contains at least 10^2 , at least 10^3 , at least 10^4 , at least 10^5 , at least 10^6 , at least 10^7 , at least 10^8 , at least 10^9 , at least 10^{10} unique nucleic acids encoding for gNAs. In some embodiments a collection of nucleic acids encoding for gNAs contains a total of at least 10^2 , at least 10^3 , at least 10^4 , at least 10^5 , at least 10^6 , at least 10^7 , at least 10^8 , at least 10^9 , at least 10^{10} nucleic acids encoding for gNAs.

[0105] In some embodiments, a collection of nucleic acids encoding for gNAs comprises a first segment comprising a regulatory region; a second segment comprising a targeting sequence; and a third segment comprising a nucleic acid encoding a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence, wherein at least 10% of the nucleic acids in the collection vary in size.

[0106] In some embodiments, the first, second, and third segments are in 5'- to 3'-order'.

[0107] In some embodiments, the nucleic acids encoding for gNAs comprise DNA. In some embodiments, the first segment is single stranded DNA. In some embodiments, the first segment is double stranded DNA. In some embodiments, the second segment is single stranded DNA. In some embodiments, the third segment is single stranded DNA. In some embodiments, the second segment is double stranded DNA. In some embodiments, the third segment is double stranded DNA.

[0108] In some embodiments, the nucleic acids encoding for gNAs comprise RNA.

[0109] In some embodiments the nucleic acids encoding for gNAs comprise DNA and RNA.

[0110] In some embodiments, the regulatory region is a region capable of binding a transcription factor. In some embodiments, the regulatory region comprises a promoter. In some embodiments, the promoter is selected from the

group consisting of T7, SP6, and T3.

[0111] In some embodiments, the size of the second segments (targeting sequence) in the collection varies from 15-250 bp, or 30-100 bp, or 22-30 bp, or 15-50 bp, or 15-75 bp, or 15-100 bp, or 15-125 bp, or 15-150 bp, or 15-175 bp, or 15-200 bp, or 15-225 bp, or 15-250 bp, or 22-50 bp, or 22-75 bp, or 22-100 bp, or 22-125 bp, or 22-150 bp, or 22-175 bp, or 22-200 bp, or 22-225 bp, or 22-250 bp across the collection of gNAs.

[0112] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the second segments in the collection are greater than 21 bp.

[0113] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the second segments in the collection are greater than 25 bp.

[0114] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the second segments in the collection are greater than 30 bp.

[0115] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the second segments in the collection are 15-50bp.

[0116] In some embodiments, at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or 100% of the second segments in the collection are 30-100bp.

[0117] In some particular embodiments, the size of the second segment is not 20 bp.

[0118] In some particular embodiments, the size of the second segment is not 21 bp.

[0119] In some embodiments, the gNAs and/or the targeting sequence of the gNAs in the collection of gNAs comprise unique 5' ends. In some embodiments, the collection of gNAs exhibit variability in sequence of the 5' end of the targeting sequence, across the members of the collection. In some embodiments, the collection of gNAs exhibit variability at least 5%, or at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75% variability in the sequence of the 5' end of the targeting sequence, across the members of the collection.

[0120] In some embodiments, the collection of nucleic acids comprises targeting sequences, wherein the target of interest is spaced at least every 1 bp, at least every 2 bp, at least every 3 bp, at least every 4 bp, at least every 5 bp, at least every 6 bp, at least every 7 bp, at least every 8 bp, at least every 9 bp, at least every 10 bp, at least every 11 bp, at least every 12 bp, at least every 13 bp, at least every 14 bp, at least every 15 bp, at least every 16 bp, at least every 17 bp, at least every 18 bp, at least every 19 bp, 20 bp, at least every 25 bp, at least every 30 bp, at least every 40 bp, at least every 50 bp, at least every 100 bp, at least every 200 bp, at least every 300 bp, at least every 400 bp, at least every 500 bp, at least every 600 bp, at least every 700 bp, at least every 800 bp, at least every 900 bp, at least every 1000 bp, at least every 2500 bp, at least every 5000 bp, at least every 10,000 bp, at least every 15,000 bp, at least every 20,000 bp, at least every 25,000 bp, at least every 50,000 bp, at least every 100,000 bp, at least every 250,000 bp, at least every 500,000 bp, at least every 750,000 bp, or even at least every 1,000,000 bp across a genome of interest.

[0121] In some embodiments, the collection of nucleic acids encoding for gNAs comprise a third segment encoding for a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence, wherein the segments in the collection vary in their specificity for protein members of the nucleic acid-guided nuclease system (e.g., CRISPR/Cas system). For example, a collection of nucleic acids encoding for gNAs as provided herein, can comprise members whose third segment encode for a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence specific for a first nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein; and also comprises members whose third segment encodes for a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence specific for a second nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein, wherein the first and second nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins are not the same. In some embodiments, a collection of nucleic acids encoding for gNAs as provided herein comprises members that exhibit specificity to at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or even at least 20 nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins. In one specific embodiment, a collection of nucleic acids encoding for gNAs as provided herein comprises members that exhibit specificity for a Cas9 protein and another protein selected from the group consisting of Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4,

Csm2, and Cm5.

Sequences of Interest

5 [0122] Provided herein are methods for making gNAs and collections of gNAs, derived from any source DNA (for example from genomic DNA, cDNA, artificial DNA, DNA libraries), that can be used to target sequences of interest in a sample for a variety of applications including, but not limited to, enrichment, depletion, capture, partitioning, labeling, regulation, and editing. The gNAs comprise a targeting sequence, directed at sequences of interest.

10 [0123] In some embodiments, the sequences of interest are genomic sequences (genomic DNA). In some embodiments, the sequences of interest are mammalian genomic sequences. In some embodiments, the sequences of interest are eukaryotic genomic sequences. In some embodiments, the sequences of interest are prokaryotic genomic sequences. In some embodiments, the sequences of interest are viral genomic sequences. In some embodiments, the sequences of interest are bacterial genomic sequences. In some embodiments, the sequences of interest are plant genomic sequences. In some embodiments, the sequences of interest are microbial genomic sequences. In some embodiments, the sequences of interest are genomic sequences from a parasite, for example a eukaryotic parasite. In some embodiments, the sequences of interest are host genomic sequences (e.g., the host organism of a microbiome, a parasite, or a pathogen). In some embodiments, the sequences of interest are abundant genomic sequences, such as sequences from the genome or genomes of the most abundant species in a sample.

15 [0124] In some embodiments, the sequences of interest comprise repetitive DNA. In some embodiments, the sequences of interest comprise abundant DNA. In some embodiments, the sequences of interest comprise mitochondrial DNA. In some embodiments, the sequences of interest comprise ribosomal DNA. In some embodiments, the sequences of interest comprise centromeric DNA. In some embodiments, the sequences of interest comprise DNA comprising Alu elements (Alu DNA). In some embodiments, the sequences of interest comprise long interspersed nuclear elements (LINE DNA). In some embodiments, the sequences of interest comprise short interspersed nuclear elements (SINE DNA). In some embodiments, the abundant DNA comprises ribosomal DNA.

20 [0125] In some embodiments, the sequences of interest comprise single nucleotide polymorphisms (SNPs), short tandem repeats (STRs), cancer genes, inserts, deletions, structural variations, exons, genetic mutations, or regulatory regions.

25 [0126] In some embodiments, the sequences of interest can be a genomic fragment, comprising a region of the genome, or the whole genome itself. In one embodiment, the genome is a DNA genome. In another embodiment, the genome is a RNA genome.

30 [0127] In some embodiments, the sequences of interest are from a eukaryotic or prokaryotic organism; from a mammalian organism or a non-mammalian organism; from an animal or a plant; from a bacteria or virus; from an animal parasite; from a pathogen.

35 [0128] In some embodiments, the sequences of interest are from any mammalian organism. In one embodiment the mammal is a human. In another embodiment the mammal is a livestock animal, for example a horse, a sheep, a cow, a pig, or a donkey. In another embodiment, a mammalian organism is a domestic pet, for example a cat, a dog, a gerbil, a mouse, a rat. In another embodiment the mammal is a type of a monkey.

40 [0129] In some embodiments, the sequences of interest are from any bird or avian organism. An avian organism includes but is not limited to chicken, turkey, duck and goose.

45 [0130] In some embodiments, the sequences of interest are from a plant. In one embodiment, the plant is rice, maize, wheat, rose, grape, coffee, fruit, tomato, potato, or cotton.

50 [0131] In some embodiments, the sequences of interest are from a species of bacteria. In one embodiment, the bacteria are tuberculosis-causing bacteria.

55 [0132] In some embodiments, the sequences of interest are from a virus.

[0133] In some embodiments, the sequences of interest are from a species of fungi.

[0134] In some embodiments, the sequences of interest are from a species of algae.

[0135] In some embodiments, the sequences of interest are from any mammalian parasite.

[0136] In some embodiments, the sequences of interest are obtained from any mammalian parasite. In one embodiment, the parasite is a worm. In another embodiment, the parasite is a malaria-causing parasite. In another embodiment, the parasite is a Leishmaniasis-causing parasite. In another embodiment, the parasite is an amoeba.

[0137] In some embodiments, the sequences of interest are from a pathogen.

Targeting Sequences

55 [0138] As used herein, a targeting sequence is one that directs the gNA to the sequences of interest in a sample. For example, a targeting sequence targets a particular sequence of interest, for example the targeting sequence targets a genomic sequence of interest.

[0139] Provided herein are method of making gRNAs and collections of gRNAs that comprise a segment that comprises a targeting sequence. Also provided herein, are nucleic acids encoding for gRNAs, and collections of nucleic acids encoding for gRNAs that comprise a segment encoding for a targeting sequence.

[0140] In some embodiments, the targeting sequence comprises DNA.

5 [0141] In some embodiments, the targeting sequence comprises RNA.

[0142] In some embodiments, the targeting sequence comprises RNA, and shares at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, or shares 100% sequence identity to a sequence 5' to a PAM sequence on a sequence of interest, except that the RNA comprises uracils instead of thymines. In some embodiments, the PAM sequence is AGG, CGG, or TGG.

10 [0143] In some embodiments, the targeting sequence comprises DNA, and shares at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, or shares 100% sequence identity to a sequence 5' to a PAM sequence on a sequence of interest.

15 [0144] In some embodiments, the targeting sequence comprises RNA and is complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the targeting sequence is at least 70% complementary, at least 75% complementary, at least 80% complementary, at least 85% complementary, at least 90% complementary, at least 95% complementary, or is 100% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the PAM sequence is AGG, CGG, or TGG.

20 [0145] In some embodiments, the targeting sequence comprises DNA and is complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the targeting sequence is at least 70% complementary, at least 75% complementary, at least 80% complementary, at least 85% complementary, at least 90% complementary, at least 95% complementary, or is 100% complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the PAM sequence is AGG, CGG, or TGG.

25 [0146] In some embodiments, a DNA encoding for a targeting sequence of a gRNA shares at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, or shares 100% sequence identity to the strand opposite to a sequence of nucleotides 5' to a PAM sequence. In some embodiments, the PAM sequence is AGG, CGG, or TGG.

30 [0147] In some embodiments, a DNA encoding for a targeting sequence of a gRNA is complementary to the strand opposite to a sequence of nucleotides 5' to a PAM sequence and is at least 70% complementary, at least 75% complementary, at least 80% complementary, at least 85% complementary, at least 90% complementary, at least 95% complementary, or is 100% complementary to a sequence 5' to a PAM sequence on a sequence of interest. In some embodiments, the PAM sequence is AGG, CGG, or TGG.

35 Nucleic Acid-Guided Nuclease System Proteins

[0148] Provided herein are method of making gRNAs and collections of gRNAs comprising a segment that comprises a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence. Also provided herein, are nucleic acids encoding for gRNAs, and collections of nucleic acids encoding for gRNAs that comprise a segment encoding a nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) protein-binding sequence. A nucleic acid-guided nuclease system can be an RNA-guided nuclease system. A nucleic acid-guided nuclease system can be a DNA-guided nuclease system.

[0149] Methods of the present disclosure can utilize nucleic acid-guided nucleases. As used herein, a "nucleic acid-guided nuclease" is any nuclease that cleaves DNA, RNA or DNA/RNA hybrids, and which uses one or more nucleic acid guide nucleic acids (gRNAs) to confer specificity. Nucleic acid-guided nucleases include CRISPR/Cas system proteins as well as non-CRISPR/Cas system proteins.

[0150] The nucleic acid-guided nucleases provided herein can be DNA guided DNA nucleases; DNA guided RNA nucleases; RNA guided DNA nucleases; or RNA guided RNA nucleases. The nucleases can be endonucleases. The nucleases can be exonucleases. In one embodiment, the nucleic acid-guided nuclease is a nucleic acid-guided-DNA endonuclease. In one embodiment, the nucleic acid-guided nuclease is a nucleic acid-guided-RNA endonuclease.

[0151] A nucleic acid-guided nuclease system protein-binding sequence is a nucleic acid sequence that binds any protein member of a nucleic acid-guided nuclease system. For example, a CRISPR/Cas system protein-binding sequence is a nucleic acid sequence that binds any protein member of a CRISPR/Cas system.

[0152] In some embodiments, the nucleic acid-guided nuclease is selected from the group consisting of CAS Class I Type I, CAS Class I Type III, CAS Class I Type IV, CAS Class II Type II, and CAS Class II Type V. In some embodiments, CRISPR/Cas system proteins include proteins from CRISPR Type I systems, CRISPR Type II systems, and CRISPR Type III systems. In some embodiments, the nucleic acid-guided nuclease is selected from the group consisting of Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cm5, Csf1, C2c2, and NgAgo.

[0153] In some embodiments, nucleic acid-guided nuclease system proteins (e.g., CRISPR/Cas system proteins) can be from any bacterial or archaeal species.

[0154] In some embodiments, the nucleic acid-guided nuclease system proteins (e.g., CRISPR/Cas system proteins) are from, or are derived from nucleic acid-guided nuclease system proteins (e.g., CRISPR/Cas system proteins) from *Streptococcus pyogenes*, *Staphylococcus aureus*, *Neisseria meningitidis*, *Streptococcus thermophiles*, *Treponema denticola*, *Francisella tularensis*, *Pasteurella multocida*, *Campylobacter jejuni*, *Campylobacter lari*, *Mycoplasma gallisepticum*, *Nitratifractor salsuginis*, *Parvibaculum lavamentivorans*, *Roseburia intestinalis*, *Neisseria cinerea*, *Gluconacetobacter diazotrophicus*, *Azospirillum*, *Sphaerochaeta globus*, *Flavobacterium columnare*, *Fluviicola taffensis*, *Bacteroides coprophilus*, *Mycoplasma mobile*, *Lactobacillus farciminis*, *Streptococcus pasteurianus*, *Lactobacillus johnsonii*, *Staphylococcus pseudintermedius*, *Filifactor alocis*, *Legionella pneumophila*, *Suterella wadsworthensis*, or *Corynebacter diphtheriae*.

[0155] In some embodiments, examples of nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins can be naturally occurring or engineered versions.

[0156] In some embodiments, naturally occurring nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins include Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Csel, Csy1, Csn2, Cas4, Csm2, and Cm5. Engineered versions of such proteins can also be employed.

[0157] In some embodiments, engineered examples of nucleic acid-guided nuclease system (e.g., CRISPR/Cas system) proteins include catalytically dead nucleic acid-guided nuclease system proteins. The term "catalytically dead" generally refers to a nucleic acid-guided nuclease system protein that has inactivated nucleases (e.g., HNH and RuvC nucleases). Such a protein can bind to a target site in any nucleic acid (where the target site is determined by the guide NA), but the protein is unable to cleave or nick the target nucleic acid (e.g., double-stranded DNA). In some embodiments, the nucleic acid-guided nuclease system catalytically dead protein is a catalytically dead CRISPR/Cas system protein, such as catalytically dead Cas9 (dCas9). Accordingly, the dCas9 allows separation of the mixture into unbound nucleic acids and dCas9-bound fragments. In one embodiment, a dCas9/gRNA complex binds to targets determined by the gRNA sequence. The dCas9 bound can prevent cutting by Cas9 while other manipulations proceed. In another embodiment, the dCas9 can be fused to another enzyme, such as a transposase, to target that enzyme's activity to a specific site. Naturally occurring catalytically dead nucleic acid-guided nuclease system proteins can also be employed.

[0158] In some embodiments, engineered examples of nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins also include nucleic acid-guided nickases (e.g., Cas nickases). A nucleic acid-guided nickase refers to a modified version of a nucleic acid-guided nuclease system protein, containing a single inactive catalytic domain. In one embodiment, the nucleic acid-guided nickase is a Cas nickase, such as Cas9 nickase. A Cas9 nickase may contain a single inactive catalytic domain, for example, either the RuvC- or the HNH-domain. With only one active nuclease domain, the Cas9 nickase cuts only one strand of the target DNA, creating a single-strand break or "nick". Depending on which mutant is used, the guide NA-hybridized strand or the non-hybridized strand may be cleaved. Nucleic acid-guided nickases bound to 2 gNAs that target opposite strands will create a double-strand break in a target double-stranded DNA. This "dual nickase" strategy can increase the specificity of cutting because it requires that both nucleic acid-guided nuclease/gNA (e.g., Cas9/gRNA) complexes be specifically bound at a site before a double-strand break is formed. Naturally occurring nickase nucleic acid-guided nuclease system proteins can also be employed.

[0159] In some embodiments, engineered examples of nucleic acid-guided nuclease system proteins also include nucleic acid-guided nuclease system fusion proteins. For example, a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein may be fused to another protein, for example an activator, a repressor, a nuclease, a fluorescent molecule, a radioactive tag, or a transposase.

[0160] In some embodiments, the nucleic acid-guided nuclease system protein-binding sequence comprises a gNA (e.g., gRNA) stem-loop sequence.

[0161] In some embodiments, a double-stranded DNA sequence encoding the gNA (e.g., gRNA) stem-loop sequence comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTAGAAATAGCAAGTTAAAATAAG-GCTAGTCGTTATCAACTGAAAAAGTG GCACCGAGTCGGTGCTTTTTT) (SEQ ID NO: 3), and its reverse-complementary DNA on the other strand (5'>3', AAAAAAAGCACCGACTCGGTGCCACTTTCAAGTTGATAACG-GACTAGCCTTATTTAACT TGCTATTCTAGCTCTAAAAC) (SEQ ID NO: 4).

[0162] In some embodiments, a single-stranded DNA sequence encoding the gNA (e.g., gRNA) stem-loop sequence comprises the following DNA sequence: (5'>3', AAAAAAAGCACCGACTCGGTGCCACTTTCAAGTTGATAACG-GACTAGCCTTATTTAACT TGCTATTCTAGCTCTAAAAC) (SEQ ID NO: 4), wherein the single-stranded DNA serves as a transcription template.

[0163] In some embodiments, the gNA (e.g., gRNA) stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAGAAAAGCAAGUUAAAAGGCUAGUCCGUUAUCUUGAAAAAG UGGCAC-CGAGUCGGUGCUUUUUUU) (SEQ ID NO: 1)

[0164] In some embodiments, a double-stranded DNA sequence encoding the gNA (e.g., gRNA) stem-loop sequence comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTATGCTGGAACAGCATAGCAAGT-

TAAAATAAGGCTAGTCGTTATCAACTT GAAAAAGTGGCACCGAGTCGGTGCTTTTTTC) (SEQ ID NO: 5), and its reverse-complementary DNA on the other strand (5'>3', GAAAAAAAAGCACCAGACTCGGTGCCACTTTTCAAGTTGATAACCGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6).

[0165] In some embodiments, a single-stranded DNA sequence encoding the gNA (e.g., gRNA) stem-loop sequence comprises the following DNA sequence: (5'>3', GAAAAAAAAGCACCAGACTCGGTGCCACTTTTCAAGTTGATAACCGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6), wherein the single-stranded DNA serves as a transcription template.

[0166] In some embodiments, the gNA (e.g., gRNA) stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAUAAGGCUAGUCCGUUAUCAA CUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUUUC) (SEQ ID NO: 2).

[0167] In some embodiments, provided herein is a nucleic acid encoding for a gNA (e.g., gRNA) comprising a first segment comprising a regulatory region; a second segment encoding a targeting sequence; and a third segment comprising a nucleic acid encoding a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein-binding sequence. In some embodiments, the third segment comprises a single transcribed component, which upon transcription yields a gNA (e.g., RNA) stem-loop sequence. In some embodiments, the third segment comprising a single transcribed component that encodes for the gNA (e.g., gRNA) stem-loop sequence is double-stranded, comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTAGAAATAGCAAGTAAAATAAGGCTAGTCGTTATCAACTTGAAAAAGTG GCACCGAGTCGGTGCTTTTT) (SEQ ID NO: 3), and its reverse-complementary DNA on the other strand (5'>3', AAAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TGCTATT-TCTAGCTCTAAAAC) (SEQ ID NO: 4). In some embodiments, the third segment comprising a single transcribed component that encodes for the gNA (e.g., gRNA) stem-loop sequence is single-stranded, and comprises the following DNA sequence: (5'>3', AAAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TGCTATTCTAGCTCTAAAAC) (SEQ ID NO: 4), wherein the single-stranded DNA serves as a transcription template. In some embodiments, upon transcription from the single transcribed component, the resulting gNA (e.g., gRNA) stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAGAAAUAAGCAAGUUAAAUAAG-GCUAGUCCGUUAUCAAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCUUUUUUU) (SEQ ID NO: 1). In some embodiments, the third segment comprising a single transcribed component that encodes for the gNA (e.g., gRNA) stem-loop sequence is double-stranded, comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTATGCTGGAAACAGCATAGCAAGTAAAATAAGGCTAGTCGTTATCAACTTGAAAAAGTGGCAC- CGAGTCGGTGCTTTTT) (SEQ ID NO: 5), and its reverse-complementary DNA on the other strand (5'>3', GAAAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TTGCTATGCTGTT-TCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6). In some embodiments, the third segment comprising a single transcribed component that encodes for the gNA (e.g., gRNA) stem-loop sequence is single-stranded, and comprises the following DNA sequence: (5'>3', GAAAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6), wherein the single-stranded DNA serves as a transcription template. In some embodiments, upon transcription from the single transcribed component, the yielded gRNA stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAUAAGGCUAGUCCGUUAUCAA CUUGAAAAAGUG-GCACCGAGUCGGUGCUUUUUUUUC) (SEQ ID NO: 2). In some embodiments, the third segment comprises two sub-segments, which encode for a crRNA and a tracrRNA upon transcription. In some embodiment, the crRNA does not comprise the N20 plus the extra sequence which can hybridize with tracrRNA. In some embodiments, the crRNA comprises the extra sequence which can hybridize with tracrRNA. In some embodiments, the two sub-segments are independently transcribed. In some embodiments, the two sub-segments are transcribed as a single unit. In some embodiments, the DNA encoding the crRNA comprises N_{target} GTGTTAGAGCTATGCTGTTTG (SEQ ID NO: 7), where N_{target} represents the targeting sequence. In some embodiments, the DNA encoding the tracrRNA comprises the sequence GGAACCATTCAAAACAGCATAGCAAGTAAAATAAGGCTAGTCGTTATCAACTTGAAAAA GTGGCAC- CGAGTCGGTGCTTTTT (SEQ ID NO: 8).

[0168] In some embodiments, provided herein is a nucleic acid encoding for a gNA (e.g., gRNA) comprising a first segment comprising a regulatory region; a second segment encoding a targeting sequence; and a third segment comprising a nucleic acid encoding a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein-binding sequence. In some embodiments, the third segment comprises a DNA sequence, which upon transcription yields a gRNA stem-loop sequence capable of binding a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein. In one embodiment, the DNA sequence can be double-stranded. In some embodiments, the third segment double stranded DNA comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTAGAAATAGCAAGTAAAATAAGGCTAGTCGTTATCAACTTGAAAAA GTGGCAC- CGAGTCGGTGCTTTTT) (SEQ ID NO: 3), and its reverse-complementary DNA on the other strand (5'>3', AAAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TGCTATTCTAGCTCTAAAAC) (SEQ ID NO: 4). In some embodiments, the third segment double stranded DNA comprises the following DNA sequence on one strand (5'>3', GTTTAGAGCTATGCTGGAAACAGCATAGCAAGT-

TAAAATAAGGCTAGTCGTTATCAACTT GAAAAAGTGGCACCGAGTCGGTGCTTTTTTC) (SEQ ID NO: 5), and its reverse-complementary DNA on the other strand (5'>3', GAAAAAAAAGCACCGACTCGGTGCCACTTTTCAAGTTGATAACCGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6). In one embodiment, the DNA sequence can be single-stranded. In some embodiments, the third segment single stranded DNA comprises the following DNA sequence (5'>3', AAAAAAAGCACCGACTCGGTGCCACTTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 4), wherein the single-stranded DNA serves as a transcription template. In some embodiments, the third segment single stranded DNA comprises the following DNA sequence (5'>3', GAAAAAAAAGCACCGACTCGGTGCCACTTTTCAAGTTGATAACGGACTAGCCTTATTTAAC TTGCTATGCTGTTCCAGCATAGCTCTAAAAC) (SEQ ID NO: 6), wherein the single-stranded DNA serves as a transcription template. In some embodiments, the third segment comprises a DNA sequence which, upon transcription, yields a first RNA sequence that is capable of forming a hybrid with a second RNA sequence, and which hybrid is capable of CRISPR/Cas system protein binding. In some embodiments, the third segment is double-stranded DNA comprising the DNA sequence on one strand: (5'>3', GTTTTAGAGCTATGCTGTTTG) (SEQ ID NO: 9) and its reverse complementary DNA sequence on the other strand: (5'>3', CAAAACAGCAGCATAGCTCTAAAAC) (SEQ ID NO: 10). In some embodiments, the third segment is single-stranded DNA comprising the DNA sequence of (5'>3', CAAAACAGCAGCATAGCTCTAAAAC) (SEQ ID NO: 10). In some embodiments, the second segment and the third segment together encode for a crRNA sequence. In some embodiments, the second RNA sequence that is capable of forming a hybrid with the first RNA sequence encoded by the third segment of the nucleic acid encoding a gRNA is a tracrRNA. In some embodiments, the tracrRNA comprises the sequence (5'>3', GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAG-GCUAGUCCGUUAUCUACUUGAAA AAGUGGCACCGAGUCGGUGGUUUUUU) (SEQ ID NO: 11). In some embodiments, the tracrRNA is encoded by a double-stranded DNA comprising sequence of (5'>3', GGAACCATTCAAAACAGCAGCATAGCAAGTTAAAATAAGGCTAGTCGTTATCAACTTGAAAAA GTGGCAC-CGAGTCGGTGCTTTTT) (SEQ ID NO: 8), and optionally fused with a regulatory sequence at its 5' end. In some embodiments, the regulatory sequence can be bound by a transcription factor. In some embodiments, the regulatory sequence is a promoter. In some embodiments, the regulatory sequence is a T7 promoter, comprising the sequence of (5'>3', GCCTCGAGCTAATACGACTCACTATAGAG) (SEQ ID NO: 12).

[0169] In some embodiments, provided herein is a nucleic acid encoding for a gNA comprising a first segment comprising a regulatory region; a second segment encoding a targeting sequence; and a third segment comprising a nucleic acid encoding a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein-binding sequence. In some embodiments, the third segment encodes for a RNA sequence that, upon post-transcriptional cleavage, yields a first RNA segment and a second RNA segment. In some embodiments, the first RNA segment comprises a crRNA and the second RNA segment comprises a tracrRNA, which can form a hybrid and together, provide for nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein binding. In some embodiments, the third segment further comprises a spacer in between the transcriptional unit for the first RNA segment and the second RNA segment, which spacer comprises an enzyme cleavage site.

[0170] In some embodiments, provided herein is a gNA (e.g., gRNA) comprising a first NA segment comprising a targeting sequence and a second NA segment comprising a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein-binding sequence. In some embodiments, the size of the first segment is greater than 30 bp. In some embodiments, the second segment comprises a single segment, which comprises the gRNA stem-loop sequence. In some embodiments, the gRNA stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAGAAAAGCAAGUUAAAAAAGGUAGGUUCAACUUGAAAAAG UGGCACCGAGUCGGGUUUUUUUU) (SEQ ID NO: 1). In some embodiments, the gRNA stem-loop sequence comprises the following RNA sequence: (5'>3', GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAAAAGGUAGGUUCAACUUGAAAAAGUGGCACCGAGUCGGUGGUUUUUUC) (SEQ ID NO: 2). In some embodiments, the second segment comprises two sub-segments: a first RNA sub-segment (crRNA) that forms a hybrid with a second RNA sub-segment (tracrRNA), which together act to direct nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein binding. In some embodiments, the sequence of the second sub-segment comprises GUUUUAGAGCUAUGCUGUU-UUG. In some embodiments, the first RNA segment and the second RNA segment together forms a crRNA sequence. In some embodiments, the other RNA that will form a hybrid with the second RNA segment is a tracrRNA. In some embodiments the tracrRNA comprises the sequence of 5'>3', GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAG-GCUAGUCCGUUAUCUACUUGAAA AAGUGGCACCGAGUCGGUGGUUUUUU) (SEQ ID NO: 11).

CRISPR/Cas System Nucleic Acid-Guided Nucleases

[0171] In some embodiments, CRISPR/Cas system proteins are used in the embodiments provided herein. In some embodiments, CRISPR/Cas system proteins include proteins from CRISPR Type I systems, CRISPR Type II systems, and CRISPR Type III systems.

[0172] In some embodiments, CRISPR/Cas system proteins can be from any bacterial or archaeal species.

[0173] In some embodiments, the CRISPR/Cas system protein is isolated, recombinantly produced, or synthetic.

[0174] In some embodiments, the CRISPR/Cas system proteins are from, or are derived from CRISPR/Cas system proteins from *Streptococcus pyogenes*, *Staphylococcus aureus*, *Neisseria meningitidis*, *Streptococcus thermophiles*, *Treponema denticola*, *Francisella tularensis*, *Pasteurella multocida*, *Campylobacter jejuni*, *Campylobacter lari*, *Mycoplasma gallisepticum*, *Nitratirfractor salsuginis*, *Parvibaculum lavamentivorans*, *Roseburia intestinalis*, *Neisseria cinerea*, *Gluconacetobacter diazotrophicus*, *Azospirillum*, *Sphaerochaeta globus*, *Flavobacterium columnare*, *Fluviicola taffensis*, *Bacteroides coprophilus*, *Mycoplasma mobile*, *Lactobacillus farciminis*, *Streptococcus pasteurianus*, *Lactobacillus johnsonii*, *Staphylococcus pseudintermedius*, *Filifactor alocis*, *Legionella pneumophila*, *Suterella wadsworthensis*, or *Corynebacter diphtheria*.

[0175] In some embodiments, examples of CRISPR/Cas system proteins can be naturally occurring or engineered versions.

[0176] In some embodiments, naturally occurring CRISPR/Cas system proteins can belong to CAS Class I Type I, III, or IV, or CAS Class II Type II or V, and can include Cas9, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, Cmr5, Csf1, C2c2, and Cpf1.

[0177] In an exemplary embodiment, the CRISPR/Cas system protein comprises Cas9.

[0178] A "CRISPR/Cas system protein-gNA complex" refers to a complex comprising a CRISPR/Cas system protein and a guide NA (e.g. a gRNA or a gDNA). Where the gNA is a gRNA, the gRNA may be composed of two molecules, i.e., one RNA ("crRNA") which hybridizes to a target and provides sequence specificity, and one RNA, the "tracrRNA", which is capable of hybridizing to the crRNA. Alternatively, the guide RNA may be a single molecule (i.e., a gRNA) that contains crRNA and tracrRNA sequences.

[0179] A CRISPR/Cas system protein may be at least 60% identical (e.g., at least 70%, at least 80%, or 90% identical, at least 95% identical or at least 98% identical or at least 99% identical) to a wild type CRISPR/Cas system protein. The CRISPR/Cas system protein may have all the functions of a wild type CRISPR/Cas system protein, or only one or some of the functions, including binding activity, nuclease activity, and nuclelease activity.

[0180] The term "CRISPR/Cas system protein-associated guide NA" refers to a guide NA. The CRISPR/Cas system protein -associated guide NA may exist as isolated NA, or as part of a CRISPR/Cas system protein-gNA complex.

Cas9

[0181] In some embodiments, the CRISPR/Cas System protein nucleic acid-guided nuclease is or comprises Cas9. The Cas9 of the present invention can be isolated, recombinantly produced, or synthetic.

[0182] Examples of Cas9 proteins that can be used in the embodiments herein can be found in F.A. Ran, L. Cong, W.X. Yan, D. A. Scott, J.S. Gootenberg, A.J. Kriz, B. Zetsche, O. Shalem, X. Wu, K.S. Makarova, E. V. Koonin, P.A. Sharp, and F. Zhang; "In vivo genome editing using *Staphylococcus aureus* Cas9," *Nature* 520, 186-191 (09 April 2015) doi:10.1038/nature14299,

[0183] In some embodiments, the Cas9 is a Type II CRISPR system derived from *Streptococcus pyogenes*, *Staphylococcus aureus*, *Neisseria meningitidis*, *Streptococcus thermophiles*, *Treponema denticola*, *Francisella tularensis*, *Pasteurella multocida*, *Campylobacter jejuni*, *Campylobacter lari*, *Mycoplasma gallisepticum*, *Nitratirfractor salsuginis*, *Parvibaculum lavamentivorans*, *Roseburia intestinalis*, *Neisseria cinerea*, *Gluconacetobacter diazotrophicus*, *Azospirillum*, *Sphaerochaeta globus*, *Flavobacterium columnare*, *Fluviicola taffensis*, *Bacteroides coprophilus*, *Mycoplasma mobile*, *Lactobacillus farciminis*, *Streptococcus pasteurianus*, *Lactobacillus johnsonii*, *Staphylococcus pseudintermedius*, *Filifactor alocis*, *Legionella pneumophila*, *Suterella wadsworthensis*, or *Corynebacter diphtheria*.

[0184] In some embodiments, the Cas9 is a Type II CRISPR system derived from *S. pyogenes* and the PAM sequence is NGG located on the immediate 3' end of the target specific guide sequence. The PAM sequences of Type II CRISPR systems from exemplary bacterial species can also include: *Streptococcus pyogenes* (NGG), *Staph aureus* (NNGRRT), *Neisseria meningitidis* (NNNNGA TT), *Streptococcus thermophilus* (NNAGAA) and *Treponema denticola* (NAAAAC) which are all usable without deviating from the present invention.

[0185] In one exemplary embodiment, Cas9 sequence can be obtained, for example, from the pX330 plasmid (available from Addgene), re-amplified by PCR then cloned into pET30 (from EMD biosciences) to express in bacteria and purify the recombinant 6His tagged protein.

[0186] A "Cas9-gNA complex" refers to a complex comprising a Cas9 protein and a guide NA. A Cas9 protein may be at least 60% identical (e.g., at least 70%, at least 80%, or 90% identical, at least 95% identical or at least 98% identical or at least 99% identical) to a wild type Cas9 protein, e.g., to the *Streptococcus pyogenes* Cas9 protein. The Cas9 protein may have all the functions of a wild type Cas9 protein, or only one or some of the functions, including binding activity, nuclease activity, and nuclelease activity.

[0187] The term "Cas9-associated guide NA" refers to a guide NA as described above. The Cas9-associated guide NA may exist isolated, or as part of a Cas9-gNA complex. Non-CRISPR/Cas System Nucleic Acid-Guided Nucleases

[0188] In some embodiments, non-CRISPR/Cas system proteins are used in the embodiments provided herein.

[0189] In some embodiments, the non-CRISPR/Cas system proteins can be from any bacterial or archaeal species.

[0190] In some embodiments, the non-CRISPR /Cas system protein is isolated, recombinantly produced, or synthetic.

[0191] In some embodiments, the non-CRISPR /Cas system proteins are from, or are derived from *Aquifex aeolicus*, *Thermus thermophilus*, *Streptococcus pyogenes*, *Staphylococcus aureus*, *Neisseria meningitidis*, *Streptococcus thermophiles*, *Treponema denticola*, *Francisella tularensis*, *Pasteurella multocida*, *Campylobacter jejuni*, *Campylobacter lari*, *Mycoplasma gallisepticum*, *Nitratifractor salsuginis*, *Parvibaculum lavamentivorans*, *Roseburia intestinalis*, *Neisseria cinerea*, *Gluconacetobacter diazotrophicus*, *Azospirillum*, *Sphaerochaeta globus*, *Flavobacterium columnare*, *Fluviicola taffensis*, *Bacteroides coprophilus*, *Mycoplasma mobile*, *Lactobacillus farciminis*, *Streptococcus pasteurianus*, *Lactobacillus johnsonii*, *Staphylococcus pseudintermedius*, *Filifactor alocis*, *Legionella pneumophila*, *Suterella wadsworthensis*, *Natronobacterium gregoryi*, or *Corynebacterium diphtheriae*.

[0192] In some embodiments, the non-CRISPR /Cas system proteins can be naturally occurring or engineered versions.

[0193] In some embodiments, a naturally occurring non-CRISPR /Cas system protein is NgAgo (Argonaute from *Natronobacterium gregoryi*).

[0194] A "non-CRISPR /Cas system protein-gNA complex" refers to a complex comprising a non-CRISPR /Cas system protein and a guide NA (e.g. a gRNA or a gDNA). Where the gNA is a gRNA, the gRNA may be composed of two molecules, i.e., one RNA ("crRNA") which hybridizes to a target and provides sequence specificity, and one RNA, the "tracrRNA", which is capable of hybridizing to the crRNA. Alternatively, the guide RNA may be a single molecule (i.e., a gRNA) that contains crRNA and tracrRNA sequences.

[0195] A non-CRISPR /Cas system protein may be at least 60% identical (e.g., at least 70%, at least 80%, or 90% identical, at least 95% identical or at least 98% identical or at least 99% identical) to a wild type non-CRISPR /Cas system protein. The non-CRISPR /Cas system protein may have all the functions of a wild type non-CRISPR /Cas system protein, or only one or some of the functions, including binding activity, nuclease activity, and nucleic acid activity.

[0196] The term "non-CRISPR /Cas system protein-associated guide NA" refers to a guide NA. The non-CRISPR /Cas system protein -associated guide NA may exist as isolated NA, or as part of a non-CRISPR /Cas system protein-gNA complex.

Catalytically Dead Nucleic Acid-Guided Nucleases

[0197] In some embodiments, engineered examples of nucleic acid-guided nucleases include catalytically dead nucleic acid-guided nucleases (CRISPR/Cas system nucleic acid-guided nucleases or non-CRISPR/Cas system nucleic acid-guided nucleases). The term "catalytically dead" generally refers to a nucleic acid-guided nuclease that has inactivated nucleases, for example inactivated HNH and RuvC nucleases. Such a protein can bind to a target site in any nucleic acid (where the target site is determined by the guide NA), but the protein is unable to cleave or nick the nucleic acid.

[0198] Accordingly, the catalytically dead nucleic acid-guided nuclease allows separation of the mixture into unbound nucleic acids and catalytically dead nucleic acid-guided nuclease-bound fragments. In one exemplary embodiment, a dCas9/gRNA complex binds to the targets determined by the gRNA sequence. The dCas9 bound can prevent cutting by Cas9 while other manipulations proceed.

[0199] In another embodiment, the catalytically dead nucleic acid-guided nuclease can be fused to another enzyme, such as a transposase, to target that enzyme's activity to a specific site.

[0200] In some embodiments, the catalytically dead nucleic acid-guided nuclease is dCas9, dCpf1, dCas3, dCas8a-c, dCas10, dCse1, dCsy1, dCsn2, dCas4, dCsm2, dCm5, dCsf1, dC2C2, or dNgAgo.

[0201] In one exemplary embodiment the catalytically dead nucleic acid-guided nuclease protein is a dCas9.

Nucleic Acid-Guided Nuclease Nickases

[0202] In some embodiments, engineered examples of nucleic acid-guided nucleases include nucleic acid-guided nuclease nickases (referred to interchangeably as nickase nucleic acid-guided nucleases).

[0203] In some embodiments, engineered examples of nucleic acid-guided nucleases include CRISPR/Cas system nickases or non-CRISPR/Cas system nickases, containing a single inactive catalytic domain.

[0204] In some embodiments, the nucleic acid-guided nuclease nickase is a Cas9 nickase, Cpf1 nickase, Cas3 nickase, Cas8a-c nickase, Cas10 nickase, Cse1 nickase, Csy1 nickase, Csn2 nickase, Cas4 nickase, Csm2 nickase, Cm5 nickase, Csf1 nickase, C2C2 nickase, or a NgAgo nickase.

[0205] In one embodiment, the nucleic acid-guided nuclease nickase is a Cas9 nickase.

[0206] In some embodiments, a nucleic acid-guided nuclease nickase can be used to bind to target sequence. With only one active nuclease domain, the nucleic acid-guided nuclease nickase cuts only one strand of a target DNA, creating a single-strand break or "nick". Depending on which mutant is used, the guide NA-hybridized strand or the non-hybridized strand may be cleaved. nucleic acid-guided nuclease nickases bound to 2 gNAs that target opposite strands can create a double-strand break in the nucleic acid. This "dual nickase" strategy increases the specificity of cutting because it

requires that both nucleic acid-guided nuclease /gNA complexes be specifically bound at a site before a double-strand break is formed.

[0207] In exemplary embodiments, a Cas9 nickase can be used to bind to target sequence. The term "Cas9 nickase" refers to a modified version of the Cas9 protein, containing a single inactive catalytic domain, i.e., either the RuvC- or the HNH-domain. With only one active nuclease domain, the Cas9 nickase cuts only one strand of the target DNA, creating a single-strand break or "nick". Depending on which mutant is used, the guide RNA-hybridized strand or the non-hybridized strand may be cleaved. Cas9 nickases bound to 2 gRNAs that target opposite strands will create a double-strand break in the DNA. This "dual nickase" strategy can increase the specificity of cutting because it requires that both Cas9/gRNA complexes be specifically bound at a site before a double-strand break is formed.

[0208] Capture of DNA can be carried out using a nucleic acid-guided nuclease nickase. In one exemplary embodiment, a nucleic acid-guided nuclease nickase cuts a single strand of double stranded nucleic acid, wherein the double stranded region comprises methylated nucleotides.

Dissociable and Thermostable Nucleic Acid-Guided Nucleases

[0209] In some embodiments, thermostable nucleic acid-guided nucleases are used in the methods provided herein (thermostable CRISPR/Cas system nucleic acid-guided nucleases or thermostable non-CRISPR/Cas system nucleic acid-guided nucleases). In such embodiments, the reaction temperature is elevated, inducing dissociation of the protein; the reaction temperature is lowered, allowing for the generation of additional cleaved target sequences. In some embodiments, thermostable nucleic acid-guided nucleases maintain at least 50% activity, at least 55% activity, at least 60% activity, at least 65% activity, at least 70% activity, at least 75% activity, at least 80% activity, at least 85% activity, at least 90% activity, at least 95% activity, at least 96% activity, at least 97% activity, at least 98% activity, at least 99% activity, or 100% activity, when maintained for at least 75°C for at least 1 minute. In some embodiments, thermostable nucleic acid-guided nucleases maintain at least 50% activity, when maintained for at least 1 minute at least at 75°C, at least at 80°C, at least at 85°C, at least at 90°C, at least at 91°C, at least at 92°C, at least at 93°C, at least at 94°C, at least at 95°C, 96°C, at least at 97°C, at least at 98°C, at least at 99°C, or at least at 100°C. In some embodiments, thermostable nucleic acid-guided nucleases maintain at least 50% activity, when maintained at least at 75°C for at least 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 minutes. In some embodiments, a thermostable nucleic acid-guided nuclease maintains at least 50% activity when the temperature is elevated, lowered to 25°C-50°C. In some embodiments, the temperature is lowered to 25°C, to 30°C, to 35°C, to 40°C, to 45°C, or to 50°C. In one exemplary embodiment, a thermostable enzyme retains at least 90% activity after 1 min at 95°C.

[0210] In some embodiments, the thermostable nucleic acid-guided nuclease is thermostable Cas9, thermostable Cpf1, thermostable Cas3, thermostable Cas8a-c, thermostable Cas10, thermostable Csel, thermostable Csy1, thermostable Csn2, thermostable Cas4, thermostable Csm2, thermostable Cm5, thermostable Csfl, thermostable C2C2, or thermostable NgAgo.

[0211] In some embodiments, the thermostable CRISPR/Cas system protein is thermostable Cas9.

[0212] Thermostable nucleic acid-guided nucleases can be isolated, for example, identified by sequence homology in the genome of thermophilic bacteria *Streptococcus thermophilus* and *Pyrococcus furiosus*. Nucleic acid-guided nuclease genes can then be cloned into an expression vector. In one exemplary embodiment, a thermostable Cas9 protein is isolated.

[0213] In another embodiment, a thermostable nucleic acid-guided nuclease can be obtained by *in vitro* evolution of a non-thermostable nucleic acid-guided nuclease. The sequence of a nucleic acid-guided nuclease can be mutagenized to improve its thermostability.

45 Methods of Making Collections of gNAs

[0214] Provided herein are methods that enable the generation of a large number of diverse gRNAs, collections of gNAs, from any source nucleic acid (e.g., DNA). Methods provided herein can employ enzymatic methods including but not limited to digestion, ligation, extension, overhang filling, transcription, reverse transcription, amplification.

[0215] Generally, the method can comprise providing a nucleic acid (e.g., DNA); employing a first enzyme (or combinations of first enzymes) that cuts at a part of the PAM sequence in the nucleic acid, in a way that a residual nucleotide sequence from the PAM sequence is left; ligating an adapter that positions a restriction enzyme typeIIIS site (an enzyme that cuts outside yet near its recognition motif) at a distance to eliminate the PAM sequence; employing a second typeIIIS enzyme (or combination of second enzymes) to eliminate the PAM sequence together with the adapter; and fusing a sequence that can be recognized by protein members of the nucleic acid-guided nuclease (e.g., CRISPR/Cas) system, for example, a gRNA stem-loop sequence. In some embodiments, the first enzymatic reactions cuts part of the PAM sequence in a way that residual nucleotide sequence from the PAM sequence is left, and that the nucleotide sequence immediately 5' to the PAM sequence can be any purine or pyrimidine, not just those with a cytosine 5' to the PAM

sequence, for example, not just those that are C/NGG or C/TAG, etc.

[0216] Table 1 shows exemplary strategies/protocols to convert any source nucleic acid (e.g., DNA) into a collection of gNAs (e.g., gRNAs) using different restriction enzymes.

5

Table 1. Exemplary strategies for preparing a collection of guide nucleic acids.

CRISPR/Cas System Species	PAM Sequence	First Enzyme/Components	Strategy	3' Adapter sequence with type II S enzyme site (provided with only one strand sequence 5'>3')
Streptococcus pyogenes (SP); SpCas9	NGG	CviPII	Nicks immediately 5' of CCD sequence, nicks the other strand with T7 endonuclease I, blunt with T4 DNA polymerase; ligate to adapter; cut with MlyI to remove PAM and adapter; ligate gRNA stem-loop sequence at 3' end	ggGACTCggatccctatagtc (SEQ ID NO: 4421)
Staphylococcus aureus (SA); SaCas9	NNGRRT or NNGRR (N)	Alwl	Cut, blunt with T4 DNA polymerase; ligate to adapter SA; cut with EcoP15I to remove PAM and adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	tttagcggccgcctgctgCTCtacaaagacgatgacgacaaggct (SEQ ID NO: 4422)
Neisseria meningitidis (NM)	NNNNG ATT	Tfil	Cut, blunt with T4 DNA polymerase; ligate to adapter NM; cut with EcoRI to eliminate unwanted DNA and EcoP15I to remove PAM and adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	TCgcggccgccttattctgctgCTCtacaaagacgatgacgacaaggct (SEQ ID NO: 4428)
Streptococcus thermophilus (ST)	NNAGA AW	BsmI	Cut, blunt with T4 DNA polymerase; ligate to adapter ST; cut with EcoP15I to remove PAM and adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	ttgcggccgccttattctgctgCTCtacaaagacgatgacgacaaggct (SEQ ID NO: 4429)
Treponema denticola (TD)	NAAAA C	Cly7489 II	Cut, blunt with T4 DNA polymerase; ligate to adapter TD; cut with EcoP15I to remove PAM and adapter	tttagcggccgcctgctgCTCtacaaagacgatgacgacaaggct (SEQ ID NO: 4430)

45

[0217] Table 2 shows additional exemplary strategies/protocols to convert any source nucleic acid (e.g., DNA) into a collection of gNAs (e.g., gRNAs) using different restriction enzymes.

50

55

Table 2. Additional exemplary strategies for preparing a collection of guide nucleic acids.

CRISPR/ Cas System Species	PAM Sequence	First Enzyme/ Component	Exemplary Strategy	Adapter oligo sequence (with Inosine overhangs, all in 5'>3' direction)
Streptococcus pyogenes (SP); SpCas9	NGG	CviPII	Nicks immediately 5' of CCD sequence, nicks the other strand with T7 endonuclease I; ligate to adapter; cut with MlyI to remove PAM and 3' adapter; ligate gRNA stem-loop sequence at 3' end	Adapter oligo 1: ggggGACTCggatccctatagtata caaagacgatgacgacaagcg (SEQ ID NO: 4404) Adapter oligo 2: gcctcgagc*t*a*atacgactcactata ggatccaagtccc (* denotes a phosphorothioate backbone linkage) (SEQ ID NO: 4405)
Staphylococcus aureus (SA); SaCas9	NNGRRT or NNGRR(N)	Alwl	Cut; ligate to adapter SA; cut with EcoP15I to remove PAM and 3' adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	Adapter oligo 1: IttttagcggccgcctgctgCTCtacaa agacgatgacgacaagcg (SEQ ID NO: 4422) Adapter oligo 2: gagatcagcttcgcattgtatgcGAGc agcaggcggccgctaaaa (SEQ ID NO: 4423)
Neisseria meningitidis (NM)	NNNNGATT	Tfil	Cut; ligate to adapter NM; cut with EcoP15I to remove PAM and 3' adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	Adapter oligo 1: attTCgcggccgcatttattctgctgCT Ctacaaagacgatgacgacaagcg (SEQ ID NO: 4424) Adapter oligo 2: gagatcagcttcgcattgtatgcGAGc agcagaataaaagcggccgcGA (SEQ ID NO: 4425)
Streptococcus thermophilus (ST)	NNAGAAW	Bsml	Cut; ligate to adapter ST; cut with EcoP15I to remove PAM and 3' adapter; blunt end; ligate gRNA stem-loop sequence at 3' end	Adapter oligo 1: gcggccgcatttattctgctgCTCtacaa agacgatgacgacaagcg (SEQ ID NO: 4426) Adapter oligo 2: gagatcagcttcgcattgtatgcGAGc agcagaataaaagcggccgcIG (SEQ ID NO: 4427)

[0218] Exemplary applications of the compositions and methods described herein are provided in **FIG. 1**, **FIG. 2**, **FIG. 3**, **FIG. 4**, **FIG. 5**, **FIG. 6**, and **FIG. 7**. The figures depict non-limiting exemplary embodiments of the present invention that includes a method of constructing a gNA library (e.g., gRNA library) from input nucleic acids (e.g., DNA), such as genomic DNA (e.g., human genomic DNA).

[0219] In **FIG. 1**, the starting material can be fragmented genomic DNA (e.g., human) or other source DNA. These fragments are blunt-ended before constructing the library **101**. T7 promoter adapters are ligated to the blunt-ended DNA fragments **102**, which is then PCR amplified. Nt.CviPII is then used to generate a nick on one strand of the PCR product immediately 5' to the CCD sequence **103**. T7 Endonuclease I cleaves on the opposite strand 1, 2, or 3 bp 5' of the nick **104**. The resulting DNA fragments are blunt-ended with T4 DNA Polymerase, leaving HGG sequence at the end of the DNA fragment **105**. The resulting DNA is cleaned and recovered on beads. An adapter carrying MlyI recognition site is ligated to the blunt-ended DNA fragment immediately 3' of HGG sequence **106**. MlyI generates a blunt-end cleavage immediately 5' to the HGG sequence, removing HGG together with the adapter sequence **107**. The resulting DNA fragments are cleaned and recovered again on beads. A gRNA stem-loop sequence is then ligated to the blunt-end cleaved by MlyI, forming a gRNA library covering the human genome **108**. This library of DNA is then PCR amplified

and cleaned on beads, ready for *in vitro* transcription.

[0220] In FIG. 2, the starting material can intact genomic DNA (e.g., human) or other source DNA 201. Nt.CviPll and T7 Endonuclease I are used to generate nicks on each strand of the human genomic DNA, resulting in smaller DNA fragments 202. DNA fragments of 200-600 bp are size selected on beads, then ligated with Y-shaped adapters carrying a GG overhang on the 5'. One strand of the Y-shaped adapter contains a Mlyl recognition site, wherein the other strand contains a mutated Mlyl site and a T7 promoter sequence 203. Because of these features, after PCR amplification, the T7 promoter sequence is at the distal end of the HGG sequence, and the Mlyl sequence is at the rear end of HGG 204. Digestion with Mlyl generates a cleavage immediately 5' of HGG sequence 205 Mlyl generates a blunt-end cleavage immediately 5' to the HGG sequence, removing HGG together with the adapter sequence 206. A gRNA stem-loop sequence is then ligated to the blunt-end cleaved by Mlyl, forming a gRNA library covering the human genome. This library of DNA is then PCR amplified and cleaned on beads, ready for *in vitro* transcription.

[0221] In FIG. 3, the source DNA (e.g., genomic DNA) can be nicked 301, for example with a nicking enzyme. In some cases, the nicking enzyme can have a recognition site that is three or fewer bases in length. In some cases, CviPll is used, which can recognize and nick at a sequence of CCD (where D represents a base other than C). Nicks can be proximal, surrounding a region containing the sequence (represented by the thicker line) which will be used to yield the guide RNA N20 sequence. When nicks are proximal, a double stranded break can occur and lead to 5' or 3' overhangs 302. These overhangs can be repaired, for example with a polymerase (e.g., T4 polymerase). In some cases, such as with 5' strands, repair can comprise synthesizing a complementary strand. In some case, such as with 3' strands, repair can comprise removing overhangs. Repair can result in a blunt end including the N20 guide sequence and a sequence complementary to the nick recognition sequence (e.g., HGG, where H represents a base other than G).

[0222] In FIG. 4, continuing for example from the end of FIG. 3, different combinations of adapters can be ligated to the DNA to allow for the desired cleaving. Adapters with a recognition site for a nuclease enzyme that cuts 3 base pairs from the site (e.g., Mlyl) can be ligated 401, and digestion at that site can be used to remove a left over sequence, such as an HGG sequence 402. Adapters with a recognition site for a nuclease that cuts 20 base pairs from the site (e.g., Mmel) 403. These adapters can also include a second recognition site for a nuclease that cuts the proper number of nucleotides from the site to later remove the first recognition site (e.g., BsaXI). The first enzyme can be used to cut 20 nucleotides down, thereby keeping the N20 sequence 404. Then, a promoter adapter (e.g., T7) can be ligated next to the N20 sequence 405. Then, the nuclease corresponding to the second recognition site (e.g., BsaXI) can be used to remove the adapter for the site that cuts 20 nucleotides away (e.g., Mmel) 406. Finally, the guide RNA stem-loop sequence adapter can be ligated to the N20 sequence 407 to prepare for guide RNA production.

[0223] Alternatively, the protocol shown in FIG. 5 can follow the end of a protocol such as that shown in FIG. 3. Adapters with a recognition site for a nuclease enzyme that cleaves 25 nucleotides from the site (e.g., EcoP15I) can be ligated to the DNA 501. These adapters can also include a second recognition site for a nuclease that cuts the proper number of nucleotides from the site to later remove the first recognition site (e.g., Bael) and any other left-over sequence, such as HGG. The enzyme corresponding to the first recognition site (e.g., EcoP15I) can then be used to cleave after the N20 sequence 502. Then, a promoter adapter (e.g., T7) can be ligated next to the N20 sequence 503. The enzyme corresponding to the second recognition site (e.g., Bael) can then be used to remove the recognition sites and any residual sequence (e.g., HGG) 504. Finally, the guide RNA stem-loop sequence adapter can be ligated (e.g., by single strand ligation) to the N20 sequence 505.

[0224] As an alternative to protocols such as that shown in FIG. 3, the protocol shown in FIG. 6 can be used in preparation for protocols such as those shown in FIG. 4 or FIG. 5. A nick can be introduced by a nicking enzyme (e.g., CviPll) 601. In some cases, the nick recognition site is three or fewer bases in length. In some cases, CviPll is used, which can recognize and nick at a sequence of CCD. A polymerase (e.g., Bst large fragment DNA polymerase) can then be used to synthesize a new DNA strand starting from the nick while displacing the old strand 602. Because of the DNA synthesis, the nick can be sealed and made available to be nicked again 603. Subsequent cycles of nicking and synthesis can be used to yield large amounts of target sequences 604. These single stranded copies of target sequences can be made double stranded, for example by random priming and extension. These double stranded nucleic acids comprising N20 sequences can then be further processed by methods disclosed herein, such as those shown in FIG. 4 or FIG. 5.

[0225] As another alternative to protocols such as that shown in FIG. 3 or FIG. 6, the protocol shown in FIG. 7 can be used in preparation for protocols such as those shown in FIG. 4 or FIG. 5. A nick can be introduced by a nicking enzyme (e.g., CviPll) 701. In some cases, the nicking enzyme recognition site is three or fewer bases in length. In some cases, CviPll is used, which can recognize and nick at a sequence of CCD. A polymerase (e.g., Bst large fragment DNA polymerase) can then be used to synthesize a new DNA strand starting from the nick while displacing the old strand (e.g., nicking endonuclease-mediated strand-displacement DNA amplification (NEMDA)). The reaction parameters can be adjusted to control the size of the single stranded DNA produced. For example, the nickase:polymerase ratio (e.g., CviPll:Bts large fragment polymerase ratio) can be adjusted. Reaction temperature can also be adjusted. Next, an oligonucleotide can be added 704 which has (in the 5'>3' direction) a promoter (e.g., T7 promoter) 702 followed by a random n-mer (e.g., random 6-mer, random 8-mer) 703. The random n-mer region can bind to a region of the single

stranded DNA generated previously. For example, binding can be conducted by denaturing at high temperature followed by rapid cool down, which can allow the random n-mer region to bind to the single stranded DNA generated by NEMDA. In some cases, the DNA is denatured at 98 °C for 7 minutes then cooled down rapidly to 10 °C. Extension and/or amplification can be used to produce double-stranded DNA. Blunt ends can be produced, for example enzymatically (e.g., by treatment with DNA polymerase I at 20 °C). This can result in one end ending at the promoter (e.g., T7 promoter) and the other end ending at any nicking enzyme recognition sites (e.g., any CCD sites). These fragments can then be purified, for example by size selection (e.g., by gel purification, capillary electrophoresis, or other fragment separation techniques). In some cases, the target fragments are about 50 base pairs in length (adapter sequence (e.g., T7 adapter) + target N20 sequence + nicking enzyme recognition site or complement (e.g., HGG)). Fragments can then be ligated to an adapter comprising a nuclease recognition site for a nuclease that cuts an appropriate distance away to remove the nicking enzyme recognition site **705**. For example, for a three-nucleotide long nicking enzyme recognition site (e.g., CCD for CviPII), Bael can be used. The appropriate nuclease (e.g., Bael) can then be used to remove the nuclease recognition site and the nicking enzyme recognition site **706**. The remaining nucleic acid sequence (e.g., the N20 site) can then be ligated to the final stem-loop sequence for the guide RNA **707**. Amplification (e.g., PCR) can be conducted. Guide RNAs can be produced.

[0226] In some embodiments, a collection of gNAs (e.g., gRNAs) targeting human mitochondrial DNA (mtDNA) is created, that can be used for directing nucleic acid-guided nuclease (e.g., Cas9) proteins, comprising the nucleic acid-guided nuclease (e.g., Cas9) target sequence. In some embodiments, the targeting sequence of this collection of gNAs (e.g., gRNAs) are encoded by DNA sequences comprising at least the 20 nt sequence provided in the second column from the right of Table 3 (if the NGG sequence is on positive strand) and Table 4 (if the NGG sequence is on negative strand). In some embodiments, a collection of gRNA nucleic acids, as provided herein, with specificity for human mitochondrial DNA, comprise a plurality of members, wherein the members comprise a plurality of targeting sequences provided in the second column from the right column of Table 3 and/or the second column from the right of Table 4.

Table 3. gRNA target sequence for human mtDNA carrying NGG sequence on the (+) strand.

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
13	35	ATCACCTATTAACCA CTCACGG	13	ATCACCTATTAACC ACTCA	436
14	36	TCACCCTATTAACCAC TCACGGG	14	TCACCCTATTAACCA CTCAC	437
32	54	ACGGGAGCTCTCCATG CATTGGA	15	ACGGGAGCTCTCCAT GCATT	438
45	67	ATGCATTTGGTATTTTC GTCTGG	16	ATGCATTTGGTATTTT CGTC	439
46	68	TGCATTTGGTATTTTCG TCTGGG	17	TGCATTTGGTATTTTC GTCT	440
47	69	GCATTTGGTATTTTCGT CTGGGG	18	GCATTTGGTATTTTCG TCTG	441
48	70	CATTTGGTATTTTCGTC TGGGGG	19	CATTTGGTATTTTCGT CTGG	442
49	71	ATTTGGTATTTTCGTCT GGGGGG	20	ATTTGGTATTTTCGTC TGGG	443
79	101	GCGATAGCATTGCGAG ACGCTGG	21	GCGATAGCATTGCGA GACGC	444
85	107	GCATTGCGAGACGCTG GAGCCGG	22	GCATTGCGAGACGCT GGAGC	445
163	185	GCACCTACGTTCAATA TTACAGG	23	GCACCTACGTTCAAT ATTAC	446

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	207	GTAAATTAATTAATGC TTGTAGG	24	GTAAATTAATTAATG CTTGT	447
10	301	AACCCCCCTCCCCCG CTTCTGG	25	AACCCCCCTCCCCC GCTTC	448
15	388	AGATTCAAATTTAT CTTTG	26	AGATTCAAATTTAT CTTT	449
20	391	TTCAAATTTATCTT TGGCGG	27	TTCAAATTTATCTT TTGG	450
25	604	ATACACTGAAAATGTT TAGACGG	28	ATACACTGAAAATGT TTAGA	451
30	605	TACACTGAAAATGTTT AGACGGG	29	TACACTGAAAATGTT TAGAC	452
35	631	ACATCACCCATAAAC AAATAGG	30	ACATCACCCATAAA CAAAT	453
40	636	ACCCATAAACAAATA GGTTG	31	ACCCATAAACAAAT AGGTT	454
45	727	TCTAAATCACCACGAT CAAAAGG	32	TCTAAATCACCACGA TCAAA	455
50	788	TTAGCCTAGCCACACC CCCACGG	33	TTAGCCTAGCCACAC CCCCA	456
55	789	TAGCCTAGCCACACCC CCACGGG	34	TAGCCTAGCCACACC CCCAC	457
	851	AACTAAGCTATACTAA CCCCAGG	35	AACTAAGCTATACTA ACCCC	458
	852	ACTAAGCTATACTAAC CCCAGGG	36	ACTAAGCTATACTAA CCCCA	459
	856	AGCTATACTAACCCCA GGGTTGG	37	AGCTATACTAACCC AGGGT	460
	880	CAATTCGTGCCAGCC ACCGCGG	38	CAATTCGTGCCAGC CACCG	461
	912	TAACCCAAGTCAATAG AAGCCGG	39	TAACCCAAGTCAATA GAAGC	462
	1009	CACAAAATAGACTACG AAAGTGG	40	CACAAAATAGACTAC GAAAG	463
	1051	ACAATAGCTAAGACCC AAACTGG	41	ACAATAGCTAAGACC CAAAC	464
	1052	CAATAGCTAAGACCC AACTGGG	42	CAATAGCTAAGACCC AAACT	465
	1148	AGCCACAGCTTAAAAC TCAAAGG	43	AGCCACAGCTTAAAAA CTCAA	466

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
1154	1176	AGCTTAAAACCAAAG GACCTGG	44	AGCTTAAAACCAAAG GGACC	467
1157	1179	TTAAAACCAAAGGAC CTGGCGG	45	TTAAAACCAAAGGA CCTGG	468
1178	1200	GGTGCTTCATATCCCT CTAGAGG	46	GGTGCTTCATATCCCT CTAG	469
1267	1289	TCTTCAGCAAACCCCTG ATGAAGG	47	TCTTCAGCAAACCCCT GATGA	470
1306	1328	AGTACCCACGTAAAGA CGTTAGG	48	AGTACCCACGTAAAG ACGTT	471
1312	1334	CACGTAAAGACGTTAG GTCAAGG	49	CACGTAAAGACGTTA GGTCA	472
1326	1348	AGGTCAAGGTGTAGCC CATGAGG	50	AGGTCAAGGTGTAGC CCATG	473
1329	1351	TCAAGGTGTAGCCCAT GAGGTGG	51	TCAAGGTGTAGCCCA TGAGG	474
1339	1361	GCCCATGAGGTGGCAA GAAATGG	52	GCCCATGAGGTGGCA AGAAA	475
1340	1362	CCCATGAGGTGGCAAAG AAATGGG	53	CCCATGAGGTGGCAA GAAAT	476
1389	1411	GATAGCCCTTATGAAA CTTAAGG	54	GATAGCCCTTATGAA ACTTA	477
1390	1412	ATAGCCCTTATGAAAC TTAAGGG	55	ATAGCCCTTATGAAA CTTAA	478
1397	1419	TTATGAAACTTAAGGG TCGAAGG	56	TTATGAAACTTAAGG GTCGA	479
1400	1422	TGAAACTTAAGGGTCG AAGGTGG	57	TGAAACTTAAGGGTC GAAGG	480
1441	1463	AGTAGAGTGCTTAGTT GAACAGG	58	AGTAGAGTGCTTAGT TGAAC	481
1442	1464	GTAGAGTGCTTAGTTG AACAGGG	59	GTAGAGTGCTTAGTT GAACA	482
1494	1516	CCTCCTCAAGTATACT TCAAAGG	60	CCTCCTCAAGTATACT TTCAA	483
1530	1552	ACCCCTACGCATTAT ATAGAGG	61	ACCCCTACGCATTAA TATAG	484
1548	1570	AGAGGAGACAAGTCGT AACATGG	62	AGAGGAGACAAGTCG TAACA	485
1560	1582	TCGTAACATGGTAAGT GTACTGG	63	TCGTAACATGGTAAG TGTAC	486

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	1573	1595	AGTGTACTGGAAAGTG CACTTGG	64	AGTGTACTGGAAAGT GCACT	487
10	1620	1642	AAAGCACCCAACCTTAC ACTTAGG	65	AAAGCACCCAACCTTA CACTT	488
15	1726	1748	CATTTACCCAAATAAA GTATAGG	66	CATTTACCCAAATAAA AGTAT	489
20	1746	1768	AGGCGATAGAAATTGA AACCTGG	67	AGGCGATAGAAATTG AAACC	490
25	1770	1792	GCAATAGATATAGTAC CGCAAGG	68	GCAATAGATATAGTA CCGCA	491
30	1771	1793	CAATAGATATAGTACC GCAAGGG	69	CAATAGATATAGTAC CGCAA	492
35	1809	1831	TAACCAAGCATAATAT AGCAAGG	70	TAACCAAGCATAATA TAGCA	493
40	1862	1884	TAACTAGAAATAACTT TGCAAGG	71	TAACTAGAAATAACT TTGCA	494
45	1947	1969	CCGTCTATGTAGCAAA ATAGTGG	72	CCGTCTATGTAGCAA AATAG	495
50	1948	1970	CGTCTATGTAGCAAAA TAGTGGG	73	CGTCTATGTAGCAAA ATAGT	496
55	1960	1982	AAAATAGGGAAAGAT TTATAGG	74	AAAATAGGGAAAGA TTTAT	497
	1966	1988	GTGGGAAGATTATAG GTAGAGG	75	GTGGGAAGATTATAA GGTAG	498
	1987	2009	GGCGACAAACCTACCG AGCCTGG	76	GGCGACAAACCTACC GAGCC	499
	1997	2019	CTACCGAGCCTGGTGA TAGCTGG	77	CTACCGAGCCTGGTG ATAGC	500
	2086	2108	ATTTAACTGTTAGTCC AAAGAGG	78	ATTTAACTGTTAGTCC AAAG	501
	2099	2121	TCCAAAGAGGAACAGC TCTTGGA	79	TCCAAAGAGGAACAG CTCTT	502
	2107	2129	GGAACAGCTCTTGGA CACTAGG	80	GGAACAGCTCTTGGA CACT	503
	2152	2174	AAAAATTAACACCCA TAGTAGG	81	AAAAATTAACACCCA ATAGT	504
	2247	2269	CTGAACTCCTCACACC CAATTGG	82	CTGAACTCCTCACAC CCAAT	505
	2414	2436	CCTCACTGTCAACCCA ACACAGG	83	CCTCACTGTCAACCCA AACAC	506

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	2427	CCAACACAGGCATGCTCATAGG	84	CCAACACAGGCATGC	507
10	2432	ACAGGCATGCTCATAGGAAAGG	85	ACAGGCATGCTCATAGGAA	508
15	2449	GAAAGGTTAAAAAAAAGTAAAAGG	86	GAAAGGTTAAAAAAAAGTAAA	509
20	2456	TAAAAAAAGTAAAAGGAACCTCGG	87	TAAAAAAAGTAAAAGGAAC	510
25	2515	TCTAGCATCACCAGTATTAGAGG	88	TCTAGCATCACCAGTATTAG	511
30	2546	GCCCAGTGACACATGTTAACGG	89	GCCCAGTGACACATGTTAA	512
35	2552	TGACACATGTTAACGGCGCGG	90	TGACACATGTTAACGGCG	513
40	2571	GCGGTACCCCTAACCGTGAAAGG	91	GCGGTACCCCTAACCGTGCAA	514
45	2599	TAATCACTGTTCCCTTAATAGG	92	TAATCACTGTTCCCTTAAT	515
50	2600	AATCACTGTTCCCTTAATAGGG	93	AATCACTGTTCCCTTAATA	516
55	2614	TAAATAGGGACCTGTATGAATGG	94	TAAATAGGGACCTGTATGAA	517
	2624	CCTGTATGAATGGCTCACGAGG	95	CCTGTATGAATGGCTCCACG	518
	2625	CTGTATGAATGGCTACGAGGG	96	CTGTATGAATGGCTCACGA	519
	2676	AAATTGACCTGCCGTGAAGAGG	97	AAATTGACCTGCCGTGAAG	520
	2679	TTGACCTGCCGTGAAAGGGCGG	98	TTGACCTGCCGTGAAAGAGG	521
	2680	TGACCTGCCGTGAAGAGGCGGG	99	TGACCTGCCGTGAAAGGGC	522
	2711	AGCAAGACGAGAAGACCTATGG	100	AGCAAGACGAGAAGACCCTA	523
	2755	ACAGTACCTAACAAACCCACAGG	101	ACAGTACCTAACAAACCCAC	524
	2789	CAAACCTGCATTAAGGATTCGGG	102	CAAACCTGCATTAAGGATTC	525
	2793	CCTGCATTAAGGATTCGGG	103	CCTGCATTAAGGATTCGGT	526

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	2794	2816	CTGCATTAATAATTTC GGTTGGG	104	CTGCATTAATAATTTC GGTT	527
10	2795	2817	TGCATTAATAATTTCG GTTGGGG	105	TGCATTAATAATTTC GGTTG	528
15	2804	2826	AATTTCGGTTGGGGCG ACCTCGG	106	AATTTCGGTTGGGGC GACCT	529
20	2895	2917	TGATCCAATAACTTGA CCAACGG	107	TGATCCAATAACTTG ACCAA	530
25	2911	2933	CCAACGGAACAAGTTA CCCTAGG	108	CCAACGGAACAAGTT ACCCT	531
30	2912	2934	CAACGGAACAAGTTAC CCTAGGG	109	CAACGGAACAAGTTA CCCTA	532
35	2954	2976	CTAGAGTCCATATCAA CAATAGG	110	CTAGAGTCCATATCA ACAAT	533
40	2955	2977	TAGAGTCCATATCAAC AATAGGG	111	TAGAGTCCATATCAA CAATA	534
45	2974	2996	AGGGTTACGACCTCG ATGTTGG	112	AGGGTTACGACCTC GATGT	535
50	2980	3002	TACGACCTCGATGTTG GATCAGG	113	TACGACCTCGATGTT GGATC	536
55	2992	3014	GTTGGATCAGGACATC CCGATGG	114	GTTGGATCAGGACAT CCCGA	537
	3010	3032	GATGGTGCAGCCGCTA TTAAAGG	115	GATGGTGCAGCCGCT ATTAA	538
	3058	3080	TACGTGATCTGAGTTC AGACCGG	116	TACGTGATCTGAGTT CAGAC	539
	3069	3091	AGTCAGACCGGAGTA ATCCAGG	117	AGTCAGACCGGAGT AATCC	540
	3073	3095	CAGACCGGAGTAATCC AGGTCGG	118	CAGACCGGAGTAATC CAGGT	541
	3110	3132	CAAATTCCCTCCCTGTA CGAAAGG	119	CAAATTCCCTCCCTGT ACGAA	542
	3125	3147	ACGAAAGGACAAGAG AAATAAGG	120	ACGAAAGGACAAGA GAAATA	543
	3203	3225	ACCCACACCCACCCAA GAACAGG	121	ACCCACACCCACCCAA AGAAC	544
	3204	3226	CCCACACCCACCCAAAG AACAGGG	122	CCCACACCCACCCAA GAACA	545
	3217	3239	AAGAACAGGGTTGTT AAGATGG	123	AAGAACAGGGTTGTT TAAGA	546

(continued)

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
	3227	3249	TTTGTAAAGATGGCAG AGCCCGG	124	TTTGTAAAGATGGCA GAGCC	547
10	3262	3284	ACTTAAAACTTACAG TCAGAGG	125	ACTTAAAACTTACA GTCAG	548
	3294	3316	TCTTCTTAACAAACATA CCCATGG	126	TCTTCTTAACAAACAT ACCCA	549
15	3336	3358	TGTACCCATTCTAACATC GCAATGG	127	TGTACCCATTCTAACATC GCAA	550
	3370	3392	CTTACCGAACGAAAAAA TTCTAGG	128	CTTACCGAACGAAAAAA ATTCT	551
20	3391	3413	GGCTATATACAACACTAC GCAAAGG	129	GGCTATATACAACTA CGCAA	552
	3406	3428	CGCAAAGGCCCAACG TTGTAGG	130	CGCAAAGGCCCAAC GTTGT	553
25	3415	3437	CCCAACGTTGTAGGCC CCTACGG	131	CCCAACGTTGTAGGC CCCTA	554
	3416	3438	CCAACGTTGTAGGCC CTACGGG	132	CCAACGTTGTAGGCC CCTAC	555
30	3570	3592	CCTCCCCATACCAAAC CCCCTGG	133	CCTCCCCATACCAAAC CCCCC	556
	3586	3608	CCCCTGGTCAACCTCA ACCTAGG	134	CCCCTGGTCAACCTC AACCT	557
35	3643	3665	GTTTACTCAATCCTCTG ATCAGG	135	GTTTACTCAATCCTCT GATC	558
	3644	3666	TTTACTCAATCCTCTGA TCAGGG	136	TTTACTCAATCCTCTG ATCA	559
40	3676	3698	AACTCAAACACTACGCC TGATCGG	137	AACTCAAACACTACGCC CTGAT	560
	3757	3779	CTATCAACATTACTAA TAAGTGG	138	CTATCAACATTACTA ATAAG	561
45	3828	3850	ACTCCTGCCATCATGA CCCTTGG	139	ACTCCTGCCATCATG ACCCT	562
	3892	3914	ACCCCCCTCGACCTTG CCGAAGG	140	ACCCCCCTCGACCTTG GCCGA	563
50	3893	3915	CCCCCTTCGACCTTGC CGAAGGG	141	CCCCCTTCGACCTTGC CGAA	564
	3894	3916	CCCCCTTCGACCTTGCC GAAGGGG	142	CCCCCTTCGACCTTGCC GAAG	565
55	3913	3935	GGGGAGTCCGAACTAG TCTCAGG	143	GGGGAGTCCGAACTA GTCTC	566

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
3937	3959	TTCAACATCGAATACG CCGCAGG	144	TTCAACATCGAATAC GCCGC	567
4015	4037	CTCACCACTACAATCT TCCTAGG	145	CTCACCACTACAATC TTCCT	568
4287	4309	ACTTGATAGAGTAAA TAATAGG	146	ACTTGATAGAGTAA ATAAT	569
4311	4333	GCTTAAACCCCTTAT TTCTAGG	147	GCTTAAACCCCTTA TTTCT	570
4386	4408	TCACACCCATCCTAA AGTAAGG	148	TCACACCCATCCTA AAGTA	571
4406	4428	AGGTAGCTAAATAAG CTATCGG	149	AGGTAGCTAAATAAA GCTAT	572
4407	4429	GGTCAGCTAAATAAGC TATCGGG	150	GGTCAGCTAAATAAG CTATC	573
4428	4450	GGCCCATACCCGAAA ATGTTGG	151	GGCCCATACCCGAA AATGT	574
4460	4482	TCCCGTACTAATTAAAT CCCCTGG	152	TCCCGTACTAATTAA TCCCC	575
4494	4516	ATCTACTCTACCATCTT TGCAGG	153	ATCTACTCTACCATCT TTGC	576
4542	4564	CACTGATTTTACCTG AGTAGG	154	CACTGATTTTACCT GAGT	577
4692	4714	CTCTTCAACAATATAC TCTCCGG	155	CTCTTCAACAATATA CTCTC	578
4767	4789	ATAGCTATAGCAATAA AACTAGG	156	ATAGCTATAGCAATA AAACT	579
4799	4821	CTTCACCTCTGAGTCC CAGAGG	157	CTTCACCTCTGAGTC CCAG	580
4809	4831	TGAGTCCCAGAGGTTA CCCAAGG	158	TGAGTCCCAGAGGTT ACCCA	581
4827	4849	CAAGGCACCCCTCTGA CATCCGG	159	CAAGGCACCCCTCTG ACATC	582
4941	4963	TCAATCTTATCCATCAT AGCAGG	160	TCAATCTTATCCATCA TAGC	583
4950	4972	TCCATCATAGCAGGCA GTTGAGG	161	TCCATCATAGCAGGC AGTTG	584
4953	4975	ATCATAGCAGGCAGTT GAGGTGG	162	ATCATAGCAGGCAGT TGAGG	585
5010	5032	TACTCCTCAATTACCC ACATAGG	163	TACTCCTCAATTACCC ACAT	586

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	5202	5224	CCATCCACCCCTCCTCTC CCTAGG	164	CCATCCACCCCTCCTCT CCCT	587
10	5205	5227	TCCACCCCTCCTCTCCCT AGGAGG	165	TCCACCCCTCCTCTCCC TAGG	588
15	5223	5245	GGAGGCCTGCCCGCGC TAACCGG	166	GGAGGCCTGCCCGCGC CTAAC	589
20	5239	5261	TAACCGGCTTTTGCC CAAATGG	167	TAACCGGCTTTGCC CAAAT	590
25	5240	5262	AACCGGCTTTGCC AAATGGG	168	AACCGGCTTTGCC CAAAT	591
30	5500	5522	TAATAATCTTATAGAA ATTTAGG	169	TAATAATCTTATAGA AATTT	592
35	5569	5591	CTTAATTCTGTAACA GCTAAGG	170	CTTAATTCTGTAACA GCTA	593
40	5646	5668	CTAACGCCCTACTAGA CCAATGG	171	CTAACGCCCTACTAG ACCAA	594
45	5647	5669	TAAGCCCTTACTAGAC CAATGGG	172	TAAGCCCTTACTAGA CCAAT	595
50	5697	5719	AGCTAACGCACCTAAT CAACTGG	173	AGCTAACGCACCTAA TCAAC	596
55	5723	5745	CAATCTACTTCTCCCG CCGCCGG	174	CAATCTACTTCTCCCG CCGC	597
	5724	5746	AATCTACTTCTCCCGC CGCCGGG	175	AATCTACTTCTCCCGC CGCC	598
	5732	5754	TCTCCCGCCGCCGGGA AAAAAGG	176	TCTCCCGCCGCCGGG AAAAA	599
	5735	5757	CCGCCGCCGGGAAAAA AAGGCAGG	177	CCGCCGCCGGGAAAAA AAAGG	600
	5736	5758	CCGCCGCCGGGAAAAA AGGCAGG	178	CCGCCGCCGGGAAAAA AAGGC	601
	5747	5769	AAAAAAAGGCAGGAGA AGCCCCGG	179	AAAAAAAGGCAGGAGA AAGCCC	602
	5751	5773	AAGGCAGGAGAAGCC CCGGCAGG	180	AAGGCAGGAGAAGC CCCGGC	603
	5800	5822	ATTCAATATGAAAATC ACCTCGG	181	ATTCAATATGAAAAT CACCT	604
	5806	5828	TATGAAAATCACCTCG GAGCTGG	182	TATGAAAATCACCTC GGAGC	605
	5816	5838	ACCTCGGAGCTGGTAA AAAGAGG	183	ACCTCGGAGCTGGTAA AAAAG	606

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	5928	TCTACAAACCACAAAG ACATTGG	184	TCTACAAACCACAAA GACAT	607
10	5949	GGAACACTATACCTAT TATTGG	185	GGAACACTATACCTA TTATT	608
15	5961	CTATTATTCGGCGCAT GAGCTGG	186	CTATTATTCGGCGCA TGAGC	609
20	5970	GGCGCATGAGCTGGAG TCCTAGG	187	GGCGCATGAGCTGGA GTCCT	610
25	6005	CCTCCTTATTGAGGCC GAGCTGG	188	CCTCCTTATTGAGGCC GAGC	611
30	6006	CTCCTTATTGAGCCG AGCTGGG	189	CTCCTTATTGAGGCC GAGCT	612
35	6027	GGCCAGCCAGGCAACC TTCTAGG	190	GGCCAGCCAGGCAAC CTTCT	613
40	6108	ATAGTAATACCCATCA TAATCGG	191	ATAGTAATACCCATC ATAAT	614
45	6111	GTAATACCCATCATAA TCGGAGG	192	GTAATACCCATCATA ATCGG	615
50	6117	CCCATCATAATCGGAG GCTTTGG	193	CCCATCATAATCGGA GGCTT	616
55	6144	TGACTAGTTCCCTAA TAATCGG	194	TGACTAGTTCCCTA ATAAT	617
	6158	AATAATCGGTGCCCG GATATGG	195	AATAATCGGTGCCCG CGATA	618
	6236	CCTGCTCGCATCTGCT ATAGTGG	196	CCTGCTCGCATCTGCT ATAG	619
	6239	GCTCGCATCTGCTATA GTGGAGG	197	GCTCGCATCTGCTAT AGTGG	620
	6243	GCATCTGCTATAGTGG AGGCCGG	198	GCATCTGCTATAGTG GAGGC	621
	6249	GCTATAGTGGAGGCCG GAGCAGG	199	GCTATAGTGGAGGCC GGAGC	622
	6255	GTGGAGGCCGGAGCA GGAACAGG	200	GTGGAGGCCGGAGCA GGAAC	623
	6282	ACAGTCTACCCTCCCT TAGCAGG	201	ACAGTCTACCCTCCC TTAGC	624
	6283	CAGTCTACCCTCCCT AGCAGGG	202	CAGTCTACCCTCCCT AGCA	625
	6300	GCAGGGAACTACTCCC ACCCTGG	203	GCAGGGAACTACTCC CACCC	626

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	6342	6364	ATCTTCTCCTTACACCT AGCAGG	204	ATCTTCTCCTTACACC TAGC	627
10	6360	6382	GCAGGTGTCTCCTCTA TCTTAGG	205	GCAGGTGTCTCCTCT ATCTT	628
15	6361	6383	CAGGTGTCTCCTCTAT CTTAGGG	206	CAGGTGTCTCCTCTAT CTTA	629
20	6362	6384	AGGTGTCTCCTCTATCT TAGGGG	207	AGGTGTCTCCTCTATC TTAG	630
25	6495	6517	TCTCTCCCAGTCCTAG CTGCTGG	208	TCTCTCCCAGTCCTAG CTGC	631
30	6552	6574	ACCACCTTCTTCGACC CCGCCGG	209	ACCACCTTCTTCGAC CCCGC	632
35	6555	6577	ACCTTCTTCGACCCCG CCGGAGG	210	ACCTTCTTCGACCCC GCCGG	633
40	6558	6580	TTCTTCGACCCCGCCG GAGGAGG	211	TTCTTCGACCCCGCC GGAGG	634
45	6597	6619	CAACACCTATTCTGAT TTTTCGG	212	CAACACCTATTCTGA TTTTT	635
50	6630	6652	GTTTATATTCTTATCCT ACCAGG	213	GTTTATATTCTTATCC TACC	636
55	6636	6658	ATTCTTATCCTACCAG GCTTCGG	214	ATTCTTATCCTACCAG GCTT	637
	6669	6691	CATATTGTAACTTACT ACTCCGG	215	CATATTGTAACTTACT ACTC	638
	6687	6709	TCCGGAAAAAAAGAA CCATTGG	216	TCCGGAAAAAAAGAA CCATT	639
	6696	6718	AAAGAACCATTTGGAT ACATAGG	217	AAAGAACCATTTGGA TACAT	640
	6701	6723	ACCATTGGATACATA GGTATGG	218	ACCATTGGATACAT AGGTA	641
	6723	6745	GTCTGAGCTATGATAT CAATTGG	219	GTCTGAGCTATGATA TCAAT	642
	6732	6754	ATGATATCAATTGGCT TCCTAGG	220	ATGATATCAATTGGC TTCCT	643
	6733	6755	TGATATCAATTGGCTT CCTAGGG	221	TGATATCAATTGGCT TCCTA	644
	6768	6790	GCACACCATATATTAA CAGTAGG	222	GCACACCATATATT ACAGT	645
	6831	6853	ATAATCATCGCTATCC CCACCGG	223	ATAATCATCGCTATC CCCAC	646

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	6867	6889	AGCTGACTCGCCACAC TCCACGG	224	AGCTGACTCGCCACA CTCCA	647
10	6909	6931	GCTGCAGTGCTCTGAG CCCTAGG	225	GCTGCAGTGCTCTGA GCCCT	648
15	6933	6955	TTCATCTTCTTTCAC CGTAGG	226	TTCATCTTCTTTCA CCGT	649
20	6936	6958	ATCTTCTTTCACCGT AGGTGG	227	ATCTTCTTTCACCG TAGG	650
25	6945	6967	TTCACCGTAGGTGGCC TGACTGG	228	TTCACCGTAGGTGGC CTGAC	651
30	7032	7054	TTCCACTATGTCCTATC AATAGG	229	TTCCACTATGTCCTAT CAAT	652
35	7053	7075	GGAGCTGTATTGCCA TCATAGG	230	GGAGCTGTATTGCC ATCAT	653
40	7056	7078	GCTGTATTGCCATCA TAGGAGG	231	GCTGTATTGCCATC ATAGG	654
45	7086	7108	CACTGATTCCCTATT CTCAGG	232	CACTGATTCCCTAT TCTC	655
50	7140	7162	CATTCACTATCATATT CATCGG	233	CATTCACTATCATAT TCAT	656
55	7176	7198	TTCTTCCCACAACACTT TCTCGG	234	TTCTTCCCACAACACT TTCT	657
	7185	7207	CAACACTTCTCGGCC TATCCGG	235	CAACACTTCTCGGC CTATC	658
	7205	7227	CGGAATGCCCGACGT TACTCGG	236	CGGAATGCCCGACG TTACT	659
	7251	7273	TGAAACATCCTATCAT CTGTAGG	237	TGAAACATCCTATCA TCTGT	660
	7358	7380	AGAAGAACCTCCATA AACCTGG	238	AGAAGAACCTCCAT AAACC	661
	7371	7393	ATAAACCTGGAGTGAC TATATGG	239	ATAAACCTGGAGTGA CTATA	662
	7432	7454	ACATAAAATCTAGACA AAAAAGG	240	ACATAAAATCTAGAC AAAAA	663
	7436	7458	AAAATCTAGACAAAAAA AGGAAGG	241	AAAATCTAGACAAAAA AAGGA	664
	7457	7479	GGAATCGAACCCCCCA AAGCTGG	242	GGAATCGAACCCCCC AAAGC	665
	7476	7498	CTGGTTCAAGCCAAC CCCATGG	243	CTGGTTCAAGCCAAC CCCCA	666

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
7499	7521	CCTCCATGACTTTCA AAAAGG	244	CCTCCATGACTTTTC AAAA	667
7544	7566	CTTGTCAAAGTTAAA TTATAGG	245	CTTGTCAAAGTTAA ATTAT	668
7567	7589	CTAAATCCTATATATC TTAATGG	246	CTAAATCCTATATAT CTTAA	669
7586	7608	ATGGCACATGCAGCGC AAGTAGG	247	ATGGCACATGCAGCG CAAGT	670
7741	7763	TACTAACATCTCAGAC GCTCAGG	248	TACTAACATCTCAGA CGCTC	671
7831	7853	CATCCTTACATAACA GACGAGG	249	CATCCTTACATAAC AGACG	672
7865	7887	TCCCTTACCATCAAAT CAATTGG	250	TCCCTTACCATCAAAT TCAAT	673
7875	7897	TCAAATCAATTGGCCA CCAATGG	251	TCAAATCAATTGGCC ACCAA	674
7904	7926	ACCTACGAGTACACCG ACTACGG	252	ACCTACGAGTACACCC GACTA	675
7907	7929	TACGAGTACACCGACT ACGGC GG	253	TACGAGTACACCGAC TACGG	676
7955	7977	CCCCCATTATTCCCTAG AACCAAGG	254	CCCCCATTATTCCCTAG AACCA	677
8069	8091	TCATGAGCTGTCCCCA CATTAGG	255	TCATGAGCTGTCCCC ACATT	678
8093	8115	TTAAAAACAGATGCAA TTCCCGG	256	TTAAAAACAGATGCA ATTCC	679
8131	8153	CACTTCACCGCTACA CGACCGG	257	CACTTCACCGCTAC ACGAC	680
8132	8154	ACTTTACCGCTACAC GACCGGGG	258	ACTTTACCGCTACAC CGACC	681
8133	8155	CTTCACCGCTACACG ACCGGGGG	259	CTTCACCGCTACAC GACCG	682
8134	8156	TTTCACCGCTACACGA CCGGGGGG	260	TTTCACCGCTACACG ACCGG	683
8144	8166	ACACGACCGGGGGTAT ACTACGG	261	ACACGACCGGGGGTA TACTA	684
8165	8187	GGTCAATGCTCTGAAA TCTGTGG	262	GGTCAATGCTCTGAA ATCTG	685
8228	8250	CCCCTAAAAATCTTG AAATAGG	263	CCCCTAAAAATCTTT GAAAT	686

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	8229	CCCTAAAAATCTTGAAATAGGG	264	CCCTAAAAATCTTGAAATA	687
10	8370	CCCAACTAAATACTACCGTATGG	265	CCCAACTAAATACTACCGTA	688
15	8551	TTCATTGCCCCACAACTCCTAGG	266	TTCATTGCCCCACAAATCCT	689
20	8698	ATAACCATAACACAACACTAAAGG	267	ATAACCATAACACAACACTAA	690
25	8761	ATTGCCACAACTAACCTCCTCGG	268	ATTGCCACAACTAACCTCCT	691
30	8817	ACTATCTATAAACCTAGCCATGG	269	ACTATCTATAAACCTAGCCA	692
35	8835	CATGGCCATCCCTTA TGAGCGG	270	CATGGCCATCCCTTA TGAG	693
40	8836	ATGGCCATCCCTTATGAGCGGG	271	ATGGCCATCCCTTATGAGC	694
45	8851	TGAGCGGGCACAGTGA TTATAGG	272	TGAGCGGGCACAGTGA TTAT	695
50	8899	CTAGCCCACCTCTTAC CACAAGG	273	CTAGCCCACCTCTTAC CACA	696
55	8973	ACTCATTCAACCAATA GCCCTGG	274	ACTCATTCAACCAAT AGCCC	697
	9004	CTAACCGCTAACATTACTGCAGG	275	CTAACCGCTAACATT ACTGC	698
	9028	CACCTACTCATGCACCTAATTGG	276	CACCTACTCATGCAC CTAAT	699
	9243	CCCAGCCCATGACCCCTAACAGGG	277	CCCAGCCCATGACCCCTAACAC	700
	9244	CCAGCCCATGACCCCTAACAGGG	278	CCAGCCCATGACCCCTAACACA	701
	9245	CAGCCCATGACCCCTAACAGGG	279	CAGCCCATGACCCCTAACAG	702
	9273	TCAGCCCTCTAACATGACCTCCGG	280	TCAGCCCTCTAACATGACCTC	703
	9321	TCCATAACGCTCCTCATCTAGG	281	TCCATAACGCTCCTCATCT	704
	9358	CACTAACCATATACCAATGATGG	282	CACTAACCATATACCAATGAA	705
	9390	ACACGAGAAAGCACATACCAAGG	283	ACACGAGAAAGCACATACCA	706

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	9417	9439	CACACACCACCTGTCC AAAAAGG	284	CACACACCACCTGTC CAAAA	707
10	9429	9451	GTCCAAAAAGGCCTTC GATACGG	285	GTCCAAAAAGGCCTT CGATA	708
15	9430	9452	TCCAAAAAGGCCTTCG ATACGGG	286	TCCAAAAAGGCCTTC GATAC	709
20	9471	9493	TCAGAAGTTTTTCTT CGCAGG	287	TCAGAAGTTTTTCT TCGC	710
25	9522	9544	CTAGCCCCTACCCCCC AATTAGG	288	CTAGCCCCTACCCCCC CAATT	711
30	9525	9547	GCCCCTACCCCCCAAT TAGGAGG	289	GCCCCTACCCCCCAA TTAGG	712
35	9526	9548	CCCCTACCCCCCAATT AGGAGGG	290	CCCCTACCCCCCAAT TAGGA	713
40	9532	9554	CCCCCAATTAGGAGG GCACTGG	291	CCCCCAATTAGGAG GGCAC	714
45	9543	9565	GGAGGGCACTGGCCCC CAACAGG	292	GGAGGGCACTGGCCC CCAAC	715
50	9606	9628	ACATCCGTATTACTCG CATCAGG	293	ACATCCGTATTACTC GCATC	716
55	9692	9714	ACTGCTTATTACAATT TACTGG	294	ACTGCTTATTACAATT TTAC	717
	9693	9715	CTGCTTATTACAATT ACTGGG	295	CTGCTTATTACAATT TACT	718
	9756	9778	TCTCCCTTCACCATT CGACGG	296	TCTCCCTTCACCATT CCGA	719
	9765	9787	ACCATTCCGACGGCA TCTACGG	297	ACCATTCCGACGGC ATCTA	720
	9789	9811	TCAACATTTTGAGC CACAGG	298	TCAACATTTTGAG CCAC	721
	9798	9820	TTTGTAGGCCACAGGCT TCCACGG	299	TTTGTAGGCCACAGGC TTCCA	722
	9816	9838	CACGGACTTCACGTCA TTATTGG	300	CACGGACTTCACGTC ATTAT	723
	9885	9907	TTTACATCCAAACATC ACTTGGA	301	TTTACATCCAAACAT CACTT	724
	9910	9932	TCGAAGCCGCCGCCTG ATACTGG	302	TCGAAGCCGCCGCCT GATAC	725
	9926	9948	ATACTGGCATTGT GATGTGG	303	ATACTGGCATTGT AGATG	726

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	9963	9985	TATGTCTCCATCTATTG ATGAGG	304	TATGTCTCCATCTATTG ATGAGG	727
10	9964	9986	ATGTCTCCATCTATTG ATGAGGG	305	ATGTCTCCATCTATTG ATGAGG	728
15	10122	10144	TTTGACTACCACAAAC TCAACGG	306	TTTGACTACCACAAAC TCAAC	729
20	10155	10177	AAATCCACCCCTTACG AGTGC GG	307	AAATCCACCCCTTACG AGTGC	730
25	10343	10365	CATCATCCTAGCCCTA AGTCTGG	308	CATCATCCTAGCCCTA AGTCT	731
30	10365	10387	GCCTATGAGTGACTAC AAAAAGG	309	GCCTATGAGTGACTAC AAAAAGG	732
35	10385	10407	AGGATTAGACTGAACC GAATTGG	310	AGGATTAGACTGAAC CGAAT	733
40	10500	10522	GCATTTACCATCTCAC TTCTAGG	311	GCATTTACCATCTCAC TTCT	734
45	10551	10573	TCCTCCCTACTATGCCT AGAAGG	312	TCCTCCCTACTATGCC TAGA	735
50	10664	10686	CTTGCCGCCTGCGAA GCAGCGG	313	CTTGCCGCCTGCGAA AGCAG	736
55	10667	10689	TGCCGCCTGCGAAGCA GCGGTGG	314	TGCCGCCTGCGAAGCA GCGGT	737
	10668	10690	GCCGCCTGCGAAGCAG CGGTGGG	315	GCCGCCTGCGAAGCA GCGGT	738
	10704	10726	GTCTCAATCTCCAACA CATATGG	316	GTCTCAATCTCCAAC ACATA	739
	10972	10994	ACTCCTACCCCTCACA ATCATGG	317	ACTCCTACCCCTCACA ATCAT	740
	11128	11150	AACCACACTTATCCCC ACCTTGG	318	AACCACACTTATCCCC CACCT	741
	11147	11169	TTGGCTATCATCACCC GATGAGG	319	TTGGCTATCATCACCC CGATG	742
	11174	11196	CAGCCAGAACGCCTGA ACGCAGG	320	CAGCCAGAACGCCTG AACGC	743
	11204	11226	TTCCTATTCTACACCCT AGTAGG	321	TTCCTATTCTACACCCT AGTAGG	744
	11252	11274	ATTTACACTCACAAACA CCCTAGG	322	ATTTACACTCACAAAC ACCCT	745
	11369	11391	ATAGTAAAGATACCTC TTTACGG	323	ATAGTAAAGATACCTC TTTA	746

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	11417	11439	CATGTCGAAGCCCCCA TCGCTGG	324	CATGTCGAAGCCCCC ATCGC	747
10	11418	11440	ATGTCGAAGCCCCCAT CGCTGGG	325	ATGTCGAAGCCCCCA TCGCT	748
15	11453	11475	GCCGCAGTACTCTTAA AACTAGG	326	GCCGCAGTACTCTTA AAACT	749
20	11456	11478	GCAGTACTCTTAAAC TAGGCGG	327	GCAGTACTCTTAAAAA CTAGG	750
25	11462	11484	CTCTTAAACTAGGCG GCTATGG	328	CTCTTAAACTAGGC GGCTA	751
30	11540	11562	TTCCTTGTACTATCCCT ATGAGG	329	TTCCTTGTACTATCCC TATG	752
35	11669	11691	CAAACCCCTGAAGCT TCACCGG	330	CAAACCCCTGAAGC TTCAC	753
40	11696	11718	GTCATTCTCATAATCG CCCACGG	331	GTCATTCTCATAATC GCCCA	754
45	11697	11719	TCATTCTCATAATCGC CCACGGG	332	TCATTCTCATAATCGC CCAC	755
50	11777	11799	CGCATCATAATCCTCT CTCAAGG	333	CGCATCATAATCCTC TCTCA	756
55	11866	11888	ACCCCCCACTATTAAC CTACTGG	334	ACCCCCCACTATTAA CCTAC	757
	11867	11889	CCCCCCCACTATTAACC TACTGGG	335	CCCCCCCACTATTAAC CTACT	758
	11927	11949	AATATCACTCTCCTAC TTACAGG	336	AATATCACTCTCCTA CTTAC	759
	11985	12007	ACATATTACCACAAAC ACAATGG	337	ACATATTACCACAAAC CACAA	760
	11986	12008	CATATTACCACAAACA CAATGGG	338	CATATTACCACAAAC ACAAT	761
	11987	12009	ATATTACCACAAACAC AATGGGG	339	ATATTACCACAAACA CAATG	762
	12104	12126	CTCAACCCCGACATCA TTACCGG	340	CTCAACCCCGACATC ATTAC	763
	12105	12127	TCAACCCCGACATCAT TACCGGG	341	TCAACCCCGACATCA TTACC	764
	12164	12186	GATTGTGAATCTGACA ACAGAGG	342	GATTGTGAATCTGAC AACAG	765
	12235	12257	TGCCCCCATGTCTAAC AACATGG	343	TGCCCCCATGTCTAA CAACA	766

(continued)

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	12254	ATGGCTTCTCAACTTTAAAGG	344	ATGGCTTCTCAACTT	767
10	12272	AAAGGATAACAGCTATCCATTGG	345	AAAGGATAACAGCTA	768
15	12279	AACAGCTATCCATTGGTCTTAGG	346	AACAGCTATCCATTG	769
20	12294	GTCTTAGGCCCAAAAATTTGG	347	GTCTTAGGCCCAAA	770
25	12608	CTGTAGCATTGTTCGTTACATGG	348	CTGTAGCATTGTTCGT	771
30	12742	AACCTATTCCAACGTGTCATCGG	349	AACCTATTCCAACG	772
35	12750	CCAACTGTTCATCGGC	350	CCAACTGTTCATCGG	773
40	12751	TGAGAGG	351	TGAGA	774
45	12757	CAACTGTTCATCGGCTGAGAGG	352	GGCGT	775
50	12847	GTATCGG	353	GCAATCCTATACAAC	776
55	12856	TACAACCGTATCGGCG	354	CGTAT	777
	12958	ATATCGG	355	TACAACCGTATCGGC	778
	12979	CCAAAGCCTCACCCAC	356	GATAT	779
	13001	TACTAGG	357	CCAAAGCCTCACCCCA	780
	13019	GGCCTCCTCCTAGCAG	358	CTACT	781
	13030	CAGCAGG	359	GGCCTCCTCCTAGCA	782
	13052	TGACTCCCCTCAGCCA	360	GCAGC	783
	13081	TAGAAGG	361	TGACTCCCCTCAGCC	784
	13103	TCAAGCACTATAGTTG	362	ATAGA	785
	13156	TAGCAGG	363	TCAAGCACTATAGTT	786
	13178	GTCTCCACTTCAAGTC		GTAGC	
	13246	AACTAGG		CAAAC	
	13268	TTCTCCACTTCAAGTC		CTAAC	
	13267	AACTAGG		TGCTT	
	13289	GGACTCATAATAGTTA		ACAAT	
	13345	CAATCGG		GGACTCATAATAGTT	
	13367	GCCATACTATTATGT		ACAAT	
		GCTCCGG		GCTC	

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	13346	13368	CCATACTATTATGTG CTCCGGG	364	CCATACTATTATGTG CTCC	787
10	13393	13415	GAACAAGATATTGAA AAATAGG	365	GAACAAGATATTGAA AAAAT	788
15	13396	13418	CAAGATATTGAAAAAA TAGGAGG	366	CAAGATATTGAAAAAA ATAGG	789
20	13441	13463	ACTTCAACCTCCCTCA CCATTGG	367	ACTTCAACCTCCCTCA ACCAT	790
25	13459	13481	ATTGGCAGCCTAGCAT TAGCAGG	368	ATTGGCAGCCTAGCAT TTAGC	791
30	13477	13499	GCAGGAATACCTTC TCACAGG	369	GCAGGAATACCTTC CTCAC	792
35	13612	13634	ATAATTCTTCTCACCC AACAGG	370	ATAATTCTTCTCACCC TAAC	793
40	13686	13708	ACTAAACCCCATTAAA CGCCTGG	371	ACTAAACCCCATTAAA ACGCC	794
45	13693	13715	CCCATTAAACGCCTGG CAGCCGG	372	CCCATTAAACGCCTGG GCAGC	795
50	13708	13730	GCAGCCGGAAGCCTAT TCGCAGG	373	GCAGCCGGAAGCCTA TTCGC	796
55	13804	13826	GCCCTCGCTGTCACTT CCTAGG	374	GCCCTCGCTGTCACTT TCCT	797
	13894	13916	TTTTATTCTCCAACAT ACTCGG	375	TTTTATTCTCCAACAT TACT	798
	13936	13958	CACCGCACAAATCCCC ATCTAGG	376	CACCGCACAAATCCCC TATCT	799
	14059	14081	ATCATCACCTCAACCC AAAAAGG	377	ATCATCACCTCAACCC CAAAA	800
	14237	14259	TACAAAGCCCCCGCAC CAATAGG	378	TACAAAGCCCCCGCAC CCAAT	801
	14417	14439	ACCCCTGACCCCCATG CCTCAGG	379	ACCCCTGACCCCCAT GCCTC	802
	14579	14601	AATACTAAACCCCCAT AAATAGG	380	AATACTAAACCCCCA TAAAT	803
	14585	14607	AAACCCCCATAAATAG GAGAAGG	381	AAACCCCCATAAATA GGAGA	804
	14664	14686	CATACATCATTATTCTC GCACGG	382	CATACATCATTATTCT CGCA	805
	14825	14847	ATCTCCGCATGATGAA ACTTCGG	383	ATCTCCGCATGATGAA AACTT	806

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	14837	14859	TGAAACTTCGGCTCAC TCCTTGG	384	TGAAACTTCGGCTCA CTCCT	807
10	14867	14889	CTGATCCTCCAAATCA CCACAGG	385	CTGATCCTCCAAATC ACCAC	808
15	14951	14973	ATCACTCGAGACGTAA ATTATGG	386	ATCACTCGAGACGTAA AATTAA	809
20	14981	15003	ATCCGCTACCTTCACG CCAATGG	387	ATCCGCTACCTTCAC GCCAA	810
25	15020	15042	ATCTGCCTCTTCCTACA CATCGG	388	ATCTGCCTCTTCCTAC ACAT	811
30	15021	15043	TCTGCCTCTTCCTACAC ATCGGG	389	TCTGCCTCTTCCTACA CATC	812
35	15026	15048	CTCTTCCTACACATCG GGCGAGG	390	CTCTTCCTACACATCG GGCG	813
40	15038	15060	ATCGGGCGAGGCCTAT ATTACGG	391	ATCGGGCGAGGCCTA TATTA	814
45	15071	15093	TACTCAGAAACCTGAA ACATCGG	392	TACTCAGAAACCTGA AACAT	815
50	15113	15135	ACTATAGCAACAGCCT TCATAGG	393	ACTATAGCAACAGCC TTCAT	816
55	15131	15153	ATAGGCTATGTCCTCC CGTGAGG	394	ATAGGCTATGTCCTC CCGTG	817
	15149	15171	TGAGGCCAAATATCAT TCTGAGG	395	TGAGGCCAAATATCA TTCTG	818
	15150	15172	GAGGCCAAATATCATT CTGAGGG	396	GAGGCCAAATATCAT TCTGA	819
	15151	15173	AGGCCAAATATCATT TGAGGGG	397	AGGCCAAATATCATT CTGAG	820
	15194	15216	CTATCCGCCATCCCAT ACATTGG	398	CTATCCGCCATCCCA TACAT	821
	15195	15217	TATCCGCCATCCATA CATTGGG	399	TATCCGCCATCCCAT ACATT	822
	15221	15243	GACCTAGTTCAATGAA TCTGAGG	400	GACCTAGTTCAATGA ATCTG	823
	15224	15246	CTAGTTCAATGAATCT GAGGAGG	401	CTAGTTCAATGAATC TGAGG	824
	15334	15356	CCTCCTATTCTTGCACG AACCGG	402	CCTCCTATTCTTGCAC GAAA	825
	15335	15357	CTCCTATTCTTGCACG AACCGG	403	CTCCTATTCTTGCACG AAC	826

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	15353	15375	ACGGGATCAAACAACC CCCTAGG	404	ACGGGATCAAACAAC CCCCT	827
10	15416	15438	TACACAATCAAAGACG CCCTCGG	405	TACACAATCAAAGAC GCCCT	828
15	15476	15498	CTATTCTCACCAGACC TCCTAGG	406	CTATTCTCACCAGAC CTCCT	829
20	15590	15612	CGATCCGTCCCTAACAA AACTAGG	407	CGATCCGTCCCTAAC AAACT	830
25	15593	15615	TCCGTCCCTAACAAAC TAGGAGG	408	TCCGTCCCTAACAAA CTAGG	831
30	15740	15762	CTCCTCATTCTAACCTG AATCGG	409	CTCCTCATTCTAACCT GAAT	832
35	15743	15765	CTCATTCTAACCTGAA TCGGAGG	410	CTCATTCTAACCTGA ATCGG	833
40	15776	15798	AGCTACCCTTTACCA TCATTGG	411	AGCTACCCTTTACC ATCAT	834
45	15861	15883	TTGAAAACAAAATACT CAAATGG	412	TTGAAAACAAAATACTAC TCAAA	835
50	15862	15884	TGAAAACAAAATACTC AAATGGG	413	TGAAAACAAAATACT CAAAT	836
55	15906	15928	AATACACCAGTCTTGT AAACCGG	414	AATACACCAGTCTTG TAAAC	837
	15928	15950	GAGATGAAAACCTTT TCCAAGG	415	GAGATGAAAACCTTT TTCCA	838
	16012	16034	AACTATTCTCTGTTCTT TCATGG	416	AACTATTCTCTGTTCT TTCA	839
	16013	16035	ACTATTCTCTGTTCTTT CATGGG	417	ACTATTCTCTGTTCTT TCAT	840
	16014	16036	CTATTCTCTGTTCTTC ATGGGG	418	CTATTCTCTGTTCTTT CATG	841
	16026	16048	CTTCATGGGGAAAGCA GATTGAG	419	CTTCATGGGGAAAGC AGATT	842
	16027	16049	TTTCATGGGGAAAGCAG ATTGAGG	420	TTTCATGGGGAAAGCA GATT	843
	16108	16130	CAGCCACCATGAATAT TGTACGG	421	CAGCCACCATGAATA TTGTA	844
	16252	16274	AAAGCCACCCCTCACC CACTAGG	422	AAAGCCACCCCTCAC CCACT	845
	16348	16370	CAAATCCCTTCTCGTC CCCATGG	423	CAAATCCCTTCTCGTC CCCA	846

(continued)

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing gRNA target sequence followed by NGG	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	16367	16389	ATGGATGACCCCCCTC AGATAGG	424	ATGGATGACCCCCCT CAGAT	847
10	16368	16390	TGGATGACCCCCCTCA GATAGGG	425	TGGATGACCCCCCTC AGATA	848
15	16369	16391	GGATGACCCCCCTCAG ATAGGGG	426	GGATGACCCCCCTCA GATAG	849
20	16434	16456	GAGTGCTACTCTCCTC GCTCCGG	427	GAGTGCTACTCTCCT CGCTC	850
25	16435	16457	AGTGCTACTCTCCTCG CTCCGGG	428	AGTGCTACTCTCCTC GCTCC	851
30	16449	16471	CGCTCCGGGCCATAA CACTTGG	429	CGCTCCGGGCCATAA ACACT	852
35	16450	16472	GCTCCGGGCCATAAC ACTTGGG	430	GCTCCGGGCCATAAA CACTT	853
40	16451	16473	CTCCGGGCCATAACA CTTGGGG	431	CTCCGGGCCATAAC ACTTG	854
45	16452	16474	TCCGGGCCATAACAC TTGGGGG	432	TCCGGGCCATAACA CTTGG	855
50	16482	16504	AGTGAACTGTATCCGA CATCTGG	433	AGTGAACTGTATCCG ACATC	856
55	16495	16517	CGACATCTGGTTCTA CTTCAGG	434	CGACATCTGGTTCT ACTTC	857
	16496	16518	GACATCTGGTTCTAC TTCAGGG	435	GACATCTGGTTCTA CTTCA	858

40

45

50

55

Table 4. gRNA target sequence for human mtDNA carrying NGG sequence on the (-) strand.

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
17	39	CCCTATTAAACCACTCA CGGGAGC	859	GCTCCCGTGAGTGGT TAATA	2628
18	40	CCTATTAAACCACTCAC GGGAGCT	860	AGCTCCCGTGAGTGG TTAAT	2629
26	48	CCACTCACGGGAGCTC TCCATGC	861	GCATGGAGAGCTCCC GTGAG	2630
43	65	CCATGCATTGGTATTTC TCGTCT	862	AGACGAAAATACCAA ATGCA	2631
104	126	CCGGAGCACCCCTATGT CGCAGTA	863	TACTGCGACATAGGG TGCTC	2632
112	134	CCCTATGTCGCAGTATC CTGTCTT	864	AAGACAGATACTGCG ACATA	2633
113	135	CCTATGTCGCAGTATC TGCTTT	865	AAAGACAGATACTGC GACAT	2634
140	162	CCTGCCTCATCCTATTAA TTTATC	866	GATAAATAATAGGAT GAGGC	2635
144	166	CCTCATCCTATTATTAA TCGCAC	867	GTGCGATAATAATAA GGATG	2636
150	172	CCTATTATTATCGCAC CTACGT	868	ACGTAGGTGCGATAAA ATAAT	2637
166	188	CCTACGTTCAATATTAA CAGGCGA	869	TCGCCTGTAATATTG AACGT	2638
261	283	CCACTTCCACACAGA CATCATA	870	TATGATGTCTGTGTG GAAAG	2639
268	290	CCACACAGACATCATA ACAAAAAA	871	TTTTGTTATGATGTC TGTG	2640
298	320	CCAAACCCCCCTCCC CCGCTTC	872	GAAGCGGGGGAGGG GGGGTT	2641
304	326	CCCCCCTCCCCCGCTTC TGGCCA	873	TGGCCAGAAGCGGGG GAGGG	2642
305	327	CCCCCTCCCCCGCTTCT GGCCAC	874	GTGGCCAGAAGCGGG GGAGG	2643
306	328	CCCCTCCCCCGCTTCTG GCCACA	875	TGTGGCCAGAAGCGG GGGAG	2644
307	329	CCCTCCCCCGCTTCTG GCCACAG	876	CTGTGGCCAGAAGCG GGGGA	2645
308	330	CCTCCCCCGCTTCTGG	877	GCTGTGGCCAGAAGC	2646

5

10

15

20

25

30

35

40

45

50

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CCACAGC		GGGGG	
311	333	CCCCCGCTTCTGGCCA CAGCACT	878	AGTGCTGTGGCCAGA AGCGG	2647
312	334	CCCCGCTTCTGGCCAC AGCACTT	879	AAGTGCTGTGGCCAG AAGCG	2648
313	335	CCCGCTTCTGGCCACA GCACTTA	880	TAAGTGCTGTGGCCA GAAGC	2649
314	336	CCGCTTCTGGCCACAG CACTTAA	881	TTAAGTGCTGTGGCC AGAAG	2650
324	346	CCACAGCACTTAAACA CATCTCT	882	AGAGATGTGTTAAG TGCTG	2651
348	370	CCAAACCCCAAAAACA AAGAAC	883	GGTTCTTGTGTTGGG GTT	2652
353	375	CCCCAAAAACAAAGA ACCCTAAC	884	GTTAGGGTTCTTGTT TTTG	2653
354	376	CCCAAAAACAAAGAA CCCTAAC	885	TGTTAGGGTTCTTGTT TTTT	2654
355	377	CCAAAAACAAAGAAC CCTAACAC	886	GTGTTAGGGTTCTTGTT TTTT	2655
369	391	CCCTAACACCCAGCCTA ACCAGAT	887	ATCTGGTTAGGCTGG TGTAA	2656
370	392	CCTAACACCCAGCCTAA CCAGATT	888	AATCTGGTTAGGCTG TGTT	2657
377	399	CCAGCCTAACCAAGATT TCAAATT	889	AATTGAAATCTGGT TAGGC	2658
381	403	CCTAACCAAGATTCAA ATTTTAT	890	ATAAAATTGAAATC TGGTT	2659
386	408	CCAGATTCAAATTAA ATCTTTT	891	AAAAGATAAAATTG AAATC	2660
433	455	CCCCCAACTAACACAA TTATTTT	892	AAAATAATGTGTTAG TTGGG	2661
434	456	CCCCCAACTAACACAT TATTTTC	893	GAAAATAATGTGTTA GTTGG	2662
435	457	CCCCAACTAACACATT ATTTTCC	894	GGAAAATAATGTGTT AGTTG	2663
436	458	CCCAACTAACACATTA TTTTCCC	895	GGGAAAATAATGTGT TAGTT	2664
437	459	CCAACTAACACATTAT TTTCCCC	896	GGGGAAAATAATGTG TTAGT	2665
456	478	CCCCTCCCACTCCCAT ACTACTA	897	TAGTAGTATGGGAGT GGGAG	2666
457	479	CCCTCCCACTCCCATCA TCACTAA	898	TTAGTAGTATGGGAG TGGGA	2667
458	480	CCTCCCACTCCCATAC TACTAAT	899	ATTAGTAGTATGGGA GTGGG	2668

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
461	483	CCCACTCCCATACTAC TAATCTC	900	GAGATTAGTAGTATG GGAGT	2669
462	484	CCACTCCCATACTACT AATCTCA	901	TGAGATTAGTAGTAT GGGAG	2670
467	489	CCCATACTACTAAATCT CATCAAT	902	ATTGATGAGATTAGT AGTAT	2671
468	490	CCATACTACTAAATCTC ATCAATA	903	TATTGATGAGATTAG TAGTA	2672
494	516	CCCCGGCCCATCCTAC CCAGCAC	904	GTGCTGGGTAGGATG GGCGG	2673
495	517	CCCCGCCCATCCTACC CAGCACAC	905	TGTGCTGGGTAGGAT GGCG	2674
496	518	CCCGCCCATCCTACCC AGCACAC	906	GTGTGCTGGGTAGGA TGGGC	2675
497	519	CCGCCCATCCTACCCA GCACACA	907	TGTGTGCTGGGTAGG ATGGG	2676
500	522	CCCATCCTACCCAGCA CACACAC	908	GTGTGTGTGCTGGGT AGGAT	2677
501	523	CCATCCTACCCAGCAC ACACACA	909	TGTGTGTGTGCTGGG TAGGA	2678
505	527	CCTACCCAGCACACAC ACACCGC	910	GCGGTGTGTGTGC TGGGT	2679
509	531	CCCAGCACACACACAC CGCTGCT	911	AGCAGCGGTGTGTGT GTGCT	2680
510	532	CCAGCACACACACACC GCTGCTA	912	TAGCAGCGGTGTGTG TGTGC	2681
524	546	CCGCTGCTAACCCAT ACCCCGA	913	TCGGGGTATGGGGTT AGCAG	2682
534	556	CCCCATACCCCGAACCC AACCAAA	914	TTTGGTTGGTTCGGG GTATG	2683
535	557	CCCATAACCCGAACCA ACCAAAC	915	TTTGGTTGGTTCGG GGTAT	2684
536	558	CCATACCCCGAACCAA CCAAACC	916	GGTTGGTTGGTTCG GGGTA	2685
541	563	CCCCGAACCAACCAA CCCCAAA	917	TTTGGGGTTGGTTG GTTCG	2686
542	564	CCCGAACCAACCAAAC CCCAAAG	918	CTTTGGGGTTGGTTG GTTC	2687
543	565	CCGAACCAACCAAACC CCAAAGA	919	TCTTGGGGTTGGTT GGTT	2688
548	570	CCAACCAAACCCAAA GACACCC	920	GGGTGTCTTGGGGT TTGGT	2689
552	574	CCAAACCCCAAAGACA CCCCCA	921	TGGGGGGTGTCTTG GGGTT	2690
557	579	CCCCAAAGACACCCCC CCCC	922	AACTGTGGGGGGTGT GGGTT	2691

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5		CACAGTT		CTTTG	
10	558 580	CCCAAAGACACCCCCC ACAGTTT	923	AAACTGTGGGGGGTG TCTTT	2692
15	559 581	CCAAAGACACCCCCCA CAGTTA	924	TAAACTGTGGGGGGT GTCTT	2693
20	568 590	CCCCCCACAGTTATG TAGCTTA	925	TAAGCTACATAAACT GTGGG	2694
25	569 591	CCCCCACAGTTATGT AGCTTAC	926	GTAAGCTACATAAAC TGTGG	2695
30	570 592	CCCCACAGTTATGTA GCTTACC	927	GGTAAGCTACATAAA CTGTG	2696
35	571 593	CCCACAGTTATGTAG CTTACCT	928	AGGTAAGCTACATAA ACTGT	2697
40	572 594	CCACAGTTATGTAGC TTACCTC	929	GAGGTAAGCTACATA AACTG	2698
45	591 613	CCTCCTCAAAGCAATA CACTGAA	930	TTCAGTGTATTGCTTT GAGG	2699
50	594 616	CCTCAAAGCAATACAC TGAAAAT	931	ATTTTCAGTGTATTGC TTTG	2700
	637 659	CCCCATAAACAAATAG GTTTGGT	932	ACCAAACCTATTGT TTATG	2701
	638 660	CCCATAAACAAATAGG TTTGGTC	933	GACCAAACCTATTG TTTAT	2702
	639 661	CCATAAACAAATAGGT TTGGTCC	934	GGACCAAACCTATT GTTA	2703
	660 682	CCTAGCCTTCTATTAG CTCTTA	935	TAAGAGCTAATAGAA AGGCT	2704
	665 687	CCTTCTATTAGCTCTT AGTAAG	936	CTTACTAACAGCTAA TAGAA	2705
	705 727	CCCCGTTCCAGTGAGT TCACCCCT	937	AGGGTGAACTCAG GAACG	2706
	706 728	CCCGTTCCAGTGAGTT CACCCCTC	938	GAGGGTGAACTCACT GGAAC	2707
	707 729	CCGTTCCAGTGAGTTC ACCCCTCT	939	AGAGGGTGAACTCAC TGGAA	2708
	712 734	CCAGTGAGTTCACCCCT CTAAATC	940	GATTAGAGGGTGAA CTCAC	2709
	724 746	CCCTCTAAATCACCAAC GATCAA	941	TTTGATCGTGGTGATT TAGA	2710
	725 747	CCTCTAAATCACCAACG ATCAAAA	942	TTTGATCGTGGTGAT TTAG	2711
	736 758	CCACGATCAAAAGGAA CAAGCAT	943	ATGCTTGTTCCTTTG ATCG	2712
	792 814	CCTAGCCACACCCCCA CGGGAAA	944	TTTCCCGTGGGGGTG TGGCT	2713

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
797	819	CCACACCCCCACGGGA AACAGCA	945	TGCTGTTCCCGTGG GGGTG	2714
802	824	CCCCCACGGGAAACAG CAGTGAT	946	ATCACTGCTGTTCCC GTGG	2715
803	825	CCCCACGGGAAACAGC AGTGATT	947	AATCACTGCTGTTCC CGTG	2716
804	826	CCCACGGGAAACAGCA GTGATTAA	948	TAATCACTGCTGTTTC CCGT	2717
805	827	CCACGGGAAACAGCA GTGATTAA	949	TTAATCACTGCTGTTT CCCG	2718
828	850	CCTTAGCAATAAACG AAAGTTT	950	AAACTTCGTTATTG CTAA	2719
867	889	CCCCAGGGTTGGTCAA TTCGTG	951	CACGAAATTGACCAA CCCTG	2720
868	890	CCCAGGGTTGGTCAAAT TTCGTGC	952	GCACGAAATTGACCA ACCCT	2721
869	891	CCAGGGTTGGTCAAATT TCGTGCC	953	GGCACGAAATTGACC AACCC	2722
890	912	CCAGCCACCGCGGTCA CACGATT	954	AATCGTGTGACCGCG GTGGC	2723
894	916	CCACCGCGGTACACAG ATTAACC	955	GGTTAACCGTGTGAC CGCGG	2724
897	919	CCGGGTCACACGATT AACCCAA	956	TTGGGTTAACCGTGT GACCG	2725
915	937	CCCAAGTCAATAGAAG CCGGCGT	957	ACGCCGGCTTCTATT GACTT	2726
916	938	CCAAGTCAATAGAAGC CGGCGTA	958	TACGCCGGCTTCTATT GACT	2727
931	953	CCGGCGTAAAGAGTGT TTTAGAT	959	ATCTAAAACACTCTT TACGC	2728
956	978	CCCCCTCCCCAATAAAA GCTAAAAA	960	TTTTAGCTTATTGGG GAGG	2729
957	979	CCCCCTCCCCAATAAAAG CTAAAAC	961	TTTTAGCTTATTGG GGAG	2730
958	980	CCCTCCCCAATAAAAGC TAAAACCT	962	AGTTTAGCTTATTG GGGA	2731
959	981	CCTCCCCAATAAAAGCT AAAACTC	963	GAGTTTAGCTTATT GGGG	2732
962	984	CCCAATAAAAGCTAAA ACTCACC	964	GGTGAGTTTAGCTTT ATTG	2733
963	985	CCCAATAAAAGCTAAAAA CTCACCT	965	AGGTGAGTTTAGCT TTATT	2734
964	986	CCAATAAAAGCTAAAAC TCACCTG	966	CAGGTGAGTTTAGC TTTAT	2735
983	1005	CCTGAGTTGTAAAAAA	967	ACTGGAGTTTTAC	2736

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5		CTCCAGT		AACTC	
10	1001	CCAGTTGACACAAAAT AGACTAC	968	GTA G TCTATT T TGTGT CAAC	2737
1064	1086	CCCAA A CTGGGATTAG ATACCCC	969	GGGGTATCTAATCCC AGTTT	2738
15	1065	CCAA A CTGGGATTAGA TACCCC	970	TGGGGTATCTAATCC CAGTT	2739
1083	1105	CCCCACTATGCTTAGC CCTAAAC	971	GT T TAGGGCTAAGCA TAGTG	2740
20	1084	CCC A CTATGCTTAGCC CTAAACC	972	GGTTTAGGGCTAAGC ATAGT	2741
1085	1107	CCACTATGCTTAGCCC TAAACCT	973	AGGTTTAGGGCTAAG CATAG	2742
25	1098	CCCTAAC A CTCAACAG TTAAATC	974	GATTAACTGTTGAG GTTA	2743
1099	1121	CCTAAAC A CTCAACAGT TAAATCA	975	TGATTAACTGTTGA GGTTT	2744
1105	1127	CCTCAACAGTTAAATC AACAAAA	976	TTT T GTTGATTAACT GTTG	2745
30	1135	CCAGAACACTACGAGC CACAGCT	977	AGCTGTGGCTCGTAG TGTTC	2746
1150	1172	CCACAGCTAAA A CTC AAAGGAC	978	GTC C TTTGAGTTTAA GCTG	2747
35	1172	CCTGGCGGTGCTTCAT ATCCCTC	979	GAGGGATATGAAGCA CCGCC	2748
1190	1212	CCCTCTAGAGGAGCCT GTTCTGT	980	ACAGAACAGGCTCCT CTAGA	2749
1191	1213	CCTCTAGAGGAGCCTG TTCTGTA	981	TACAGAACAGGCTCC TCTAG	2750
40	1203	CCTGTTCTGTAATCGA TAAACCC	982	GGGTTATCGATTAC AGAAC	2751
1223	1245	CCCCGATCAACCTCAC CACCTCT	983	AGAGGTGGTGAGGTT GATCG	2752
1224	1246	CCCGATCAACCTCACC ACCTCTT	984	AAGAGGTGGTGAGGT TGATC	2753
45	1225	CCGATCAACCTCACCA CCTCTTG	985	CAAGAGGTGGTGAGG TTGAT	2754
1233	1255	CCTCACCA C CTTTGCT CAGCCT	986	AGGCTGAGCAAGAGG TGGTG	2755
1238	1260	CCACCTCTTGCTCAGC CTATATA	987	TATATAGGCTGAGCA AGAGG	2756
50	1241	CCTCTTGCTCAGCCTAT ATACCG	988	CGGTATATAGGCTGA GCAAG	2757
1253	1275	CCTATATACCGCCATC TTCAGCA	989	TGCTGAAGATGGCGG TATAT	2758

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	1261	CCGCCATCTTCAGCAA ACCCTGA	990	TCAGGGTTGCTGAA GATGG	2759
10	1264	CCATCTTCAGCAAACC CTGATGA	991	TCATCAGGGTTGCT GAAGA	2760
1278	1300	CCCTGATGAAGGCTAC AAAGTAA	992	TTACTTTGTAGCCTC ATCA	2761
15	1279	CCTGATGAAGGCTACA AAGTAAG	993	CTTACTTTGTAGCCTT CATC	2762
1310	1332	CCCACGTAAGACGTT AGGTCAA	994	TTGACCTAACGTCTT ACGT	2763
20	1311	CCACGTAAAGACGTTA GGTCAAG	995	CTTGACCTAACGTCTT TACG	2764
1340	1362	CCCATGAGGTGGCAAG AAATGGG	996	CCCATTCTGCCACC TCAT	2765
25	1341	CCATGAGGTGGCAAGA AATGGGC	997	GCCCATTCTGCCAC CTCA	2766
1375	1397	CCCCAGAAAACTACGA TAGCCCT	998	AGGGCTATCGTAGTT TTCTG	2767
1376	1398	CCCAGAAAACTACGAT AGCCCTT	999	AAGGGCTATCGTAGT TTTCT	2768
30	1377	CCAGAAAACTACGATA GCCCTTA	1000	TAAGGGCTATCGTAG TTTTC	2769
1394	1416	CCCTTATGAAACTTAA GGGTCGA	1001	TCGACCCTTAAGTTTC ATAA	2770
35	1395	CCTTATGAAACTTAAG GGTCGAA	1002	TTCGACCCTTAAGTTT CATATA	2771
1465	1487	CCCTGAAGCGCGTACA CACCGCC	1003	GGCGGTGTGTACGCG CTTCA	2772
1466	1488	CCTGAAGCGCGTACAC ACCGCCC	1004	GGGCGGTGTGTACGC GCTTC	2773
40	1483	CCGCCCGTCACCCCTCC TCAAGTA	1005	TACTTGAGGAGGGTG ACGGG	2774
1486	1508	CCCGTCACCCCTCCTCA AGTATAC	1006	GTATACTTGAGGAGG GTGAC	2775
1487	1509	CCGTCACCCCTCCTCAA GTATACT	1007	AGTATACTTGAGGAG GGTGA	2776
45	1493	CCCTCCTCAAGTATACT TTCAAAG	1008	CTTTGAAGTATACTT GAGGA	2777
1494	1516	CCTCCTCAAGTATACT TCAAAGG	1009	CCTTGAAAGTATACTT GAGG	2778
1497	1519	CCTCAAGTATACTTCA AAGGACA	1010	TGTCCTTGAAGTAT ACTTG	2779
50	1531	CCCCTACGCATTATA TAGAGGA	1011	TCCTCTATATAATG CGTAG	2780
1532	1554	CCCTACGCATTATAT	1012	CTCCTCTATATAAAAT	2781

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		AGAGGAG		GCGTA	
1533	1555	CCTACGCATTATATA GAGGAGA	1013	TCTCCTCTATATAAAT GCGT	2782
1601	1623	CCAGAGTGTAGCTTAA CACAAAG	1014	CTTGTGTTAAGCTAC ACTC	2783
1626	1648	CCCAACTTACACTTAG GAGATT	1015	AAATCTCCTAAGTGT AAGTT	2784
1627	1649	CCAACTTACACTTAGG AGATTTC	1016	GAAATCTCCTAAGTGT TAAGT	2785
1662	1684	CCGCTCTGAGCTAAC CTAGCCC	1017	GGGCTAGGTTAGCT CAGAG	2786
1677	1699	CCTAGCCCCAAACCCA CTCCACC	1018	GGTGGAGTGGGTTG GGGCT	2787
1682	1704	CCCCAAACCCACTCCA CCTTACT	1019	AGTAAGGTGGAGTGG GTTTG	2788
1683	1705	CCCAAACCCACTCCAC CTTACTA	1020	TAGTAAGGTGGAGTGT GGTTT	2789
1684	1706	CCAAACCCACTCCACC TTACTAC	1021	GTAGTAAGGTGGAGT GGGTT	2790
1689	1711	CCCACCTCACCTTACT ACCAGAC	1022	GTCTGGTAGTAAGGT GGAGT	2791
1690	1712	CCACTCCACCTTACTA CCAGACA	1023	TGTCTGGTAGTAAGG TGGAG	2792
1695	1717	CCACCTTACTACCAGA CAACCTT	1024	AAGGTTGTCTGGTAG TAAGG	2793
1698	1720	CCTTACTACCAGACAA CCTTAGC	1025	GCTAAGGTTGTCTGG TAGTA	2794
1706	1728	CCAGACAAACCTTAGCC AAACCAT	1026	ATGGTTGGCTAAGG TTGTC	2795
1714	1736	CCTTAGCCAAACCATT TACCCAA	1027	TTGGGTAAATGGTTT GGCTA	2796
1720	1742	CCAAACCATTACCCA AATAAAG	1028	CTTTATTGGGTAAAT GGTT	2797
1725	1747	CCATTACCCAAATAA AGTATAG	1029	CTATACTTTATTGGG TAAA	2798
1732	1754	CCCAAATAAAGTATAG GCGATAG	1030	CTATCGCCTATACTTT ATT	2799
1733	1755	CCAAATAAAGTATAGG CGATAGA	1031	TCTATCGCCTATACTT TATT	2800
1764	1786	CCTGGCGCAATAGATA TAGTACC	1032	GGTACTATATCTATT GCGCC	2801
1785	1807	CCGCAAGGGAAAGAT GAAAAATT	1033	AATTTTCATCTTCC CTTG	2802
1812	1834	CCAAGCATAATATAGC AAGGACT	1034	AGTCCTTGCTATATTA TGCT	2803

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
1837	1859	CCCTATACCTTCTGC ATAATGA	1035	TCATTATGCAGAAGG TATAG	2804
1838	1860	CCCTATACCTTCTGCAT AATGAA	1036	TTCATTATGCAGAAG GTATA	2805
1839	1861	CCTATACCTTCTGCAT AATGAAT	1037	ATTCATTATGCAGAA GGTAT	2806
1845	1867	CCTCTGCATAATGAA TTAACTA	1038	TAGTTAATTCTATTATG CAGA	2807
1889	1911	CCAAAGCTAAGACCCC CGAAACC	1039	GGTTCGGGGGTCTT AGCTT	2808
1901	1923	CCCCGAAACCAGACG AGCTACC	1040	GGTAGCTCGTCTGGT TTCGG	2809
1902	1924	CCCCGAAACCAGACGA GCTACCT	1041	AGGTAGCTCGTCTGG TTTCG	2810
1903	1925	CCCGAAACCAGACGAG CTACCTA	1042	TAGGTAGCTCGTCTG GTTTC	2811
1904	1926	CCGAAACCAGACGAGC TACCTAA	1043	TTAGGTAGCTCGTCT GGTTT	2812
1910	1932	CCAGACGAGCTACCTA AGAACAG	1044	CTGTTCTTAGGTAGCT CGTC	2813
1922	1944	CCTAAGAACAGCTAAA AGAGCAC	1045	GTGCTCTTTAGCTGT TCTT	2814
1946	1968	CCCGTCTATGTAGCAA AATAGTG	1046	CACTATTTGCTACAT AGAC	2815
1947	1969	CCGTCTATGTAGCAA ATAGTGG	1047	CCACTATTTGCTACA TAGA	2816
1996	2018	CCTACCGAGCCTGGTG ATAGCTG	1048	CAGCTATCACCAGGC TCGGT	2817
2000	2022	CCGAGCCTGGTGATAG CTGGTTG	1049	CAACCAGCTATCACC AGGCT	2818
2005	2027	CCTGGTGATAGCTGGT TGTCCAA	1050	TTGGACAACCAGCTA TCACC	2819
2024	2046	CCAAGATAGAATCTTA GTTCAAC	1051	GTTGAACTAAGATT TATCT	2820
2057	2079	CCCACAGAACCCCTCA AATCCCC	1052	GGGGATTAGAGGGT TCTGT	2821
2058	2080	CCACAGAACCCCTCTAA ATCCCC	1053	AGGGGATTAGAGGG TTCTG	2822
2066	2088	CCCTCTAAATCCCCTT GTAAATT	1054	AATTTACAAGGGGAT TTAGA	2823
2067	2089	CCTCTAAATCCCCTGT AAATT	1055	AAATTACAAGGGGA TTTAG	2824
2076	2098	CCCCTTGAAATTAA CTGTTAG	1056	CTAACAGTTAAATT ACAAG	2825
2077	2099	CCCTTGAAATTAAAC	1057	ACTAACAGTTAAATT	2826

55

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TGTTAGT		TACAA	
2078	2100	CCTTGTAAATTAACT GTTAGTC	1058	GACTAACAGTTAAAT TTACA	2827
2100	2122	CCAAAGAGGAACAGCT CTTGGA	1059	TCCAAAGAGCTGTTCTCTT	2828
2136	2158	CCTTGTAGAGAGAGTA AAAAATT	1060	AATTTTTACTCTCTCTACA	2829
2164	2186	CCCATAGTAGGCCTAA AAGCAGC	1061	GCTGCTTTAGGCCTACTAT	2830
2165	2187	CCATAGTAGGCCTAAA AGCAGCC	1062	GGCTGCTTTAGGCCCTACTA	2831
2175	2197	CCTAAAAGCAGCCACC AATTAAG	1063	CTTAATTGGTGGCTGCTTT	2832
2186	2208	CCACCAATTAAAGAAAG CGTTCAA	1064	TTGAACGCTTCTTAAATGGG	2833
2189	2211	CCAATTAAGAAAGCGTTCAAGCT	1065	AGCTTGAACGCTTCTTAAAT	2834
2217	2239	CCCACTACCTAAAAAAA TCCCAAA	1066	TTTGGGATTTTTAGGTAGT	2835
2218	2240	CCACTACCTAAAAAAT CCCAAC	1067	GTGGGGATTTTTAGGTAG	2836
2224	2246	CCTAAAAAATCCCAAACATATAA	1068	TTATATGTTGGGATTTTT	2837
2234	2256	CCCAAACATATAACTGAACTCCT	1069	AGGAGTTCAAGTTATAATTTT	2838
2235	2257	CCAAACATATAACTGAACTCCTC	1070	GAGGAGTTCAAGTTATATGTT	2839
2254	2276	CCTCACACCCAATTGGACCAATC	1071	GATTGGTCCAATTGGGTGTG	2840
2261	2283	CCCAATTGGACCAATCTATCACC	1072	GGTGATAGATTGGTCATATT	2841
2262	2284	CCAATTGGACCAATCTATCACCC	1073	GGGTGATAGATTGGTCCAAAT	2842
2271	2293	CCAATCTATCACCCCTATAGAAGA	1074	TCTTCTATAGGGTAGATAGAT	2843
2282	2304	CCCTATAGAAGAACTAATGTTAG	1075	CTAACATTAGTTCTCTATAT	2844
2283	2305	CCTATAGAAGAACTATGTAGT	1076	ACTAACATTAGTTCTTCTAT	2845
2328	2350	CCTCCGCATAAGCCTGCGTCACTGA	1077	TCTGACGCAGGCTTAGCGG	2846
2331	2353	CCGCATAAGCCTGCGTCAGATTA	1078	TAATCTGACGCAGGCCTATG	2847
2340	2362	CCTGCGTCAGATTAACACTGA	1079	TCAGTGTAAATCTGACGC	2848

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
2378	2400	CCCAATATCTACAATC AACCAAC	1080	GTTGGTTGATTGTAG ATATT	2849
2379	2401	CCAATATCTACAATCA ACCAACA	1081	TGTTGGTTGATTGTA GATAT	2850
2396	2418	CCAACAAAGTCATTATT ACCCCTCA	1082	TGAGGGTAATAATGA CTTGT	2851
2413	2435	CCCTCACTGTCAACCC AACACAG	1083	CTGTGTTGGGTTGAC AGTGA	2852
2414	2436	CCTCACTGTCAACCCA ACACAGG	1084	CCTGTGTTGGGTTGA CAGTG	2853
2426	2448	CCCAACACAGGCATGC TCATAAG	1085	CTTATGAGCATGCCT GTGTT	2854
2427	2449	CCAACACAGGCATGCT CATAAGG	1086	CCTTATGAGCATGCC TGTGT	2855
2488	2510	CCCCGCCTGTTACCA AAAACAT	1087	ATGTTTTGGTAAAC AGGCG	2856
2489	2511	CCCGCCTGTTACCAA AAACATC	1088	GATGTTTTGGTAAA CAGGC	2857
2490	2512	CCGCCTGTTACCAAA AACATCA	1089	TGATGTTTTGGTAA ACAGG	2858
2493	2515	CCTGTTACCAAAAAC ATCACCT	1090	AGGTGATGTTTTGG TAAAC	2859
2501	2523	CCAAAAACATCACCTC TAGCATC	1091	GATGCTAGAGGTGAT GTTT	2860
2513	2535	CCTCTAGCATCACCA TATTAGA	1092	TCTAATACTGGTGAT GCTAG	2861
2525	2547	CCAGTATTAGAGGCAC CGCCTGC	1093	GCAGGCGGTGCCTCT AATAC	2862
2540	2562	CCGCCTGCCAGTGAC ACATGTT	1094	AACATGTGTCACTGG GCAGG	2863
2543	2565	CCTGCCAGTGACACA TGTTAA	1095	TTAACACATGTGTCAC TGGGC	2864
2547	2569	CCCAGTGACACATGTT TAACGGC	1096	GCCGTTAACACATGTG TCACT	2865
2548	2570	CCAGTGACACATGTT AACGGCC	1097	GGCCGTTAACACATGT GTCAC	2866
2569	2591	CCCGGGTACCCCTAAC GTGCAA	1098	TTTGCACGGTTAGGG TACCG	2867
2577	2599	CCCTAACCGTGCAAAG GTAGCAT	1099	ATGCTACCTTGCAC GGTTA	2868
2578	2600	CCTAACCGTGCAAAGG TAGCATA	1100	TATGCTACCTTGCAC GGTT	2869
2583	2605	CCGTGCAAAGGTAGCA TAATCAC	1101	GTGATTATGCTACCTT TGCA	2870
2611	2633	CCTTAAATAGGGACCT	1102	TTCATACAGGTCCCT	2871

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		GTATGAA		ATTTA	
2624	2646	CCTGTATGAATGGCTC CACGAGG	1103	CCTCGTGGAGCCATT CATACT	2872
2639	2661	CCACGAGGGTTCAGCT GTCTCTT	1104	AAGAGACAGCTGAAC CCTCG	2873
2670	2692	CCAGTGAAATTGACCT GCCCGTG	1105	CACGGGCAGGTCAAT TTCAC	2874
2683	2705	CCTGCCCGTGAAGAGGG CGGGCAT	1106	ATGCCCGCCTCTTCA CGGGC	2875
2687	2709	CCCGTGAAGAGGGCGGG CATAACA	1107	TGTTATGCCCGCCTCT TCAC	2876
2688	2710	CCGTGAAGAGGGCGGGC ATAACAC	1108	GTGTTATGCCCGCCT CTTCA	2877
2726	2748	CCCTATGGAGCTTTAA TTTATTA	1109	TAATAAATTAAAGCT CCATA	2878
2727	2749	CCTATGGAGCTTAAT TTATTAA	1110	TTAATAAATTAAAGC TCCAT	2879
2761	2783	CCTAACAAACCCACAG GTCCTAA	1111	TTAGGACCTGTGGGT TTGTT	2880
2770	2792	CCCACAGGTCTAAAC TACCAAA	1112	TTTGGTAGTTAGGA CCTGT	2881
2771	2793	CCACAGGTCTAAACT ACCAAAC	1113	TTTGGTAGTTAGG ACCTG	2882
2779	2801	CCTAAACTACCAAACC TGCATTA	1114	TAATGCAGGTTGGT AGTTT	2883
2788	2810	CCAAACCTGCATTAAA AATTCG	1115	CGAAATTTTAATGC AGGTT	2884
2793	2815	CCTGCATTAAAAATT CGGTTGG	1116	CCAACCGAAATTTTT AATGC	2885
2821	2843	CCTCGGAGCAGAACCC AACCTCC	1117	GGAGGTTGGGTTCTG CTCCG	2886
2834	2856	CCCAACCTCCGAGCAG TACATGC	1118	GCATGTACTGCTCG AGGTT	2887
2835	2857	CCAACCTCCGAGCAGT ACATGCT	1119	AGCATGTACTGCTCG GAGGT	2888
2839	2861	CCTCCGAGCAGTACAT GCTAAGA	1120	TCTTAGCATGTACTG CTCGG	2889
2842	2864	CCGAGCAGTACATGCT AAGACTT	1121	AAGTCTTAGCATGTA CTGCT	2890
2867	2889	CCAGTCAAAGCGAACT ACTATAC	1122	GTATAGTAGTCGCT TTGAC	2891
2899	2921	CCAATAACTGACCAA CGGAACA	1123	TGTTCCGTTGGTCAA GTTAT	2892
2911	2933	CCAACGGAACAAAGTTA CCCTAGG	1124	CCTAGGGTAACTTGT TCCGT	2893

55

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	2927	2949	CCCTAGGGATAACAGC GCAATCC	1125	GGATTGCGCTGTTAT CCCTA	2894
10	2928	2950	CCTAGGGATAACAGCG CAATCCT	1126	AGGATTGCGCTGTTA TCCCT	2895
15	2948	2970	CCTATTCTAGAGTCCA TATCAAC	1127	GTTGATATGGACTCT AGAAT	2896
20	2961	2983	CCATATCAACAATAGG GTTTACG	1128	CGTAAACCCATTGT TGATA	2897
25	2985	3007	CCTCGATGTTGGATCA GGACATC	1129	GATGTCCTGATCCAA CATCG	2898
30	3007	3029	CCCGATGGTGCAGCCG CTATTAA	1130	TTAATAGCGGCTGCA CCATC	2899
35	3008	3030	CCGATGGTGCAGCCGC TATTAAA	1131	TTTAATAGCGGCTGC ACCAT	2900
40	3020	3042	CCGCTATTAAAGGTTC GTTTGT	1132	AACAAACGAACCTTT AATAG	2901
45	3056	3078	CCTACGTGATCTGAGT TCAGACC	1133	GGTCTGAACTCAGAT CACGT	2902
50	3077	3099	CCGGAGTAATCCAGGT CGGTTTC	1134	GAAACCGACCTGGAT TACTC	2903
	3087	3109	CCAGGTCGGTTCTAT CTACNTT	1135	AANGTAGATAGAAC CGACC	2904
	3116	3138	CCTCCCTGTACGAAAG GACAAGA	1136	TCTGTCCCTTCGTAC AGGG	2905
	3119	3141	CCCTGTACGAAAGGAC AAGAGAA	1137	TTCTCTTGTCCCTTCG TACA	2906
	3120	3142	CCTGTACGAAAGGACA AGAGAAA	1138	TTTCTCTTGTCCCTTC GTAC	2907
	3148	3170	CCTACTTCACAAAGCG CCTTCCC	1139	GGGAAGGCGCTTTGT GAAGT	2908
	3164	3186	CCTCCCCCGTAAATG ATATCAT	1140	ATGATATCATTACG GGGGA	2909
	3168	3190	CCCCCGTAAATGATAT CATCTCA	1141	TGAGATGATATCATT TACGG	2910
	3169	3191	CCCCGTAAATGATATC ATCTCAA	1142	TTGAGATGATATCAT TTACG	2911
	3170	3192	CCCGTAAATGATATCA TCTCAAC	1143	GTTGAGATGATATCA TTTAC	2912
	3171	3193	CCGTAAATGATATCAT CTCAACT	1144	AGTTGAGATGATATC ATTAA	2913
	3204	3226	CCCACACCCACCCAAG AACAGGG	1145	CCCTGTTCTGGGTG GGTGT	2914
	3205	3227	CCACACCCACCCAAGA ACAGGGT	1146	ACCCTGTTCTGGGT GGGTG	2915
	3210	3232	CCCACCCAAGAACAGG	1147	AACAAACCCGTCT AACAGG	2916

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10			GTTTGTT		TGGGT	
3211	3233	CCACCCAAGAACAGGG TTTGTAA		1148	TAACAAACCCCTGTTC TTGGG	2917
3214	3236	CCCAAGAACAGGGTTT GTAAAGA		1149	TCTTAACAAACCCCTG TTCTT	2918
3215	3237	CCAAGAACAGGGTTG TTAAGAT		1150	ATCTTAACAAACCCCT GTTCT	2919
3245	3267	CCCGGTAATCGCATAA AACTTAA		1151	TTAAGTTTATGCGAT TACC	2920
3246	3268	CCGGTAATCGCATAAA ACTTAAA		1152	TTTAAGTTTATGCGA TTAC	2921
3292	3314	CCTCTTCTTAACAAACA TACCCAT		1153	ATGGGTATGTTGTTA AGAAG	2922
3310	3332	CCCATGGCCAACCTCC TACTCCT		1154	AGGAGTAGGAGGTTG GCCAT	2923
3311	3333	CCATGGCCAACCTCCT ACTCCTC		1155	GAGGAGTAGGAGGTT GGCCA	2924
3317	3339	CCAACCTCCTACTCCT CATTGTA		1156	TACAATGAGGAGTAG GAGGT	2925
3321	3343	CCTCCTACTCCTCATTG TACCCA		1157	TGGGTACAATGAGGA GTAGG	2926
3324	3346	CCTACTCCTCATTGTAC CCATTC		1158	GAATGGGTACAATGA GGAGT	2927
3330	3352	CCTCATTGTACCCATTG TAATCG		1159	CGATTAGAATGGGTA CAATG	2928
3340	3362	CCCATTCTAATCGCAA TGGCATT		1160	AATGCCATTGCGATT AGAAT	2929
3341	3363	CCATTCTAATCGCAAT GGCATTG		1161	GAATGCCATTGCGAT TAGAA	2930
3363	3385	CCTAATGCTTACCGAA CGAAAAAA		1162	TTTTCGTTCGGTAAG CATT	2931
3374	3396	CCGAACGAAAAATTCT AGGCTAT		1163	ATAGCCTAGAATTTC TCGTT	2932
3414	3436	CCCCAACGTTGTAGGC CCCTACG		1164	CGTAGGGGCCTACAA CGTTG	2933
3415	3437	CCCAACGTTGTAGGCC CCTACGG		1165	CCGTAGGGGCCTACA ACGTT	2934
3416	3438	CCAACGTTGTAGGCC CTACGGG		1166	CCCGTAGGGGCCTAC AACGT	2935
3429	3451	CCCCTACGGGCTACTA CAACCCT		1167	AGGGTTGTAGTAGCC CGTAG	2936
3430	3452	CCCTACGGGCTACTAC AACCCCTT		1168	AAGGGTTGTAGTAGC CCGTA	2937
3431	3453	CCTACGGGCTACTACA ACCCTTC		1169	GAAGGGTTGTAGTAG CCCGT	2938

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
3448	3470	CCCTTCGCTGACGCCA TAAAACCT	1170	AGTTTTATGGCGTCA GCGAA	2939
3449	3471	CCTTCGCTGACGCCAT AAAACTC	1171	GAGTTTTATGGCGTC AGCGA	2940
3461	3483	CCATAAAAACCTTCAC CAAAGAG	1172	CTCTTGGTGAAGAG TTTTA	2941
3476	3498	CCAAAGAGCCCCCTAAA ACCCGCC	1173	GGCGGGTTTAGGGG CTCTT	2942
3484	3506	CCCCTAAAACCCGCCA CATCTAC	1174	GTAGATGTGGCGGGT TTTAG	2943
3485	3507	CCCTAAAACCCGCCAC ATCTACC	1175	GGTAGATGTGGCGGG TTTTA	2944
3486	3508	CCTAAAACCCGCCACA TCTACCA	1176	TGGTAGATGTGGCGGG GTTTT	2945
3493	3515	CCCGCCACATCTACCA TCACCCCT	1177	AGGGTGATGGTAGAT GTGGC	2946
3494	3516	CCGCCACATCTACCAT CACCCCTC	1178	GAGGGTGATGGTAGA TGTGG	2947
3497	3519	CCACATCTACCATCAC CCTCTAC	1179	GTAGAGGGTGATGGT AGATG	2948
3506	3528	CCATCACCCCTCTACAT CACCGCC	1180	GGCGGTGATGTAGAG GGTGA	2949
3512	3534	CCCTCTACATCACCGC CCCGACC	1181	GGTCGGGGCGGTGAT GTAGA	2950
3513	3535	CCTCTACATCACCGCC CCGACCT	1182	AGTCGGGGCGGTGA TGTAG	2951
3524	3546	CCGCCCCGACCTTAGC TCTCACC	1183	GGTGAGAGCTAAGGT CGGGG	2952
3527	3549	CCCCGACCTTAGCTCT CACCATC	1184	GATGGTGAGAGCTAA GGTCG	2953
3528	3550	CCCGACCTTAGCTCTC ACCATCG	1185	CGATGGTGAGAGCTA AGGTC	2954
3529	3551	CCGACCTTAGCTCTCA CCATCGC	1186	GCGATGGTGAGAGCT AAGGT	2955
3533	3555	CCTTAGCTCTCACCAT CGCTCTT	1187	AAGAGCGATGGTGAG AGCTA	2956
3545	3567	CCATCGCTCTCTACTA TGAACC	1188	GGTCATAGTAGAAG AGCGA	2957
3566	3588	CCCCCCTCCCCATACC CAACCCCC	1189	GGGGTTGGGTATGGG GAGGG	2958
3567	3589	CCCCCCTCCCCATACCC AACCCCC	1190	GGGGGTTGGGTATGG GGAGG	2959
3568	3590	CCCCCTCCCCATACCCA ACCCCT	1191	AGGGGGTTGGGTATG GGGAG	2960
3569	3591	CCCTCCCCATACCCAA	1192	CAGGGGGTTGGGTAT	2961

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CCCCCTG		GGGGA	
3570	3592	CCTCCCCATACCCAAC CCCCTGG	1193	CCAGGGGGTTGGGTA TGGGG	2962
3573	3595	CCCCATACCCAACCCCC CTGGTCA	1194	TGACCAGGGGGTTGG GTATG	2963
3574	3596	CCCATACCCAACCCCCC TGGTCAA	1195	TTGACCAGGGGGTTG GGTAT	2964
3575	3597	CCATACCCAACCCCCCT GGTCAC	1196	GTTGACCAGGGGGTT GGGTA	2965
3580	3602	CCCAACCCCCCTGGTCA ACCTCAA	1197	TTGAGGTTGACCAGG GGGTT	2966
3581	3603	CCAACCCCCCTGGTCAA CCTCAAC	1198	GTTGAGGTTGACCAG GGGGT	2967
3585	3607	CCCCCTGGTCAACCTC AACCTAG	1199	CTAGGTTGAGGTTGA CCAGG	2968
3586	3608	CCCCTGGTCAACCTCA ACCTAGG	1200	CCTAGGTTGAGGTTG ACCAG	2969
3587	3609	CCCTGGTCAACCTCAA CCTAGGC	1201	GCCTAGGTTGAGGTT GACCA	2970
3588	3610	CCTGGTCAACCTCAAC CTAGGCC	1202	GGCCTAGGTTGAGGT TGACC	2971
3597	3619	CCTCAACCTAGGCCTC CTATTAA	1203	TAAATAGGAGGCCTA GGTTG	2972
3603	3625	CCTAGGCCTCCTATT ATTCTAG	1204	CTAGAATAAATAGGA GGCCT	2973
3609	3631	CCTCCTATTATTCTAG CCACCT	1205	AGGTGGCTAGAATAA ATAGG	2974
3612	3634	CCTATTATTCTAGCCA CCTCTA	1206	TAGAGGTGGCTAGAA TAAAT	2975
3626	3648	CCACCTCTAGCCTAGC CGTTTAC	1207	GTAAACGGCTAGGCT AGAGG	2976
3629	3651	CCTCTAGCCTAGCCGT TTACTCA	1208	TGAGTAAACGGCTAG GCTAG	2977
3636	3658	CCTAGCCGTTACTCA ATCCTCT	1209	AGAGGATTGAGTAAA CGGCT	2978
3641	3663	CCGTTTACTCAATCCTC TGATCA	1210	TGATCAGAGGATTGA GTAAA	2979
3654	3676	CCTCTGATCAGGGTGA GCATCAA	1211	TTGATGCTCACCTG ATCAG	2980
3689	3711	CCCTGATCGGCGCACT GCGAGCA	1212	TGCTCGCAGTGCAGC GATCA	2981
3690	3712	CCTGATCGGCGCACTG CGAGCAG	1213	CTGCTCGCAGTGCAGC CGATC	2982
3716	3738	CCCAAACAATCTCATA TGAAGTC	1214	GACTTCATATGAGAT TGTAA	2983

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	3717	3739	CCAAACAAATCTCATAT GAAGTCA	1215	TGACTTCATATGAGA TTGTT	2984
10	3740	3762	CCCTAGCCATCATTCT ACTATCA	1216	TGATAGTAGAATGAT GGCTA	2985
15	3741	3763	CCTAGCCATCATTCTA CTATCAA	1217	TTGATAGTAGAATGA TGGCT	2986
20	3746	3768	CCATCATTCTACTATC AACATTA	1218	TAATGTTGATAGTAG AATGA	2987
25	3782	3804	CCTTAAACCTCTCCACC CTTATC	1219	GATAAGGGTGGAGAG GTTAA	2988
30	3789	3811	CCTCTCCACCCTTATCA CAACAC	1220	GTGTTGTGATAAGGG TGGAG	2989
35	3794	3816	CCACCCCTTATCACAAAC ACAAGAA	1221	TTCTTGTGTTGTGATA AGGG	2990
40	3797	3819	CCCTTATCACAAACACAA AGAACAC	1222	GTGTTCTTGTGTTGTG ATAA	2991
45	3798	3820	CCTTATCACAAACACAA GAACACC	1223	GGTGTCTTGTGTTGT GATA	2992
50	3819	3841	CCTCTGATTACTCCTGC CATCAT	1224	ATGATGGCAGGAGTA ATCAG	2993
	3831	3853	CCTGCCATCATGACCC TTGGCCA	1225	TGGCCAAGGGTCATG ATGGC	2994
	3835	3857	CCATCATGACCCTGG CCATAAT	1226	ATTATGGCCAAGGGT CATGA	2995
	3844	3866	CCCTTGGCCATAATAT GATTAT	1227	ATAAATCATATTATG GCCAA	2996
	3845	3867	CCTTGGCCATAATATG ATTTATC	1228	GATAAATCATATTAT GCCCA	2997
	3851	3873	CCATAATATGATTAT CTCCACA	1229	TGTGGAGATAAATCA TATTA	2998
	3869	3891	CCACACTAGCAGAGAC CAACCGA	1230	TCGGTTGGTCTCTGCT AGTG	2999
	3884	3906	CCAACCGAACCCCCCTT CGACCTT	1231	AAGGTCGAAGGGGGT TCGGT	3000
	3888	3910	CCGAACCCCCCTTCGAC CTTGGCG	1232	CGGCAAGGTCGAAGG GGGTT	3001
	3893	3915	CCCCCTTCGACCTTGC CGAAGGG	1233	CCCTTCGGCAAGGTC GAAGG	3002
	3894	3916	CCCCCTTCGACCTTGCC GAAGGGG	1234	CCCCTTCGGCAAGGT CGAAG	3003
	3895	3917	CCCTTCGACCTTGCG AAGGGGA	1235	TCCCCTTCGGCAAGG TCGAA	3004
	3896	3918	CCTTCGACCTTGCGA AGGGGAG	1236	CTCCCCCTTCGGCAAG GTCGA	3005
	3903	3925	CCTTGGCGAAGGGGAG	1237	GTTCGGACTCCCCCTTC	3006

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10			TCCGAAC		GGCA	
3908	3930	CCGAAGGGGAGTCCGA ACTAGTC		1238	GACTAGTCGGACTC CCCTT	3007
3920	3942	CCGAACTAGTCTCAGG CTTCAAC		1239	GTTGAAGCCTGAGAC TAGTT	3008
3953	3975	CCGCAGGCCCTTCGC CCTATTG		1240	GAATAGGGCGAAGG GGCCTG	3009
3960	3982	CCCCTTCGCCCTATTCT TCATAG		1241	CTATGAAGAATAGGG CGAAG	3010
3961	3983	CCCTTCGCCCTATTCTT CATAGC		1242	GCTATGAAGAATAGG GCGAA	3011
3962	3984	CCTTCGCCCTATTCTC ATAGCC		1243	GGCTATGAAGAATAG GGCGA	3012
3968	3990	CCCTATTCTTCATAGCC GAATAC		1244	GTATTGGCTATGAA GAATA	3013
3969	3991	CCTATTCTTCATAGCC GAATACA		1245	TGTATTGGCTATGA AGAAT	3014
3983	4005	CCGAATACACAAACAT TATTATA		1246	TATAATAATGTTGT GTATT	3015
4013	4035	CCCTCACCACTACAAT CTTCCTA		1247	TAGGAAGATTGTAGT GGTGA	3016
4014	4036	CCTCACCACTACAATC TTCCTAG		1248	CTAGGAAGATTGTAG TGGTG	3017
4019	4041	CCACTACAATCTTCCT AGGAACA		1249	TGTTCTAGGAAGAT TGTAG	3018
4032	4054	CCTAGGAACAACATAT GACGCAC		1250	GTGCGTCATATGTTG TTCCT	3019
4058	4080	CCCCTGAACCTACAC AACATAT		1251	ATATGTTGTAGAG TTCAG	3020
4059	4081	CCCTGAACCTACACA ACATATT		1252	AATATGTTGTAGA GTTCA	3021
4060	4082	CCTGAACCTACACAA CATATT		1253	AAATATGTTGTAG AGTTC	3022
4088	4110	CCAAGACCCTACTTCT AACCTCC		1254	GGAGGTTAGAAGTAG GGTCT	3023
4094	4116	CCCTACTTCTAACCTCC CTGTTC		1255	GAACAGGGAGGTTAG AAGTA	3024
4095	4117	CCTACTTCTAACCTCCC TGTTCT		1256	AGAACAGGGAGGTTA GAAGT	3025
4106	4128	CCTCCCTGTTCTTATGA ATTGGA		1257	TCGAATTCTAACAGAA CAGGG	3026
4109	4131	CCCTGTTCTTATGAATT CGAACAA		1258	TGTTCGAATTCTAA GAACA	3027
4110	4132	CCTGTTCTTATGAATTG GAACAG		1259	CTGTTCGAATTCTAA AGAAC	3028

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO	
5	4137	4159	CCCCGATTCCGCTAC GACCAAC	1260	GTTGGTCGTAGCGGA ATCGG	3029
10	4138	4160	CCCCGATTCCGCTACG ACCAACT	1261	AGTTGGTCGTAGCGG AATCG	3030
15	4139	4161	CCCGATTCCGCTACGA CCAACTC	1262	GAGTTGGTCGTAGCG GAATC	3031
20	4140	4162	CCGATTCCGCTACGAC CAACTCA	1263	TGAGTTGGTCGTAGC GGAAT	3032
25	4146	4168	CCGCTACGACCAACTC ATACACC	1264	GGTGTATGAGTTGGT CGTAG	3033
30	4155	4177	CCAACTCATACACCTC CTATGAA	1265	TTCATAGGAGGTGTA TGAGT	3034
35	4167	4189	CCTCCTATGAAAAAAC TTCCTAC	1266	GTAGGAAGTTTTTC ATAGG	3035
40	4170	4192	CCTATGAAAAAACTTC CTACCAC	1267	GTGGTAGGAAGTTTT TTCAT	3036
45	4185	4207	CCTACCACTCACCCCTA GCATTAC	1268	GTAATGCTAGGGTGA GTGGT	3037
50	4189	4211	CCACTCACCCCTAGCAT TACTTAT	1269	ATAAGTAATGCTAGG GTGAG	3038
55	4196	4218	CCCTAGCATTACTTAT ATGATAT	1270	ATATCATATAAGTAA TGCTA	3039
60	4197	4219	CCTAGCATTACTTATA TGATATG	1271	CATATCATATAAGTA ATGCT	3040
65	4223	4245	CCATACCCATTACAAT CTCCAGC	1272	GCTGGAGATTGTAAT GGGTA	3041
70	4228	4250	CCCATTACAATCTCCA GCATTCC	1273	GGAATGCTGGAGATT GTAAT	3042
75	4229	4251	CCATTACAATCTCCAG CATTCCC	1274	GGGAATGCTGGAGAT TGTAA	3043
80	4241	4263	CCAGCATTCCCCCTCA AACCTAA	1275	TTAGGTTGAGGGGG AATGC	3044
85	4249	4271	CCCCCTCAAACCTAAG AAATATG	1276	CATATTCTTAGGTT GAGG	3045
90	4250	4272	CCCCTCAAACCTAAGA AATATGT	1277	ACATATTCTTAGGTT TGAG	3046
95	4251	4273	CCCTCAAACCTAAGAA ATATGTC	1278	GACATATTCTTAGG TTTGA	3047
100	4252	4274	CCTCAAACCTAAGAAA TATGTCT	1279	AGACATATTCTTAG GTTTG	3048
105	4259	4281	CCTAAGAAATATGTCT GATAAAA	1280	TTTTATCAGACATATT TCTT	3049
110	4318	4340	CCCCCTTATTCTAGG ACTATGA	1281	TCATAGTCCTAGAAA TAAGG	3050
115	4319	4341	CCCCCTTATTCTAGGA	1282	CTCATAGTCCTAGAA	3051

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTATGAG		ATAAG	
4320	4342	CCCTTATTCTAGGACT ATGAGA	1283	TCTCATAGTCCTAGA AATAA	3052
4321	4343	CCTTATTCTAGGACT ATGAGAA	1284	TTCTCATAGTCCTAG AAATA	3053
4349	4371	CCCATCCCTGAGAACAT CAAAATT	1285	AATTTGGATTCTCA GGGAT	3054
4350	4372	CCATCCCTGAGAACATCC AAAATTC	1286	GAATTTGGATTCTC AGGGA	3055
4354	4376	CCCTGAGAACATCCAAAAA TTCTCCG	1287	CGGAGAACATTGGAT TCTCA	3056
4355	4377	CCTGAGAACATCCAAAAT TCTCCGT	1288	ACGGAGAACATTGGAT TTCTC	3057
4364	4386	CCAAAATTCTCCGTGC CACCTAT	1289	ATAGGTGGCACGGAG AATT	3058
4374	4396	CCGTGCCACCTATCAC ACCCCAT	1290	ATGGGGTGTGATAGG TGGCA	3059
4379	4401	CCACCTATCACACCCCC ATCCTAA	1291	TTAGGATGGGTGTG ATAGG	3060
4382	4404	CCTATCACACCCCCATC CTAAAGT	1292	ACTTAGGATGGGGT GTGAT	3061
4391	4413	CCCCATCCTAAAGTAA GGTCAAGC	1293	GCTGACCTTACTTTA GGATG	3062
4392	4414	CCCATCCTAAAGTAAG GTCAGCT	1294	AGCTGACCTTACTTT AGGAT	3063
4393	4415	CCATCCTAAAGTAAGG TCAGCTA	1295	TAGCTGACCTTACTTT AGGA	3064
4397	4419	CCTAAAGTAAGGTCAAG CTAAATA	1296	TATTAGCTGACCTTA CTTT	3065
4430	4452	CCCATACCCCGAAAAAT GTTGGTT	1297	AACCAACATTTCGG GGTAT	3066
4431	4453	CCATACCCCGAAAATG TTGGTTA	1298	TAACCAACATTTCG GGGTA	3067
4436	4458	CCCCGAAAATGTTGGT TATAACCC	1299	GGGTATAACCAACAT TTTCG	3068
4437	4459	CCCGAAAATGTTGGTT ATACCCT	1300	AGGGTATAACCAACA TTTTC	3069
4438	4460	CCGAAAATGTTGGTTA TACCCCTT	1301	AAGGGTATAACCAAC ATT	3070
4456	4478	CCCTTCCCGTACTAATT AATCCC	1302	GGGATTAATTAGTAC GGGAA	3071
4457	4479	CCTTCCCGTACTAATT AATCCCC	1303	GGGGATTAATTAGTA CGGGA	3072
4461	4483	CCCGTACTAATTAAATC CCCTGGC	1304	GCCAGGGGATTAATT AGTAC	3073

55

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
4462	4484	CCGTACTAATTAATCC CCTGGCC	1305	GGCCAGGGGATTAAT TAGTA	3074
4476	4498	CCCCTGGCCCAACCCG TCATCTA	1306	TAGATGACGGGTTGG GCCAG	3075
4477	4499	CCCTGGCCCAACCCGT CATCTAC	1307	GTAGATGACGGGTTG GCCA	3076
4478	4500	CCTGGCCCAACCCGTC ATCTACT	1308	AGTAGATGACGGGTT GGGCC	3077
4483	4505	CCCAACCCGTCACTCA CTCTACC	1309	GGTAGAGTAGATGAC GGGTT	3078
4484	4506	CCAACCCGTCACTAC TCTACCA	1310	TGGTAGAGTAGATGA CGGGT	3079
4488	4510	CCCGTCATCTACTCTA CCATCTT	1311	AAGATGGTAGAGTAG ATGAC	3080
4489	4511	CCGTCACTACTCTAC CATCTTT	1312	AAAGATGGTAGAGTA GATGA	3081
4504	4526	CCATCTTGCAGGCAC ACTCATC	1313	GATGAGTGTGCCTGC AAAGA	3082
4555	4577	CCTGAGTAGGCCTAGA AATAAAC	1314	GTTTATTCTAGGCCT ACTC	3083
4565	4587	CCTAGAAATAAACATG CTAGCTT	1315	AAGCTAGCATGTTA TTTCT	3084
4593	4615	CCAGTTCTAACCAAAA AAATAAA	1316	TTTATTTTTGGTTA GAAC	3085
4603	4625	CCAAAAAAATAAACCC TCGTTCC	1317	GGAACGAGGGTTTAT TTTT	3086
4616	4638	CCCTCGTCCACAGAA GCTGCCA	1318	TGGCAGCTCTGTGG AACGA	3087
4617	4639	CCTCGTCCACAGAAG CTGCCAT	1319	ATGGCAGCTCTGTG GAACG	3088
4624	4646	CCACAGAAGCTGCCAT CAAGTAT	1320	ATACTTGATGGCAGC TTCTG	3089
4636	4658	CCATCAAGTATTCCT CACGCAA	1321	TTGCGTGAGGAAATA CTTGA	3090
4649	4671	CCTCACGCAAGCAACC GCATCCA	1322	TGGATGCGGTTGCTT GCGTG	3091
4663	4685	CCGCATCCATAATCCT TCTAATA	1323	TATTAGAAGGATTAT GGATG	3092
4669	4691	CCATAATCCTCTAAT AGCTATC	1324	GATAGCTATTAGAAG GATTA	3093
4676	4698	CCTTCTAATAGCTATC CTCTTCA	1325	TGAAGAGGATAGCTA TTAGA	3094
4691	4713	CCTCTTCAACAAATATA CTCTCCG	1326	CGGAGAGTATATTGT TGAAG	3095
4711	4733	CCGGACAATGAACCAT	1327	ATTGGTTATGGTCAT	3096

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5		AACCAAT		TGTC	
10	4723 4745	CCATAACCAATACTAC CAATCAA	1328	TTGATTGGTAGTATT GGTTA	3097
15	4729 4751	CCAATACTACCAATCA ATACTCA	1329	TGAGTATTGATTGGT AGTAT	3098
20	4738 4760	CCAATCAATACTCATC ATTAATA	1330	TATTAATGATGAGTA TTGAT	3099
25	4795 4817	CCCCCTTCACTTCTGA GTCCA	1331	TGGGACTCAGAAGTG AAAGG	3100
30	4796 4818	CCCCTTCACTTCTGAG TCCCAG	1332	CTGGGACTCAGAAGT GAAAG	3101
35	4797 4819	CCCTTCACTTCTGAGT CCCAGA	1333	TCTGGGACTCAGAAG TGAAA	3102
40	4798 4820	CCTTCACTTCTGAGTC CCAGAG	1334	CTCTGGGACTCAGAA GTGAA	3103
45	4814 4836	CCCAGAGGTTACCCAA GGCACCC	1335	GGGTGCCTTGGGTAA CCTCT	3104
50	4815 4837	CCAGAGGTTACCCAAAG GCACCCC	1336	GGGGTGCCTTGGGTAA ACCTC	3105
	4825 4847	CCCAAGGCACCCCTCT GACATCC	1337	GGATGTCAGAGGGT GCCTT	3106
	4826 4848	CCAAGGCACCCCTCTG ACATCCG	1338	CGGATGTCAGAGGGG TGCCT	3107
	4834 4856	CCCCTCTGACATCCGG CCTGCTT	1339	AAGCAGGCCGGATGT CAGAG	3108
	4835 4857	CCCTCTGACATCCGGC CTGCTTC	1340	GAAGCAGGCCGGATG TCAGA	3109
	4836 4858	CCTCTGACATCCGGCC TGCTTCT	1341	AGAAGCAGGCCGGAT GTCAG	3110
	4846 4868	CCGGCCTGCTTCTTCTC ACATGA	1342	TCATGTGAGAAGAAG CAGGC	3111
	4850 4872	CCTGCTTCTTCTCACAT GACAAA	1343	TTTGTATGTGAGAA GAAGC	3112
	4879 4901	CCCCCATCTCAATCAT ATACCAA	1344	TTGGTATATGATTGA GATGG	3113
	4880 4902	CCCCATCTCAATCATA TACCAAA	1345	TTTGGTATATGATTG AGATG	3114
	4881 4903	CCCATCTCAATCATAT ACCAAAT	1346	ATTGGTATATGATT GAGAT	3115
	4882 4904	CCATCTCAATCATATA CCAAATC	1347	GATTGGTATATGAT TGAGA	3116
	4898 4920	CCAAATCTCTCCCTCA CTAAACG	1348	CGTTAGTGAGGGAG AGATT	3117
	4908 4930	CCCTCACTAAACGTAA GCCTTCT	1349	AGAAGGCTTACGTTT AGTGA	3118

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
4909	4931	CCTCACTAACGTAAG CCTTCTC	1350	GAGAAGGCTTACGTT TAGTG	3119
4925	4947	CCTTCTCCTCACTCTCT CAATCT	1351	AGATTGAGAGAGTGA GGAGA	3120
4931	4953	CCTCACTCTCTCAATCT TATCCA	1352	TGGATAAGATTGAGA GAGTG	3121
4951	4973	CCATCATAGCAGGCAG TTGAGGT	1353	ACCTCAACTGCCTGC TATGA	3122
4982	5004	CCAAACCCAGCTACGC AAAATCT	1354	AGATTTGCGTAGCT GGGTT	3123
4987	5009	CCCAGCTACGCAAAAT CTTAGCA	1355	TGCTAAGAGTTTGC TAGCT	3124
4988	5010	CCAGCTACGCAAAATC TTAGCAT	1356	ATGCTAAGAGTTTGC GTAGC	3125
5014	5036	CCTCAATTACCCACAT AGGATGA	1357	TCATCCTATGTGGGT AATTG	3126
5023	5045	CCCACATAGGATGAAT AATAGCA	1358	TGCTATTATTCCATCCT ATGT	3127
5024	5046	CCACATAGGATGAATA ATAGCAG	1359	CTGCTATTATTCCATCC TATG	3128
5052	5074	CCGTACAACCCTAACAA TAACCAT	1360	ATGGTTATGTTAGGG TTGTA	3129
5060	5082	CCCTAACATAACCATT CTTAATT	1361	AATTAAGAACATGGTTA TGTAA	3130
5061	5083	CCTAACATAACCATT TTAATT	1362	AAATTAAGAACATGGTT ATGTT	3131
5071	5093	CCATTCTTAATTAACT ATTTAT	1363	ATAAAATAGTTAAATT AAGAA	3132
5099	5121	CCTAACTACTACCGCA TTCCTAC	1364	GTAGGAATGCGGTAG TAGTT	3133
5110	5132	CCGCATTCTACTACT CAACTTA	1365	TAAGTTGAGTAGTAG GAATG	3134
5117	5139	CCTACTACTCAACTTA AACTCCA	1366	TGGAGTTAACAGTTGA GTAGT	3135
5137	5159	CCAGCACCAACGACCCT ACTACTA	1367	TAGTAGTAGGGTCGT GGTGC	3136
5143	5165	CCACGACCCTACTACT ATCTCGC	1368	GCGAGATAGTAGTAG GGTCG	3137
5149	5171	CCCTACTACTATCTCG CACCTGA	1369	TCAGGTGCGAGATAG TAGTA	3138
5150	5172	CCTACTACTATCTCGC ACCTGAA	1370	TTCAGGTGCGAGATA GTAGT	3139
5167	5189	CCTGAAACAAGCTAAC ATGACTA	1371	TAGTCATGTTAGCTT GTTTC	3140
5193	5215	CCCTTAATTCCATCCA	1372	AGGAGGGTGGATGGA	3141

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CCCTCCT		ATTAA	
5194	5216	CCTTAATTCCATCCAC CCTCCTC	1373	GAGGAGGGTGGATGG AATTA	3142
5202	5224	CCATCCACCCTCCTCTC CCTAGG	1374	CCTAGGGAGAGGAGG GTGGA	3143
5206	5228	CCACCCCTCCTCTCCCTA GGAGGC	1375	GCCTCCTAGGGAGAG GAGGG	3144
5209	5231	CCCTCCTCTCCCTAGG AGGCCTG	1376	CAGGCCTCCTAGGGA GAGGA	3145
5210	5232	CCTCCTCTCCCTAGGA GGCCTGC	1377	GCAGGCCTCCTAGGG AGAGG	3146
5213	5235	CCTCTCCCTAGGAGGC CTGCC	1378	GGGGCAGGCCTCCTA GGGAG	3147
5218	5240	CCCTAGGAGGCCTGCC CCCGCTA	1379	TAGCGGGGGCAGGCC TCCTA	3148
5219	5241	CCTAGGAGGCCTGCC CCGCTAA	1380	TTAGCGGGGGCAGGC CTCCT	3149
5228	5250	CCTGCCCGCTAACCC GGCTTT	1381	AAAAGCCGGTTAGCG GGGGC	3150
5232	5254	CCCCGCTAACCGGCT TTTGCC	1382	GGCAAAAAGCCGGTT AGCGG	3151
5233	5255	CCCCGCTAACCGGCTT TTGCC	1383	GGGCAAAAAGCCGGT TAGCG	3152
5234	5256	CCCGCTAACCGGCTTT TTGCCCA	1384	TGGGCAAAAAGCCGG TTAGC	3153
5235	5257	CCGCTAACCGGCTTT TGCCCA	1385	TTGGGCAAAAAGCCG GTTAG	3154
5242	5264	CCGGCTTTGCCAA ATGGGCC	1386	GGCCCATTGGGCAA AAAGC	3155
5253	5275	CCCAAATGGGCCATTA TCGAAGA	1387	TCTTCGATAATGGCC CATTT	3156
5254	5276	CCAAATGGGCCATTAT CGAAGAA	1388	TTCTTCGATAATGGC CCATT	3157
5263	5285	CCATTATCGAAGAATT CACAAAA	1389	TTTTGTGAATTCTCG ATAA	3158
5294	5316	CCTCATCATCCCCACC ATCATAG	1390	CTATGATGGTGGGGA TGATG	3159
5303	5325	CCCCACCATCATAGCC ACCATCA	1391	TGATGGTGGCTATGA TGGTG	3160
5304	5326	CCCACCATCATAGCCA CCATCAC	1392	GTGATGGTGGCTATG ATGGT	3161
5305	5327	CCACCATCATAGCCAC CATCAC	1393	GGTGATGGTGGCTAT GATGG	3162
5308	5330	CCATCATAGCCACCAC CACCC	1394	GAGGGTGATGGTGGC TATGA	3163

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	5317	CCACCATCACCCCTCCTTAACCTC	1395	GAGGTTAAGGAGGGTGATGG	3164
10	5320	CCATCACCCCTCCTTAAACCTCTAC	1396	GTAGAGGTTAAGGAGGGTGA	3165
15	5326	CCCTCCTTAACCTCTAC	1397	GTAGAAGTAGAGGTTAAGGA	3166
20	5327	CCCTCCTTAACCTCTACTTAC	1398	GGTAGAAGTAGAGGTTAAGG	3167
25	5330	CCTTAACCTCTACTTCTACCTAC	1399	GTAGGTAGAAGTAGAGGTTA	3168
30	5336	CCTCTACTTCTACCTACGCCTAA	1400	TTAGGCGTAGGTAGAAGTAG	3169
35	5348	CCTACGCCTAACATCTAC	1401	AGGTGGAGTAGATTAGGC	3170
40	5354	TCCACCTAACATCTAC	1402	TGATTGAGGTGGAGTAGATT	3171
45	5365	CCACCTCAATCACACTACTCCCC	1403	GGGGAGTAGTGTGATTGAGG	3172
50	5368	CCCCATACTAACACTACTCCCCATA	1404	TATGGGGAGTAGTGTGATTG	3173
5406	5384	CCCCATATCTAACAAAC	1405	TTTTTACGTTGTTAGATATG	3174
5407	5385	GTAAAAAACTAACAAACG	1406	TTTTTACGTTGTTAGATAT	3175
5408	5386	TAAAAATCCATATCTAACAAACGT	1407	TATTTTACGTTGTTAGATA	3176
5455	5433	AAAAATACCACACTCCCTCC	1408	AGTGTGGGGAGGAATGGGGT	3177
5456	5434	CCACACTCCCTCCCTCC	1409	GAGTGTGGGGAGGAA	3178
5459	5437	CACACTC	1410	TGGGG	3179
5460	5438	CCCCATTCTCCCCAC	1411	GATGAGTGTGGGGAGAAT	3180
5461	5439	CTCATCG	1412	CGATGAGTGTGGGGAGGAAT	3181
5466	5444	TCATCGC	1413	GCGATGAGTGTGGGGAGGAA	3182
5469	5447	CCTCCCCACACTCATC	1414	TAAGGGCGATGAGTG	3183
5470	5448	GCCCTTA	1415	TGGGG	3184
5471	5449	CCCCACACTCATCGCC	1416	TGGTAAGGGCGATGA	3185
5483	5461	CTTACCA	1417	GTGTG	3186

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10			CCTACCT		GGTAA	
5462	5484	CCTTACCAACGCTACTCTACCTA	1418	TAGGTAGGAGTAGCGTAGGTA	3187	
5467	5489	CCACGCTACTCCTACCCTATCTCC	1419	GGAGATAGGTAGGAGTAGCG	3188	
5477	5499	CCTACCTATCTCCCCCTTCTATAC	1420	GTATAAAAGGGGAGATAGT	3189	
5481	5503	CCTATCTCCCCTTTTATACTAAT	1421	ATTAGTATAAAAGGGGAGAT	3190	
5488	5510	CCCTTTTATACTAATAATCTTA	1422	TAAGATTATTAGTATAAAAG	3191	
5489	5511	CCCTTTTATACTAATAATCTTAT	1423	ATAAGATTATTAGTATAAAA	3192	
5490	5512	CCTTTTATACTAATAATCTTATA	1424	TATAAGATTATTAGTATAAAA	3193	
5534	5556	CCAAGAGCCTTCAAAGCCCTCAG	1425	CTGAGGGCTTGAAGGCTCT	3194	
5541	5563	CCTCAAAGCCCTCAGTAAGTTG	1426	CAACTTACTGAGGGCTTGA	3195	
5550	5572	CCCTCAGTAAGTTGCAATACTTA	1427	TAAGTATTGCAACTTACTGA	3196	
5551	5573	CCTCAGTAAGTTGCAAATCTTAA	1428	TTAAGTATTGCAACTTACTG	3197	
5601	5623	CCCCACTCTGCATCAAATGAAACG	1429	CGTTCAGTTGATGCAAGTG	3198	
5602	5624	CCCACACTGCATCAACATGAAACG	1430	GCGTTCAGTTGATGCAAGAT	3199	
5603	5625	CCACTCTGCATCAACTGAACGCA	1431	TGCGTTCAGTTGATGCAGAG	3200	
5632	5654	CCACTTTAATTAAGCTAAGCCCT	1432	AGGGCTTAGCTTAATTAAAG	3201	
5651	5673	CCCTTACTAGACCAATGGGACTT	1433	AAGTCCCATTGGTCTAGTAA	3202	
5652	5674	CCTTACTAGACCAATGGGACTTA	1434	TAAGTCCCATTGGTCAGTAGT	3203	
5662	5684	CCAATGGGACTTAAACCCACAAA	1435	TTTGTGGGTTAAGTCCTAT	3204	
5677	5699	CCCACAAACACTTAGTTAACAGC	1436	GCTGTTAACTAAGTGT	3205	
5678	5700	CCACAAACACTTAGTTAACAGCT	1437	AGCTGTTAACTAAGTGT	3206	
5706	5728	CCCTAATCAACTGGCTTCAATCT	1438	AGATTGAAGCCAGTTGATTA	3207	
5707	5729	CCTAATCAACTGGCTTCAATCTA	1439	TAGATTGAAGCCAGTTGATT	3208	

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	5735	5757	CCCGCCGCCGGGAAAAA AAGGCGG	1440	CCGCCTTTTCCC CGGC	3209
10	5736	5758	CCGCCGCCGGGAAAAA AGGCGGG	1441	CCGCCTTTTCCC GCGG	3210
15	5739	5761	CCGCCGGGAAAAAAG GCGGGAGA	1442	TCTCCCGCCTTTTC CCGG	3211
20	5742	5764	CCGGGAAAAAAGGCG GGAGAAGC	1443	GCTTCTCCGCCTTT TTCC	3212
25	5764	5786	CCCCGGCAGGTTGAA GCTGCTT	1444	AAGCAGCTTCAAACC TGCCG	3213
30	5765	5787	CCCGGCAGGTTGAAG CTGCTTC	1445	GAAGCAGCTTCAAAC CTGCC	3214
35	5766	5788	CCGGCAGGTTGAAGC TGCTTCT	1446	AGAACAGCTTCAAAC CCTGC	3215
40	5817	5839	CCTCGGAGCTGGTAAA AAGAGGC	1447	GCCTCTTTTACCA GC TCCG	3216
45	5839	5861	CCTAACCCCTGTCTTTA GATTAA	1448	TAAATCTAAAGACAG GGGTT	3217
50	5844	5866	CCCCTGTCTTAGATT ACAGTC	1449	GAATGTAAATCTAAA GACAG	3218
	5845	5867	CCCTGTCTTAGATT CAGTCC	1450	GGACTGTAAATCTAA AGACA	3219
	5846	5868	CCTGTCTTAGATTAC AGTCCA	1451	TGGACTGTAAATCTA AAGAC	3220
	5866	5888	CCAATGCTTCACTCAG CCATTAA	1452	AAAATGGCTGAGTGA AGCAT	3221
	5882	5904	CCATTACCTCACCCCC CACTGA	1453	TCAGTGGGGTGAGG TAAAAA	3222
	5890	5912	CCTCACCCCCACTGAT GTTCGCC	1454	GGCGAACATCAGTGG GGGTG	3223
	5895	5917	CCCCCACTGATGTT CCGACCG	1455	CGGTCGGCGAACATC AGTGG	3224
	5896	5918	CCCCACTGATGTT CGACCGT	1456	ACGGTCGGCGAACAT CAGTG	3225
	5897	5919	CCCACTGATGTT GACCGTT	1457	AACGGTCGGCGAACAT TCAGT	3226
	5898	5920	CCACTGATGTT ACCGTTG	1458	CAACGGTCGGCGAACAT ATCAG	3227
	5911	5933	CCGACCGTT ACTATT CTCTACA	1459	TGTAGAGAATAGTCA ACGGT	3228
	5915	5937	CCGTT GACTATT CTCTCTA CAAACC	1460	GGTTTGTAGAGAATA GTCAA	3229
	5936	5958	CCACAAAGACATT GGA ACACTAT	1461	ATAGTGT CTTTG CCAATGT	3230
	5960	5982	CCTATTATT CGGCGCA	1462	CAGCTCAT GCGCCGA	3231

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TGAGCTG		ATAAT	
5987	6009	CCTAGGCACAGCTCTA AGCCTCC	1463	GGAGGCTTAGAGCTG TGCCT	3232
6005	6027	CCTCCTTATTCGAGCC GAGCTGG	1464	CCAGCTGGCTCGAA TAAGG	3233
6008	6030	CCTTATTGAGCCGAG CTGGGCC	1465	GGCCCAGCTCGGCTC GAATA	3234
6019	6041	CCGAGCTGGGCCAGCC AGGCAAC	1466	GTTGCCTGGCTGGCC CAGCT	3235
6029	6051	CCAGCCAGGCAACCTT CTAGGTA	1467	TACCTAGAAGGTTGC CTGGC	3236
6033	6055	CCAGGCAACCTTCTAG GTAACGA	1468	TCGTTACCTAGAAGG TTGCC	3237
6041	6063	CCTCTAGGTAACGAC CACATCT	1469	AGATGTGGTCGTTAC CTAGA	3238
6056	6078	CCACATCTACAACGTT ATCGTCA	1470	TGACGATAACGTTGT AGATG	3239
6082	6104	CCCATGCATTTGTAAT AATCTTC	1471	GAAGATTATTACAAA TGCAT	3240
6083	6105	CCATGCATTTGTAATA ATCTTCT	1472	AGAAGATTATTACAA ATGCA	3241
6117	6139	CCCATCATAATCGGAG GCTTGG	1473	CCAAAGCCTCCGATT ATGAT	3242
6118	6140	CCATCATAATCGGAGG CTTGGC	1474	GCCAAAGCCTCCGAT TATGA	3243
6153	6175	CCCCTAATAATCGGTG CCCCCGA	1475	TCGGGGGCACCGATT ATTAG	3244
6154	6176	CCCTAATAATCGGTGC CCCCCGAT	1476	ATCGGGGGCACCGAT TATTA	3245
6155	6177	CCTAATAATCGGTGCC CCCGATA	1477	TATCGGGGGCACCGA TTATT	3246
6169	6191	CCCCCGATATGGCGTT TCCCCGC	1478	GCAGGGAAACGCCAT ATCGG	3247
6170	6192	CCCCGATATGGCGTTT CCCCCGA	1479	TGCGGGGAAACGCCA TATCG	3248
6171	6193	CCCGATATGGCGTTTC CCCGCAT	1480	ATGCAGGGAAACGCC ATATC	3249
6172	6194	CCGATATGGCGTTCC CCGCATA	1481	TATGCAGGGAAACGC CATAT	3250
6186	6208	CCCCGCATAAACACAACA TAAGCTT	1482	AAGCTTATGTTGTTA TGCG	3251
6187	6209	CCCGCATAAACACACAT AAGCTTC	1483	GAAGCTTATGTTGTTT ATGC	3252
6188	6210	CCGCATAAACACACATA AGCTTCT	1484	AGAAGCTTATGTTGT TTATG	3253

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
6219	6241	CCTCCCTCTCTCCTACT CCTGCT	1485	AGCAGGAGTAGGAG AGAGGG	3254
6222	6244	CCCTCTCTCCTACTCCT GCTCGC	1486	GCGAGCAGGAGTAGG AGAGA	3255
6223	6245	CCTCTCTCCTACTCCTG CTCGCA	1487	TGCGAGCAGGAGTAG GAGAG	3256
6230	6252	CCTACTCCTGCTCGCA TCTGCTA	1488	TAGCAGATGCGAGCA GGAGT	3257
6236	6258	CCTGCTCGCATCTGCT ATAGTGG	1489	CCACTATAGCAGATG CGAGC	3258
6262	6284	CCGGAGCAGGAACAG GTTGAACA	1490	TGTTCAACCTGTTCCCT GCTC	3259
6290	6312	CCCTCCCTTAGCAGGG AACTACT	1491	AGTAGTTCCCTGCTA AGGGA	3260
6291	6313	CCTCCCTTAGCAGGGA ACTACTC	1492	GAGTAGTTCCCTGCT AAGGG	3261
6294	6316	CCCTTAGCAGGGAACCT ACTCCCA	1493	TGGGAGTAGTTCCCT GCTAA	3262
6295	6317	CCTTAGCAGGGAACTA CTCCCAC	1494	GTGGGAGTAGTTCCC TGCTA	3263
6313	6335	CCCACCCCTGGAGCCTC CGTAGAC	1495	GTCTACGGAGGCTCC AGGGT	3264
6314	6336	CCACCCCTGGAGCCTCC GTAGACC	1496	GGTCTACGGAGGCTC CAGGG	3265
6317	6339	CCCTGGAGCCTCCGTA GACCTAA	1497	TTAGGTCTACGGAGG CTCCA	3266
6318	6340	CCTGGAGCCTCCGTAG ACCTAAC	1498	GTTAGGTCTACGGAG GCTCC	3267
6325	6347	CCTCCGTAGACCTAAC CATCTTC	1499	GAAGATGGTTAGGTC TACGG	3268
6328	6350	CCGTAGACCTAACCAT CTTCTCC	1500	GGAGAAGATGGTTAG GTCTA	3269
6335	6357	CCTAACCATCTTCTCCT TACACC	1501	GGTGTAAAGGAGAAGA TGGTT	3270
6340	6362	CCATCTTCTCCTTACAC CTAGCA	1502	TGCTAGGTGTAAGGA GAAGA	3271
6349	6371	CCTTACACCTAGCAGG TGTCTCC	1503	GGAGACACCTGCTAG GTGTA	3272
6356	6378	CCTAGCAGGTGTCTCC TCTATCT	1504	AGATAGAGGAGACAC CTGCT	3273
6370	6392	CCTCTATCTTAGGGGC CATCAAT	1505	ATTGATGGCCCCTAA GATAG	3274
6385	6407	CCATCAATTTCATCAC AACAAATT	1506	AATTGTTGTGATGAA ATTGA	3275
6420	6442	CCCCCTGCCATAACCC	1507	TGGTATTGGGTATG	3276

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		AATACCA		GCAGG	
6421	6443	CCCTGCCATAACCCA ATACCAA	1508	TTGGTATTGGGTTAT GGCAG	3277
6422	6444	CCCTGCCATAACCCA AA TACCAAA	1509	TTTGGTATTGGGTTAT GGCA	3278
6423	6445	CCTGCCATAACCCA AT ACCAAAC	1510	TTTGGTATTGGGTT ATGGC	3279
6427	6449	CCATAACCCAATACCA AACGCC	1511	GGCGTTTGGTATTG GGTAA	3280
6433	6455	CCCAATACCAAACGCC CCTCTTC	1512	GAAGAGGGCGTTG GTATT	3281
6434	6456	CCAATACCAAACGCC CTCTTCG	1513	CGAAGAGGGCGTTT GGTAT	3282
6440	6462	CCAAACGCCCTCTTC GTCTGAT	1514	ATCAGACGAAGAGGG GCGTT	3283
6447	6469	CCCCTCTCGTCTGATC CGTCCT	1515	AGGACGGATCAGACG AAGAG	3284
6448	6470	CCCTCTCGTCTGATCC GTCCTA	1516	TAGGACGGATCAGAC GAAGA	3285
6449	6471	CCTCTCGTCTGATCCG TCCTAA	1517	TTAGGACGGATCAGA CGAAG	3286
6463	6485	CCGTCCTAACACAGC AGTCCTA	1518	TAGGACTGCTGTGAT TAGGA	3287
6467	6489	CCTAACACAGCAGTC CTACTTC	1519	GAAGTAGGACTGCTG TGATT	3288
6482	6504	CCTACTTCTCCTATCTC TCCCAG	1520	CTGGGAGAGATAGGA GAAGT	3289
6491	6513	CCTATCTCTCCCAGTCC TAGCTG	1521	CAGCTAGGACTGGGA GAGAT	3290
6500	6522	CCCAGTCCTAGCTGCT GGCATCA	1522	TGATGCCAGCAGCTA GGACT	3291
6501	6523	CCAGTCCTAGCTGCTG GCATCAC	1523	GTGATGCCAGCAGCT AGGAC	3292
6506	6528	CCTAGCTGCTGGCATC ACTATAC	1524	GTATAGTGTGATGCCAG CAGCT	3293
6539	6561	CCGCAACCTCAACACC ACCTTCT	1525	AGAAGGTGGTGTGA GTTGG	3294
6545	6567	CCTAACACCACCTTC TTCGACC	1526	GGTCGAAGAAGGTGG TGTTG	3295
6553	6575	CCACCTTCTCGACCC CGCCGGA	1527	TCCGGCGGGTCGAA GAAGG	3296
6556	6578	CCTTCTCGACCCCGC CGGAGGA	1528	TCCTCCGGCGGGTC GAAGA	3297
6566	6588	CCCCGCCGGAGGAGGA GACCCCA	1529	TGGGGTCTCCTCCTCC GGCG	3298

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	6567	6589	CCCGCCGGAGGAGGA GACCCAT	1530	ATGGGGTCTCCTCCT CCGGC	3299
10	6568	6590	CCGCCGGAGGAGGAG ACCCCATT	1531	AATGGGGTCTCCTCC TCCGG	3300
15	6571	6593	CCGGAGGAGGAGACC CCATTCTA	1532	TAGAATGGGGTCTCC TCCTC	3301
20	6584	6606	CCCCATTCTATACCAA CACCTAT	1533	ATAGGTGTTGGTATA GAATG	3302
25	6585	6607	CCCATTCTATACCAAC ACCTATT	1534	AATAGGTGTTGGTAT AGAAT	3303
30	6586	6608	CCATTCTATACCAACA CCTATT	1535	GAATAGGTGTTGGTA TAGAA	3304
35	6596	6618	CCAACACCTATTCTGA TTTTCG	1536	CGAAAAAATCAGAATA GGTGT	3305
40	6602	6624	CCTATTCTGATTTTCG GTCACC	1537	GGTGACCGAAAAATC AGAAT	3306
45	6623	6645	CCCTGAAGTTATATTCTT CTTATCC	1538	GGATAAGAATATAAA CTTCA	3307
50	6624	6646	CCTGAAGTTATATTCT TATCCT	1539	AGGATAAGAATATAAA ACTTC	3308
	6644	6666	CCTACCAGGCTTCGGA ATAATCT	1540	AGATTATTCCGAAGC CTGGT	3309
	6648	6670	CCAGGCTTCGGAATAA TCTCCCA	1541	TGGGAGATTATTCCG AAGCC	3310
	6667	6689	CCCATATTGTAACCTTA CTACTCC	1542	GGAGTAGTAAGTTAC AATAT	3311
	6668	6690	CCATATTGTAACCTAC TACTCCG	1543	CGGAGTAGTAAGTTA CAATA	3312
	6688	6710	CCGGAAAAAAAGAAC CATTGGA	1544	TCCAAATGGTTCTTT TTTC	3313
	6702	6724	CCATTGGATACATAG GTATGGT	1545	ACCATACCTATGTAT CCAAA	3314
	6749	6771	CCTAGGGTTATCGTG TGAGCAC	1546	GTGCTCACACGATAA ACCCT	3315
	6773	6795	CCATATATTACAGTA GGAATAG	1547	CTATTCTACTGTAA ATATA	3316
	6820	6842	CCTCCGCTACCATAAT CATCGCT	1548	AGCGATGATTATGGT AGCGG	3317
	6823	6845	CCGCTACCATAATCAT CGCTATC	1549	GATAGCGATGATTAT GGTAG	3318
	6829	6851	CCATAATCATCGCTAT CCCCAC	1550	GGTGGGGATAGCGAT GATTA	3319
	6845	6867	CCCCACCGGCGTCAAAG GTATTAA	1551	TAAATACTTGACGC CGGTG	3320
	6846	6868	CCCACCGGCGTCAAAG	1552	CTAAATACTTGACG	3321

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TATTTAG		CCGGT	
6847	6869	CCACCGGCGTCAAAGT ATTTAGC	1553	GCTAAATACTTGAC GCCGG	3322
6850	6872	CCGGCGTCAAAGTATT TAGCTGA	1554	TCAGCTAAATACTTT GACGC	3323
6877	6899	CCACACTCCACGGAAG CAATATG	1555	CATATTGCTTCCGTG GAGTG	3324
6884	6906	CCACGGAAGCAATATG AAATGAT	1556	ATCATTTCATATTGCT TCCG	3325
6925	6947	CCCTAGGATTCATCTTT CTTTTC	1557	GAAAAGAAAGATGA ATCCTA	3326
6926	6948	CCTAGGATTCATCTTTC TTTCA	1558	TGAAAAGAAAGATGA ATCCT	3327
6949	6971	CCGTAGGTGGCCTGAC TGGCATT	1559	AATGCCAGTCAGGCC ACCTA	3328
6959	6981	CCTGACTGGCATTGTA TTAGCAA	1560	TTGCTAATACAATGC CAGTC	3329
7027	7049	CCCACTTCCACTATGT CCTATCA	1561	TGATAGGACATAGTG GAAGT	3330
7028	7050	CCACTTCCACTATGTC CTATCAA	1562	TTGATAGGACATAGT GGAAG	3331
7034	7056	CCACTATGTCCTATCA ATAGGAG	1563	CTCCTATTGATAGGA CATAG	3332
7043	7065	CCTATCAATAGGAGCT GTATTG	1564	CAAATACAGCTCCTA TTGAT	3333
7066	7088	CCATCATAGGAGGCTT CATTCA	1565	GTGAATGAAGCCTCC TATGA	3334
7095	7117	CCCCTATTCTCAGGCT ACACCC	1566	AGGGTGTAGCCTGAG AATAG	3335
7096	7118	CCCTATTCTCAGGCTA CACCCA	1567	TAGGGTGTAGCCTGA GAATA	3336
7097	7119	CCTATTCTCAGGCTAC ACCCTAG	1568	CTAGGGTGTAGCCTG AGAAT	3337
7114	7136	CCCTAGACCAAACCTA CGCCAAA	1569	TTTGGCGTAGGTTG GTCTA	3338
7115	7137	CCTAGACCAAACCTAC GCCAAAA	1570	TTTTGGCGTAGGTTG GTCT	3339
7121	7143	CCAAACCTACGCCAAA ATCCATT	1571	AATGGATTTGGCGT AGGTT	3340
7126	7148	CCTACGCCAAAATCCA TTTCACT	1572	AGTGAAATGGATTGTT GGCGT	3341
7132	7154	CCAAAATCCATTTCAC TATCATA	1573	TATGATAGTGAAATG GATT	3342
7139	7161	CCATTCACTATCATAT TCATCG	1574	CGATGAATATGATAG TGAAA	3343

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
7181	7203	CCCACAACACTTCTC GGCCTAT	1575	ATAGGCCGAGAAAGT GTTGT	3344
7182	7204	CCACAACACTTCTCG GCCTATC	1576	GATAGGCCGAGAAAG TGTG	3345
7199	7221	CCTATCCGGAATGCC CGACGTT	1577	AACGTCGGGGCATTC CGGAT	3346
7204	7226	CCGGAATGCCCGACG TTACTCG	1578	CGAGTAACGTCGGGG CATT	3347
7212	7234	CCCCGACGTTACTCGG ACTACCC	1579	GGGTAGTCCGAGTAA CGTCG	3348
7213	7235	CCCGACGTTACTCGGA CTACCCC	1580	GGGGTAGTCCGAGTA ACGTC	3349
7214	7236	CCGACGTTACTCGGAC TACCCCG	1581	CGGGGTAGTCCGAGT AACGT	3350
7232	7254	CCCCGATGCATACACC ACATGAA	1582	TTCATGTGGTGTATG CATCG	3351
7233	7255	CCCGATGCATACACCA CATGAAA	1583	TTTCATGTGGTGTATG CATC	3352
7234	7256	CCGATGCATACACCA ATGAAAC	1584	GTTCATGTGGTGTAT GCAT	3353
7246	7268	CCACATGAAACATCCT ATCATCT	1585	AGATGATAGGATGTT TCATG	3354
7259	7281	CCTATCATCTGTAGGC TCATTCA	1586	TGAATGAGCCTACAG ATGAT	3355
7327	7349	CCTTCGCTTCGAAGCG AAAAGTC	1587	GACTTTCGCTTCGA AGCGA	3356
7349	7371	CCTAATAGTAGAAGAA CCCTCCA	1588	TGGAGGGTTCTTCTA CTATT	3357
7365	7387	CCCTCCATAAACCTGG AGTGA CT	1589	AGTCACTCCAGGTT ATGGA	3358
7366	7388	CCTCCATAAACCTGG GTGACTA	1590	TAGTCACTCCAGGTT TATGG	3359
7369	7391	CCATAAACCTGGAGTG ACTATAT	1591	ATATAGTCACTCCAG GTTTA	3360
7376	7398	CCTGGAGTGACTATAT GGATGCC	1592	GGCATCCATATAGTC ACTCC	3361
7397	7419	CCCCCCCACCCCTACCA ACATT CG	1593	CGAATGTGTGGTAGG GTGGG	3362
7398	7420	CCCCCCCACCCCTACCA CATT CGA	1594	TCGAATGTGTGGTAG GGTGG	3363
7399	7421	CCCCCACCC TACCA ACAC ATT CGAA	1595	TTCGAATGTGTGGTA GGGTG	3364
7400	7422	CCCACCC TACCA CACACA TTCGAAG	1596	CTTCGAATGTGTGGT AGGGT	3365
7401	7423	CCACCC TACCA CACACAT	1597	TCTTCGAATGTGTGG	3366

~~

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TCGAAGA		TAGGG	
7404	7426	CCCTACCACACATTG AAGAAC	1598	GGTTCTTCGAATGTG TGGTA	3367
7405	7427	CCTACCACACATTGA AGAACCC	1599	GGGTTCTTCGAATGT GTGGT	3368
7409	7431	CCACACATTGAAAGAA CCCGTAT	1600	ATACGGGTTCTTCGA ATGTG	3369
7425	7447	CCCGTATAACATAAAAT CTAGACA	1601	TGTCTAGATTATGT ATAC	3370
7426	7448	CCGTATAACATAAAATC TAGACAA	1602	TTGTCTAGATTATG TATA	3371
7466	7488	CCCCCAAAGCTGGTT TCAAGCC	1603	GGCTTGAAACCAGCT TTGGG	3372
7467	7489	CCCCCAAAGCTGGTTT CAAGCCA	1604	TGGCTTGAAACCAGC TTTGG	3373
7468	7490	CCCCAAAGCTGGTTTC AAGCCAA	1605	TTGGCTTGAAACCAG CTTTG	3374
7469	7491	CCCAAAGCTGGTTCA AGCCAAC	1606	GTTGGCTTGAAACCA GCTTT	3375
7470	7492	CCAAAGCTGGTTCAA GCCAAC	1607	GGTTGGCTTGAAACC AGCTT	3376
7487	7509	CCAACCCCATGGCCTC CATGACT	1608	AGTCATGGAGGCCAT GGGGT	3377
7491	7513	CCCCATGGCCTCCATG ACTTTT	1609	AAAAAGTCATGGAGG CCATG	3378
7492	7514	CCCATGGCCTCCATGA CTTTTC	1610	GAAAAAGTCATGGAG GCCAT	3379
7493	7515	CCATGGCCTCCATGAC TTTTCA	1611	TGAAAAAGTCATGGA GGCCA	3380
7499	7521	CCTCCATGACTTTCA AAAAGG	1612	CCTTTTGAAAAAGT CATGG	3381
7502	7524	CCATGACTTTCAAA AAGGTAT	1613	ATACCTTTTGAAAAA AGTCA	3382
7533	7555	CCATTTCATAACTTGT CAAAGT	1614	ACTTGACAAAGTTA TGAAA	3383
7573	7595	CCTATATATCTTAATG GCACATG	1615	CATGTGCCATTAAAGA TATAT	3384
7626	7648	CCCCTATCATAGAAGA GCTTATC	1616	GATAAGCTCTTCTAT GATAG	3385
7627	7649	CCCTATCATAGAAGAG CTTATCA	1617	TGATAAGCTCTTCTAT GATA	3386
7628	7650	CCTATCATAGAAGAGC TTATCAC	1618	GTGATAAGCTCTTCT ATGAT	3387
7650	7672	CCTTCATGATCACGC CCTCATA	1619	TATGAGGGCGTGATC ATGAA	3388

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
7665	7687	CCCTCATAATCATTTC CTTATC	1620	GATAAGGAAAATGAT TATGA	3389
7666	7688	CCTCATAATCATTTC TTATCT	1621	AGATAAGGAAAATGA TTATG	3390
7681	7703	CCTTATCTGCTTCCTAG TCCTGT	1622	ACAGGACTAGGAAGC AGATA	3391
7693	7715	CCTAGTCCTGTATGCC CTTTCC	1623	GGAAAAGGGCATA GGACT	3392
7699	7721	CCTGTATGCCCTTTCC TAACAC	1624	GTGTTAGGAAAAGGG CATAC	3393
7707	7729	CCCTTTCTTAACACTC ACAACA	1625	TGTTGTGAGTGTAG GAAAAA	3394
7708	7730	CCTTTCTTAACACTCA CAACAA	1626	TTGTTGTGAGTGT GGAAA	3395
7714	7736	CCTAACACTCACAA AAACTAA	1627	TTAGTTTGTGAG TGTT	3396
7773	7795	CCGTCTGA ACTATCCT GCCGCC	1628	GGCGGGCAGGATAGT TCAGA	3397
7786	7808	CCTGCCGCC CATCATC CTAGTCC	1629	GGACTAGGATGATGG CGGGC	3398
7790	7812	CCCGCC CATCATC CTCTCAT	1630	ATGAGGACTAGGATG ATGGC	3399
7791	7813	CCGCC CATCATC CTCTCAT	1631	GATGAGGACTAGGAT GATGG	3400
7794	7816	CCATCATC CTCTCAT CTCGCC	1632	GGCGATGAGGACTAG GATGA	3401
7801	7823	CCTAGTC CTCCAT CTCCAT	1633	ATGGGAGGGCGATGA GGACT	3402
7807	7829	CCTCATGCC CTCCCTAC TCCCTAC	1634	GTAGGGATGGGAGGG CGATG	3403
7815	7837	CCCTCCC ATCCCTAC GATCCTT	1635	AAGGATGCGTAGGGA TGGGA	3404
7816	7838	CCTCCC ATCCCT ATCCTT	1636	AAAGGATGCGTAGGG ATGGG	3405
7819	7841	CCC ATCCCTAC GATC CTTTACA	1637	TGTAAAGGATGCGTA GGGAT	3406
7820	7842	CCATCC CTACGC ATCCAT TTTACAT	1638	ATGTAAAGGATGCGT AGGGA	3407
7824	7846	CCCTAC GATC CTCTTA CATAACA	1639	TGTTATGTAAAGGAT GCGTA	3408
7825	7847	CCTAC GCATC CTTTAC ATAACAG	1640	CTGTTATGTAAAGGA TGC GT	3409
7834	7856	CCTT ACATA ACAGAC GAGGTCA	1641	TGACCTCGTCTGTTAT GTAA	3410
7862	7884	CCCT CCCT TACCATCA	1642	ATTGATTGATGGTA	3411

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5		AATCAAT		AGGGA	
10	7863	CCTCCCTTACCATCAAATCAATT	1643	AATTGATTGATGGTAAGGG	3412
7866	7888	CCCTTACCATCAAATCAATTGGC	1644	GCCAATTGATTGATGGTAA	3413
7867	7889	CCTTACCATCAAATCAATTGCC	1645	GGCCAATTGATTGATGGTA	3414
15	7872	CCATCAAATCAATTGGCCACCAA	1646	TTGGTGGCCAATTGATTTGA	3415
7888	7910	CCACCAATGGTACTGAACCTACG	1647	CGTAGGTTCACTTACCAATTGG	3416
20	7891	CCAATGGTACTGAACCTACGAGT	1648	ACTCGTAGGTTCACTTACCAT	3417
7905	7927	CCTACGAGTACACCGAATACGGC	1649	GCCGTAGTCGGTGATCTCGT	3418
25	7917	CCGACTACGGCGGACTAATCTTC	1650	GAAGATTAGTCCGCCGTAGT	3419
7944	7966	CCTACATACTTCCCCATTATTTC	1651	GAATAATGGGGGAAGTATGT	3420
7955	7977	CCCCCATTATTCTAGAACCCAGG	1652	CCTGGTTCTAGGAATAATGG	3421
30	7956	CCCCCATTATTCTAGAACCCAGGC	1653	GCCTGGTTCTAGGAATAATG	3422
7957	7979	CCCATTATTCTAGAACCCAGGCG	1654	CGCCTGGTTCTAGGAATAAT	3423
35	7958	CCATTATTCTAGAACCCAGGCGA	1655	TCGCCTGGTTCTAGGAATAAA	3424
7966	7988	CCTAGAACCCAGGCGACCTGCGAC	1656	GTCGCAGGTTCGCGCTGTTC	3425
7973	7995	CCAGGCGACCTGCGACCTTGA	1657	TCAAGGAGTCGCAGGTCGCC	3426
40	7981	CCTGCGACTCCTTGACGTTGACA	1658	TGTCAACGTCAAGGAGTCGC	3427
7990	8012	CCTTGACGTTGACAATCGAGTAG	1659	CTACTCGATTGTCAAATCGTCA	3428
8017	8039	CCCGATTGAAGCCCCATTCTGTA	1660	TACGAATGGGGCTTCAATC	3429
45	8018	CCGATTGAAGCCCCATTCTGTA	1661	ATACGAATGGGGCTTCAATC	3430
8028	8050	CCCCCATTCTGATAATAATTACAC	1662	TGTAATTATTATACGAAATGG	3431
8029	8051	CCCCCATTCTGATAATAATTACAT	1663	ATGTAATTATTATACGAATG	3432
50	8030	CCCCCATTCTGATAATAATTACATC	1664	GATGTAATTATTATACGAAT	3433

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
8031	8053	CCATTCTGATAATAAT TACATCA	1665	TGATGTAATTATTAT ACGAA	3434
8080	8102	CCCCACATTAGGCTTA AAAACAG	1666	CTGTTTTAACGCCTAA TGTG	3435
8081	8103	CCCACATTAGGCTTAA AACAGA	1667	TCTGTTTTAACGCCTA ATGT	3436
8082	8104	CCACATTAGGCTTAAA AACAGAT	1668	ATCTGTTTTAACGCCT AATG	3437
8111	8133	CCCGGACGTCTAAACC AAACCAC	1669	GTGGTTGGTTAGA CGTCC	3438
8112	8134	CCGGACGTCTAAACCA AACCACT	1670	AGTGGTTGGTTAG ACGTC	3439
8125	8147	CCAAACCACTTCACC GCTACAC	1671	GTGTAGCGGTGAAAG TGGTT	3440
8130	8152	CCACTTCAACGCTAC ACGACCG	1672	CGGTCGTGTAGCGGT GAAAG	3441
8139	8161	CCGCTACACGACCGGG GGTATAC	1673	GTATACCCCCGGTG TGTAG	3442
8150	8172	CCGGGGGTATACTACG GTCAATG	1674	CATTGACCGTAGTAT ACCCC	3443
8194	8216	CCACAGTTCATGCCA ATCGTCC	1675	GGACGATGGGCATGA AACTG	3444
8207	8229	CCCATCGTCCTAGAAT TAATTCC	1676	GGAATTAAATTCTAGG ACGAT	3445
8208	8230	CCATCGTCCTAGAATT AATTCCC	1677	GGGAATTAAATTCTAG GACGA	3446
8215	8237	CCTAGAATTAAATTCCC CTAAAAAA	1678	TTTTAGGGAAATTA ATTCT	3447
8228	8250	CCCCTAAAAATCTTG AAATAGG	1679	CCTATTCAAAGATT TTAG	3448
8229	8251	CCCTAAAAATCTTGAA AATAGGG	1680	CCCTATTCAAAGAT TTTA	3449
8230	8252	CCTAAAAATCTTGAA ATAGGGC	1681	GCCCTATTCAAAGA TTTT	3450
8252	8274	CCCGTATTACCCAT AGCACCC	1682	GGGTGCTATAGGGTA AATAC	3451
8253	8275	CCGTATTACCCATA GCACCCC	1683	GGGGTGCTATAGGGT AAATA	3452
8262	8284	CCCTATAGCACCCCT CTACCCCC	1684	GGGGTAGAGGGGGTG CTATA	3453
8263	8285	CCTATAGCACCCCTC TACCCCC	1685	GGGGTAGAGGGGGT GCTAT	3454
8272	8294	CCCCCTCTACCCCTCT AGAGCC	1686	GGCTCTAGAGGGGT AGAGG	3455
8273	8295	CCCCTCTACCCCTCTA	1687	GGGCTCTAGAGGGGG	3456

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5		GAGCCC		TAGAG	
10	8274	CCCTCTACCCCTCTA GAGCCA	1688	TGGGCTCTAGAGGGG GTAGA	3457
15	8275	CCTCTACCCCTCTAG AGCCAC	1689	GTGGGCTCTAGAGGG GGTAG	3458
20	8281	CCCCCTCTAGAGCCA CTGTAAA	1690	TTTACAGTGGGCTCT AGAGG	3459
25	8282	CCCCTCTAGAGCCCAC TGTAAAG	1691	CTTACAGTGGGCTC TAGAG	3460
30	8283	CCCTCTAGAGGCCACT GTAAAGC	1692	GCTTTACAGTGGGCT CTAGA	3461
35	8284	CCTCTAGAGCCCACTG TAAAGCT	1693	AGCTTTACAGTGGGC TCTAG	3462
40	8293	CCCACTGTAAAGCTAA CTTAGCA	1694	TGCTAAGTTAGCTTT ACAGT	3463
45	8294	CCACTGTAAAGCTAAC TTAGCAT	1695	ATGCTAAGTTAGCTT TACAG	3464
50	8320	CCTTTAAGTTAAAGA TTAAGAG	1696	CTCTTAATCTTTAATC TAAA	3465
	8345	CCAACACCTCTTACA GTGAAAT	1697	ATTCACTGTAAAGA GGTGT	3466
	8351	CCTTTACAGTGAAA TGCCCCA	1698	TGGGGCATTCACTG TAAAG	3467
	8369	CCCCAACTAAATACTA CCGTATG	1699	CATACGGTAGTATT AGTTG	3468
	8370	CCCCAACTAAATACTAC CGTATGG	1700	CCATACGGTAGTATT TAGTT	3469
	8371	CCAACAAATACTACC GTATGGC	1701	GCCATACGGTAGTAT TTAGT	3470
	8385	CCGTATGGCCCACCAT AATTACC	1702	GGTAATTATGGTGGG CCATA	3471
	8393	CCCACCATATTACCC CCATACT	1703	AGTATGGGGTAATT ATGGT	3472
	8394	CCACCATATTACCCC CATACTC	1704	GAGTATGGGGTAAT TATGG	3473
	8397	CCATAATTACCCCAT ACTCCTT	1705	AAGGAGTATGGGGGT AATTA	3474
	8406	CCCCCATACTCCTTAC ACTATTG	1706	GAATAGTGTAAAGGAG TATGG	3475
	8407	CCCCCATACTCCTTACA CTATTCC	1707	GGAATAGTGTAAAGGA GTATG	3476
	8408	CCCATACTCCTTACAC TATTCC	1708	AGGAATAGTGTAAAGG AGTAT	3477
	8409	CCCATACTCCTTACACT ATTCC	1709	GAGGAATAGTGTAAAG GAGTA	3478

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	8416	8438	CCTTACACTATTCCCTCA TCACCC	1710	GGGTGATGAGGAATA GTGTA	3479
10	8428	8450	CCTCATCACCCAACTA AAAATAT	1711	ATATTTTAGTTGGGT GATG	3480
15	8436	8458	CCCAACTAAAAATATT AACACAA	1712	TGTGTTAACATATTAGTT	3481
20	8437	8459	CCAACTAAAAATATTA AACACAA	1713	TTGTGTTAACATATTAGT	3482
25	8464	8486	CCACCTACCTCCCTCA CCAAAGC	1714	GCTTGGTGAGGGAG GTAGG	3483
30	8467	8489	CCTACCTCCCTCACCA AAGCCA	1715	TGGGCTTGGTGAGG GAGGT	3484
35	8471	8493	CCTCCCTCACCAAAGC CCATAAA	1716	TTTATGGGCTTGGTG AGGG	3485
40	8474	8496	CCCTCACCAAAGGCCA TAAAAAT	1717	ATTTTATGGGCTTG GTGA	3486
45	8475	8497	CCTCACCAAAGCCCAT AAAAATA	1718	TATTTTATGGGCTTT GGTG	3487
50	8480	8502	CCAAAGCCCATAAAAAA TAAAAAAA	1719	TTTTTATTTTATGG GCTT	3488
	8486	8508	CCCATAAAAATAAAAAA ATTATAA	1720	TTATAATTTTTATT TTAT	3489
	8487	8509	CCATAAAAATAAAAAA TTATAAC	1721	GTTATAATTTTTATT TTTA	3490
	8513	8535	CCCTGAGAACCAAAAT GAACGAA	1722	TTCGTTCATTTGGTT CTCA	3491
	8514	8536	CCTGAGAACCAAAATG AACGAAA	1723	TTTCGTTCATTTGGT TCTC	3492
	8522	8544	CCAAAATGAACGAAA ATCTGTT	1724	GAACAGATTTCGTT CATT	3493
	8558	8580	CCCCCACAAATCCTAGG CCTACCC	1725	GGGTAGGCCTAGGAT TGTGG	3494
	8559	8581	CCCCCACAAATCCTAGGC CTACCCG	1726	CGGGTAGGCCTAGGA TTGTG	3495
	8560	8582	CCCACAAATCCTAGGCC TACCCGC	1727	GCGGGTAGGCCTAGG ATTGT	3496
	8561	8583	CCACAAATCCTAGGCCT ACCCGCC	1728	GGCGGGTAGGCCTAG GATTG	3497
	8568	8590	CCTAGGCCTACCCGCC GCAGTAC	1729	GTACTGCGGCGGGTA GGCCT	3498
	8574	8596	CCTACCCGCCGCAGTA CTGATCA	1730	TGATCAGTACTGCGG CGGGT	3499
	8578	8600	CCCGCCGCAGTACTGA TCATTCT	1731	AGAATGATCAGTACT GCGGC	3500
	8579	8601	CCGCCGCAGTACTGAT	1732	TAGAATGATCAGTAC	3501

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10	8582	8604	CATTCTA		TGCGG	
	8605	8627	CCCGAGTACTGATCAT TCTATT	1733	AAATAGAATGATCAG TACTG	3502
	8606	8628	CCCCCTCTATTGATCCCC ACCTCC	1734	GAGGTGGGGATCAAT AGAGG	3503
15	8607	8629	CCCTCTATTGATCCCC ACCTCCA	1735	GGAGGTGGGGATCAA TAGAG	3504
	8608	8630	CCTCTATTGATCCCCA CCTCCAA	1736	TGGAGGTGGGGATCA ATAGA	3505
20	8619	8641	CCCCACCTCCAAATAT CTCATCA	1737	TTGGAGGTGGGGATC AATAG	3506
	8620	8642	CCCACCTCCAAATATC TCATCAA	1738	TGATGAGATATTGG AGGTG	3507
	8621	8643	CCACCTCCAAATATCT CATCAAC	1739	TTGATGAGATATTG GAGGT	3508
25	8624	8646	CCTCCAAATATCTCAT CAACAAAC	1740	GTTGTTGATGAGATA TTTGG	3509
	8627	8649	CCAAATATCTCATCAA CAACCGA	1741	TCGGTTGTTGATGAG ATATT	3510
30	8646	8668	CCGACTAACACCACC CAACAAAT	1742	ATTGTTGGGTGGTGA TTAGT	3511
	8657	8679	CCACCCAACAATGACT AATCAAA	1743	TTTGATTAGTCATTGT TGGG	3512
	8660	8682	CCCAACAATGACTAAT CAAACCA	1744	TAGTTGATTAGTCAT TGTT	3513
35	8661	8683	CCAACAATGACTAAC AAACCAA	1745	TTAGTTGATTAGTCA TTGT	3514
	8684	8706	CCTCAAAACAAATGAT AACCATCA	1746	TATGGTTATCATTGT TTTG	3515
40	8702	8724	CCATACACAACACTAA AGGACGA	1747	TCGTCCCTTAGTGTG TGTG	3516
	8726	8748	CCTGATCTCTTATACCA GTATCC	1748	GGATACTAGTATAAG AGATC	3517
	8747	8769	CCTTAATCATTTTATT GCCACA	1749	TGTGGCAATAAAAT GATTA	3518
45	8765	8787	CCACAACTAACCTCCT CGGACTC	1750	GAGTCCGAGGAGGTT AGTTG	3519
	8775	8797	CCTCCTCGGACTCCTG CCTCACT	1751	AGTGAGGCAGGAGTC CGAGG	3520
50	8778	8800	CCTCGGACTCCTGCCT CACTCAT	1752	ATGAGTGAGGCAGGA GTCCG	3521
	8787	8809	CCTGCCTCACTCATTAA CACCAA	1753	TTGGGTGAAATGAGT GAGGC	3522
				1754		3523

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
8791	8813	CCTCACTCATTACAC CAACCAC	1755	GTGGTTGGTGTAAAT GAGTG	3524
8806	8828	CCAACCACCCAACATAT CTATAAA	1756	TTTATAGATAGTTGG GTGGT	3525
8810	8832	CCACCCAACATCTAT AAACCTA	1757	TAGGTTATAGATAG TTGGG	3526
8813	8835	CCCAACTATCTATAAA CCTAGCC	1758	GGCTAGGTTATAGA TAGTT	3527
8814	8836	CCAACTATCTATAAAC CTAGCCA	1759	TGGCTAGGTTATAG ATAGT	3528
8829	8851	CCTAGCCATGGCCATC CCCTTAT	1760	ATAAGGGGATGGCCA TGGCT	3529
8834	8856	CCATGGCCATCCCCTT ATGAGCG	1761	CGCTCATAAGGGGAT GGCCA	3530
8840	8862	CCATCCCCTTATGAGC GGGCACA	1762	TGTGCCGCTCATAA GGGGA	3531
8844	8866	CCCCTTATGAGCGGGC ACAGTGA	1763	TCACTGTGCCGCTC ATAAG	3532
8845	8867	CCCTTATGAGCGGGCA CAGTGAT	1764	ATCACTGTGCCGCT CATAA	3533
8846	8868	CCTTATGAGCGGGCAC AGTGATT	1765	AATCACTGTGCCGCT TCATA	3534
8897	8919	CCCTAGCCCACCTCTT ACCACAA	1766	TTGTGGTAAGAAGTG GGCTA	3535
8898	8920	CCTAGCCCACCTCTTA CCACAAG	1767	CTTGTGGTAAGAAGT GGGCT	3536
8903	8925	CCCACCTCTTACCA AGGCACA	1768	TGTGCCTTGTGGTAA GAAGT	3537
8904	8926	CCACCTCTTACCA GGCACAC	1769	GTGTGCCTTGTGGTA AGAAG	3538
8914	8936	CCACAAGGCACACCTA CACCCCT	1770	AGGGGTGTAGGTGTG CCTTG	3539
8926	8948	CCTACACCCCTTATCC CCATACT	1771	AGTATGGGGATAAGG GGTGT	3540
8932	8954	CCCCTTATCCCCATACT AGTTAT	1772	ATAACTAGTATGGGG ATAAG	3541
8933	8955	CCCTTATCCCCATACT AGTTATT	1773	AATAACTAGTATGGG GATAA	3542
8934	8956	CCTTATCCCCATACTA GTTATTA	1774	TAATAACTAGTATGG GGATA	3543
8940	8962	CCCCATACTAGTTATT ATCGAAA	1775	TTTCGATAATAACTA GTATG	3544
8941	8963	CCCATACTAGTTATT TCGAAAC	1776	GTTCGATAATAACT AGTAT	3545
8942	8964	CCATACTAGTTATTAT	1777	GGTTTCGATAATAAC	3546

55

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CGAAACC		TAGTA	
8963	8985	CCATCAGCCTACTCAT TCAACCA	1778	TGGTTGAATGAGTAG GCTGA	3547
8970	8992	CCTACTCATTCAACCA ATAGCCC	1779	GGGCTATTGGTTGAA TGAGT	3548
8983	9005	CCAATAGCCCTGGCCG TACGCCT	1780	AGGCGTACGGCCAGG GCTAT	3549
8990	9012	CCCTGGCCGTACGCCT AACCGCT	1781	AGCGGTTAGGCGTAC GGCCA	3550
8991	9013	CCTGGCCGTACGCCTA ACCGCTA	1782	TAGCGGTTAGGCGTA CGGCC	3551
8996	9018	CCGTACGCCTAACCGC TAACATT	1783	AATGTTAGCGGTTAG GCGTA	3552
9003	9025	CCTAACCGCTAACATT ACTGCAG	1784	CTGCAGTAATGTTAG CGGTT	3553
9008	9030	CCGCTAACATTACTGC AGGCCAC	1785	GTGGCCTGCAGTAAT GTTAG	3554
9027	9049	CCACCTACTCATGCAC CTAATTG	1786	CAATTAGGTGCATGA GTAGG	3555
9030	9052	CCTACTCATGCACCTA ATTGGAA	1787	TTCCAATTAGGTGCA TGAGT	3556
9042	9064	CCTAACATTGGAAGCGCC ACCCTAG	1788	CTAGGGTGGCGCTTC CAATT	3557
9056	9078	CCACCCCTAGCAATATC AACCAATT	1789	AATGGTTGATATTGC TAGGG	3558
9059	9081	CCCTAGCAATATCAAC CATTAAC	1790	GTAAATGGTTGATAT TGCTA	3559
9060	9082	CCTAGCAATATCAACC ATTAACC	1791	GGTTAACGGTTGATA TTGCT	3560
9074	9096	CCATTAACCTTCCCTCT ACACTT	1792	AAGTGTAGAGGGAAG GTTAA	3561
9081	9103	CCTTCCCTCTACACTTA TCATCT	1793	AGATGATAAGTGTAG AGGGA	3562
9085	9107	CCCTCTACACTTATCAT CTTCAC	1794	GTGAAGATGATAAGT GTAGA	3563
9086	9108	CCTCTACACTTATCATC TTCACA	1795	TGTGAAGATGATAAG TGTAG	3564
9129	9151	CCTAGAAATCGCTGTC GCCTTAA	1796	TTAAGGCGACAGCGA TTTCT	3565
9146	9168	CCTTAATCCAAGCCTA CGTTTTC	1797	GAAAACGTAGGCTTG GATTA	3566
9153	9175	CCAAGCCTACGTTTC ACACTTC	1798	GAAGTGTGAAAACGT AGGCT	3567
9158	9180	CCTACGTTTCACACTT CTAGTA	1799	TACTAGAAGTGTGAA AACGT	3568

55

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10	9183	9205	CCTCTACCTGCACGAC AACACAT	1800	ATGTGTTGTCGTGCA GGTAG	3569
15	9189	9211	CCTGCACGACAACACA TAATGAC	1801	GTCATTATGTGTTGTC GTGC	3570
20	9211	9233	CCCACCAATCACATGC CTATCAT	1802	ATGATAGGCATGTGA TTGGT	3571
25	9212	9234	CCACCAATCACATGCC TATCATA	1803	TATGATAGGCATGTG ATTGG	3572
30	9215	9237	CCAATCACATGCCTAT CATATAG	1804	CTATATGATAGGCAT GTGAT	3573
35	9226	9248	CCTATCATATAGTAAA ACCCAGC	1805	GCTGGGTTTACTAT ATGAT	3574
40	9243	9265	CCCAGCCCATGACCCC TAACAGG	1806	CCTGTTAGGGTCAT GGGCT	3575
45	9244	9266	CCAGCCCATGACCCCT AACAGGG	1807	CCCTGTTAGGGTCA TGGGC	3576
50	9248	9270	CCCATGACCCCTAACAA GGGGCC	1808	GGGCCCTGTTAGGG GTCAT	3577
	9249	9271	CCATGACCCCTAACAG GGGCCCT	1809	AGGGCCCTGTTAGG GGTCA	3578
	9255	9277	CCCCTAACAGGGGCC TCTCAGC	1810	GCTGAGAGGGCCCCT GTTAG	3579
	9256	9278	CCCTAACAGGGGCCCT CTCAGCC	1811	GGCTGAGAGGGCCCC TGTAA	3580
	9257	9279	CCTAACAGGGGCCCTC TCAGCCC	1812	GGGCTGAGAGGGCCC CTGTT	3581
	9268	9290	CCCTCTCAGCCCTCCT AATGACC	1813	GGTCATTAGGAGGGC TGAGA	3582
	9269	9291	CCTCTCAGCCCTCCTA ATGACCT	1814	AGGTCAATTAGGAGGG CTGAG	3583
	9277	9299	CCCTCCTAACATGACCTC CGGCCTA	1815	TAGGCCGGAGGTCA TAGGA	3584
	9278	9300	CCTCCTAACATGACCTCC GGCCTAG	1816	CTAGGCCGGAGGTCA TTAGG	3585
	9281	9303	CCTAACATGACCTCCGGC CTAGCCA	1817	TGGCTAGGCCGGAGG TCATT	3586
	9289	9311	CCTCCGGCCTAGCCAT GTGATT	1818	AAATCACATGGCTAG GCCGG	3587
	9292	9314	CCGGCCTAGCCATGTG ATTACAC	1819	GTGAAATCACATGGC TAGGC	3588
	9296	9318	CCTAGCCATGTGATT CACTTCC	1820	GGAAGTGAAATCACA TGGCT	3589
	9301	9323	CCATGTGATTCACTTC CACTCC	1821	GGAGTGGAAAGTGAAA TCACA	3590
	9317	9339	CCACTCCATAACGCTC	1822	GTATGAGGAGCGTTA	3591

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTCATAC		TGGAG	
9322	9344	CCATAACGCTCCTCAT ACTAGGC	1823	GCCTAGTATGAGGAG CGTTA	3592
9332	9354	CCTCATACTAGGCCTA CTAACCA	1824	TGGTTAGTAGGCCTA GTATG	3593
9344	9366	CCTACTAACCAACACA CTAACCA	1825	TGGTTAGTGTGTTGG TTAGT	3594
9352	9374	CCAACACACTAACCAT ATACCAA	1826	TTGGTATATGGTTAG TGTGT	3595
9364	9386	CCATATACCAATGATG GCGCGAT	1827	ATCGCGCCATCATTG GTATA	3596
9371	9393	CCAATGATGGCGCGAT GTAACAC	1828	GTGTTACATCGCGCC ATCAT	3597
9407	9429	CCAAGGCCACCAACACA CCACCTG	1829	CAGGTGGTGTGTTGGT GGCCT	3598
9413	9435	CCACACACACACCACCT GTCCAAA	1830	TTTGGACAGGTGGTG TGTGG	3599
9416	9438	CCACACACCACCTGTC CAAAAAG	1831	CTTTTGGACAGGTG GTGTG	3600
9423	9445	CCACCTGTCCAAAAAG GCCTTCG	1832	CGAAGGCCTTTTGG ACAGG	3601
9426	9448	CCTGTCCAAAAAGGCC TTCGATA	1833	TATCGAAGGCCTTTT GGAC	3602
9431	9453	CCAAAAAGGCCTTCGA TACGGGA	1834	TCCCGTATCGAAGGC CTTTT	3603
9440	9462	CCTTCGATACGGGATA ATCCTAT	1835	ATAGGATTATCCCGT ATCGA	3604
9458	9480	CCTATTATTACCTCAG AAGTTT	1836	AAACTTCTGAGGTAA TAAAT	3605
9469	9491	CCTCAGAAGTTTTTC TTCGCA	1837	TGCGAAGAAAAAAAC TTCTG	3606
9505	9527	CCTTTACCACTCCAG CCTAGCC	1838	GGCTAGGCTGGAGTG GTAAA	3607
9512	9534	CCACTCCAGCCTAGCC CCTACCC	1839	GGGTAGGGCTAGGC TGGAG	3608
9517	9539	CCAGCCTAGCCCCCTAC CCCCCAA	1840	TTGGGGGGTAGGGGC TAGGC	3609
9521	9543	CCTAGCCCCCTACCCCC CAATTAG	1841	CTAATTGGGGGTAG GGGCT	3610
9526	9548	CCCCTACCCCCCAATT AGGAGGG	1842	CCCTCCTAATTGGGG GGTAG	3611
9527	9549	CCCTACCCCCCAATTAA GGAGGGC	1843	GCCCTCCTAATTGGGG GGGTA	3612
9528	9550	CCTACCCCCCAATTAG GAGGGCA	1844	TGCCCTCCTAATTGG GGGGT	3613

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	9532	9554	CCCCCAATTAGGAGG GCACTGG	1845	CCAGTGCCTCCTAA TTGGG	3614
10	9533	9555	CCCCAATTAGGAGGG CACTGGC	1846	GCCAGTGCCTCCTA ATTGG	3615
15	9534	9556	CCCCAATTAGGAGGGC ACTGGCC	1847	GGCCAGTGCCTCCT AATTG	3616
20	9535	9557	CCCAATTAGGAGGGCA CTGGCCC	1848	GGGCCAGTGCCTCC TAATT	3617
25	9536	9558	CCAATTAGGAGGGCAC TGGCCCC	1849	GGGGCCAGTGCCTC CTAAT	3618
30	9555	9577	CCCCCAACAGGCATCA CCCCGCT	1850	AGCGGGGTGATGCCT GTTGG	3619
35	9556	9578	CCCCAACAGGCATCAC CCCGCTA	1851	TAGCGGGGTGATGCC TGTG	3620
40	9557	9579	CCCAACAGGCATCACC CCGCTAA	1852	TTAGCGGGGTGATGC CTGTT	3621
45	9558	9580	CCAACAGGCATCACCC CGCTAAA	1853	TTTAGCGGGGTGATG CCTGT	3622
50	9571	9593	CCCCGCTAAATCCCCT AGAAGTC	1854	GACTTCTAGGGGATT TAGCG	3623
	9572	9594	CCCGCTAAATCCCCTA GAAGTCC	1855	GGACTTCTAGGGGAT TTAGC	3624
	9573	9595	CCGCTAAATCCCCTAG AAGTCCC	1856	GGGACTTCTAGGGGA TTTAG	3625
	9582	9604	CCCCTAGAAGTCCCAC TCCTAAA	1857	TTTAGGAGTGGGACT TCTAG	3626
	9583	9605	CCCTAGAAGTCCCACT CCTAAAC	1858	GTTAGGAGTGGGAC TTCTA	3627
	9584	9606	CCTAGAAGTCCCACTC CTAAACA	1859	TGTTAGGAGTGGGA CTTCT	3628
	9593	9615	CCCACTCCTAAACACCA TCCGTAT	1860	ATACGGATGTGTTA GGAGT	3629
	9594	9616	CCACTCCTAAACACAT CCGTATT	1861	AATACGGATGTGTT AGGAG	3630
	9599	9621	CCTAAACACATCCGTA TTACTCG	1862	CGAGTAATACGGATG TGT	3631
	9610	9632	CCGTATTACTCGCATC AGGAGTA	1863	TACTCCTGATGCGAG TAATA	3632
	9640	9662	CCTGAGCTCACCATAG TCTAATA	1864	TATTAGACTATGGTG AGCTC	3633
	9650	9672	CCATAGTCTAATAGAA AACAAACC	1865	GGTTGTTTCTATTAG ACTA	3634
	9671	9693	CCGAAACCAAATAATT CAAGCAC	1866	GTGCTTGAATTATTG GTTT	3635
	9677	9699	CCAAATAATTCAAGCA	1867	TAAGCAGTGCTTGAA	3636

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTGCTTA		TTATT	
9727	9749	CCCTCCTACAAGCCTC AGAGTAC	1868	GTACTCTGAGGCTTG TAGGA	3637
9728	9750	CCTCCTACAAGCCTCA GAGTACT	1869	AGTACTCTGAGGCTT GTAGG	3638
9731	9753	CCTACAAGCCTCAGAG TACTTCG	1870	CGAAGTACTCTGAGG CTTGT	3639
9739	9761	CCTCAGAGTACTTCGA GTCTCCC	1871	GGGAGACTCGAAGTA CTCTG	3640
9759	9781	CCCTTCACCATTCCG ACGGCAT	1872	ATGCCGTCGGAAATG GTGAA	3641
9760	9782	CCTTCACCATTCCGA CGGCATC	1873	GATGCCGTCGGAAAT GGTGA	3642
9766	9788	CCATTTCGGACGGCAT CTACGGC	1874	GCCGTAGATGCCGTC GGAAA	3643
9772	9794	CCGACGGCATCTACGG CTCAACA	1875	TGTTGAGCCGTAGAT GCCGT	3644
9805	9827	CCACAGGCTTCCACGG ACTTCAC	1876	GTGAAGTCCGTGGAA GCCTG	3645
9815	9837	CCACGGACTTCACGTC ATTATTG	1877	CAATAATGACGTGAA GTCCG	3646
9848	9870	CCTCACTATCTGCTTCA TCCGCC	1878	GGCGGATGAAGCAGA TAGTG	3647
9866	9888	CCGCCAACTAATATTTCAC CACTTTA	1879	TAAAGTGAAATATTA GTTGG	3648
9869	9891	CCAACTAATATTCAC TTTACAT	1880	ATGTAAAGTGAAATA TTAGT	3649
9892	9914	CCAAACATCACTTTGG CTTCGAA	1881	TTCGAAGCCAAAGTG ATGTT	3650
9916	9938	CCGCCGCCTGATACTG GCATTTT	1882	AAAATGCCAGTATCA GGC GG	3651
9919	9941	CCGCCTGATACTGGCA TTTTGTA	1883	TACAAAATGCCAGTA TCAGG	3652
9922	9944	CCTGATACTGGCATTG TGTAGAT	1884	ATCTACAAAATGCCA GTATC	3653
9970	9992	CCATCTATTGATGAGG GTCTTAC	1885	GTAAGACCCCTCATCA ATAGA	3654
10012	10034	CCGTTAACCTCCAATT AACTAGT	1886	ACTAGTTAATTGGAA GTTAA	3655
10022	10044	CCAATTAACTAGTTT GACAACA	1887	TGTTGTCAAAACTAG TTAAT	3656
10069	10091	CCTTAATTAAATAATC AACACC	1888	GGTGTGATTATTAA AATTA	3657
10090	10112	CCCTCCTAGCCTTACT ACTAATA	1889	TATTAGTAGTAAGGC TAGGA	3658

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	10091	10113	CCTCCTAGCCTTACTA CTAATAA	1890	TTATTAGTAGTAAGG CTTAGG	3659
10	10094	10116	CCTAGCCTTACTA CTAATAA	1891	TAATTATTAGTAGTA AGGCT	3660
15	10099	10121	CCTTACTACTAATAAT TATTACA	1892	TGTAATAATTATTAG TAGTA	3661
20	10131	10153	CCACAACTCAACGGCT ACATAGA	1893	TCTATGTAGCCGTTG AGTTG	3662
25	10159	10181	CCACCCCTTACGAGTG CGGCTTC	1894	GAAGCCGCACTCGTA AGGGG	3663
30	10162	10184	CCCCTTACGAGTGC GGCTTCGAC	1895	GTCGAAGCCGCACTC GTAAG	3664
35	10163	10185	CCCTTACGAGTGC GGCTTCGAC	1896	GGTCGAAGCCGCACT CGTAA	3665
40	10164	10186	CCTTACGAGTGC GGCTTCGAC	1897	GGGTCGAAGCCGCACT CTCGA	3666
45	10184	10206	CCCTATATCCCCGCC CGCGTCC	1898	GGACGCGGGCGGGG GATATA	3667
50	10185	10207	CCTATATCCCCGCC CGCGTCC	1899	GGGACGCGGGCGGGG GGATAT	3668
	10192	10214	CCCCGCCCGCGTCCC TTTCTCC	1900	GGAGAAAGGGACGC GGGCG	3669
	10193	10215	CCCCGCCCGCGTCCCT TTCTCCA	1901	TGGAGAAAGGGACGC GGGCG	3670
	10194	10216	CCCCGCCCGCGTCCCT TCTCCAT	1902	ATGGAGAAAGGGAC GCGGGC	3671
	10195	10217	CCGCCCGCGTCCCTT CTCCATA	1903	TATGGAGAAAGGGAC GCGGGG	3672
	10198	10220	CCCGCGTCCCTTCTCC ATAAAAA	1904	TTTTATGGAGAAAGG GACGC	3673
	10199	10221	CCCGCGTCCCTTCTCCA TAAAAAT	1905	ATTTATGGAGAAAGG GACG	3674
	10205	10227	CCCTTCTCCATAAAAAA TTCTTCT	1906	AGAAGAATTTATGG AGAAA	3675
	10206	10228	CCTTCTCCATAAAAATT CTTCTT	1907	AAGAAGAATTTATG GAGAA	3676
	10213	10235	CCATAAAATTCTCTT AGTAGCT	1908	AGCTACTAAGAAGAA TTTTA	3677
	10240	10262	CCTTCTTATTATTTGAT CTAGAA	1909	TTCTAGATCAAATAA TAAGA	3678
	10267	10289	CCCTCCTTTACCCCTA CCATGA	1910	TCATGGTAGGGTAA AAGGA	3679
	10268	10290	CCTCCTTTACCCCTAC CATGAG	1911	CTCATGGTAGGGTAA AAAGG	3680
	10271	10293	CCTTTACCCCTACCAT	1912	GGGCTCATGGTAGGG	3681

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		GAGCCC		GTAAA	
10278	10300	CCCCTACCATGAGCCC TACAAAC	1913	GTGGTAGGGCTCAT GGTAG	3682
10279	10301	CCCTACCATGAGCCCT ACAAACAA	1914	TGTTGTAGGGCTCA TGGTA	3683
10280	10302	CCTACCATGAGCCCTA CAAACAA	1915	TTGTTGTAGGGCTC ATGGT	3684
10284	10306	CCATGAGCCCTACAAA CAACTAA	1916	TTAGTTGTTGTTAGG GCTCA	3685
10291	10313	CCCTACAAACAACTAA CCTGCCA	1917	TGGCAGGTTAGTTGT TTGTA	3686
10292	10314	CCTACAAACAACTAAC CTGCCAC	1918	GTGGCAGGTTAGTTG TTTGT	3687
10307	10329	CCTGCCACTAATAGTT ATGTCAT	1919	ATGACATAACTATTA GTGGC	3688
10311	10333	CCACTAATAGTTATGT CATCCCT	1920	AGGGATGACATAACT ATTAG	3689
10330	10352	CCCTCTTATTAATCATC ATCCTA	1921	TAGGATGATGATTAA TAAGA	3690
10331	10353	CCTCTTATTAATCATCA TCCTAG	1922	CTAGGATGATGATTAA ATAAG	3691
10349	10371	CCTAGCCCTAACGCTG GCCTATG	1923	CATAGGCCAGACTTA GGGCT	3692
10354	10376	CCCTAAGTCTGGCCTA TGAGTGA	1924	TCACTCATAGGCCAG ACTTA	3693
10355	10377	CCTAAGTCTGGCCTAT GAGTGAC	1925	GTCACTCATAGGCCA GACTT	3694
10366	10388	CCTATGAGTGACTACA AAAAGGA	1926	TCCTTTTGAGTCAC TCAT	3695
10399	10421	CCGAATTGGTATATAG TTTAAAC	1927	GTTTAAACTATATAC CAATT	3696
10466	10488	CCAAATGCCCTCATT TACATAA	1928	TTATGTAAATGAGGG GCATT	3697
10473	10495	CCCCTCATTACATAA ATATTAT	1929	ATAATATTATGTAA ATGAG	3698
10474	10496	CCCTCATTACATAAA TATTATA	1930	TATAATATTATGTAA AATGA	3699
10475	10497	CCTCATTACATAAT ATTATAC	1931	GTATAATATTATGT AAATG	3700
10507	10529	CCATCTCACTCTAGG AATACTA	1932	TAGTATTCTAGAAG TGAGA	3701
10544	10566	CCTCATATCCTCCCTAC TATGCC	1933	GGCATAGTAGGGAGG ATATG	3702
10552	10574	CCTCCCTACTATGCCT AGAAGGA	1934	TCCTTCTAGGCATAG TAGGG	3703

55

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10	10555	10577	CCCTACTATGCCTAGA AGGAATA	1935	TATTCCCTCTAGGCAT AGTA	3704
10556	10578	CCTACTATGCCTAGAA GGAATAA	1936	TTATTCCTCTAGGCA TAGT	3705	
10565	10587	CCTAGAAGGAATAATA CTATCGC	1937	GCGATAGTATTATTC CTTCT	3706	
15	10612	10634	CCCTCAACACCCACTC CCTCTTA	1938	TAAGAGGGAGTGGGT GTTGA	3707
10613	10635	CCTCAACACCCACTCC CTCTTAG	1939	CTAAGAGGGAGTGGG TGTTG	3708	
20	10621	10643	CCCACTCCCTCTTAGC CAATATT	1940	AATATTGGCTAAGAG GGAGT	3709
10622	10644	CCACTCCCTCTTAGCC AATATTG	1941	CAATATTGGCTAAGA GGGAG	3710	
10627	10649	CCCTCTTAGCCAATAT TGTGCCT	1942	AGGCACAATATTGGC TAAGA	3711	
25	10628	10650	CCTCTTAGCCAATATT GTGCCTA	1943	TAGGCACAATATTGG CTAAG	3712
10636	10658	CCAATATTGTGCCTAT TGCCATA	1944	TATGGCAATAGGCAC AATAT	3713	
10647	10669	CCTATTGCCATACTAG TCTTGCG	1945	GCAAAGACTAGTATG GCAAT	3714	
30	10654	10676	CCATACTAGTCTTGCG CGCCTGC	1946	GCAGGCGGCAAAGAC TAGTA	3715
10669	10691	CCGCCTGCGAAGCAGC GGTGGGC	1947	GCCCACCGCTGCTTC GCAGG	3716	
35	10672	10694	CCTGCGAAGCAGCGGT GGGCCTA	1948	TAGGCCACCGCTGC TTCGC	3717
10691	10713	CCTAGCCCTACTAGTC TCAATCT	1949	AGATTGAGACTAGTA GGGCT	3718	
10696	10718	CCCTACTAGTCTCAAT CTCCAAC	1950	GTTGGAGATTGAGAC TAGTA	3719	
40	10697	10719	CCTACTAGTCTCAATC TCCAACA	1951	TGTTGGAGATTGAGA CTAGT	3720
10714	10736	CCAACACATATGGCCT AGACTAC	1952	GTA GTCTAGGCCATA TGTGT	3721	
45	10727	10749	CCTAGACTACGTACAT AACCTAA	1953	TTAGGTTATGTACGT AGTCT	3722
10745	10767	CCTAAACCTACTCCAA TGCTAAA	1954	TTTAGCATTGGAGTA GGTTC	3723	
50	10751	10773	CCTACTCCAATGCTAA AACTAAT	1955	ATTAGTTTAGCATTG GAGT	3724
10757	10779	CCAATGCTAAAACCAA TCGTCCC	1956	GGGACGATTAGTTT AGCAT	3725	
	10777	10799	CCCAACAAATTATATTA	1957	GTGGTAGTAATATAA	3726

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTACCAAC		TTGTT	
10778	10800	CCAACAATTATATTAC TACCACT	1958	AGTGGTAGTAATATA ATTGT	3727
10796	10818	CCACTGACATGACTTT CCAAAAAA	1959	TTTTGGAAAGTCAT GTCAG	3728
10812	10834	CCAAAAAAACACATAAT TTGAATC	1960	GATTCAAATTATGTG TTTTT	3729
10842	10864	CCACCCACAGCCTAAT TATTAGC	1961	GCTAATAATTAGGCT GTGGG	3730
10845	10867	CCCACAGCCTAATTAT TAGCATC	1962	GATGCTAATAATTAG GCTGT	3731
10846	10868	CCACAGCCTAATTATT AGCATCA	1963	TGATGCTAATAATTAA GGCTG	3732
10852	10874	CCTAATTATTAGCATC ATCCCTC	1964	GAGGGATGATGCTAA TAATT	3733
10870	10892	CCCTCTACTATTTTTA ACCAAA	1965	TTTGGTTAAAAAATA GTAGA	3734
10871	10893	CCTCTACTATTTTTAA CCAAAT	1966	ATTGGTTAAAAAAT AGTAG	3735
10888	10910	CCAAATCAACAAACAAAC CTATTAA	1967	TAAATAGGTTGTTGT TGATT	3736
10903	10925	CCTATTTAGCTGTTCCC CAACCT	1968	AGGTTGGGAAACAGC TAAAT	3737
10917	10939	CCCCAACCTTTCTCC GACCCCC	1969	GGGGTCGGAGGAAA AGGTTG	3738
10918	10940	CCCAACCTTTCTCC ACCCCC	1970	GGGGGTCGGAGGAA AAGGTT	3739
10919	10941	CCAACCTTTCTCC ACCCCCCT	1971	AGGGGGTCGGAGGA AAAGGT	3740
10923	10945	CCTTTCTCC CTAACAA	1972	TGTTAGGGGGTCGGA GGAAA	3741
10929	10951	CCTCCGACCCCC AACCCCC	1973	GGGGGTTGTTAGGGG GTCGG	3742
10932	10954	CCGACCCCC CCCCCTC	1974	GAGGGGGGTTGTTAG GGGGT	3743
10936	10958	CCCCCTAAC CTCCTAA	1975	TTAGGAGGGGGTTG TTAGG	3744
10937	10959	CCCCTAAC TCCTAAT	1976	ATTAGGAGGGGGTT GTTAG	3745
10938	10960	CCCTAAC CCTAATA	1977	TATTAGGAGGGGGT TGTAA	3746
10939	10961	CCTAAC CTAATAC	1978	GTATTAGGAGGGGG TTGTT	3747
10947	10969	CCCCCTC AACTACC	1979	GGTAGTTAGTATTAG GAGGG	3748

55

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	10948	10970	CCCCCTCCTAATACTA ACTACCT	1980	AGGTAGTTAGTATT GGAGG	3749
10	10949	10971	CCCCTCCTAATACTAA CTACCTG	1981	CAGGTAGTTAGTATT AGGAG	3750
15	10950	10972	CCCTCCTAATACTAAC TACCTGA	1982	TCAGGTAGTTAGTAT TAGGA	3751
20	10951	10973	CCTCCTAATACTAACT ACCTGAC	1983	GTCAGGTAGTTAGTA TTAGG	3752
25	10954	10976	CCTAATACTAACTACC TGACTCC	1984	GGAGTCAGGTAGTTA GTATT	3753
30	10968	10990	CCTGACTCCTACCCCT CACAATC	1985	GATTGTGAGGGGTAG GAGTC	3754
35	10975	10997	CCTACCCCTCACAATC ATGGCAA	1986	TTGCCATGATTGTGA GGGGT	3755
40	10979	11001	CCCCTCACAAATCATGG CAAGCCA	1987	TGGCTTGCCATGATT GTGAG	3756
45	10980	11002	CCCTCACAAATCATGGC AAGCCAA	1988	TTGGCTTGCCATGATT GTGA	3757
50	10981	11003	CCTCACAAATCATGGCA AGCCAAC	1989	GTTGGCTTGCCATGA TTGTG	3758
	10999	11021	CCAACGCCACTTATCC AGTGAAC	1990	GTTCACTGGATAAGT GGCCT	3759
	11005	11027	CCACTTATCCAGTGAA CCACTAT	1991	ATAGTGGTTCACTGG ATAAG	3760
	11013	11035	CCAGTGAACCACTATC ACGAAAA	1992	TTTCGTGATAGTGGT TCAC	3761
	11021	11043	CCACTATCACGAAAAAA AACTCTA	1993	TAGAGTTTTTCGTG ATAG	3762
	11044	11066	CCTCTCTATACTAATCT CCCTAC	1994	GTAGGGAGATTAGTA TAGAG	3763
	11061	11083	CCCTACAAATCTCCTT AATTATA	1995	TATAATTAAAGGAGAT TTGTA	3764
	11062	11084	CCTACAAATCTCCTTA ATTATAA	1996	TTATAATTAAAGGAGA TTTGT	3765
	11073	11095	CCTTAATTATAACATT CACAGCC	1997	GGCTGTGAATGTTAT AATTA	3766
	11094	11116	CCACAGAACTAACAT ATTTTAT	1998	ATAAAATATGATTAG TTCTG	3767
	11130	11152	CCACACTTATCCCCAC CTTGGCT	1999	AGCCAAGGTGGGGAT AAGTG	3768
	11140	11162	CCCCACCTTGGCTATC ATCACCC	2000	GGGTGATGATGCCA AGGTG	3769
	11141	11163	CCCACCTTGGCTATCA TCACCCG	2001	CGGGTGATGATGCC AAGGT	3770
	11142	11164	CCACCTTGGCTATCAT	2002	TCGGGTGATGATAGC	3771

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CACCCGA		CAAGG	
11145	11167	CCTGGCTATCATCAC CCGATGA	2003	TCATGGGTGATGAT AGCCA	3772
11160	11182	CCGATGAGGCAACCA GCCAGAA	2004	TTCTGGCTGGTTGCCT CATC	3773
11161	11183	CCGATGAGGCAACCAG CCAGAAC	2005	GTTCTGGCTGGTTGC CTCAT	3774
11173	11195	CCAGCCAGAACGCCCTG AACGCAG	2006	CTGCGTTCAGGCGTT CTGGC	3775
11177	11199	CCAGAACGCCCTGAACG CAGGCAC	2007	GTGCCTGCCTCAGG CGTTC	3776
11185	11207	CCTGAACGCAGGCACA TACTTCC	2008	GGAAGTATGTGCCTG CGTTC	3777
11206	11228	CCTATTCTACACCCCTA GTAGGCT	2009	AGCCTACTAGGGTGT AGAAT	3778
11217	11239	CCCTAGTAGGCTCCCT TCCCCTA	2010	TAGGGGAAGGGAGCC TACTA	3779
11218	11240	CCTAGTAGGCTCCCTT CCCCCTAC	2011	GTAGGGGAAGGGAG CCTACT	3780
11229	11251	CCCTTCCCCTACTCATC GCACTA	2012	TAGTGCATGAGTAG GGGAA	3781
11230	11252	CCTTCCCCTACTCATCG CACTAA	2013	TTAGTGCGATGAGTA GGGGA	3782
11234	11256	CCCCTACTCATCGCAC TAATTAA	2014	TAAATTAGTGCATG AGTAG	3783
11235	11257	CCCTACTCATCGCACT AATTAC	2015	GTAAATTAGTGCATG GAGTA	3784
11236	11258	CCTACTCATCGCACTA ATTACCA	2016	TGTAAATTAGTGCATG TGAGT	3785
11268	11290	CCCTAGGCTCACTAAA CATTCTA	2017	TAGAATGTTAGTGA GCCTA	3786
11269	11291	CCTAGGCTCACTAAC ATTCTAC	2018	GTAGAATGTTAGTGA AGCCT	3787
11307	11329	CCCAAGAACTATCAA CTCCTGA	2019	TCAGGAGTTGATAG TTCTT	3788
11308	11330	CCAAGAACTATCAAAC TCCTGAG	2020	CTCAGGAGTTGATA GTTCT	3789
11325	11347	CCTGAGCCAACAAC AATATGA	2021	TCATATTAAGTGTG GCTC	3790
11331	11353	CCAACAACTTAATATG ACTAGCT	2022	AGCTAGTCATATTAA GTTGT	3791
11381	11403	CCTCTTACGGACTCC ACTTATG	2023	CATAAGTGGAGTCCG TAAAG	3792
11395	11417	CCACCTTATGACTCCCT AAAGCCC	2024	GGGCTTAGGGAGTC ATAAG	3793

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
11407	11429	CCCTAAAGCCCATGTC GAAGCCC	2025	GGGCTTCGACATGGG CTTTA	3794
11408	11430	CCTAAAGCCCATGTCG AAGCCCC	2026	GGGGCTTCGACATGG GCTTT	3795
11415	11437	CCCATGTCGAAGCCCC CATCGCT	2027	AGCGATGGGGCTTC GACAT	3796
11416	11438	CCATGTCGAAGCCCCC ATCGCTG	2028	CAGCGATGGGGCTT CGACA	3797
11427	11449	CCCCCATCGCTGGGTC AATAGTA	2029	TACTATTGACCCAGC GATGG	3798
11428	11450	CCCCATCGCTGGGTCA ATAGTAC	2030	GTACTATTGACCCAG CGATG	3799
11429	11451	CCCATCGCTGGTCAA TAGTACT	2031	AGTACTATTGACCCA GCGAT	3800
11430	11452	CCATCGCTGGGTCAAAT AGTACTT	2032	AAGTACTATTGACCC AGCGA	3801
11454	11476	CCGCAGTACTCTTAAA ACTAGGC	2033	GCCTAGTTTAAGAG TACTG	3802
11494	11516	CCTCACACTCATTCTC AACCCCC	2034	GGGGGTTGAGAATGA GTGTG	3803
11512	11534	CCCCCTGACAAAACAC ATAGCCT	2035	AGGCTATGTGTTTGT CAGG	3804
11513	11535	CCCCTGACAAAACACA TAGCCTA	2036	TAGGCTATGTGTTTG TCAG	3805
11514	11536	CCCTGACAAAACACAT AGCCTAC	2037	GTAGGCTATGTGTTT GTCA	3806
11515	11537	CCTGACAAAACACATA GCCTACC	2038	GGTAGGCTATGTGTT TTGTC	3807
11532	11554	CCTACCCCTTCCTTGT CTATCC	2039	GGATAGTACAAGGAA GGGGT	3808
11536	11558	CCCCTTCCTTGTACTAT CCCTAT	2040	ATAGGGATAGTACAA GGAAG	3809
11537	11559	CCCTTCCTTGTACTATC CCTATG	2041	CATAGGGATAGTACA AGGAA	3810
11538	11560	CCTTCCTTGTACTATCC CTATGA	2042	TCATAGGGATAGTAC AAGGA	3811
11542	11564	CCTTGTACTATCCCTAT GAGGCA	2043	TGCCTCATAGGGATA GTACA	3812
11553	11575	CCCTATGAGGCATAAT TATAACA	2044	TGTTATAATTATGCCT CATATA	3813
11554	11576	CCTATGAGGCATAATT ATAACAA	2045	TTGTTATAATTATGCC TCAT	3814
11580	11602	CCATCTGCCTACGACA AACAGAC	2046	GTCTGTTGTCGTAG GCAGA	3815
11587	11609	CCTACGACAAACAGAC	2047	ATTTAGGTCTGTTG	3816

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTAAAAT		TCGT	
11602	11624	CCTAAAATCGCTCATT GCATACT	2048	AGTATGCAATGAGCG ATTTT	3817
11635	11657	CCACATAGCCCTCGTA GTAACAG	2049	CTGTTACTACGAGGG CTATG	3818
11643	11665	CCCTCGTAGTAACAGC CATTCTC	2050	GAGAATGGCTGTTAC TACGA	3819
11644	11666	CCTCGTAGTAACAGCC ATTCTCA	2051	TGAGAATGGCTGTTA CTACG	3820
11658	11680	CCATTCTCATCCAAAC CCCCTGA	2052	TCAGGGGGTTGGAT GAGAA	3821
11668	11690	CCAAACCCCCCTGAAGC TTCACCG	2053	CGGTGAAGCTTCAGG GGGTT	3822
11673	11695	CCCCCTGAAGCTTCAC CGGCGCA	2054	TGCGCCGGTGAAGCT TCAGG	3823
11674	11696	CCCCCTGAAGCTTCACC GGCGCAG	2055	CTGCGCCGGTGAAGC TTCAG	3824
11675	11697	CCCTGAAGCTTCACCG GCGCACT	2056	ACTGCGCCGGTGAAG CTTCA	3825
11676	11698	CCTGAAGCTTCACCGG CGCAGTC	2057	GACTGCGCCGGTGAAG GCTTC	3826
11688	11710	CGGGCGCAGTCATTCT CATAATC	2058	GATTATGAGAATGAC TGCGC	3827
11712	11734	CCCACGGGCTTACATC CTCATTAA	2059	TAATGAGGATGTAAG CCCGT	3828
11713	11735	CCACGGGCTTACATCC TCATTAC	2060	GTAATGAGGATGTAAG GCCCG	3829
11727	11749	CCTCATTACTATTCTGC CTAGCA	2061	TGCTAGGCAGAATAG TAATG	3830
11743	11765	CCTAGCAAACCTAAAC TACGAAC	2062	GTTCTAGTTGAGTT TGCT	3831
11788	11810	CCTCTCTCAAGGACTT CAAACTC	2063	GAGTTGAAGTCCTT GAGAG	3832
11815	11837	CCCACTAATAGCTTTT GATGAC	2064	GTCATCAAAAAGCTA TTAGT	3833
11816	11838	CCACTAATAGCTTTT GATGACT	2065	AGTCATCAAAAAGCT ATTAG	3834
11848	11870	CCTCGCTAACCTCGCC TTACCCCC	2066	GGGGTAAGGCGAGGT TAGCG	3835
11857	11879	CCTCGCCTTACCCCCC ACTATTA	2067	TAATAGTGGGGGGTA AGGCG	3836
11862	11884	CCTTACCCCCCACTATT AACCTA	2068	TAGGTTAATAGTGGG GGGTA	3837
11867	11889	CCCCCCCACATTAAACC TACTGGG	2069	CCCAGTAGGTTAATA GTGGG	3838

55

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	11868	11890	CCCCCACTATTAACCT ACTGGGA	2070	TCCCAAGTAGGTTAAT AGTGG	3839
10	11869	11891	CCCCCACTATTAACCTA CTGGGAG	2071	CTCCCAGTAGGTTAA TAGTG	3840
15	11870	11892	CCCACATTAACCTAC TGGGAGA	2072	TCTCCCAGTAGGTTA ATAGT	3841
20	11871	11893	CCACTATTAACCTACT GGGAGAA	2073	TTCTCCCAGTAGGTT AATAG	3842
25	11881	11903	CCTACTGGGAGAACTC TCTGTGC	2074	GCACAGAGAGTTCTC CCAGT	3843
30	11910	11932	CCACGTTCTCCTGATC AAATATC	2075	GATATTGATCAGGA GAACG	3844
35	11919	11941	CCTGATCAAATATCAC TCTCCTA	2076	TAGGAGAGTGATATT TGATC	3845
40	11938	11960	CCTACTTACAGGACTC AACATAC	2077	GTATGTTGAGTCCTG TAAGT	3846
45	11970	11992	CCCTATACTCCCTCTAC ATATTT	2078	AAATATGTAGAGGGAA GTATA	3847
50	11971	11993	CCTATACTCCCTCTAC ATATTTA	2079	TAAATATGTAGAGGG AGTAT	3848
	11979	12001	CCCTCTACATATTACC ACAACA	2080	TGTTGTGGTAAATAT GTAGA	3849
	11980	12002	CCTCTACATATTACC ACAACAC	2081	GTGTTGTGGTAAATA TGTAG	3850
	11994	12016	CCACAAACACAATGGGG CTCACTC	2082	GAGTGAGCCCCATTG TGTG	3851
	12018	12040	CCCACCACTTAACAA CATAAAA	2083	TTTATGTTGTTAATG TGTT	3852
	12019	12041	CCACCACTTAACAAAC ATAAAAC	2084	GTTTATGTTGTTAAT GTGG	3853
	12022	12044	CCACATTAACAAACATA AAACCCCT	2085	AGGGTTTATGTTGTT AATG	3854
	12041	12063	CCCTCATTACACAGAG AAAACAC	2086	GTGTTTCTCGTGTGA ATGA	3855
	12042	12064	CCTCATTACACAGAGA AAACACC	2087	GGTGTGTTCTCGTGTG AATG	3856
	12063	12085	CCCTCATGTTCATACA CCTATCC	2088	GGATAGGTGTATGAA CATGA	3857
	12064	12086	CCTCATGTTCATACAC CTATCCC	2089	GGGATAGGTGTATGA ACATG	3858
	12079	12101	CCTATCCCCATTCTCC TCCTAT	2090	ATAGGAGGAGAATGG GGGAT	3859
	12084	12106	CCCCCATTCTCCTCCTA TCCCTC	2091	GAGGGATAGGAGGA GAATGG	3860
	12085	12107	CCCCATTCTCCTCCTAT	2092	TGAGGGATAGGAGGA	3861

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CCCTCA		GAATG	
12086	12108	CCCATTCTCCTCCTATC CCTCAA	2093	TTGAGGGATAGGAGG AGAAT	3862
12087	12109	CCATTCTCCTCCTATCC CTCAAC	2094	GTTGAGGGATAGGAG GAGAA	3863
12094	12116	CCTCCTATCCCTAAC CCCGACA	2095	TGTGGGGTTGAGGG ATAGG	3864
12097	12119	CCTATCCCTCAACCCC GACATCA	2096	TGATGTCGGGGTTGA GGGAT	3865
12102	12124	CCCTCAACCCCGACAT CATTACC	2097	GGTAATGATGTCGGG GTTGA	3866
12103	12125	CCTCAACCCCGACATC ATTACCG	2098	CGGTAATGATGTCGG GGTTG	3867
12109	12131	CCCCGACATCATTACC GGGTTTT	2099	AAAACCCGGTAATGA TGTG	3868
12110	12132	CCCGACATCATTACCG GGTTTTC	2100	GAAAACCCGGTAATG ATGTC	3869
12111	12133	CCGACATCATTACCGG GTTTCC	2101	GGAAAACCCGGTAAT GATGT	3870
12123	12145	CCGGGTTTCCTCTTGT AAATAT	2102	ATATTITACAAGAGGA AAACC	3871
12132	12154	CCTCTTGTAAATATAG TTTAACC	2103	GGTTAAACTATATT ACAAG	3872
12153	12175	CCAAAACATCAGATTG TGAATCT	2104	AGATTCAAACTATCTGA TGT	3873
12194	12216	CCCCTTATTACCGAG AAAGCTC	2105	GAGCTTCTCGGTAA ATAAG	3874
12195	12217	CCCTTATTACCGAGA AAGCTCA	2106	TGAGCTTCTCGGT AATAA	3875
12196	12218	CCTTATTACCGAGAA AGCTCAC	2107	GTGAGCTTCTCGGT AAATA	3876
12205	12227	CCGAGAAAGCTCACAA GAACTGC	2108	GCAGTTCTTGAGC TTTCT	3877
12237	12259	CCCCCATGTCTAACAA CATGGCT	2109	AGCCATGTTGTTAGA CATGG	3878
12238	12260	CCCCCATGTCTAACAAAC ATGGCTT	2110	AAGCCATGTTGTTAG ACATG	3879
12239	12261	CCCATGTCTAACAAACA TGGCTT	2111	AAAGCCATGTTGTTA GACAT	3880
12240	12262	CCATGTCTAACAAACAT GGCTTC	2112	GAAAGCCATGTTGTT AGACA	3881
12288	12310	CCATTGGTCTTAGGCC CCAAAAAA	2113	TTTTGGGGCTAAG ACCAA	3882
12302	12324	CCCCAAAAATTGGT GCAACTC	2114	GAGTTGCACCAAAAT TTTG	3883

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	12303	12325	CCCAAAAATTTGGTG CAACTCC	2115	GGAGTTGCACCAAAA TTTT	3884
10	12304	12326	CCAAAATTTGGTGC AACTCCA	2116	TGGAGTTGCACCAAA ATTT	3885
15	12324	12346	CCAAATAAAAGTAATA ACCATGC	2117	GCATGGTTATTACTTT TATT	3886
20	12341	12363	CCATGCACACTACTAT AACCACC	2118	GGTGGTTATAGTAGT GTGCA	3887
25	12359	12381	CCACCCCTAACCCCTGAC TTCCCTA	2119	TAGGGAAGTCAGGGT TAGGG	3888
30	12362	12384	CCCTAACCCCTGACTTC CCTAATT	2120	AATTAGGGAAGTCAG GGTTA	3889
35	12363	12385	CCTAACCCCTGACTTCC CTAATT	2121	GAATTAGGGAAGTCA GGGTT	3890
40	12368	12390	CCCTGACTTCCCTAATT CCCCC	2122	GGGGGGAAATTAGGGA AGTCA	3891
45	12369	12391	CCTGACTTCCCTAATT CCCCCA	2123	TGGGGGGAATTAGGG AAGTC	3892
50	12377	12399	CCCTAACCCCCCAT CCTTACC	2124	GGTAAGGATGGGGGG AATTA	3893
	12378	12400	CCTAACCCCCCATC CTTACCA	2125	TGGTAAGGATGGGGGG GAATT	3894
	12385	12407	CCCCCATCCTTACCA CCCTCGT	2126	ACGAGGGTGGTAAGG ATGGG	3895
	12386	12408	CCCCCATCCTTACCA CCTCGTT	2127	AACGAGGGTGGTAAG GATGG	3896
	12387	12409	CCCCATCCTTACCA CTCGTTA	2128	TAACGAGGGTGGTAA GGATG	3897
	12388	12410	CCCATCCTTACCA TCGTTAA	2129	TTAACGAGGGTGGTA AGGAT	3898
	12389	12411	CCATCCTTACCA CGTTAAC	2130	GTAAACGAGGGTGGT AAGGA	3899
	12393	12415	CCTTACCA AACCTA	2131	TAGGGTTAACGAGGG TGGTA	3900
	12398	12420	CCACCCCTCGTTAACCC TAACAAA	2132	TTTGTAGGGTTAAC GAGGG	3901
	12401	12423	CCCTCGTTAACCTAA CAAAAAA	2133	TTTTTGTTAGGGTTA ACGA	3902
	12402	12424	CCTCGTTAACCTAAC AAAAAAA	2134	TTTTTTGTTAGGGTT AACG	3903
	12411	12433	CCCTAACAAAAAAAC TCATACC	2135	GGTATGAGTTTTTT GTAA	3904
	12412	12434	CCTAACAAAAAAACT CATACCC	2136	GGGTATGAGTTTTTT TGTT	3905
	12432	12454	CCCCCATTATGTAAAAA	2137	CAATGGATTACAT	3906

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TCCATTG		AATGG	
12433	12455	CCCCATTATGTAAAAT CCATTGT	2138	ACAATGGATTTCACA TAATG	3907
12434	12456	CCCATTATGTAAAATC CATTGTC	2139	GACAATGGATTTCAC ATAAT	3908
12435	12457	CCATTATGTAAAATCC ATTGTCG	2140	CGACAATGGATTTCAC ATAAA	3909
12449	12471	CCATTGTCGCATCCAC CTTTATT	2141	AATAAAGGTGGATGCG GACAA	3910
12461	12483	CCACCTTATTATCAGT CTCTTC	2142	GAAGAGACTGATAAT AAAGG	3911
12464	12486	CCTTTATTATCAGTCTC TTCCCC	2143	GGGGAAGAGACTGAT AATAA	3912
12483	12505	CCCCACAACAATATTCA ATGTGCC	2144	GGCACATGAATATTG TTGTG	3913
12484	12506	CCCACACAATATTCA TGTGCCT	2145	AGGCACATGAATATT GTTGT	3914
12485	12507	CCACACAATATTCA GTGCCTA	2146	TAGGCACATGAATAT TGTG	3915
12504	12526	CCTAGACCAAGAAGTT ATTATCT	2147	AGATAATAACTTCTT GGTCT	3916
12510	12532	CCAAGAAGTTATTATC TCGAACT	2148	AGTCGAGATAATAA CTTCT	3917
12542	12564	CCACAAACCAAACAAAC CCAGCTC	2149	GAGCTGGGTTGTTG GGTTG	3918
12548	12570	CCCAAACAACCCAGCT CTCCCTA	2150	TAGGGAGAGCTGGGT TGTG	3919
12549	12571	CCAAACAACCCAGCTC TCCCTAA	2151	TTAGGGAGAGCTGGG TTGTT	3920
12557	12579	CCCAGCTCTCCCTAAG CTTCAAA	2152	TTTGAAGCTTAGGGA GAGCT	3921
12558	12580	CCAGCTCTCCCTAAGC TTCAAAC	2153	TTTGAAGCTTAGGG AGAGC	3922
12566	12588	CCCTAAGCTTCAAAC AGACTAC	2154	GTAGTCTAGTTGAA GCTTA	3923
12567	12589	CCTAAGCTTCAAAC GACTACT	2155	AGTAGTCTAGTTGA AGCTT	3924
12593	12615	CCATAATATTCATCCC TGTAGCA	2156	TGCTACAGGGATGAA TATTA	3925
12606	12628	CCCTGTAGCATTGTT GTTACAT	2157	ATGTAACGAACAATG CTACA	3926
12607	12629	CCTGTAGCATTGTTCG TTACATG	2158	CATGTAACGAACAAT GCTAC	3927
12632	12654	CCATCATAGAATTCTC ACTGTGA	2159	TCACAGTGAGAATTG TATGA	3928

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
12669	12691	CCCAAACATTAATCAG TTCTCA	2160	TGAAGAACTGATTAA TGT	3929
12670	12692	CCAAACATTAATCAGT TCTCAA	2161	TTGAAGAACTGATTA ATGTT	3930
12708	12730	CCTAATTACCATACTA ATCTTAG	2162	CTAAGATTAGTATGG TAATT	3931
12716	12738	CCATACTAATCTTAGT TACCGCT	2163	AGCGGTAACTAAGAT TAGTA	3932
12734	12756	CCGCTAACAAACCTATT CCAACTG	2164	CAGTTGGAATAGGTT GTTAG	3933
12744	12766	CCTATTCCAACGTTC ATCGGCT	2165	AGCCGATGAACAGTT GGAAT	3934
12750	12772	CCAACTGTTCATCGGC TGAGAGG	2166	CCTCTCAGCCGATGA ACAGT	3935
12788	12810	CCTCTTGCTCATCAGT TGATGA	2167	TCATCAACTGATGAG CAAGA	3936
12815	12837	CCCGAGCAGATGCCAA CACAGCA	2168	TGCTGTGTTGGCATCT GCTC	3937
12816	12838	CCGAGCAGATGCCAAC ACAGCAG	2169	CTGCTGTGTTGGCAT CTGCT	3938
12827	12849	CCAACACAGCAGCCAT TCAAGCA	2170	TGCTTGAAATGGCTGC TGTGT	3939
12839	12861	CCATTCAAGCAATCCT ATACAAC	2171	GTTGTATAGGATTGC TTGAA	3940
12852	12874	CCTATACAACCGTATC GGCATA	2172	TATGCCGATACGGT TGTAT	3941
12861	12883	CCGTATCGGCGATATC GGTTCA	2173	TGAAACCGATATCGC CGATA	3942
12885	12907	CCTCGCCTTAGCATGA TTTATCC	2174	GGATAAATCATGCTA AGGCG	3943
12890	12912	CCTTAGCATGATTAT CCTACAC	2175	GTGTAGGATAAATCA TGCTA	3944
12906	12928	CCTACACTCCAACCTCA TGAGACC	2176	GGTCTCATGAGTTGG AGTGT	3945
12914	12936	CCAACTCATGAGACCC ACAACAA	2177	TTGTTGTGGGTCTCAT GAGT	3946
12927	12949	CCCACAACAAATAGCC CTTCTAA	2178	TTAGAAGGGCTATT GTTGT	3947
12928	12950	CCACAACAAATAGCCC TTCTAAA	2179	TTTAGAAGGGCTATT GTTGT	3948
12941	12963	CCCTTCTAAACGCTAA TCCAAGC	2180	GCTTGGATTAGCGTT TAGAA	3949
12942	12964	CCTTCTAAACGCTAAT CCAAGCC	2181	GGCTTGGATTAGCGT TTAGA	3950
12958	12980	CCAAGCCTCACCCCCAC	2182	CCTAGTAGTGGGTG	3951

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TACTAGG		AGGCT	
12963	12985	CCTCACCCCACTACTA GGCCTCC	2183	GGAGGCCTAGTAGTG GGGTG	3952
12968	12990	CCCCACTACTAGGCCT CCTCCTA	2184	TAGGAGGAGGCCTAG TAGTG	3953
12969	12991	CCCACTACTAGGCCTC CTCCTAG	2185	CTAGGAGGAGGCCTA GTAGT	3954
12970	12992	CCACTACTAGGCCTCC TCCTAGC	2186	GCTAGGAGGAGGCCT AGTAG	3955
12981	13003	CCTCCTCCTAGCAGCA GCAGGCA	2187	TGCCTGCTGCTGCTA GGAGG	3956
12984	13006	CCTCCTAGCAGCAGCA GGCAAAT	2188	ATTGCCTGCTGCTGC TAGG	3957
12987	13009	CCTAGCAGCAGCAGGC AAATCAG	2189	CTGATTGCCTGCTGC TGCT	3958
13010	13032	CCCAATTAGGTCTCCA CCCCTGA	2190	TCAGGGTGGAGACC TAATT	3959
13011	13033	CCAATTAGGTCTCCAC CCCTGAC	2191	GTCAGGGTGGAGAC CTAAT	3960
13023	13045	CCACCCCTGACTCCCC TCAGCCA	2192	TGGCTGAGGGGAGTC AGGGG	3961
13026	13048	CCCCTGACTCCCCCTCA GCCATAG	2193	CTATGGCTGAGGGGA GTCAG	3962
13027	13049	CCCTGACTCCCCCTCAG CCATAGA	2194	TCTATGGCTGAGGGG AGTCA	3963
13028	13050	CCTGACTCCCCCTCAGC CATAGAA	2195	TTCTATGGCTGAGGG GAGTC	3964
13035	13057	CCCCTCAGCCATAGAA GGCCCCA	2196	TGGGGCCTTCTATGG CTGAG	3965
13036	13058	CCCTCAGCCATAGAAG GCCCCAC	2197	GTGGGGCCTTCTATG GCTGA	3966
13037	13059	CCTCAGCCATAGAAGG CCCCACC	2198	GGTGGGGCCTTCTAT GGCTG	3967
13043	13065	CCATAGAAGGCCAAC CCCAGTC	2199	GACTGGGGTGGGGCC TTCTA	3968
13053	13075	CCCCACCCAGTCTCA GCCCTAC	2200	GTAGGGCTGAGACTG GGGTG	3969
13054	13076	CCCACCCAGTCTCAG CCCTACT	2201	AGTAGGGCTGAGACT GGGGT	3970
13055	13077	CCACCCAGTCTCAGC CCTACTC	2202	GAGTAGGGCTGAGAC TGGGG	3971
13058	13080	CCCCAGTCTCAGCCCT ACTCCAC	2203	GTGGAGTAGGGCTGA GACTG	3972
13059	13081	CCCAGTCTCAGCCCTA CTCCACT	2204	AGTGGAGTAGGGCTG AGACT	3973

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10	13060	13082	CCAGTCTCAGCCCTAC TCCACTC	2205	GAGTGGAGTAGGGCT GAGAC	3974
13070	13092	CCCTACTCCACTCAAG CACTATA	2206	TATAGTGCTTGAGTG GAGTA	3975	
13071	13093	CCTACTCCACTCAAGC ACTATAG	2207	CTATAGTGCTTGAGT GGAGT	3976	
15	13077	13099	CCACTCAAGCACTATA GTTGTAG	2208	CTACAACATAGTGC TTGAG	3977
13119	13141	CCGCTTCCACCCCCCTA GCAGAAA	2209	TTTCTGCTAGGGGGT GGAAG	3978	
20	13125	13147	CCACCCCCCTAGCAGAA AATAGCC	2210	GGCTATTTCTGCTAG GGGG	3979
13128	13150	CCCCCTAGCAGAAAAT AGCCCAC	2211	GTGGGCTATTTCTGC TAGG	3980	
25	13129	13151	CCCCTAGCAGAAAATA GCCCACT	2212	AGTGGGCTATTTCT GCTAG	3981
13130	13152	CCCTAGCAGAAAATAG CCCACTA	2213	TAGTGGGCTATTTCT GCTA	3982	
30	13131	13153	CCTAGCAGAAAATAGC CCACTAA	2214	TTAGTGGGCTATTTTC TGCT	3983
13146	13168	CCCACTAATCCAAACT CTAACAC	2215	GTGTTAGAGTTGGA TTAGT	3984	
35	13147	13169	CCACTAATCCAAACTC TAACACT	2216	AGTGTAGAGTTGG ATTAG	3985
13155	13177	CCAAACTCTAACACTA TGCTTAG	2217	CTAAGCATAGTGTAA GAGTT	3986	
40	13187	13209	CCACTCTGTTCGCAGC AGTCTGC	2218	GCAGACTGCTGCGAA CAGAG	3987
13211	13233	CCCTTACACAAAAATGA CATCAAA	2219	TTTGATGTCATTTGT GTAA	3988	
45	13212	13234	CCTTACACAAAATGAC ATCAAAA	2220	TTTGATGTCATTTG TGTAA	3989
13244	13266	CCTCTCCACTTCAAGT CAACTA	2221	TAGTTGACTTGAAGT GGAGA	3990	
50	13250	13272	CCACTTCAAGTCAACT AGGACTC	2222	GAGTCCTAGTTGACT TGAAG	3991
13296	13318	CCAACCACACCTAGCA TTCCCTGC	2223	GCAGGAATGCTAGGT GTGGT	3992	
13300	13322	CCACACCTAGCATTCC TGCACAT	2224	ATGTGCAGGAATGCT AGGTG	3993	
13305	13327	CCTAGCATTCCTGCAC ATCTGTA	2225	TACAGATGTGCAGGA ATGCT	3994	
13314	13336	CCTGCACATCTGTACC CACGCCT	2226	AGGCGTGGGTACAGA TGTGC	3995	
13328	13350	CCCACGCCTTCTCAA	2227	TATGGCTTGAAGAA	3996	

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		AGCCATA		GGCGT	
13329	13351	CCACGCCTCTTCAAA GCCATAC	2228	GTATGGCTTGAAGA AGGCG	3997
13334	13356	CCTTCTCAAAGCCAT ACTATT	2229	AAATAGTATGGCTTT GAAGA	3998
13346	13368	CCATACTATTTATGTG CTCCGGG	2230	CCCGGAGCACATAAA TAGTA	3999
13364	13386	CCGGGTCCATCATCCA CAACCTT	2231	AAGGTTGTGGATGAT GGACC	4000
13370	13392	CCATCATCCACAAACCT TAACAAT	2232	ATTGTTAAGGTTGTG GATGA	4001
13377	13399	CCACAACCTTAACAAT GAACAAG	2233	CTTGTTCATTGTTAAG GTTG	4002
13383	13405	CCTTAACAATGAACAA GATATT	2234	GAATATCTTGTTCATT GTTA	4003
13430	13452	CCATACCTCTCACTTC AACCTCC	2235	GGAGGTTGAAGTGAG AGGTA	4004
13435	13457	CCTCTCACTTCAACCTC CCTCAC	2236	GTGAGGGAGGTTGAA GTGAG	4005
13448	13470	CCTCCCTACCATTGG CAGCCTA	2237	TAGGCTGCCAATGGT GAGGG	4006
13451	13473	CCCTCACCAATTGGCAG CCTAGCA	2238	TGCTAGGCTGCCAAT GGTGA	4007
13452	13474	CCTCACCAATTGGCAGC CTAGCAT	2239	ATGCTAGGCTGCCAA TGGTG	4008
13457	13479	CCATTGGCAGCCTAGC ATTAGCA	2240	TGCTAATGCTAGGCT GCCAA	4009
13467	13489	CCTAGCATTAGCAGGA ATACCTT	2241	AAGGTATTCCCTGCTA ATGCT	4010
13486	13508	CCTTCCTCACAGGTTT CTACTC	2242	GAGTAGAACCTGTG AGGAA	4011
13491	13513	CCTCACAGGTTCTAC TCCAAAG	2243	CTTTGGAGTAGAAC CTGTG	4012
13508	13530	CCAAAGACCACATCAT CGAAACC	2244	GGTTTCGATGATGTG GTCTT	4013
13515	13537	CCACATCATCGAAACC GCAAACA	2245	TGTTTGCCTTTCGAT GATG	4014
13529	13551	CCGCAAACATATCATA CACAAAC	2246	GTTTGTGTATGATAT GTTTG	4015
13553	13575	CCTGAGCCCTATCTAT TACTCTC	2247	GAGAGTAATAGATAG GGCTC	4016
13559	13581	CCCTATCTATTACTCTC ATCGCT	2248	AGCGATGAGAGTAAT AGATA	4017
13560	13582	CCTATCTATTACTCTCA TCGCTA	2249	TAGCGATGAGAGTAA TAGAT	4018

5

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
13583	13605	CCTCCCTGACAAGCGC CTATAGC	2250	GCTATAGGCGCTTGT CAGGG	4019
13586	13608	CCCTGACAAGCGCCTA TAGCACT	2251	AGTGCTATAGGCGCT TGTCA	4020
13587	13609	CCTGACAAGCGCCTAT AGCACTC	2252	GAGTGCTATAGGCGC TTGTC	4021
13598	13620	CCTATAGCACTCGAAT AATTCTT	2253	AAGAATTATTGAGT GCTAT	4022
13625	13647	CCCTAACAGGTCAACC TCGCTTC	2254	GAAGCGAGGTTGACC TGTAA	4023
13626	13648	CCTAACAGGTCAACCT CGCTTCC	2255	GGAAGCGAGGTTGAC CTGTT	4024
13639	13661	CCTCGCTTCCCCACCCCT TACTAA	2256	TTAGTAAGGGTGGGG AAGCG	4025
13647	13669	CCCCACCCCTACTAAC ATTAACG	2257	CGTTAATGTTAGTAA GGGTG	4026
13648	13670	CCCACCCCTACTAAC TTAACGA	2258	TCGTTAATGTTAGTA AGGGT	4027
13649	13671	CCACCCCTACTAACAT TAACGAA	2259	TTCGTTAATGTTAGTA AGGG	4028
13652	13674	CCCTTACTAACATTAA CGAAAAT	2260	ATTTTCGTTAATGTTA GTAA	4029
13653	13675	CCTTACTAACATTAA GAAAATA	2261	TATTTTCGTTAATGTT AGTA	4030
13677	13699	CCCCACCCCTACTAAC CCCATTAA	2262	TAATGGGGTTAGTA GGGTG	4031
13678	13700	CCCACCCCTACTAAC CCATTAA	2263	TTAATGGGGTTAGT AGGGT	4032
13679	13701	CCACCCCTACTAACCC CATTAAA	2264	TTTAATGGGGTTAG TAGGG	4033
13682	13704	CCCTACTAACCCCCAT TAAACGC	2265	GCGTTTAATGGGGTT TAGTA	4034
13683	13705	CCTACTAACCCCCATT AAACGCC	2266	GGCGTTTAATGGGGT TTAGT	4035
13692	13714	CCCCATTAAACGCCTG GCAGCCG	2267	CGGCTGCCAGGCGTT TAATG	4036
13693	13715	CCCATTAAACGCCTGG CAGCCGG	2268	CCGGCTGCCAGGCGT TTAAT	4037
13694	13716	CCATTAAACGCCTGGC AGCCGGA	2269	TCCGGCTGCCAGGCG TTTAA	4038
13704	13726	CCTGGCAGCCGGAAGC CTATTG	2270	CGAATAGGCTTCCGG CTGCC	4039
13712	13734	CCGGAAGCCTATTG AGGATT	2271	AAATCCTGCGAATAG GCTTC	4040
13719	13741	CCTATTGCGAGGATT	2272	TAATGAGAAATCCTG	4041

55

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTCATTA		CGAAT	
13754	13776	CCCCCGCATCCCCCTT CCAAACA	2273	TGTTTGGAAAGGGGG TGC GG	4042
13755	13777	CCCCGCATCCCCCTTC CAAACAA	2274	TTGTTTGGAAAGGGGG ATGCG	4043
13756	13778	CCCGCATCCCCCTTCC AAACAAAC	2275	GTTGTTTGGAAAGGGGG GATGC	4044
13757	13779	CCGCATCCCCCTTCCA AACAAAC	2276	TGTTGTTTGGAAAGGG GGATG	4045
13763	13785	CCCCCTTCCAAACAAAC AATCCCC	2277	GGGGATTGTTGTTG GAAGG	4046
13764	13786	CCCCTTCCAAACAAACA ATCCCCC	2278	GGGGGATTGTTGTT GGAAG	4047
13765	13787	CCCTTCCAAACAAACAA TCCCCCT	2279	AGGGGGATTGTTGTT TGGAA	4048
13766	13788	CCTTCCAAACAAACAAT CCCCCTC	2280	GAGGGGGATTGTTGT TTGGA	4049
13770	13792	CCAAACAAACAATCCCC CTCTACC	2281	GGTAGAGGGGGATTG TTGTT	4050
13782	13804	CCCCCTCTACCTAAAAA CTCACAG	2282	CTGTGAGTTTAGGT AGAGG	4051
13783	13805	CCCCTCTACCTAAAAAC TCACAGC	2283	GCTGTGAGTTTAGG TAGAG	4052
13784	13806	CCCTCTACCTAAAACT CACAGCC	2284	GGCTGTGAGTTTAG GTAGA	4053
13785	13807	CCTCTACCTAAACTC ACAGCCC	2285	GGGCTGTGAGTTTA GGTAG	4054
13791	13813	CCTAAACTCACAGCC CTCGCTG	2286	CAGCGAGGGCTGTGA GTTTT	4055
13805	13827	CCCTCGCTGTCACTTTC CTAGGA	2287	TCCTAGGAAAGTGAC AGCGA	4056
13806	13828	CCTCGCTGTCACTTCC TAGGAC	2288	GTCCTAGGAAAGTGA CAGCG	4057
13821	13843	CCTAGGACTTCTAACCA GCCCTAG	2289	CTAGGGCTGTTAGAA GTCCT	4058
13838	13860	CCCTAGACCTCAACTA CCTAACCC	2290	GGTTAGGTAGTTGAG GTCTA	4059
13839	13861	CCTAGACCTCAACTAC CTAACCA	2291	TGGTTAGGTAGTTGA GGTCT	4060
13845	13867	CCTCAACTACCTAACCC AACAAAC	2292	GTTCGTTGGTTAGGT AGTTG	4061
13854	13876	CCTAACCAACAAACTT AAAATAA	2293	TTATTTAACGTTGTT GGTT	4062
13859	13881	CCAACAAACTAAAAT AAAATCC	2294	GGATTTATTTAACGTT TTGT	4063

55

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5	13880	13902	CCCCACTATGCACATT TTATTTC	2295	GAAATAAAATGTGCA TAGTG	4064
10	13881	13903	CCCACTATGCACATTT TATTCT	2296	AGAAATAAAATGTGC ATAGT	4065
15	13882	13904	CCACTATGCACATTT ATTCTC	2297	GAGAAATAAAATGTG CATA	4066
20	13904	13926	CCAACATACTCGGATT CTACCC	2298	AGGGTAGAACATCCGAG TATGT	4067
25	13923	13945	CCCTAGCATCACACAC CGCACAA	2299	TTGTGCGGTGTGTGA TGCTA	4068
30	13924	13946	CCTAGCATCACACACC GCACAAT	2300	ATTGTGCGGTGTGTG ATGCT	4069
35	13938	13960	CCGCACAATCCCCTAT CTAGGCC	2301	GGCCTAGATAGGGGA TTGTG	4070
40	13947	13969	CCCCTATCTAGGCCTT CTTACGA	2302	TCGTAAGAACGGCCTA GATAG	4071
45	13948	13970	CCCTATCTAGGCCTTCT TACGAG	2303	CTCGTAAGAACGGCCT AGATA	4072
50	13949	13971	CCTATCTAGGCCTTCTT ACGAGC	2304	GCTCGTAAGAACGGCC TAGAT	4073
	13959	13981	CCTCTTACGAGCCAA AACCTGC	2305	GCAGGTTTGGCTCG TAAGA	4074
	13971	13993	CCAAAACCTGCCCTA CTCCTCC	2306	GGAGGAGTAGGGGC AGGTT	4075
	13977	13999	CCTGCCCTACTCCTCC TAGACC	2307	GGTCTAGGAGGAGTA GGGGC	4076
	13981	14003	CCCCTACTCCTCCTAG ACCTAAC	2308	GTTAGGTCTAGGAGG AGTAG	4077
	13982	14004	CCCTACTCCTCCTAGA CCTAAC	2309	GGTTAGGTCTAGGAG GAGTA	4078
	13983	14005	CCTACTCCTCCTAGAC CTAACCT	2310	AGGTTAGGTCTAGGA GGAGT	4079
	13989	14011	CCTCCTAGACCTAACCT TGACTAG	2311	CTAGTCAGGTTAGGT CTAGG	4080
	13992	14014	CCTAGACCTAACCTGA CTAGAAA	2312	TTTCTAGTCAGGTTA GGTCT	4081
	13998	14020	CCTAACCTGACTAGAA AAGCTAT	2313	ATAGCTTTCTAGTCA GGTT	4082
	14003	14025	CCTGACTAGAAAAGCT ATTACCT	2314	AGGTAATAGCTTTTC TAGTC	4083
	14023	14045	CCTAAAACAATTTCAC AGCACCA	2315	TGGTGCTGTGAAATT GTTTT	4084
	14043	14065	CCAAATCTCCACCTCC ATCATCA	2316	TGATGATGGAGGTGG AGATT	4085
	14051	14073	CCACCTCCATCATCAC	2317	GGTTGAGGTGATGAT	4086

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTCAACC		GGAGG	
14054	14076	CCTCCATCATCACCTC AACCCAA	2318	TTGGGTTGAGGTGAT GATGG	4087
14057	14079	CCATCATCACCTAAC CCAAAAAA	2319	TTTTGGGTTGAGGT GATGA	4088
14066	14088	CCTCAACCCAAAAAGG CATAATT	2320	AATTATGCCTTTGG GTTG	4089
14072	14094	CCCAAAAAGGCATAAT TAAACTT	2321	AAGTTTAATTATGCC TTTT	4090
14073	14095	CCCAAAAAGGCATAATT AAACTTT	2322	AAAGTTTAATTATGC CTTT	4091
14100	14122	CCTCTCTTCTTCTTCC CACTCA	2323	TGAGTGGGAAGAAGA AAGAG	4092
14115	14137	CCCACTCATCCTAAC CTACTCC	2324	GGAGTAGGGTTAGGA TGAGT	4093
14116	14138	CCACTCATCCTAACCC TACTCCT	2325	AGGAGTAGGGTTAGG ATGAG	4094
14124	14146	CCTAACCTACTCCTA ATCACAT	2326	ATGTGATTAGGAGTA GGGTT	4095
14129	14151	CCCTACTCCTAAC ATAACCT	2327	AGGTTATGTGATTAG GAGTA	4096
14130	14152	CCTACTCCTAAC TAACCTA	2328	TAGGTTATGTGATTA GGAGT	4097
14136	14158	CCTAACACATAACCT ATTCCCC	2329	GGGGAATAGGTTATG TGATT	4098
14149	14171	CCTATTCCCCGAGCA ATCTCAA	2330	TTGAGATTGCTCGGG GGAAT	4099
14155	14177	CCCCGAGCAATCTCA ATTACAA	2331	TTGTAATTGAGATTG CTCGG	4100
14156	14178	CCCCGAGCAATCTCAA TTACAAT	2332	ATTGTAATTGAGATT GCTCG	4101
14157	14179	CCCGAGCAATCTCAAT TACAATA	2333	TATTGTAATTGAGAT TGCTC	4102
14158	14180	CCGAGCAATCTCAATT ACAATAT	2334	ATATTGTAATTGAGA TTGCT	4103
14186	14208	CCAACAAACAATGTTC AACCAAGT	2335	ACTGGTTGAACATTG TTTGT	4104
14204	14226	CCAGTAACTACTACTA ATCAACG	2336	CGTTGATTAGTAGTA GTTAC	4105
14227	14249	CCCATAATCATACAAA GCCCGCG	2337	CGGGGGCTTGATG ATTAT	4106
14228	14250	CCATAATCATACAAAG CCCCCGC	2338	GCGGGGCTTGAT GATTA	4107
14244	14266	CCCCCGCACCAATAGG ATCCTCC	2339	GGAGGATCCTATTGG TGCAG	4108

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
14245	14267	CCCCGCACCAATAGGA TCCTCCC	2340	GGGAGGGATCCTATTG GTGCG	4109
14246	14268	CCCGCACCAATAGGAT CCTCCCG	2341	CGGGAGGGATCCTATT GGTGC	4110
14247	14269	CCGCACCAATAGGATC CTCCCGA	2342	TCGGGAGGATCCTAT TGGTG	4111
14252	14274	CCAATAGGATCCTCCC GAATCAA	2343	TTGATTGGGAGGAT CCTAT	4112
14262	14284	CCTCCCGAATCAACCC TGACCCC	2344	GGGGTCAGGGTTGAT TCGGG	4113
14265	14287	CCCGAATCAACCCCTGA CCCCTCT	2345	AGAGGGGTCAGGGTT GATTC	4114
14266	14288	CCGAATCAACCCCTGAC CCCTCTC	2346	GAGAGGGGTCAGGGT TGATT	4115
14275	14297	CCCTGACCCCTCTCCTT CATAAA	2347	TTTATGAAGGAGAGG GGTCA	4116
14276	14298	CCTGACCCCTCTCCTTC ATAAAT	2348	ATTATGAAGGAGAG GGGTC	4117
14281	14303	CCCCTCTCCTTCATAA ATTATTC	2349	GAATAATTATGAAG GAGAG	4118
14282	14304	CCCTCTCCTTCATAAAT TATTCA	2350	TGAATAATTATGAA GGAGA	4119
14283	14305	CCTCTCCTTCATAAATT ATTCAAG	2351	CTGAATAATTATGA AGGAG	4120
14288	14310	CCTTCATAAATTATTC AGCTTCC	2352	GGAAGCTGAATAATT TATGA	4121
14309	14331	CCTACACTATTAAAGT TTACCAAC	2353	GTGGTAAACTTTAAT AGTGT	4122
14328	14350	CCACAACCACCAACCC ATCATAAC	2354	GTATGATGGGGTGGT GGTTG	4123
14334	14356	CCACCAACCCATCATA CTCTTTC	2355	GAAAGAGTATGATGG GGTGG	4124
14337	14359	CCACCCCATCATACTC TTTCACC	2356	GGTGAAAGAGTATGA TGGGG	4125
14340	14362	CCCCCATCATACTCTTC ACCCAC	2357	GTGGGTGAAAGAGTA TGATG	4126
14341	14363	CCCATCATACTCTTC CCCACA	2358	TGTGGGTGAAAGAGT ATGAT	4127
14342	14364	CCATCATACTCTTCAC CCACAG	2359	CTGTGGGTGAAAGAG TATGA	4128
14358	14380	CCCACAGCACCAATCC TACCTCC	2360	GGAGGTTAGGATTGGT GCTGT	4129
14359	14381	CCACAGCACCAATCCT ACCTCCA	2361	TGGAGGTTAGGATTGG TGCTG	4130
14367	14389	CCAATCCTACCTCCAT	2362	GTTAGCGATGGAGGT	4131

5

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO	
		CGCTAAC		AGGAT		
10	14372	14394	CCTACCTCCATCGCTAACCCAC	2363	GTGGGGTTAGCGATGGAGGT	4132
14376	14398	CCTCCATCGCTAACCCACACTAAA	2364	TTTAGTGGGTTAGCGATGG	4133	
15	14379	14401	CCATCGCTAACCCACAAAAACAA	2365	TGTTTTAGTGGGTTAGCGA	4134
14389	14411	CCCCACTAAAACACTCACCAAGA	2366	TCTTGGTGAGTGTGTTT	4135	
20	14390	14412	CCCACCTAAAACACTCACCAAGAC	2367	GTCTTGGTGAGTGTGTTT	4136
14391	14413	CCACTAAAACACTCACCAAGACC	2368	GGTCTTGGTGAGTGTGTT	4137	
25	14406	14428	CCAAGACCTCAACCCCCTGACCC	2369	GGGGTCAGGGTTGAGTCT	4138
14412	14434	CCTCAACCCCTGACCC	2370	GGCATGGGGTCAGGGT	4139	
25	14418	14440	CCCTGACCCCCATGCCTCAGGA	2371	TCCTGAGGCATGGG	4140
14419	14441	CCCTGACCCCCATGCC	2372	GTCAGATCCTGAGG	4141	
30	14420	14442	CCCTGACCCCCATGCCTCAGGATA	2373	GGGGTCAGGGCATGG	4142
14425	14447	CCCCCATGCCTCAGGA	2374	GGAGTATCCTGAGG	4143	
35	14426	14448	TACTCCTCAGGAT	2375	CATGGGAGTATCCTGAG	4144
14427	14449	CCCCATGCCTCAGGATA	2376	GCATGAGGAGTATCCTGA	4145	
40	14428	14450	CTCCTCA	2377	GGCATGAGGAGTATCCTG	4146
14433	14455	CCTCAGGATACTCCTCAATAGCC	2378	AGGAGTATCCTGAGG	4147	
45	14445	14467	CCTCAATAGCCATCGCTGTAGTA	2379	TCCTGAGGAGTATCCTGAG	4148
14454	14476	CCATCGCTGTAGTATA	2380	TACTACAGCGATGGCTATTG	4149	
45	14471	14493	TCCAAAG	2381	AGCGATGGGATATACTAC	4150
14481	14503	TTCCCCCTAA	2382	GGGGGAATGATGGTT	4151	
50	14489	14511	ATAAAATT	2383	GTCTT	4152
14490	14512	AAAAAAAC	2384	AATTTATTAGGGGG	4153	
		CCCCCTAAATAAATTAA		AATGA		
		CCCCCTAAATAAATTAA		GTTTTTTAATTATT		
		AAAAAACT		TAGG		
		AGTTTTTTAATTAT		AGTTTTTTAATTAT		
		TTAG		TTAG		

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
14491	14513	CCCTAAATAAATTAAA AAAACTA	2385	TAGTTTTTTAATTAA TTA	4154
14492	14514	CCTAAATAAATTAAAA AAAACAT	2386	ATAGTTTTTTAATT ATT	4155
14519	14541	CCCATATAACCTCCCC CAAAATT	2387	AATTTGGGGGAGGT TATAT	4156
14520	14542	CCATATAACCTCCCC AAAATT	2388	GAATTGGGGGAGG TTATA	4157
14528	14550	CCTCCCCAAAATTCA GAATAAT	2389	ATTATTCTGAATT GGG	4158
14531	14553	CCCCAAAATTCAAGAA TAATAAC	2390	GTTATTATTCTGAATT TTGG	4159
14532	14554	CCCCAAAATTCAAGAAT AATAACA	2391	TGTTATTATTCTGAAT TTT	4160
14533	14555	CCCAAAATTCAAGAATA ATAACAC	2392	GTGTTATTATTCTGAA TTT	4161
14534	14556	CCAAAATTCAAGAATAA TAACACA	2393	TGTGTTATTATTCTGA ATT	4162
14557	14579	CCCGACCACACCGCTA ACAATCA	2394	TGATTGTTAGCGGTG TGGTC	4163
14558	14580	CCGACCACACCGCTAA CAATCAA	2395	TTGATTGTTAGCGGT GTGGT	4164
14562	14584	CCACACCGCTAACAAAT CAATACT	2396	AGTATTGATTGTTAG CGGTG	4165
14567	14589	CCGCTAACAAATCAATA CTAAACC	2397	GGTTTAGTATTGATT GTTAG	4166
14588	14610	CCCCATAAAATAGGAG AAGGCTT	2398	AAGCCTTCTCCTATT ATGG	4167
14589	14611	CCCCATAAAATAGGAGA AGGCTTA	2399	TAAGCCTTCTCCTATT TATG	4168
14590	14612	CCCATAAAATAGGAGAA GGCTTAG	2400	CTAAGCCTTCTCCTAT TTAT	4169
14591	14613	CCATAAAATAGGAGAAG GCTTAGA	2401	TCTAAGCCTTCTCCTA TTA	4170
14620	14642	CCCCACAAACCCCATT ACTAAAC	2402	GTTTAGTAATGGGGT TTGTG	4171
14621	14643	CCCACAAACCCCATT CTAAACC	2403	GGTTTAGTAATGGGG TTTGT	4172
14622	14644	CCACAAACCCCATTAC TAAACCC	2404	GGGTTAGTAATGGG GTTTG	4173
14629	14651	CCCCATTACTAAACCC ACACTCA	2405	TGAGTGTGGGTTAG TAATG	4174
14630	14652	CCCATTACTAAACCC CACTCAA	2406	TTGAGTGTGGGTTA GTAAT	4175
14631	14653	CCATTACTAAACCCAC	2407	GTTGAGTGTGGGTTT	4176

5	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
10			ACTCAAC		AGTAA	
14642	14664	CCCACACTAACACAGAA ACAAAGC		2408	GCTTTGTTCTGTTGA GTGT	4177
14643	14665	CCACACTAACACAGAAA CAAAGCA		2409	TGCTTTGTTCTGTTG AGTG	4178
14694	14716	CCACGACCAATGATAT GAAAAAC		2410	GTTCATATCATTG GTCG	4179
14700	14722	CCAATGATATGAAAAAA CCATCGT		2411	ACGATGGTTTTCAT ATCAT	4180
14716	14738	CCATCGTTGTATTCA ACTACAA		2412	TTGTAGTTGAAATAC AACGA	4181
20	14744	14766	CCAATGACCCCAATAC GCAAAAC	2413	GTTCATGCGTATTGGG GTCAT	4182
14751	14773	CCCCAATACGCAAAAC TAACCCC		2414	GGGGTTAGTTTGCG TATTG	4183
14752	14774	CCCCAATACGCAAAACT AACCCCC		2415	GGGGGTTAGTTTGC GTATT	4184
25	14753	14775	CCAATACGCAAAACTA ACCCCC	2416	AGGGGGTTAGTTTG CGTAT	4185
14770	14792	CCCCCTAATAAAATTAA ATTAACC		2417	GGTTAATTAATTTTAT TAGG	4186
30	14771	14793	CCCCTAATAAAATTAA TTAACCA	2418	TGGTTAATTAATTTTA TTAG	4187
14772	14794	CCCTAATAAAATTAAAT TAACCAC		2419	GTGGTTAATTAATTTT ATTA	4188
35	14773	14795	CCTAATAAAATTAAATT AACCCT	2420	AGTGGTTAATTAATT TTATT	4189
14791	14813	CCACTCATTCATCGAC CTCCCCA		2421	TGGGGAGGTGATGA ATGAG	4190
40	14806	14828	CCTCCCCACCCCATCC AACATCT	2422	AGATGTTGGATGGGG TGGGG	4191
14809	14831	CCCCACCCCATCCAAC ATCTCCG		2423	CGGAGATGTTGGATG GGGTG	4192
14810	14832	CCCACCCCATCCAACA TCTCCGC		2424	GC GGAGATGTTGGAT GGGGT	4193
45	14811	14833	CCACCCCATCCAACAT CTCCGCA	2425	TGCGGAGATGTTGGA TGGGG	4194
14814	14836	CCCCATCCAACATCTC CGCATGA		2426	TCATGCGGAGATGTT GGATG	4195
14815	14837	CCCATCCAACATCTCC GCATGAT		2427	ATCATGCGGAGATGT TGGAT	4196
50	14816	14838	CCATCCAACATCTCCG CATGATG	2428	CATCATGCGGAGATG TTGGA	4197
14820	14842	CCAACATCTCCGCATG ATGAAAC		2429	GTTCATCATGCGGA GATGT	4198

5

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
14829	14851	CCGCATGATGAAACTT CGGCTCA	2430	TGAGCCGAAGTTCA TCATG	4199
14854	14876	CCTTGGCGCCTGCCCTG ATCCTCC	2431	GGAGGATCAGGCAGG CGCCA	4200
14862	14884	CCTGCCTGATCCTCCA AATCACC	2432	GGTGATTGGAGGAT CAGGC	4201
14866	14888	CCTGATCCTCCAAATC ACCACAG	2433	CTGTGGTGATTGGA GGATC	4202
14872	14894	CCTCCAAATCACCAACA GGACTAT	2434	ATAGCCTGTGGTGA TTTGG	4203
14875	14897	CCAAATCACCAACAGGA CTATTCC	2435	GGAATAGTCCTGTGG TGATT	4204
14883	14905	CCACAGGACTATTCCCT AGCCATG	2436	CATGGCTAGGAATAG TCCTG	4205
14896	14918	CCTAGCCATGCAC TAC TCACCA G	2437	CTGGTGAGTAGTGCA TGGCT	4206
14901	14923	CCATGCACTACTCACC AGACGCC	2438	GGCGTCTGGTGAGTA GTGCA	4207
14915	14937	CCAGACGCCCTCAACCG CCTTTTC	2439	GAAAAGGCGGTTGAG GCGTC	4208
14922	14944	CCTCAACCGCCTTTTC ATCAATC	2440	GATTGATGAAAAGGC GGTTG	4209
14928	14950	CCGCCTTTCATCAATCGCC GCCAAC	2441	GTGGGCGATTGATGA AAAGG	4210
14931	14953	CCTTTCATCAATCGCC CACATC	2442	GATGTGGGCGATTGA TGAAA	4211
14946	14968	CCCACATCACTCGAGA CGTAAAT	2443	ATTACGTCTCGAGT GATGT	4212
14947	14969	CCACATCACTCGAGAC GTAAATT	2444	AATTACGTCTCGAG TGATG	4213
14983	15005	CCGCTACCTTCACGCC AATGGCG	2445	CGCCATTGGCGTGAA GGTAG	4214
14989	15011	CCTTCACGCCAATGGC GCCTCAA	2446	TTGAGGCGCCATTGG CGTGA	4215
14997	15019	CCAATGGCGCCTCAAT ATTCTT	2447	AAAGAATATTGAGGC GCCAT	4216
15006	15028	CCTCAATATTCTTATC TGCCTC	2448	GAGGCAGATAAAGA ATATTG	4217
15025	15047	CCTCTTCCTACACATC GGCGAG	2449	CTCGCCCCGATGTGTA GGAAG	4218
15031	15053	CCTACACATGGGCGA GGCCTAT	2450	ATAGGCCTCGCCCGA TGTGT	4219
15049	15071	CCTATATTACGGATCA TTTCTCT	2451	AGAGAAATGATCCGT AATAT	4220
15081	15103	CCTGAAACATCGGCAT	2452	GAGGATAATGCCGAT	4221

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		TATCCTC		GTTTC	
15100	15122	CCTCCTGCTTGCAACT ATAGCAA	2453	TTGCTATAGTTGCAA GCAGG	4222
15103	15125	CCTGCTTGCAACTATA GCAACAG	2454	CTGTTGCTATAGTTGC AAGC	4223
15126	15148	CCTTCATAGGCTATGT CCTCCCG	2455	CGGGAGGACATAGCC TATGA	4224
15142	15164	CCTCCCGTGAGGCCAA ATATCAT	2456	ATGATATTGGCCTC ACGGG	4225
15145	15167	CCCGTGAGGCCAAATA TCATTCT	2457	AGAATGATATTGGC CTCAC	4226
15146	15168	CCGTGAGGCCAAATAT CATTCTG	2458	CAGAATGATATTGG CCTCA	4227
15154	15176	CCAAATATCATTCTGA GGGGCCA	2459	TGGCCCCTCAGAATG ATATT	4228
15174	15196	CCACAGTAATTACAAA CTTACTA	2460	TAGTAAGTTGTAAT TACTG	4229
15198	15220	CCGCCATCCCATAACAT TGGGACA	2461	TGTCCAATGTATGG GATGG	4230
15201	15223	CCATCCCATACTGG GACAGAC	2462	GTCTGTCCAATGTA TGGGA	4231
15205	15227	CCCATACTGGGACA GACCTAG	2463	CTAGGTCTGTCCAA TGTAT	4232
15206	15228	CCATACATTGGGACAG ACCTAGT	2464	ACTAGGTCTGTCCA ATGTA	4233
15223	15245	CCTAGTTCAATGAATC TGAGGAG	2465	CTCCTCAGATTCTTG AACT	4234
15263	15285	CCCACCCCTCACACGAT TCTTAC	2466	GTAAAGAATCGTGTG AGGGT	4235
15264	15286	CCACCCCTCACACGATT CTTTACC	2467	GGTAAAGAATCGTGT GAGGG	4236
15267	15289	CCCTCACACGATTCTT ACCTTT	2468	AAAGGTAAAGAATCG TGTGA	4237
15268	15290	CCTCACACGATTCTT ACCTTTC	2469	GAAAGGTAAAGAATC GTGTG	4238
15285	15307	CCTTTCACTTCATCTTG CCCTTC	2470	GAAGGGCAAGATGA AGTGAA	4239
15302	15324	CCCTTCATTATTGCAG CCCTAGC	2471	GCTAGGGCTGCAATA ATGAA	4240
15303	15325	CCTTCATTATTGCAGC CCTAGCA	2472	TGCTAGGGCTGCAAT AATGA	4241
15318	15340	CCCTAGCAACACTCCA CCTCCTA	2473	TAGGAGGTGGAGTGT TGCTA	4242
15319	15341	CCTAGCAACACTCCAC CTCCTAT	2474	ATAGGAGGTGGAGTG TTGCT	4243

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
15331	15353	CCACCTCCTATTCTTGCACGAAA	2475	TTTCGTGCAAGAATA GGAGG	4244
15334	15356	CCTCCTATTCTTGCACGAAACGG	2476	CCGTTTCGTGCAAGA ATAGG	4245
15337	15359	CCTATTCTTGCACGAAACGGGAT	2477	ATCCC GTT CCGTGCA AGAAT	4246
15367	15389	CCCCCTAGGAATCACCTTCCCATT	2478	AATGGGAGGTGATT CTAGG	4247
15368	15390	CCCCTAGGAATCACCTTCCCATT	2479	GAATGGGAGGTGATT CCTAG	4248
15369	15391	CCCTAGGAATCACCTTCCCATT	2480	GGAATGGGAGGTGAT TCCTA	4249
15370	15392	CCTAGGAATCACCTTCCCATT	2481	CGGAATGGGAGGTGAT TTCCT	4250
15381	15403	CCTCCCATTCCGATAAAATCACACC	2482	GGTGATT TTATCGGA ATGGG	4251
15384	15406	CCCATTCCGATAAAATCACCTT	2483	GAAGGTGATT TTATC GGAAT	4252
15385	15407	CCATTCCGATAAAATCACCTT	2484	GGAAGGTGATT TTAT CGGAA	4253
15390	15412	CCGATAAAATCACCTTCCCCT	2485	AGGGT GGAAGGTGAT TTTAT	4254
15402	15424	CCTTCCACCC TTACTACACATC	2486	GATTGTGTAGTAAGG GTGGA	4255
15406	15428	CCACCC TTACTACACATC ATCAAAG	2487	CTTGATTGTGTAGTA AGGG	4256
15409	15431	CCCTTACTACACAAATC AAAGACG	2488	CGTCTT GATTGTGTA GTAA	4257
15410	15432	CCTTACTACACAAATCA AAGACGC	2489	GCGTCTT GATTGTGTA AGTA	4258
15432	15454	CCCTCGGCTTACTTCTC TTCCTT	2490	AAGGAAGAGAAGTA AGCCGA	4259
15433	15455	CCTCGGCTTACTTCTC TCCTTC	2491	GAAGGAAGAGAAGT AAGCCG	4260
15451	15473	CCTTCTCTCCTTAATGA CATTAA	2492	TTAATGTCATTAAGG AGAGA	4261
15459	15481	CCTTAATGACATTAAC ACTATTC	2493	GAATAGTGTAAATGT CATTA	4262
15485	15507	CCAGACCTCCTAGGCG ACCCAGA	2494	TCTGGGT CGCCTAGG AGGTC	4263
15490	15512	CCTCCTAGGCGACCCA GACAATT	2495	AATTGTCTGGGTCGC CTAGG	4264
15493	15515	CCTAGGCGACCCAGAC AATTATA	2496	TATAATTGTCTGGGT CGCCT	4265
15502	15524	CCCAGACAATTATAACC	2497	TGGCTAGGGTATAAT	4266

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		CTAGCCA		TGTCT	
15503	15525	CCAGACAATTATAACCC TAGCCAA	2498	TTGGCTAGGGTATAA TTGTC	4267
15516	15538	CCCTAGCCAACCCCTT AAACACC	2499	GGTGTAAAGGGGTT GGCTA	4268
15517	15539	CCTAGCCAACCCCTTA AACACCC	2500	GGGTGTAAAGGGGT TGGCT	4269
15522	15544	CCAACCCCTTAAACAC CCCTCCC	2501	GGGAGGGGTGTTAA GGGGT	4270
15526	15548	CCCCTAAACACCCCT CCCCACA	2502	TGTGGGGAGGGGTGT TTAAG	4271
15527	15549	CCCTAAACACCCCTC CCCACAT	2503	ATGTGGGGAGGGGTG TTAA	4272
15528	15550	CCTAAACACCCCTCC CCACATC	2504	GATGTGGGGAGGGGT GTTA	4273
15537	15559	CCCCTCCCCACATCAA GCCGAA	2505	TTCGGGCTTGATGTG GGGAG	4274
15538	15560	CCCTCCCCACATCAAG CCCGAAT	2506	ATTCGGGCTTGATGT GGGGA	4275
15539	15561	CCTCCCCACATCAAGC CCGAATG	2507	CATTGGGCTTGATG TGGGG	4276
15542	15564	CCCCACATCAAGCCCG AATGATA	2508	TATCATTGGGCTTG ATGTG	4277
15543	15565	CCCACATCAAGCCCGA ATGATAT	2509	ATATCATTGGGCTT GATGT	4278
15544	15566	CCACATCAAGCCCGAA TGATATT	2510	AATATCATTGGGCT TGATG	4279
15554	15576	CCCGAATGATATTCC TATTCGC	2511	GCGAATAGGAAATAT CATTC	4280
15555	15577	CCGAATGATATTCC ATTGCC	2512	GGCGAATAGGAAATA TCATT	4281
15568	15590	CCTATTGCCTACACA ATTCTCC	2513	GGAGAATTGTGTAGG CGAAT	4282
15576	15598	CCTACACAATTCTCCG ATCCGTC	2514	GACGGATCGGAGAAT TGTGT	4283
15589	15611	CCGATCCGTCCCTAAC AAACTAG	2515	CTAGTTGTTAGGGA CGGAT	4284
15594	15616	CCGTCCCTAACAAACT AGGAGGC	2516	GCCTCCTAGTTGTTA GGGA	4285
15598	15620	CCCTAACAAACTAGGA GGCGTCC	2517	GGACGCCTCCTAGTT TGTGA	4286
15599	15621	CCTAACAAACTAGGAG GCGTCCT	2518	AGGACGCCTCCTAGT TTGTT	4287
15619	15641	CCTTGCCTATTACTAT CCATCC	2519	GGATGGATAGTAATA GGGCA	4288

55

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
15624	15646	CCCTATTACTATCCATC CTCATC	2520	GATGAGGATGGATAG TAATA	4289
15625	15647	CCTATTACTATCCATCC TCATCC	2521	GGATGAGGATGGATA GTAAT	4290
15636	15658	CCATCCTCATCCTAGC AATAATC	2522	GATTATTGCTAGGAT GAGGA	4291
15640	15662	CCTCATCCTAGCAATA ATCCCCA	2523	TGGGGATTATTGCTA GGATG	4292
15646	15668	CCTAGCAATAATCCCC ATCCTCC	2524	GGAGGATGGGGATTA TTGCT	4293
15658	15680	CCCCATCCTCCATATA TCCAAAC	2525	GTTTGGATATATGGA GGATG	4294
15659	15681	CCCATCCTCCATATAT CCAAACA	2526	TGTTTGGATATATGG AGGAT	4295
15660	15682	CCATCCTCCATATATC CAAACAA	2527	TTGTTTGGATATATG GAGGA	4296
15664	15686	CCTCCATATATCCAAA CAACAAA	2528	TTTGTGTTGGATAT ATGG	4297
15667	15689	CCATATATCCAAACAA CAAAGCA	2529	TGCTTGTGTTGGATAT TATA	4298
15675	15697	CCAAACAAACAAAGCAT AATATT	2530	AAATATTATGCTTGT TGTT	4299
15700	15722	CCCACTAAGCCAATCA CTTTATT	2531	AATAAAGTGATTGGC TTAGT	4300
15701	15723	CCACTAAGCCAATCAC TTTATTG	2532	CAATAAAGTGATTGG CTTAG	4301
15709	15731	CCAATCACTTATTGA CTCCTAG	2533	CTAGGAGTCAATAAA GTGAT	4302
15727	15749	CCTAGCCGCAGACCTC CTCATTG	2534	GAATGAGGAGGTCTG CGGCT	4303
15732	15754	CCGCAGACCTCCTCAT TCTAAC	2535	GGTTAGAATGAGGAG GTCTG	4304
15739	15761	CCTCCTCATTCTAACCT GAATCG	2536	CGATTCAAGGTTAGAA TGAGG	4305
15742	15764	CCTCATTCTAACCTGA ATCGGAG	2537	CTCCGATTCAAGGTTA GAATG	4306
15753	15775	CCTGAATCGGAGGACA ACCAGTA	2538	TACTGGTTGCCTCCG ATTC	4307
15770	15792	CCAGTAAGCTACCCTT TTACCAT	2539	ATGGTAAAAGGGTAG CTTAC	4308
15781	15803	CCCTTTACCATCATTG GACAAG	2540	CTTGTCCAATGATGG TAAAAA	4309
15782	15804	CCTTTTACCATCATTGG ACAAGT	2541	ACTGTCCAATGATG GTAAA	4310
15789	15811	CCATCATTGGACAAGT	2542	GGATGCTACTTGTCC	4311

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
		AGCATCC		AATGA	
15810	15832	CCGTACTATACTTCAC AACAAATC	2543	GATTGTTGTGAAGTA TAGTA	4312
15832	15854	CCTAACCTAACATACCA ACTATCT	2544	AGATAGTTGGTATTA GGATT	4313
15838	15860	CCTAACATACCAACTATC TCCCTAA	2545	TTAGGGAGATAGTTG GTATT	4314
15845	15867	CCAACATATCTCCCTAA TTGAAAAA	2546	TTTCAATTAGGGAG ATAGT	4315
15855	15877	CCCTAACATTGAAAACAA AATACTC	2547	GAGTATTTGTTTCA ATTA	4316
15856	15878	CCTAACATTGAAAACAAA ATACTCA	2548	TGAGTATTTGTTTCA AATT	4317
15885	15907	CCTGTCTTGTAGTAT AAACTAA	2549	TTAGTTATACTACA AGGAC	4318
15890	15912	CCTTGTAGTATAAACT AATACAC	2550	GTGTATTAGTTATAC TACA	4319
15912	15934	CCAGTCTTGTAAACCG GAGATGA	2551	TCATCTCCGGTTACA AGAC	4320
15925	15947	CCGGAGATGAAAACCT TTTCCA	2552	TGGAAAAAGGTTTC ATCTC	4321
15938	15960	CCTTTTCCAAGGACA AATCAGA	2553	TCTGATTGTCCTTGG AAAA	4322
15945	15967	CCAAGGACAAATCAGA GAAAAAG	2554	CTTTTCTCTGATTG TCCT	4323
15977	15999	CCACCATTAGCACCCA AAGCTAA	2555	TTAGCTTGGGTGCT AATGG	4324
15980	16002	CCATTAGCACCCAAAG CTAAGAT	2556	ATCTTAGCTTGGGT GCTAA	4325
15989	16011	CCCAAAGCTAAGATTTC TAATTAA	2557	TAAATTAGAATCTTA GCTTT	4326
15990	16012	CCAAAGCTAAGATTCT AATTAA	2558	TTAAATTAGAATCTT AGCTT	4327
16052	16074	CCACCCAAGTATTGAC TCACCCA	2559	TGGGTGAGTCAATAC TTGGG	4328
16055	16077	CCCAAGTATTGACTCA CCCATCA	2560	TGATGGGTGAGTCAA TACTT	4329
16056	16078	CCAAGTATTGACTCAC CCATCAA	2561	TTGATGGGTGAGTCA ATACT	4330
16071	16093	CCCATCAACAAACCGCT ATGTATT	2562	AATACATAGCGGTTG TTGAT	4331
16072	16094	CCATCAACAAACCGCTA TGTATT	2563	AAATACATAGCGGTT GTTGA	4332
16082	16104	CCGCTATGTATTTCGT ACATTAC	2564	GTAATGTACGAAATA CATAG	4333

5

10

15

20

25

30

35

40

45

50

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
16107	16129	CCAGGCCACCATGAATA TTGTACG	2565	CGTACAATATTCATG GTGGC	4334
16111	16133	CCACCATGAATATTGT ACGGTAC	2566	GTACCGTACAATATT CATGG	4335
16114	16136	CCATGAATATTGTACG GTACCAT	2567	ATGGTACCGTACAAT ATTCA	4336
16133	16155	CCATAAATACTTGACC ACCTGTA	2568	TACAGGTGGTCAAGT ATTAA	4337
16147	16169	CCACCTGTAGTACATA AAAACCC	2569	GGGTTTTATGTACTA CAGG	4338
16150	16172	CCTGTAGTACATAAAA ACCCAAT	2570	ATTGGGTTTTATGTA CTAC	4339
16167	16189	CCCAATCCACATCAAA ACCCCCT	2571	AGGGGGTTTGATGT GGATT	4340
16168	16190	CCAATCCACATCAAAA CCCCCCTC	2572	GAGGGGGTTTGATG TGGAT	4341
16173	16195	CCACATCAAAACCCCC TCCCCAT	2573	ATGGGGAGGGGGTT TGATG	4342
16184	16206	CCCCCTCCCCATGCTT ACAAGCA	2574	TGCTTGTAAGCATGG GGAGG	4343
16185	16207	CCCCTCCCCATGCTTA CAAGCAA	2575	TTGCTTGTAAGCATG GGGAG	4344
16186	16208	CCCTCCCCATGCTTAC AAGCAAG	2576	CTTGCTTGTAAGCAT GGGGA	4345
16187	16209	CCTCCCCATGCTTACA AGCAAGT	2577	ACTTGCTTGTAAGCA TGGGG	4346
16190	16212	CCCCATGCTTACAAGC AAGTACA	2578	TGTACTTGCTTGTAA GCATG	4347
16191	16213	CCCATGCTTACAAGCA AGTACAG	2579	CTGTACTTGCTTGTAA GCAT	4348
16192	16214	CCATGCTTACAAGCAA GTACAGC	2580	GCTGTACTTGCTTGTAA AGCA	4349
16221	16243	CCCTCAACTATCACAC ATCAACT	2581	AGTTGATGTGTGATA GTTGA	4350
16222	16244	CCTCAACTATCACACA TCAACTG	2582	CAGTTGATGTGTGAT AGTTG	4351
16250	16272	CCAAAGCCACCCCTCA CCCACTA	2583	TAGGGGTGAGGGGT GGCTT	4352
16256	16278	CCACCCCTCACCCACT AGGATAC	2584	GTATCCTAGTGGGTG AGGGG	4353
16259	16281	CCCCTCACCCACTAGG ATACCAA	2585	TTGGTATCCTAGTGG GTGAG	4354
16260	16282	CCCTCACCCACTAGGA TACCAAC	2586	GTTGGTATCCTAGTG GGTGA	4355
16261	16283	CCTCACCCACTAGGAT	2587	TGTTGGTATCCTAGT	4356

55

	Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
5			ACCAACA		GGGTG	
10	16266	16288	CCCACTAGGATACCAA CAAACCT	2588	AGGTTTGTGTTGATC CTAGT	4357
15	16267	16289	CCACTAGGATACCAAC AAACCTA	2589	TAGGTTTGTGTTGATC CTAG	4358
20	16278	16300	CCAACAAACCTACCCA CCCTTAA	2590	TTAAGGGTGGGTAGG TTTGT	4359
25	16286	16308	CCTACCCACCCTTAAC AGTACAT	2591	ATGTACTGTTAACAGG TGGGT	4360
30	16290	16312	CCCACCCCTTAACAGTA CATAGTA	2592	TACTATGTTAACAGG AGGGT	4361
35	16291	16313	CCACCCCTTAACAGTAC ATAGTAC	2593	GTACTATGTTAACAGG AAGGG	4362
40	16294	16316	CCCTTAACAGTACATA GTACATA	2594	TATGTACTATGTTAAC GTAA	4363
45	16295	16317	CCTTAACAGTACATAG TACATAA	2595	TTATGTACTATGTTAAC GTAA	4364
50	16320	16342	CCATTACCGTACATA GCACATT	2596	AATGTGCTATGTACG GTAAA	4365
	16327	16349	CCGTACATAGCACATT ACAGTCA	2597	TGACTGTAATGTGCT ATGTA	4366
	16353	16375	CCCTTCTCGTCCCCATG GATGAC	2598	GTCATCCATGGGGAC GAGAA	4367
	16354	16376	CCTTCTCGTCCCCATG GATGACC	2599	GGTCATCCATGGGGAC CGAGA	4368
	16363	16385	CCCCATGGATGACCCCC CCTCAGA	2600	TCTGAGGGGGTCAT CCATG	4369
	16364	16386	CCCATGGATGACCCCC CTCAGAT	2601	ATCTGAGGGGGTCAT TCCAT	4370
	16365	16387	CCATGGATGACCCCC TCAGATA	2602	TATCTGAGGGGGTCAT ATCCA	4371
	16375	16397	CCCCCCTCAGATAGGG GTCCCTT	2603	AAGGGACCCCTATCT GAGGG	4372
	16376	16398	CCCCCCTCAGATAGGGG TCCCTTG	2604	CAAGGGACCCCTATC TGAGG	4373
	16377	16399	CCCCTCAGATAGGGGT CCCTTGA	2605	TCAAGGGACCCCTAT CTGAG	4374
	16378	16400	CCCTCAGATAGGGTC CCTTGAC	2606	GTCAAGGGACCCCTA TCTGA	4375
	16379	16401	CCTCAGATAGGGTCC CTTGACC	2607	GGTCAAGGGACCCCT ATCTG	4376
	16393	16415	CCCTGACCACCATCC TCCGTGA	2608	TCACGGAGGATGGT GTCAA	4377
	16394	16416	CCTGACCACCATCCT CCGTGAA	2609	TTCACGGAGGATGGT GGTCA	4378

Chr start position (+ strand)	Chr end position (+ strand)	nt sequence on the (+) strand containing CCN sequence followed by the reverse complementary sequence of gRNA target sequence	SEQ ID NO	20 nt gRNA target sequence (will encode the gRNA targeting sequence)	SEQ ID NO
16400	16422	CCACCATCCTCCGTGA AATCAAT	2610	ATTGATTCACGGAG GATGG	4379
16403	16425	CCATCCTCCGTGAAAT CAATATC	2611	GATATTGATTCACG GAGGA	4380
16407	16429	CCTCCGTGAAATCAAT ATCCCGC	2612	GCGGGATATTGATT CACGG	4381
16410	16432	CCGTGAAATCAATATC CCGCACA	2613	TGTGCGGGATATTGA TTTCA	4382
16425	16447	CCCGCACAAAGAGTGCT ACTCTCC	2614	GGAGAGTAGCACTCT TGTGC	4383
16426	16448	CCGCACAAGAGTGCTA CTCTCCT	2615	AGGAGAGTAGCACTC TTGTG	4384
16446	16468	CCTCGCTCCGGGCCA TAACACT	2616	AGTGTATGGGCCG GAGCG	4385
16453	16475	CCGGGCCATAACACT TGGGGGT	2617	ACCCCCAAGTGTATT GGGCC	4386
16458	16480	CCCATAACACTTGGGG GTAGCTA	2618	TAGCTACCCCCAAGT GTTAT	4387
16459	16481	CCATAACACTTGGGG TAGCTAA	2619	TTAGCTACCCCCAAG TGTAA	4388
16494	16516	CCGACATCTGGTTCC ACTTCAG	2620	CTGAAGTAGGAACCA GATGT	4389
16507	16529	CCTACTTCAGGGTCAT AAAGCCT	2621	AGGCTTATGACCT GAAGT	4390
16527	16549	CCTAAATAGCCCCACAC GTTCCCC	2622	GGGAAACGTGTGGGC TATT	4391
16536	16558	CCCACACGTTCCCCTT AAATAAG	2623	CTTATTAAAGGGAA CGTGT	4392
16537	16559	CCACACGTTCCCCTTA AATAAGA	2624	TCTTATTAAAGGGGA ACGTG	4393
16546	16568	CCCCTTAAATAAGACAC TCACGAT	2625	ATCGTGATGTCTTATT TAAG	4394
16547	16569	CCCTTAAATAAGACAT CACGATG	2626	CATCGTGATGTCTTAT TTAA	4395
16548	16570	CCTTAAATAAGACATC ACGATGG	2627	CCATCGTGATGTCTT ATTAA	4396

Applications

[0227] The gNAs (e.g., gRNAs) and collections of gNAs (e.g., gRNAs) provided herein are useful for a variety of applications, including depletion, partitioning, capture, or enrichment of target sequences of interest; genome-wide labeling; genome-wide editing; genome-wide function screens; and genome-wide regulation.

[0228] In one embodiment, the gNAs are selective for host nucleic acids in a biological sample from a host, but are not selective for non-host nucleic acids in the sample from a host. In one embodiment, the gNAs are selective for non-host nucleic acids from a biological sample from a host but are not selective for the host nucleic acids in the sample. In one embodiment, the gNAs are selective for both host nucleic acids and a subset of the non-host nucleic acids in a biological sample from a host. For example, where a complex biological sample comprises host nucleic acids and nucleic acids from more than one non-host organisms, the gRNAs may be selective for more than one of the non-host species. In such embodiments, the gNAs are used to serially deplete or partition the sequences that are not of interest. For example, saliva from a human contains human DNA, as well as the DNA of more than one bacterial species, but may

also contain the genomic material of an unknown pathogenic organism. In such an embodiment, gNAs directed at the human DNA and the known bacteria can be used to serially deplete the human DNA, and the DNA of the known bacterial, thus resulting in a sample comprising the genomic material of the unknown pathogenic organism.

[0229] In an exemplary embodiment, the gNAs are selective for human host DNA obtained from a biological sample from the host, but do not hybridize with DNA from an unknown pathogen(s) also obtained from the sample.

[0230] In some embodiments, the gNAs are useful for depleting and partitioning of targeted sequences in a sample, enriching a sample for non-host nucleic acids, or serially depleting targeted nucleic acids in a sample comprising: providing nucleic acids extracted from a sample; and contacting the sample with a plurality of complexes comprising (i) any one of the collection of gNAs described herein and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins.

[0231] In some embodiments, the gNAs are useful for method of depletion and partitioning of targeted sequences in a sample comprising: providing nucleic acids extracted from a sample, wherein the extracted nucleic acids comprise sequences of interest and targeted sequences for one of depletion and partitioning; contacting the sample with a plurality of complexes comprising (i) a collection of gNAs provided herein; and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins, under conditions in which the nucleic acid-guided nuclease system proteins cleave the nucleic acids in the sample.

[0232] In some embodiments, the gNAs are useful for enriching a sample for non-host nucleic acids comprising: providing a sample comprising host nucleic acids and non-host nucleic acids; contacting the sample with a plurality of complexes comprising (i) a collection of gNAs provided herein comprising targeting sequences directed at the host nucleic acids; and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins, under conditions in which the nucleic acid-guided nuclease system proteins cleave the host nucleic acids in the sample, thereby depleting the sample of host nucleic acids, and allowing for the enrichment of non-host nucleic acids..

[0233] In some embodiments, the gNAs are useful for one method for serially depleting targeted nucleic acids in a sample comprising: providing a biological sample from a host comprising host nucleic acids and non-host nucleic acids, wherein the non-host nucleic acids comprise nucleic acids from at least one known non-host organism and nucleic acids from an unknown non-host organism; providing a plurality of complexes comprising (i) a collection of gNAs provided herein, directed at the host nucleic acids; and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins; mixing the nucleic acids from the biological sample with the gNA-nucleic acid-guided nuclease system protein complexes (e.g., gRNA-CRISPR/Cas system protein complexes) configured to hybridize to targeted sequences in the host nucleic acids, wherein at least a portion of the complexes hybridizes to the targeted sequences in the host nucleic acids, and wherein at least a portion of the host nucleic acids are cleaved; mixing the remaining nucleic acids from the biological sample with the gNA-nucleic acid-guided nuclease system protein complexes configured to hybridize to targeted sequences in the at least one known non-host nucleic acids, wherein at least a portion of the complexes hybridizes to the targeted sequences in the at least one non-host nucleic acids, and wherein at least a portion of the non-host nucleic acids are cleaved; and isolating the remaining nucleic acids from the unknown non-host organism and preparing for further analysis.

[0234] In some embodiments, the gNAs generated herein are used to perform genome-wide or targeted functional screens in a population of cells. In such an embodiment, libraries of *in vitro*-transcribed gNAs (e.g., gRNAs) or vectors encoding the gNAs can be introduced into a population of cells via transfection or other laboratory techniques known in the art, along with a nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein, in a way that gNA-directed nucleic acid-guided nuclease system protein editing can be achieved to sequences across the entire genome or to a specific region of the genome. In one embodiment, the nucleic acid-guided nuclease system protein can be introduced as a DNA. In one embodiment, the nucleic acid-guided nuclease system protein can be introduced as mRNA. In one embodiment, the nucleic acid-guided nuclease system protein can be introduced as protein. In one exemplary embodiment, the nucleic acid-guided nuclease system protein is Cas9.

[0235] In some embodiments, the gNAs generated herein are used for the selective capture and/or enrichment of nucleic acid sequences of interest. For example, in some embodiments, the gNAs generated herein are used for capturing target nucleic acid sequences comprising: providing a sample comprising a plurality of nucleic acids; and contacting the sample with a plurality of complexes comprising (i) a collection of gNAs provided herein; and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins. Once the sequences of interest are captured, they can be further ligated to create, for example, a sequencing library.

[0236] In some embodiments, the gNAs generated herein are used for introducing labeled nucleotides at targeted sites of interest comprising: (a) providing a sample comprising a plurality of nucleic acid fragments; (b) contacting the sample with a plurality of complexes comprising (i) a collection of gNAs provided herein; and (ii) nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein-nickases (e.g. Cas9-nickases), wherein the gNAs are complementary to targeted sites of interest in the nucleic acid fragments, thereby generating a plurality of nicked nucleic acid fragments at the targeted sites of interest; and (c) contacting the plurality of nicked nucleic acid fragments with an enzyme capable of initiating nucleic acid synthesis at a nicked site, and labeled nucleotides, thereby generating a plurality of nucleic acid

fragments comprising labeled nucleotides in the targeted sites of interest.

[0237] In some embodiments, the gNAs generated herein are used for capturing target nucleic acid sequences of interest comprising: (a) providing a sample comprising a plurality of adapter-ligated nucleic acids, wherein the nucleic acids are ligated to a first adapter at one end and are ligated to a second adapter at the other end; and (b) contacting the sample with a collection of gNAs which comprise a plurality of dead nucleic acid-guided nuclease-gNA complexes (e.g., dCas9-gRNA complexes), wherein the dead nucleic acid-guided nuclease (e.g., dCas9) is fused to a transposase, wherein the gNAs are complementary to targeted sites of interest contained in a subset of the nucleic acids, and wherein the dead nucleic acid-guided nuclease-gNA transposase complexes (e.g., dCas9-gRNA transposase complexes) are loaded with a plurality of third adapters, to generate a plurality of nucleic acids fragments comprising either a first or second adapter at one end and a third adapter at the other end. In one embodiment the method further comprises amplifying the product of step (b) using first or second adapter and third adapter-specific PCR.

[0238] In some embodiments, the gNAs generated herein are used to perform genome-wide or targeted activation or repression in a population of cells. In such an embodiment, libraries of *in vitro*-transcribed gNAs (e.g., gRNAs) or vectors encoding the gNAs can be introduced into a population of cells via transfection or other laboratory techniques known in the art, along with a catalytically dead nucleic acid-guided nuclease (e.g., CRISPR/Cas) system protein fused to an activator or repressor domain (catalytically dead nucleic acid-guided nuclease system protein-fusion protein), in a way that gNA-directed catalytically dead nucleic acid-guided nuclease system protein-mediated activation or repression can be achieved at sequences across the entire genome or to a specific region of the genome. In one embodiment, the catalytically dead nucleic acid-guided nuclease system protein -fusion protein can be introduced as DNA. In one embodiment, the catalytically dead nucleic acid-guided nuclease system protein -fusion protein can be introduced as mRNA. In one embodiment, the catalytically dead nucleic acid-guided nuclease system protein-fusion protein can be introduced as protein. In some embodiments, the collection of gNAs or nucleic acids encoding for gNAs exhibit specificity for more than one nucleic acid-guided nuclease system protein. In one exemplary embodiment, the catalytically dead nucleic acid-guided nuclease system protein is dCas9.

[0239] In some embodiments, the collection comprises gRNAs or nucleic acids encoding for gRNAs with specificity for Cas9 and one or more CRISPR/Cas system proteins selected from the group consisting of Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2, and Cm5. In some embodiments, the collection comprises gRNAs or nucleic acids encoding for gRNAs with specificity for various catalytically dead CRISPR/Cas system proteins fused to different fluorophores, for example for use in the labeling and/or visualization of different genomes or portions of genomes, for use in the labeling and/or visualization of different chromosomal regions, or for use in the labeling and/or visualization of the integration of viral genes/genomes into a genome.

[0240] In some embodiments, the collection of gNAs (or nucleic acids encoding for gNAs) have specificity for different nucleic acid-guided nuclease (e.g., CRISPR/Cas) system proteins, and target different sequences of interest, for example from different species. For example, a first subset of gNAs from a collection of gNAs (or transcribed from a population of nucleic acids encoding such gNAs) targeting a genome from a first species can be first mixed with a first nucleic acid-guided nuclease system protein member (or an engineered version); and a second subset of gNAs from a collection of gNAs (or transcribed from a population of nucleic acids encoding such gNAs) targeting a genome from a second species can be mixed with a second different nucleic acid-guided nuclease system protein member (or an engineered version). In one embodiment, the nucleic acid-guided nuclease system proteins can be a catalytically dead version (for example dCas9) fused with different fluorophores, so that different targeted sequence of interest, e.g. different species genome, or different chromosomes of one species, can be labeled by different fluorescent labels. For example, different chromosomal regions can be labeled by different gRNA-targeted dCas9-fluorophores, for visualization of genetic translocations. For example, different viral genomes can be labeled by different gRNA-targeted dCas9-fluorophores, for visualization of integration of different viral genomes into the host genome. In another embodiment, the nucleic acid-guided nuclease system protein can be dCas9 fused with either activation or repression domain, so that different targeted sequence of interest, e.g. different chromosomes of a genome, can be differentially regulated. In another embodiment, the nucleic acid-guided nuclease system protein can be dCas9 fused different protein domain which can be recognized by different antibodies, so that different targeted sequence of interest, e.g. different DNA sequences within a sample mixture, can be differentially isolated.

[0241] The following examples are included for illustrative purposes and are not intended to limit the scope of the invention.

EXAMPLES

Example 1: Construction of a gRNA library from a T7 promoter human DNA library

T7 promoter library construction

[0242] Human genomic DNA (400 ng) was fragmented using an S2 Covaris sonicator (Covaris) for 8 cycles, to yield

fragments of 200-300 bp in length. Fragmented DNA was repaired using the NEBNext End Repair Module (NEB) and incubated at 25 °C for 30 min, then heat inactivated at 75 °C for 20 min. To make T7 promoter adapters, oligos T7-1 (5'GCCTCGAGC*T*A*ATACGACTCACTATAGAG3', * denotes a phosphorothioate backbone linkage)(SEQ ID NO: 4397) and T7-2 (sequence 5'Phos-CTCTATAGTGAGTCGTATTA3') (SEQ ID NO: 4398) were admixed at 15 μ M, heated to 98 °C for 3 min then cooled slowly (0.1 °C/min) to 30 °C. T7 promoter blunt adapters (15 pmol total) were then added to the blunt-ended human genomic DNA fragments, and incubated with Blunt/TA Ligase Master Mix (NEB) at 25 °C for 30 min ((2) in FIG. 1). Ligations were amplified with 2 μ M oligo T7-1, using Hi-Fidelity 2X Master Mix (NEB) for 10 cycles of PCR (98 °C for 20 s, 63 °C for 20 s, 72 °C for 35 s). Amplification was verified by running a small aliquot on agarose gel electrophoresis. PCR amplified products were recovered using 0.6X AxyPrep beads (Axygen) according to the manufacturer's instructions, and resuspended in 15 μ L of 10 mM Tris-HCl pH 8.

Digestion of DNA

[0243] PCR amplified T7 promoter DNA (2 μ g total per digestion) was digested with 0.1 μ L of Nt.CviPII (NEB) in 10 μ L of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl pH 7.9, 10 mM MgCl₂, 100 μ g/mL BSA) for 10 min at 37 °C ((3) in FIG. 1), then heat inactivated at 75 °C for 20 min. An additional 10 μ L of NEB buffer 2 with 1 μ L of T7 Endonuclease I (NEB) was added to the reaction, and incubated at 37 °C for 20 min ((4) in FIG. 1). Enzymatic digestion of DNA was verified by agarose gel electrophoresis. Digested DNA was recovered by adding 0.6X AxyPrep beads (Axygen), according to the manufacturer's instructions, and resuspended in 15 μ L of 10 mM Tris-HCl pH 8.

Ligation of adapters and removal of HGG

[0244] DNA was then blunted using T4 DNA Polymerase (NEB) for 20 min at 25 °C, followed by heat inactivation at 75 °C for 20 min ((5) in FIG. 1).

[0245] To make Mlyl adapters, oligos Mlyl-1 (sequence 5'>3', 5'Phos-GGGACTCGGATCCCTATAGTGATACAAAGACGATGACGACAAGCG) (SEQ ID NO: 4399) and Mlyl-2 (sequence 5'>3', TCACTATAGGGATCCGAGTCCC) (SEQ ID NO: 4400) were admixed at 15 μ M, heated to 98 °C for 3 min then cooled slowly (0.1 °C/min) to 30 °C. Mlyl adapters (15 pmol total) were then added to T4 DNA Polymerase-blunted DNA, and incubated with Blunt/TA Ligase Master Mix (NEB) at 25 °C for 30 min ((6) in FIG. 1). Ligations were heat inactivated at 75 °C for 20 min, then digested with Mlyl and Xhol (NEB) for 1 hr at 37 °C, so that HGG motifs are eliminated ((7) in FIG. 1). Digests were then cleaned using 0.8X AxyPrep beads (Axygen), and DNA was resuspended in 10 μ L of 10 mM Tris-Cl pH 8.

[0246] To make StlgR adapters, oligos stlgR (sequence 5'>3', 5'Phos-GTTTAGAGCTAGAAATAGCAAGTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG GCACCGAGTCGGT-GCTTTTTGGATCCGATGC) (SEQ ID NO: 4401) and stlgRev (sequence 5'>3', GGATCCAAAAAAAGCACCGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATT TTAACCTGCTATT-TCTAGCTCTAAAAC) (SEQ ID NO: 4402) were admixed at 15 μ M, heated to 98 °C for 3 min then cooled slowly (0.1 °C/min) to 60 °C. StlgR adapters (5 pmol total) were added to HGG-removed DNA fragments, and incubated with Blunt/TA Ligase Master Mix (NEB) at 25 °C for 30 min ((8) in FIG. 1). Ligations were then incubated with Hi-Fidelity 2X Master Mix (NEB), using 2 μ M of both oligos T7-1 and gRU (sequence 5'>3', AAAAAGCACCGACTCGGTG) (SEQ ID NO: 4403), and amplified using 20 cycles of PCR (98 °C for 20 s, 60 °C for 20 s, 72 °C for 35 s). Amplification was verified by running a small aliquot on agarose gel electrophoresis. PCR amplified products were recovered using 0.6X AxyPrep beads (Axygen) according to the manufacturer's instructions, and resuspended in 15 μ L of 10mM Tris-HCl pH 8.

In vitro transcription

[0247] The T7/gRU amplified library of PCR products was then used as template for *in vitro* transcription, using the HiScribe T7 *In Vitro* Transcription Kit (NEB). 500-1000 ng of template was incubated overnight at 37 °C according to the manufacturer's instructions. To transcribe the guide libraries into gRNAs, the following *in vitro* transcription reaction mixture was assembled: 10 μ L of purified library (~500 ng), 6.5 μ L of H₂O, 2.25 μ L of ATP, 2.25 μ L of CTP, 2.25 μ L of GTP, 2.25 μ L of UTP, 2.25 μ L of 10X reaction buffer (NEB) and 2.25 μ L of T7 RNA Polymerase mix. The reaction was incubated at 37 °C for 24 hr, then purified using the RNA cleanup kit (Life Technologies), eluted with 100 μ L of RNase-free water, quantified and stored at -20 °C until use.

Example 2: Construction of gRNA library from intact human genomic DNA

Digestion of DNA

[0248] Human genomic DNA ((1) in FIG. 2; 20 μ g total per digestion) was digested with 0.1 μ L of Nt.CviPII (NEB) in

40 μ L of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl pH 7.9, 10 mM MgCl₂, 100 μ g/mL BSA) for 10 min at 37 °C, then heat inactivated at 75 °C for 20 min. An additional 40 μ L of NEB buffer 2 and 1 μ L of T7 Endonuclease I (NEB) was added to the reaction, with 20 min incubation at 37 °C (e.g., (2) in FIG. 2). Fragmentation of genomic DNA was verified with a small aliquot by agarose gel electrophoresis. DNA fragments between 200 and 600 bp were recovered by adding 5 0.3X AxyPrep beads (Axygen), incubating at 25 °C for 5 min, capturing beads on a magnetic stand and transferring the supernatant to a new tube. DNA fragments below 600 bp do not bind to beads at this bead/DNA ratio and remain in the supernatant. 0.7X AxyPrep beads (Axygen) were then added to the supernatant (this will bind all DNA molecules longer than 200 bp), allowed to bind for 5 min. Beads were captured on a magnetic stand and washed twice with 80% ethanol, 10 air dried. DNA was then resuspended in 15 μ L of 10 mM Tris-HCl pH 8. DNA concentration was determined using a Qbit assay (Life Technologies).

Ligation of adapters

15 [0249] To make T7/Mlyl adapters, oligos Mlyl-1 (sequence 5'>3', 5'Phos-GGGGGACTCGGATCCCTATAGTGATA-CAAAGACGATGACGACAAGCG) (SEQ ID NO: 4404) and T7-7 (sequence 5'>3', GCCTCGAGC*T*A*ATACGACT-CACTATAGGGATCCAAGTCCC, * denotes a phosphorothioate backbone linkage) (SEQ ID NO: 4405) were admixed at 15 μ M, heated to 98 °C for 3 min then cooled slowly (0.1 °C/min) to 30 °C. The purified, Nt.CviPII/T7 Endonuclease I digested DNA (100 ng) was then ligated to 15 pmol of T7/Mlyl adapters using Blunt/TA Ligase Master Mix (NEB) at 25 °C for 30 min ((3) in FIG. 2). Ligations were then amplified by 10 cycles of PCR (98 °C for 20 s, 60 °C for 20 s, 72 °C 20 for 35 s) using Hi-Fidelity 2X Master Mix (NEB), and 2 μ M of both oligos T7-17 (GCCTCGAGC*T*A*ATACGACTCAC-TATAGGG * denotes a phosphorothioate backbone linkage) (SEQ ID NO: 4406) and Flag (sequence 5'>3', CGCTT-GTCGTCATCGTCTTGTA) (SEQ ID NO: 4407). PCR amplification increases the yield of DNA and, given the nature 25 of the Y-shaped adapters we used, always resulted in T7 promoter being added distal to the HGG site and Mlyl site being added next to the HGG motif ((4) in FIG. 2).

25 [0250] PCR products were then digested with Mlyl and Xhol (NEB) for 1 hr at 37 °C, and heat inactivated at 75 °C for 20 min ((5) in FIG. 2). Following that, 5 pmol of adapter StlgR (in Example 1) was ligated using Blunt/TA Ligase Master Mix (NEB) at 25 °C for 30 min ((6) in FIG. 2). Ligations were then amplified by PCR using Hi-Fidelity 2X Master Mix (NEB), 2 μ M of both oligos T7-7 and gRU (in Example 1) and 20 cycles of PCR (98 °C for 20 s, 60 °C for 20 s, 72 °C for 35 s). Amplification was verified by running a small aliquot on agarose gel electrophoresis. PCR amplified products 30 were recovered using 0.6X AxyPrep beads (Axygen) according to the manufacturer's instructions, and resuspended in 15 μ L of 10 mM Tris-HCl pH 8.

[0251] Samples were then used as templates for *in vitro* transcription reaction as described in Example 1.

Example 3: Direct Cutting with CviPII

35 [0252] 30 μ g of human genomic DNA was digested with 2 units of NtCviPII (New England Biolabs) for 1 hour at 37 °C, followed by heat inactivation at 75 °C for 20 minutes. The size of the fragments was verified to be 200-1,000 base pairs using a fragment analyzer instrument (Advanced Analytical). The 5' or 3' protruding ends (as shown, for example, in FIG. 3) were converted to blunt ends by adding 100 units of T4 DNA polymerase (New England Biolabs), 100 μ M 40 dNTPs and incubating at 12 °C for 30 minutes. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 20 μ L elution buffer. The DNA was then ligated to Mlyl adapter (see, for example, Example 4) or Bael/EcoP15I adapters 45 (see, for example, Example 4) or Bael/EcoP15I adapters (see, for example, Example 5)

Example 4: Use of Mlyl Adapter

45 [0253] Adapter Mlyl was made by combining 2 μ moles of Mlyl Ad1 and MlyAd2 in 40 μ L water. Adapter BsaXI/Mmel was made by combining 2 μ moles oligo BsMm-Ad1 and 2 μ moles oligo BsMm-Ad2 in 40 μ L water. T7 adapter was made by combining 1.5 μ moles of T7-Ad1 and T7-Ad2 oligos in 100 μ L water. Stem-loop adapter was made by combining 50 1.5 μ moles of gR-top and gR-bot oligos in 100 μ L water. In all cases, after mixing adapters were heated to 98 °C for 3 min then cooled to room temperature at a cooling rate of 1 °C/min in a thermal cycler.

5
10
15
20
25
30
35
40
45
50
55

Table 5. Oligonucleotides used with Mlyl Adapter.

SEQ ID NO	Oligo name	Sequence (5'>3')	Modification
4408	Mlyl-Ad1	gagatcaggctctgcattatgccaggcagcccgagtacg	none
4409	Mlyl-Ad2	ctgactcgggctgttgcataaaaggacgtacgacaaggctta	5'phosphate
4410	BsMm-Ad1	gagatcaggctctgcattatgcGGAGCCGCAGTACACTATCCAAC	none
4411	BsMm-Ad2	GTGGATAGTGTACTGCCCTCtacaaaggacgtacgacaaggcg	5'phosphate
4412	T7-Ad1	gcctcgagctaatacgtactactatagagNN	none
4398	T7-Ad2	Ctctatagttatgcgttata	5'phosphate
4413	gR-top	ttagaggcttagaaatagcaaggtaaaataaggcttagtcgttatcaacttggcaccggatcggtt	5'phosphate
4414	gR-bot	aaaaaaggaccggactcggtggccacttttcaaggatataacggacttagcctttttaacttgcattttcttagt	none
		ctaaaaac	—

[0254] The DNA containing the CCD blunt ends (from earlier section) was then ligated to 50 pmoles of adapter MlyI, using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. The DNA was then recovered by incubating with 0.6X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4 (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 100 μ g/mL BSA, pH 7.9). These steps eliminate small (<100 nucleotides) DNA and MlyI adapter dimers.

[0255] Purified DNA was then digested by adding 20 units of MlyI (New England Biolabs) and incubating at 37 °C for 1 hour to eliminate both the adapter derived sequences and the CCD (and complementary HGG) motifs. DNA was recovered from the digest by incubating with 0.6X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 30 μ L buffer 4.

[0256] The purified DNA was then ligated to 50 pmoles of adapter BsaXI/Mmel, using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. The DNA was then recovered by incubating with 0.6X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4 (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 100 μ g/mL BSA, pH 7.9). DNA was then digested by addition of 20 units Mmel (New England Biolabs) and 40 pmol/ μ L SAM (S-adenosyl methionine) at 37 °C for 1 hour, followed by heat inactivation at 75 °C for 20 minutes. DNA was then ligated to 30 pmoles T7 adapter using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 20 μ L buffer 4, then digested with 20 units of BsaXI for 1 hour at 37 °C. The guide RNA stem-loop sequences were added by adding 15 pmoles stem-loop adapter and using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 min. DNA was then recovered using a PCR cleanup kit (Zymo), eluted in 20 μ L elution buffer and PCR amplified using HiFidelity 2X master mix (New England Biolabs). Primers T7-Ad1 and gRU (sequence 5'>3' AAAAAAGCACCGACTCGGTG) (SEQ ID NO: 4419) were used to amplify with the following settings (98 °C 3 min; 98 °C for 20 sec, 60 °C for 30 secs, 72 °C for 20 sec, 30 cycles). The PCR amplicon was cleaned up using the PCR cleanup kit and verified by DNA sequencing, then used as template for an in vitro transcription reaction to generate guide RNAs.

Example 5: Use of Bael/EcoP15I Adapter

[0257] Adapter Bael/EcoP15I was made by combining 2 μ moles of BE Ad1 and BE Ad2 in 40 μ L water. T7-E adapter was made by combining 1.5 μ moles of T7-Ad3 and T7-Ad4 oligos in 100 μ L water. In all cases, after mixing adapters were heated to 98 °C for 3 min then cooled to room temperature at a cooling rate of 1 °C/min in a thermal cycler.

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50
55

Table 6. Oligonucleotides used with BaeI/EcoP15I Adapter.

SEQ NO	Oligo name	Sequence (5'>3')	Modification
4415	BE Ad1	ActgcgtacCAAGtatcTTTTTTTTtttaactTTTTTTgtatCACAAgtcagcagA	5'phosphate
4416	Be Ad2	TctgcgtacTTGTgtatcAAAAAAAGtttaaacAAAAAAAGatacTTGTgtcaggagT	5'phosphate
12	T7-Ad3	gcctcgagctaatacgcactcatacgatag	none
4417	T7-Ad4	NNctctatagtgatgcgtatTA	5'phosphate
4418	stlgR	ttagagcttagaaatagca agttaaaaataaggctatccgttatcaactgtggaccggagtgttttt	5'adenylation

[0258] The DNA containing the CCD blunt ends (from earlier section) was then ligated to 50 pmoles of adapter Bael/EcoP15I, using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. The DNA was then recovered by incubating with 0.6X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4 (50 mM potassium acetate 20 mM Tris-acetate, 10 mM magnesium acetate, 100 μ g/mL BSA, pH 7.9). Recovered DNA was then digested with 20 units Pmel for 30 min at 37 °C; DNA was then recovered by incubating with 1.2X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4. These steps eliminate small (<100 nucleotides) DNA and Bael/EcoP15I adapter multimers.

[0259] DNA was then digested by addition of 20 units EcoP15I (New England Biolabs) and 1 mM ATP at 37 °C for 1 hour, followed by heat inactivation at 75 °C for 20 minutes. DNA was then ligated to 30 pmoles T7-E adapter using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 20 μ L buffer 4.

[0260] Purified DNA was then digested by adding 20 units of Bael (New England Biolabs), 40 pmol/ μ L SAM (S-adenosyl methionine) and incubating at 37 °C for 1 hour to eliminate both the adapter derived sequences and the CCD (and complementary HGG) motifs. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 20 μ L elution buffer.

[0261] Recovered DNA was then ligated to the stlgR oligo using Thermostable 5' AppDNA/RNA Ligase

[0262] (New England Biolabs) by adding 20 units ligase, 20 pmol stlgR oligo, in 20 μ L ss ligation buffer (10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM DTT, 2.5 mM MnCl₂, pH 7 @ 25 °C) and incubating at 65 °C for 1 hour followed by heat inactivation at 90 °C for 5 min. DNA product was then PCR amplified using HiFidelity 2X master mix (New England Biolabs). Primers T7-Ad3 and gRU (sequence 5'>3' AAAAAAGCACCGACTCGGTG) (SEQ ID NO: 4419) were used to amplify with the following settings (98 °C 3 min; 98 °C for 20 sec, 60 °C for 30 secs, 72 °C for 20 sec, 30 cycles). The PCR amplicon was cleaned up using the PCR cleanup kit and verified by DNA sequencing, then used as template for an in vitro transcription reaction to generate the guide RNAs.

Example 6: NEMDA Method

[0263] NEMDA (Nicking Endonuclease Mediated DNA Amplification) was performed using 50 ng of human genomic DNA. The DNA was incubated in 100 μ L thermo polymerase buffer (20 mM Tris-HCl, 10 mM (NH₄)₂SO₄, 10 mM KCl, 6 mM MgSO₄, 0.1% Triton® X-100, pH 8.8) supplemented with 0.3 mM dNTPs, 40 units of Bst large fragment DNA polymerase, and 0.1 units of NtCviPII (New England Biolabs) at 55 °C for 45 min, followed by 65 °C for 30 min and finally 80 °C for 20 min in a thermal cycler.

[0264] The DNA was then diluted with 300 μ L of buffer 4 supplemented with 200 pmoles of T7-RND8 oligo (sequence 5'>3' gcctcgagctaatacgactcaactatagagnnnnnnn) (SEQ ID NO: 4420) and boiled at 98 °C for 10 min followed by rapid cooling to 10 °C for 5 min. The reaction was then supplemented with 40 units of *E. coli* DNA polymerase I and 0.1 mM dNTPs (New England Biolabs) and incubated at room temperature for 20 min followed by heat inactivation at 75 °C for 20 min. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 30 μ L elution buffer.

[0265] DNA was then ligated to 50 pmoles of adapter Bael/EcoP15I, using the blunt/TA ligation master mix (New England Biolabs) at room temperature for 30 minutes. The DNA was then recovered by incubating with 0.6X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4 (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 100 μ g/mL BSA, pH 7.9). Recovered DNA was then digested with 20 units Pmel for 30 min at 37 °C; DNA was then recovered by incubating with 1.2X Kapa SPRI beads (Kapa Biosystems) for 5 minutes, capturing the beads with a magnetic rack, washing twice with 80% ethanol, air drying the beads for 5 minutes and finally resuspending the DNA in 50 μ L buffer 4. These steps eliminate small (<100 nucleotides) DNA and Bael/EcoP15I adapter multimers.

[0266] Purified DNA was then digested by adding 20 units of Bael (New England Biolabs), 40 pmol/ μ L SAM (S-adenosyl methionine) and incubating at 37 °C for 1 hour to eliminate both the adapter derived sequences and the CCD (and complementary HGG) motifs. DNA was then recovered using a PCR cleanup kit (Zymo) and eluted in 20 μ L elution buffer.

[0267] Recovered DNA was then ligated to the stlgR oligo using Thermostable 5' AppDNA/RNA Ligase (New England Biolabs) by adding 20 units ligase, 20 pmol stlgR oligo, in 20 μ L ss ligation buffer (10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM DTT, 2.5 mM MnCl₂, pH 7 @ 25 °C) and incubating at 65 °C for 1 hour followed by heat inactivation at 90 °C for 5 min. DNA product was then PCR amplified using HiFidelity 2X master mix (New England Biolabs). Primers T7-Ad3 (sequence 5'>3' gcctcgagctaatacgactcaactatagag) (SEQ ID NO: 12) and gRU (sequence 5'>3' AAAAAAGCACCGACTCGGTG) (SEQ ID NO: 4419) were used to amplify with the following settings (98 °C for 3 min; 98 °C for 20 sec, 60 °C for 30 secs, 72 °C for 20 sec, 30 cycles). The PCR amplicon was cleaned up using the PCR cleanup kit and verified

by DNA sequencing, then used as template for an in vitro transcription reaction to generate the guide RNAs.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 62264262 [0001]
- US 62298963 [0001]
- US 5948902 A [0028]
- US 20050233340 A [0028]

Non-patent literature cited in the description

- **AUSUBEL et al.** Short Protocols in Molecular Biology. Wiley & Sons, 1995 [0037]
- **SAMBROOK et al.** Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 2001 [0037]
- **F.A. RAN ; L. CONG ; W.X. YAN ; D. A. SCOTT ; J.S. GOOTENBERG ; A.J. KRIZ ; B. ZETSCHE ; O. SHALEM ; X. WU ; K.S. MAKAROVA.** In vivo genome editing using *Staphylococcus aureus* Cas9. *Nature*, 09 April 2015, vol. 520, 186-191 [0182]

Krav:

1. Fremgangsmåde til fremstilling af en samling af nukleinsyrer, der hver omfatter et DNA, der koder for en målsekvens, der er ligeret til et DNA, der koder for en nukleinsyre-guidet-nukleasesystemproteinbindende sekvens, omfattende:

5 a. at tilvejebringe dobbeltstrengede DNA-molekyler, der hver omfatter en sekvens af interesse 5' til en PAM-sekvens, og dens omvendte komplementære sekvens på den modsatte streng;

10 b. at udføre en enzymatisk skæringsreaktion på de dobbeltstrengede DNA-molekyler, hvori spaltninger genereres ved PAM-sekvensen og/eller dens omvendte komplementære sekvens på den modsatte streng, men aldrig helt fjerner PAM-sekvensen og/eller dens omvendte komplementære sekvens på den modsatte streng fra det dobbeltstrengede DNA;

15 c. at ligere adaptere omfattende en genkendelsessekvens til de resulterende DNA-molekyler fra trin (b);

20 d. at bringe DNA-molekylerne i trin (c) i kontakt med et restriktionsenzym, der genkender genkendelsessekvensen i trin (c), hvorved der genereres DNA-fragmenter omfattende stumpendede dobbeltstrengede brud umiddelbart 5' til PAM-sekvensen, hvorved PAM-sekvensen og adapteren indeholdende enzymgenkendelsesstedet fjernes; og

25 e. at ligere de resulterende dobbeltstrengede DNA-fragmenter fra trin (d) med et DNA, der koder for en nukleinsyre-guidet nukleasesystemproteinbindende sekvens, hvorved der genereres et antal DNA-fragmenter, der hver omfatter et DNA, der koder for en målsekvens, der er ligeret til et DNA, der koder for en nukleinsyre-guidet nukleasesystemproteinbindende sekvens.

2. Fremgangsmåde ifølge krav 1, hvori det nukleinsyre-guidede nukleasesystemprotein er et CRISPR/Cas-systemprotein.

30 3. Fremgangsmåde ifølge krav 1 eller krav 2, hvori start-DNA-molekylerne i samlingen yderligere omfatter en regulatorisk sekvens opstrøms for sekvensen af interesse 5' til PAM-sekvensen.

35 4. Fremgangsmåde ifølge ethvert af kravene 1-3, hvori den regulatoriske sekvens omfatter en promotor, valgfrit hvori promotoren omfatter en T7-, Sp6- eller T3-sekvens.

5. Fremgangsmåde ifølge ethvert af kravene 1-4, hvori de dobbeltstrengede DNA-molekyler er genomisk DNA, intakt DNA eller klippet DNA, valgfrit hvori det genomiske DNA er humant, mus, fugl, fisk, plante, insekt, bakterielt eller viralt.
- 5 6. Fremgangsmåde ifølge ethvert af kravene 1-5, hvori (i) DNA-segmenterne, der koder for en målsekvens, er mindst 22 bp, eller (ii) DNA-segmenterne, der koder for en målsekvens, er 15-250 bp, i størrelsesområde.
- 10 7. Fremgangsmåde ifølge ethvert af kravene 1-6, hvori (i) PAM-sekvensen er AGG, CGG eller TGG og/eller (ii) PAM-sekvensen er specifik for et CRISPR/Cas-systemprotein valgt fra gruppen bestående af Cas9, Cpf1, Cas3, Cas8a-c, Cas10, Cse1, Csy1, Csn2, Cas4, Csm2 og Cm5.
- 15 8. Fremgangsmåde ifølge ethvert af kravene 1-7, hvori trin (b) yderligere omfatter (1) at bringe DNA-molekylerne i kontakt med et enzym, der er i stand til at danne et nick i en enkelt streng ved et CCD-sted, hvorved der genereres et antal nickede dobbeltstrengede DNA-molekyler, der hver omfatter en sekvens af interesse efterfulgt af en HGG-sekvens, hvori DNA-molekylerne er nickede ved CCD-stederne; og (2) at bringe de nickede dobbeltstrengede DNA-molekyler i kontakt med en endonuklease, hvorved der genereres et antal dobbeltstrengede DNA-fragmenter, der hver omfatter en sekvens af interesse efterfulgt af en HGG-sekvens, hvori resterende nukleotider fra HGG- og/eller CCD-sekvenser efterlades.
- 20 9. Fremgangsmåde ifølge ethvert af kravene 1-8, hvori trin (d) yderligere omfatter PCR-amplifikation af de adapter-ligerede DNA-fragmenter fra trin (c) inden skæring med restriktionsenzymet, der genkender genkendelsessekvensen i trin (c), hvori, efter PCR, genkendelsessekvensen er placeret 3' af PAM-sekvensen, og en regulatorisk sekvens er placeret ved den 5'-distale ende af PAM-sekvensen.
- 30 10. Fremgangsmåde ifølge ethvert af kravene 1-9, hvori den enzymatiske reaktion i trin (b) omfatter anvendelsen af et Nt.CviPII-enzym og et T7-endonuklease I-enzym.
11. Fremgangsmåde ifølge ethvert af kravene 1-10, hvori trin (c) yderligere omfatter en stump-ende-reaktion med en T4 DNA-polymerase, hvis adapteren, der skal ligeres, ikke omfatter et overhæng.

12. Fremgangsmåde ifølge ethvert af kravene 1-11, hvor adapteren i trin (c) enten (1) er dobbeltstreng, omfatter en restriktionsenzymgenkendelsessekvens i en streng og en regulatorisk sekvens i den anden streng, hvis adapteren er Y-formet og omfatter et overhæng; eller (2) har en palindromisk enzymgenkendelsessekvens i begge strenge, hvis adapteren ikke er Y-formet.

5

13. Fremgangsmåde ifølge ethvert af kravene 1-12, hvori: (i) restriktionsenzymet i trin (d) er MlyI; og/eller (ii) trin (d) yderligere omfatter at bringe DNA-molekylerne i kontakt med et Xhol-enzym.

10

14. Fremgangsmåde ifølge ethvert af kravene 1-13, hvori DNA'et, der koder for en nukleinsyre-guidet nukleasesystemproteinbindingssekvens i trin (e) koder for et RNA, der omfatter sekvensen
GUUUUAGAGCUAGAAAAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUGAA
AAAGUGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 1) eller koder for et RNA, der omfatter sekvensen
GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUAAAUAAGGCUAGUCCGUU
AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUUC (SEQ ID NO: 2).

15

20 15. Fremgangsmåde ifølge ethvert af kravene 1-14, hvori målsekvenserne af interesse er fordelt hver 10.000 bp eller mindre over genomet i en organisme.

DRAWINGS

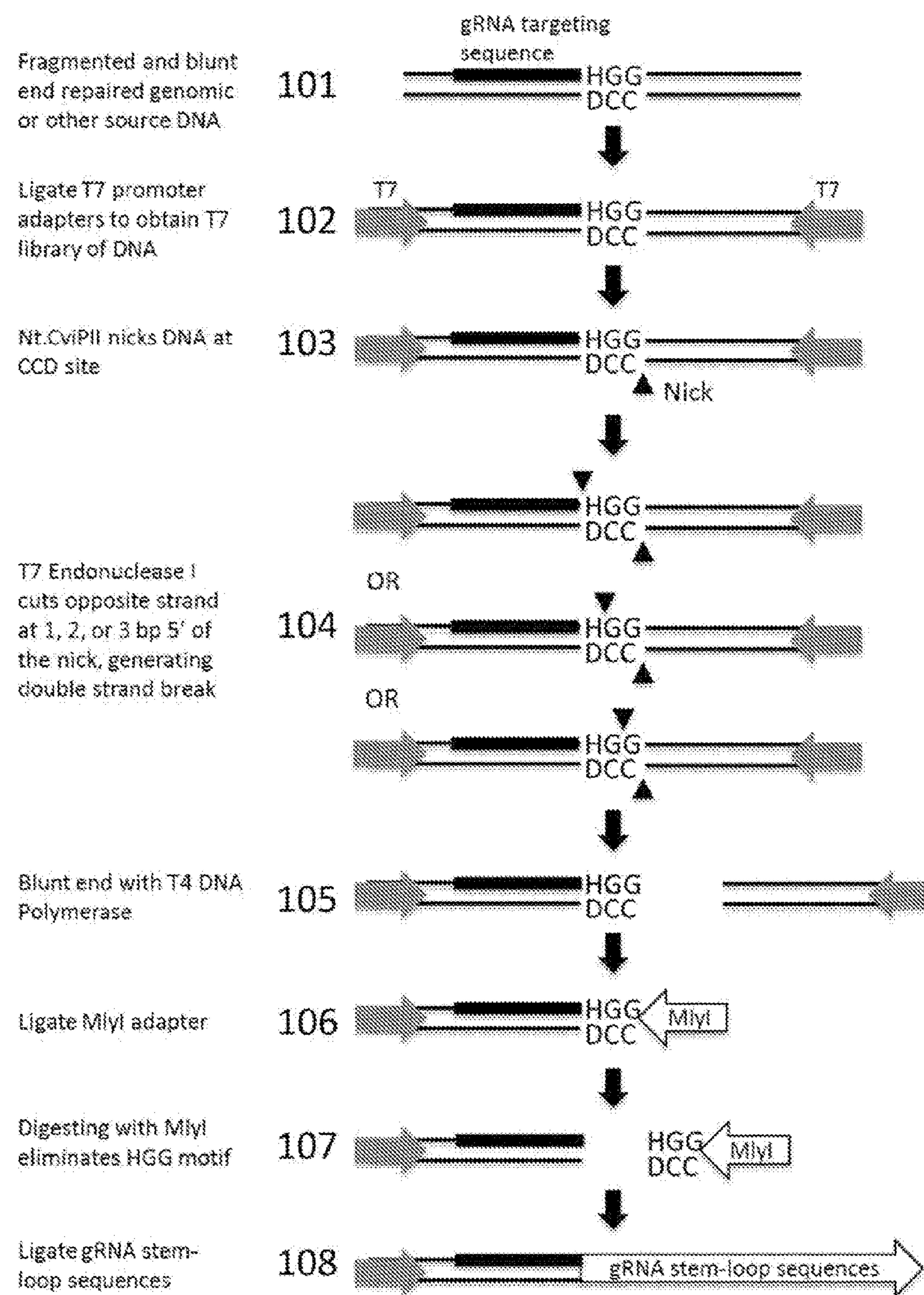
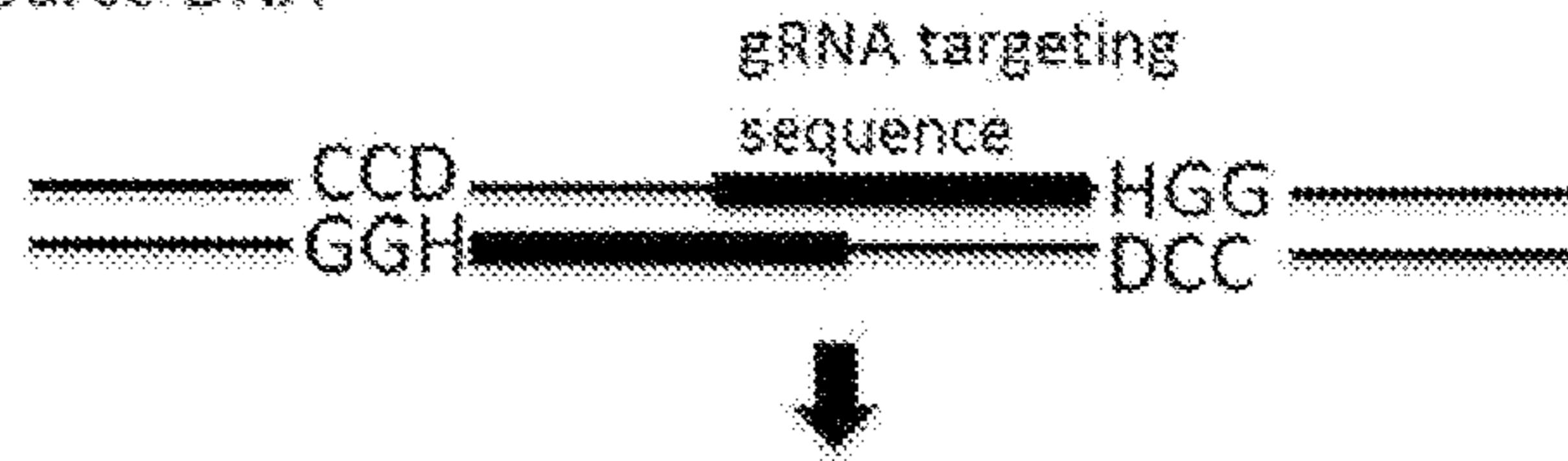
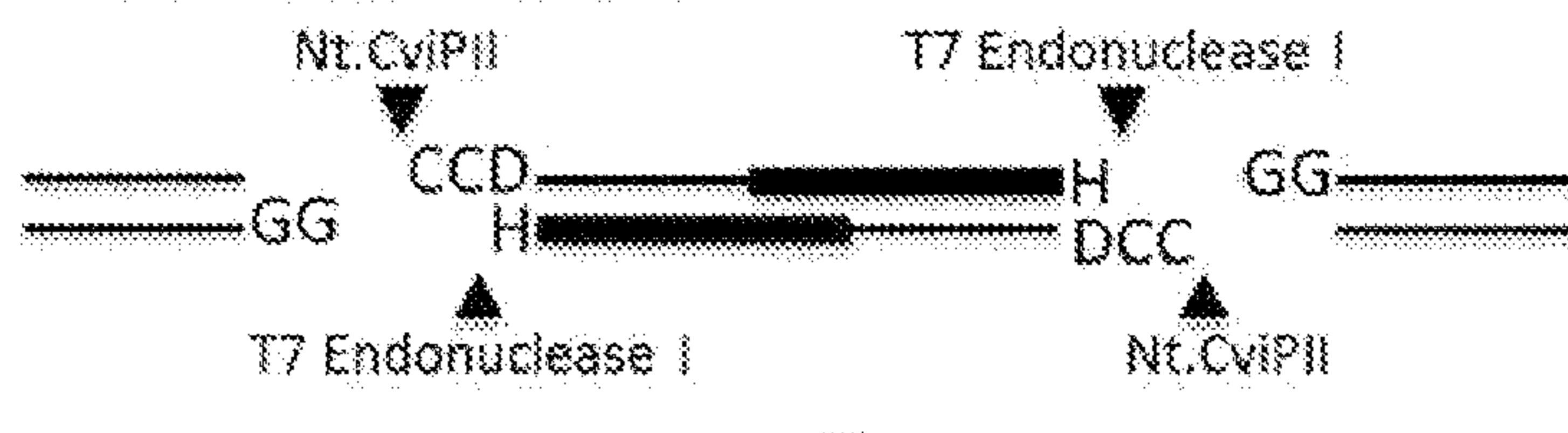
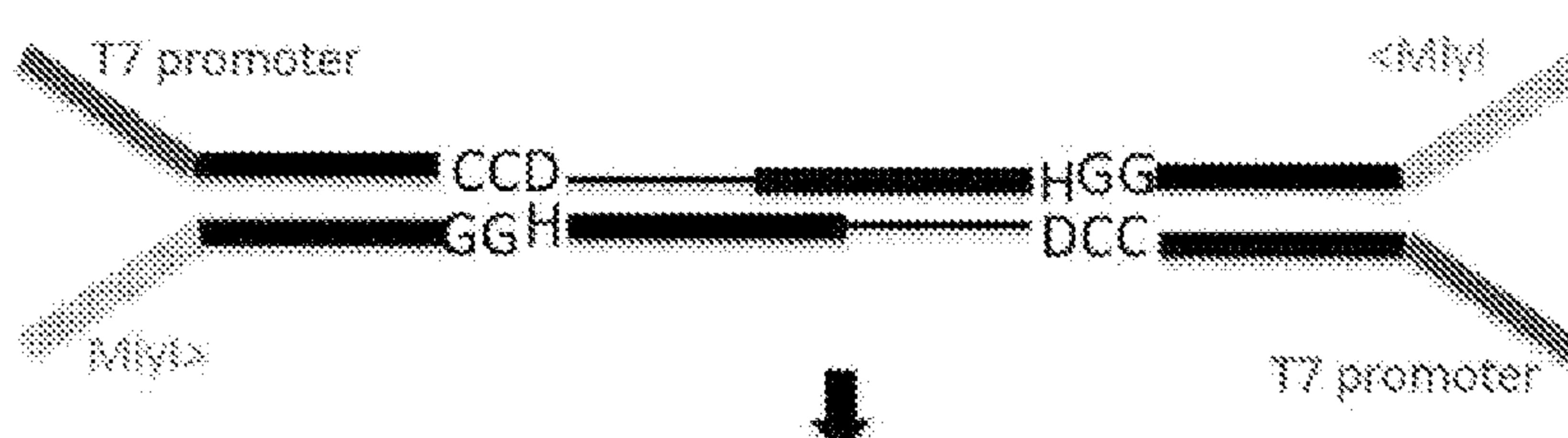
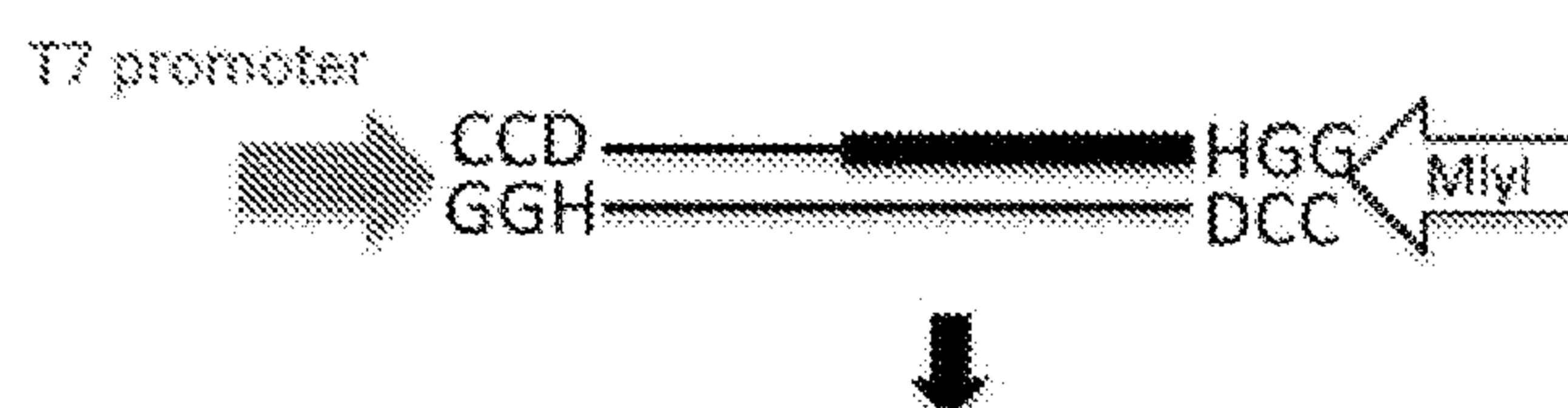
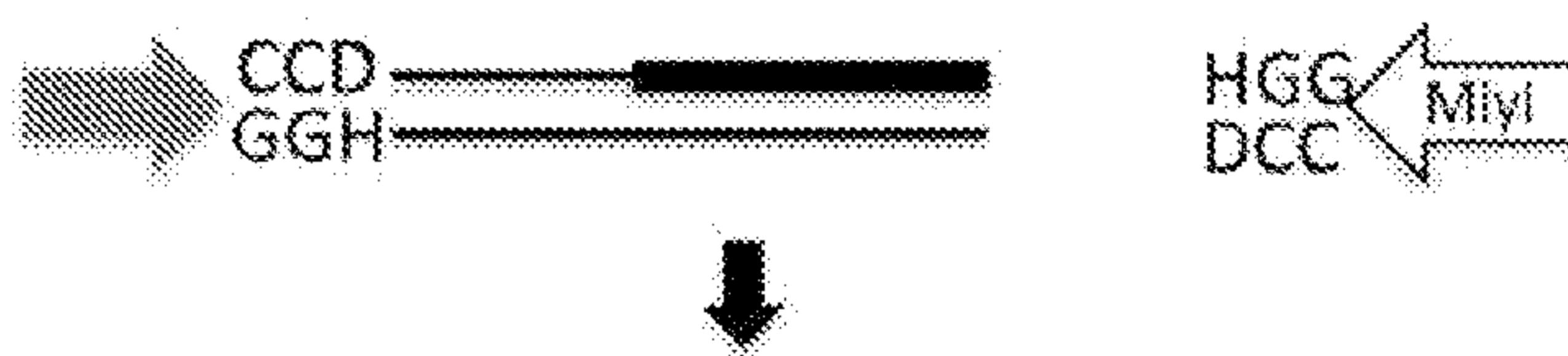




FIG. 1


201 Genomic or other source DNA


202 Nt.CviPII and T7 Endonuclease I treatment


203 Ligate T7/MlyI adapters

204 PCR amplify with T7 and MlyI primers

205 Digest with MlyI, separates HGG from gRNA targeting sequence

206 Ligate gRNA stem-loop sequences

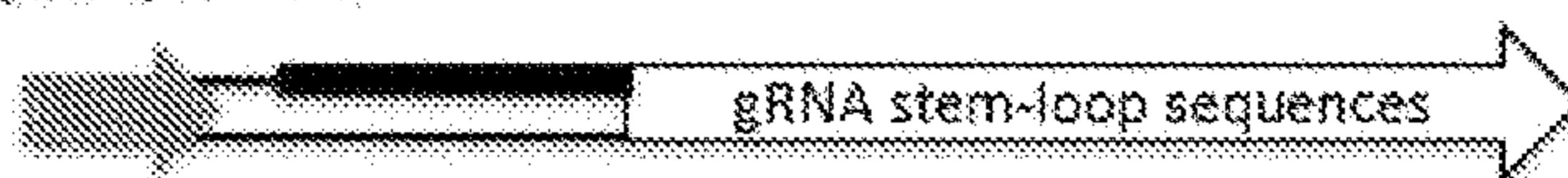


FIG. 2

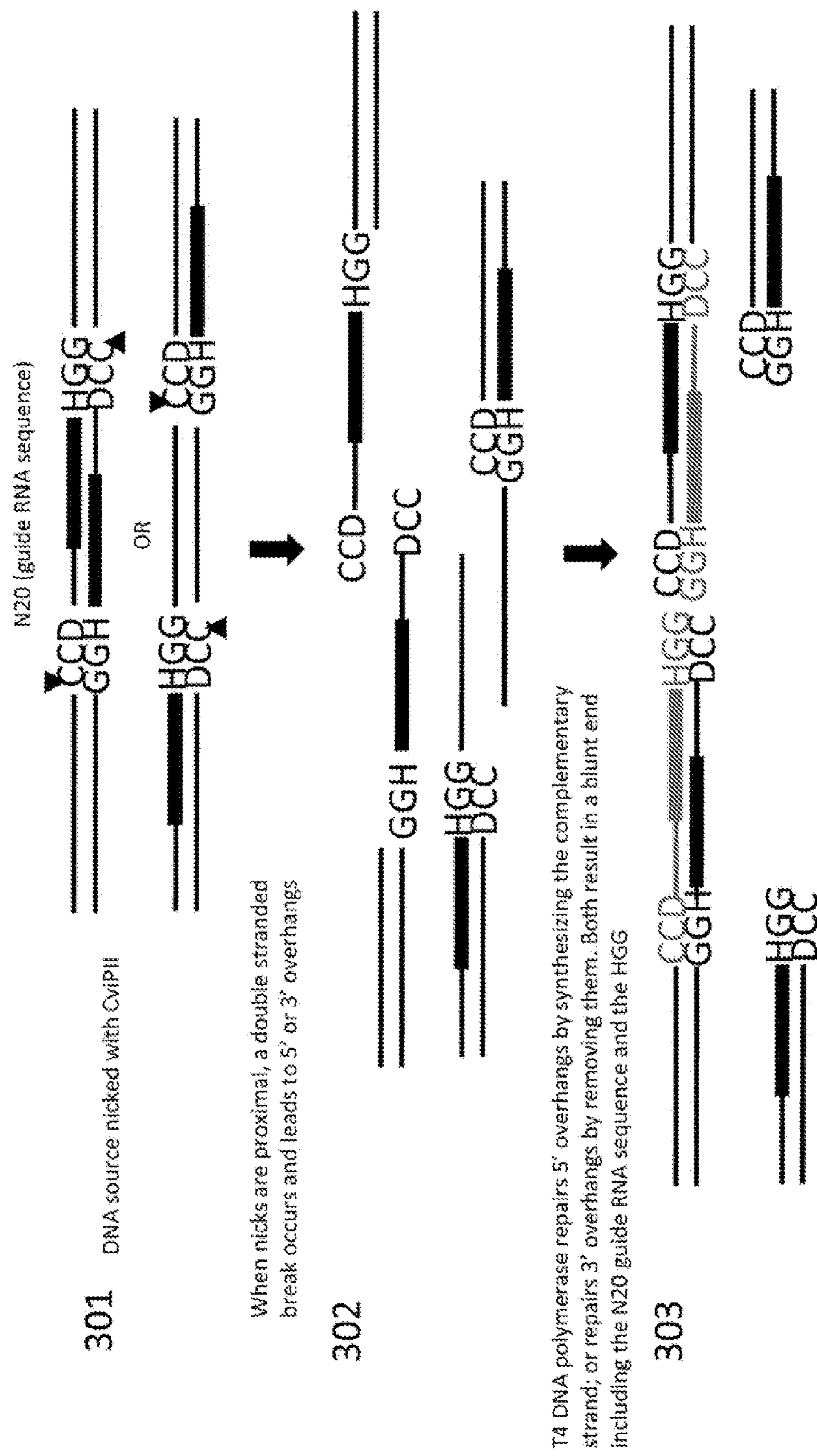


FIG. 3

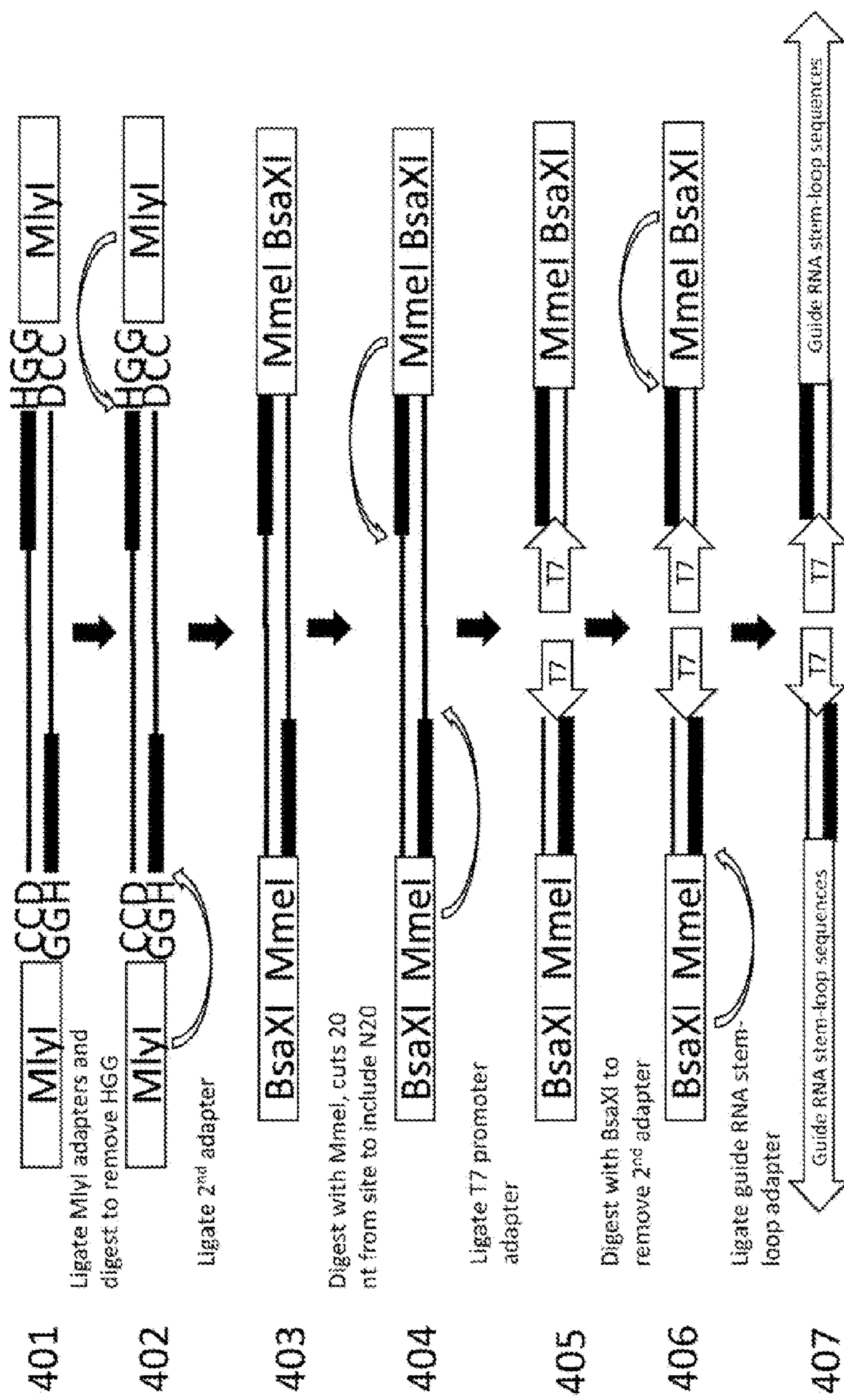


FIG. 4

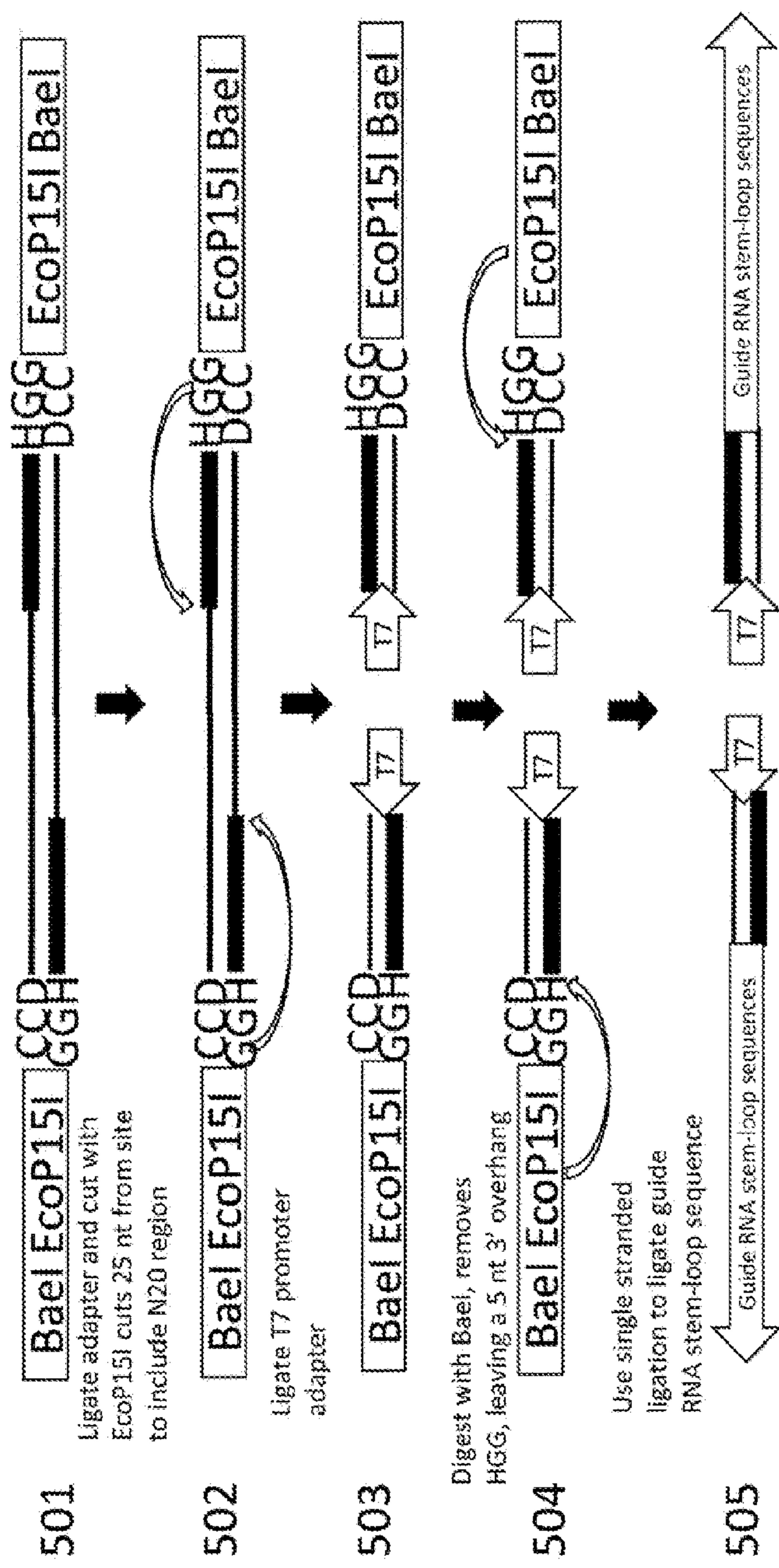


FIG. 5

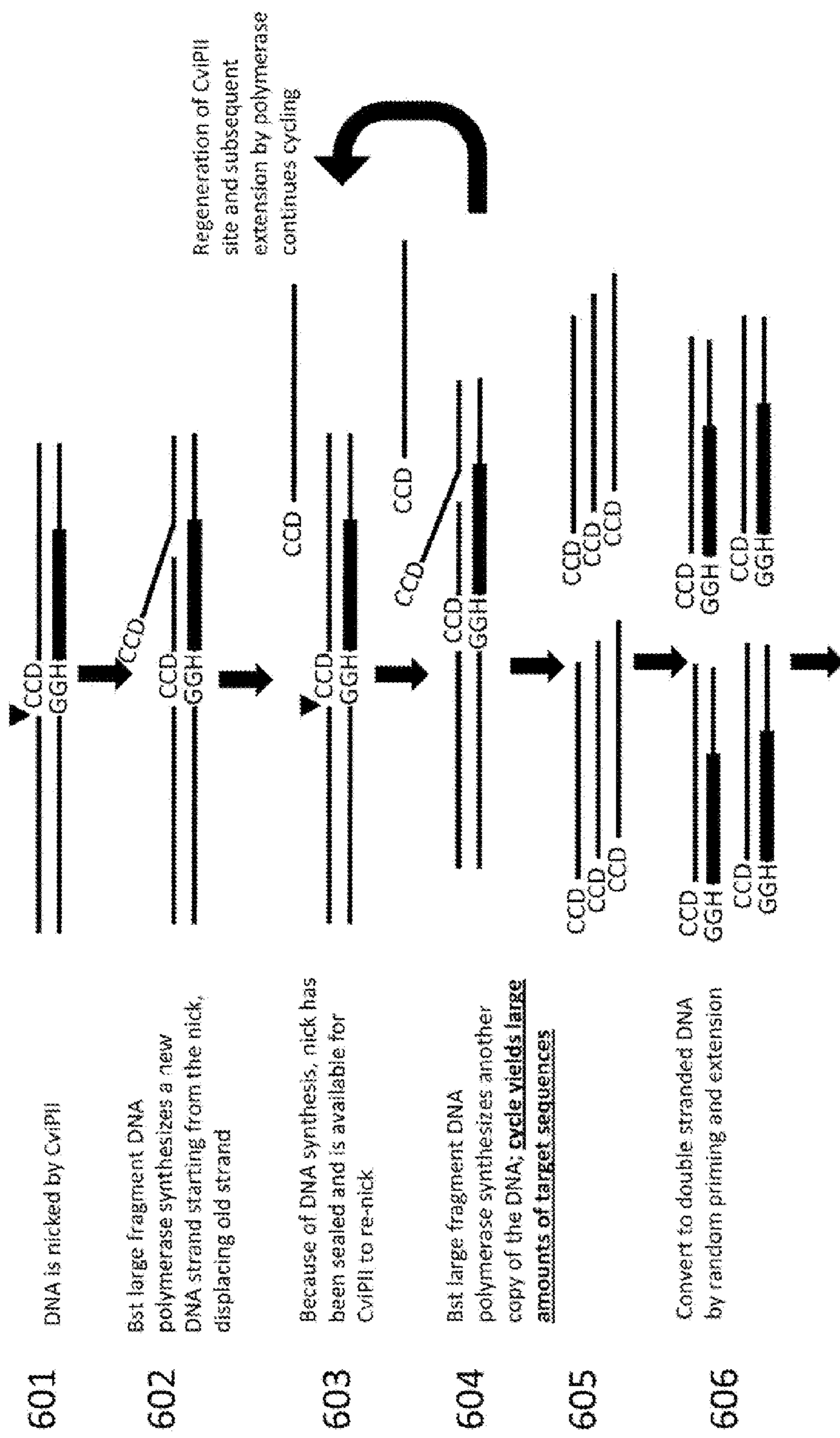


FIG. 6

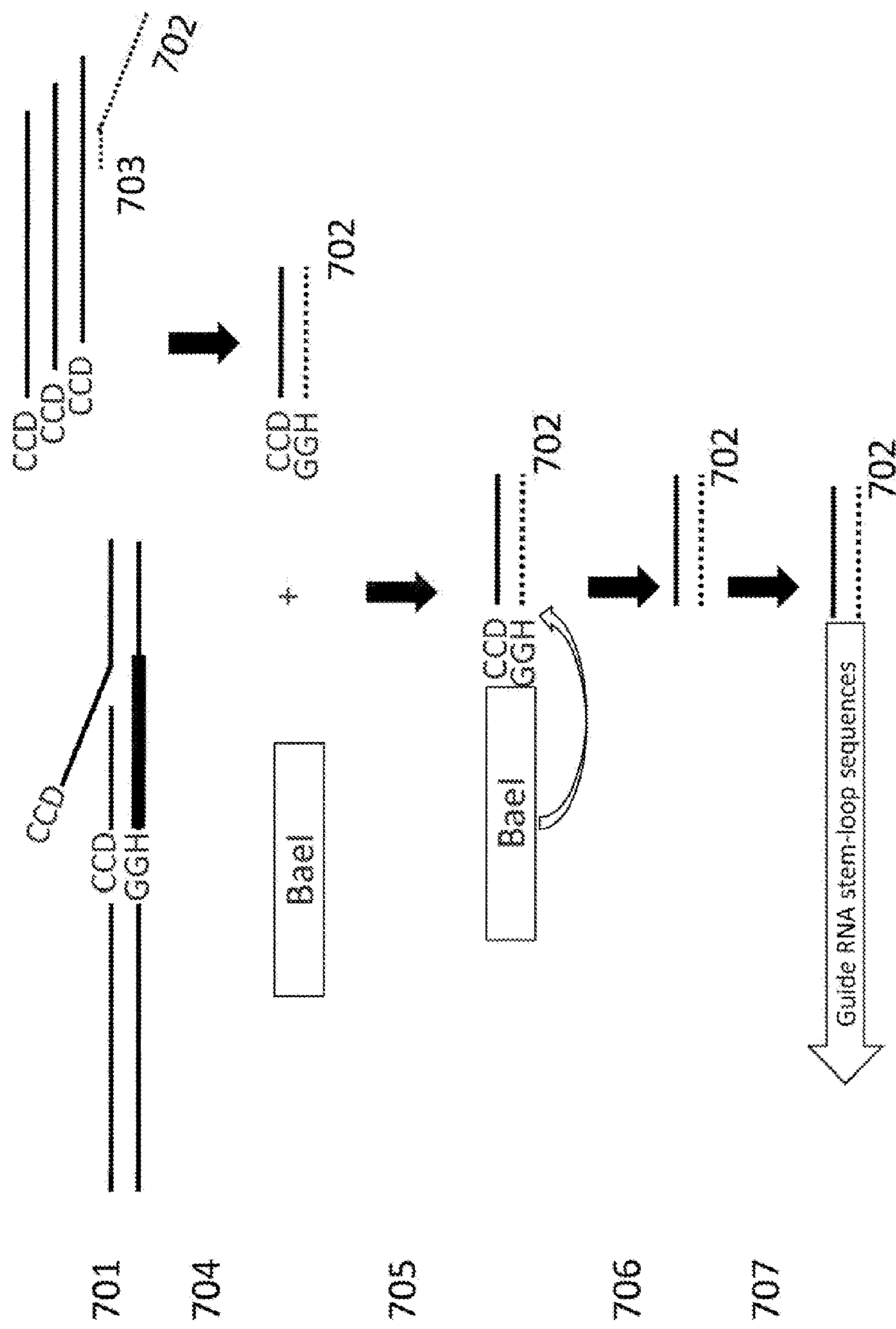


FIG. 7