(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的産業権関係
国際事務局

(43) 国際公開日
2015年11月12日

WO 2015/170709 A1

(51) 国際特許分類:
C08L 5/54 (2006.01)
C08L 7/22 (2006.01)
C08L 7/06 (2006.01)
C08L 5/54 (2006.01)
C08L 83/08 (2006.01)
C08L 7/01 (2006.01)

(52) 国際出願番号:
PCT/JP2015/026572

(54) 摘要:
Cured polysilsesquioxane compound, production method thereof, cured composition - tion, cured product and use method of cured composition, etc.

(57) 抽象:
Provided is a cured polysilsesquioxane compound which has at least one type of a repeating unit represented by expression CHRX"=O-SiO3/2 (in the expression, R1 is a hydrogen atom or an alkyl group of 1-6 carbon atoms, X0 is a halogen atom, a cyano group, or a group represented by the expression O-G (in this expression, G represents a protective group for a hydroxyl group), and D represents a divalent organic group of 1-20 carbon atoms optionally having a simple bond or a substituent group,) and which is characterized by having, in the 29Si nuclear magnetic resonance spectrum, a first peak top in the region from -73 ppm, inclusive, to -65 ppm, exclusive, and a second peak top in the region from -82 ppm, inclusive, to -73 ppm, exclusive, and by having substantially no peaks in the region from -65 ppm, inclusive, to -55 ppm, exclusive. Also provided are a cured composition containing the aforementioned compound and a silane coupling agent, a production method of the aforementioned cured composition, a cured product formed by curing the aforementioned composition, and a method of use of the aforementioned composition, etc.

(71) 出願人: リンテック株式会社 (LUNTEC CORPORATION)

(72) 発明者: 松井 優美 (MATSUI Mieko)

(74) 代理人: 大石 治仁 (OHISHI Mikihiro)

付添公開文書:
- 国際調査報告 (条約第21条(3))
明 細 書

発明の名称 :
硬化性ポリシリルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法

技術分野
[0001] 本発明は、高い接着力を有し、耐熱性、耐剥離性（耐デラミネーション）に優れ、かつクラックの発生の少ない硬化物が得られる硬化性ポリシリルセスキオキサン化合物、その製造方法、硬化性組成物、該組成物を硬化してなる硬化物、及び、該組成物等の光子固定剤として使用する方法に関する。

背景技術
[0002] 光子素には、半導体レーザー（L D）等の各種レーザーや発光ダイオード（LED）等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発热量がさらに大きくなっていく傾向にある。

このような光素子の接着剤や封止材として、硬化性組成物（光子素固定剤用組成物）が利用されている。

ところが、近年における光素子の高輝度化に伴い、光素子固定剤用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化して剥離したり、クラックが発生したりする等の問題が生じた。

[0003] この問題を解決するべく、特許文献1－3において、ポリシリルセスキオキサン化合物を主成分とする光素子固定剤用組成物が提案されている。

ポリシリルセスキオキサン化合物は、式：（R₀SiO₃/₂）ₙ（式中、R₀は置換基を有していてもよい、アルキル基、アリール基等を表す。）で表される化合物であり、無機シリカ[S i O₂]と有機シリコーン[（R₂SiO）]
の中間的な性質を有する物質である。
しかしながら、特許文献1〜3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定剤用組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性・耐剥離性（耐デラミネーション）を得るのが困難な場合があった。
従って、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物が得られる硬化性組成物、前記硬化性化合物の製造方法、
前記硬化性組成物を硬化してなる硬化物、並びに、前記硬化性組成物等の使用方法を提供することを目的とする。

課題を解決するための手段

[0007] 本発明者らは上記課題を解決すべく鋭意検討した結果、後述する、式C \(\text{H}_R \text{i} \text{X} \circ _ D _ S _ i _ _ _ O_{3/2} \) で表される構成単位の少なくとも一種を有する硬化性ポリシルセスキオキサン化合物であって、\(^{29}\)S i核磁気共鳴スペクトルにおいて、\(_7 3 \text{ppm} \)以上－65 ppm未満の領域に第1のピークトップ、
- 82 ppm以上－73 ppm未満の領域に第2のピークトップを有し、かつ、\(_6 5 \text{ppm} \)以上－55 ppm未満の領域に、実質的にピークを有しない硬化性ポリシルセスキオキサン化合物は、高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物を与えることを見出し、
本発明を完成するに至った。

[0008] かくして本発明によれば、下記（1）～（4）の硬化性ポリシルセスキオキサン化合物、（5）～（8）の硬化性ポリシルセスキオキサン化合物の製造方法、（9）の硬化性組成物、（10）の硬化物、及び、（11）の光素子固定剤として使用する方法が提供される。

[0009] （1）式：C \(\text{H}_R \text{i} \text{X} \circ _ D _ S _ i _ _ _ O_{3/2} \) 式中、R1は水素原子又は炭素数1～6のアルキル基を表し、Xはハロゲン原子、シアノ基又は式：O Gで表される基（式中、Gは水酸基の保護基を表す）を表し、Dは単結合又は置換基を有していてもよい炭素数1～20の2価の有機基を表す。）で表される構成単位の少なくとも一種を有する硬化性ポリシルセスキオキサン化合物であって、
\(^{29}\)S i核磁気共鳴スペクトルにおいて、\(_7 3 \text{ppm} \)以上－65 ppm未満の領域に第1のピークトップ、\(_8 2 \text{ppm} \)以上－73 ppm未満の領域に第2のピークトップを有し、かつ、\(_6 5 \text{ppm} \)以上－55 ppm未満の領域に、実質的にピークを有しないことを特徴とする硬化性ポリシルセスキオキサン化合物。

[0010] （2）さらに、式：R^2 S i _ O_{3/2} （式中、R^2は、炭素数1～20のアルキル
基、又は置換基を有していてもよいアリール基を表す。）で表される構成単位の少なくとも一種、を有する（1）に記載の硬化性ポリシルセスキオキサン化合物。

[0011]（3）29Si核磁気共鳴スペクトルにおいて、-82ppm以上-73ppm未満の領域におけるピークの積分値（P2）が、-73ppm以上-65ppm未満の領域の積分値（P1）に対し、60〜90%である（1）又は（2）に記載の硬化性ポリシルセスキオキサン化合物。

（4）質量平均分子量が800〜5000の化合物である（1）〜（3）のいずれかに記載の硬化性ポリシルセスキオキサン化合物。

（5）下記式（1）

[K0021] [1化]

CHR \(^1\) X^0 -E-S i (OR^3) \(_3\) \cdots (1)

[K0031] 式中、R^1は水素原子又は炭素数1〜6のアルキル基を表し、Xはハロゲン原子、シャノ基又は式：OGで表される基（式中、Gは水酸基の保護基を表す。）を表し、Dは単結合又は置換基を有していてもよい炭素数1〜20の2価の有機基を表し、R^3は、水素原子又は炭素数1〜10アルキル基を表す。複数のR^3はすべて同じでも相異なっていてもよい。）で表される化合物の少なくとも一種を、重合触媒の存在下に、重合させる工程（1）を有する、（1）〜（4）のいずれかに記載の硬化性ポリシルセスキオキサン化合物の製造方法。

（6）前記式（1）で表される化合物の少なくとも一種、及び、下記式（2）

[K0014] [化2]

R^2 Si (OR^4) \(_3\) \cdots (2)

[K0015] 式中、R^2は、炭素数1〜20のアルキル基、又は置換基を有していてもよい
いアリール基を表し、R₄は、水素原子又は炭素数1〜10アルキル基を表す。
複数のR₄はすべて同じでも相異なっていてもよい。)で表される化合物の
少なくとも一種からなる混合物を、重締合触媒の存在下に、重締合させる工
程(1)を有する、(5)に記載の硬化性ポリシルセスキオキサン化合物の
製造方法。

(7) 前記重締合触媒が、塩酸、ホウ酸、クエン酸、酢酸、硫酸、及びメタ
ンスルホン酸からなる群から選ばれる酸触媒の少なくとも一種である、(5)
又は(6)に記載の硬化性ポリシルセスキオキサン化合物の製造方法。

(8) さらに、前記工程(1)で得られた反応液に有機溶媒を添加して重締
合物を溶解させた後、前記酸触媒に対して等モル当量以上の塩基を添加して
さらに重締合反応を行う工程(11)を有する、(7)に記載の硬化性ポ
リシルセスキオキサン化合物の製造方法。

[0016](9) (1)〜(4)のいずれかに記載の硬化性ポリシルセスキオキサン化
合物、及びシランカップリング剤を含有する硬化性組成物。

(10) (9)に記載の硬化性組成物を加熱することにより得られる硬化物
。

(11) (1)〜(4)のいずれかに記載の硬化性ポリシルセスキオキサン化
合物、又は、(9)に記載の硬化性組成物を、光素子固定剤として使用す
る方法。

発明の効果

[0017]本発明の硬化性ポリシルセスキオキサン化合物、及び、この化合物とシラ
ンカップリング剤を少なくとも含む本発明の硬化性組成物によれば、高い接
着力を有し、耐熱性、耐剝離性（耐デラミネーション）に優れ、かつクラッ
クの発生の少ない硬化物を得ることができる。

本発明の硬化性ポリシルセスキオキサン化合物の製造方法によれば、本発
明の硬化性ポリシルセスキオキサン化合物を効率よく製造することができる
。

本発明の硬化物は、高エネルギーの光が照射される場合や高温状態に置か
れる場合であっても、高い接着力を有し、光素子を長期にわたって良好に封止することができる。本発明の硬化性ポリシルセスキオキサン化合物、及び、本発明の硬化性組成物は、光素子固定剤として使用することができる。特に、光素子用接着剤及び光素子用封止剤として好適に使用することができる。

図面の簡単な説明

[0018] [図1]実施例1の硬化性ポリシルセスキオキサン化合物の29Si NMRスペクトルチャート図である。
[図2]比較例1の硬化性ポリシルセスキオキサン化合物の29Si NMRスペクトルチャート図である。

発明を実施するための形態

[0019] 以下、本発明を、1）硬化性ポリシルセスキオキサン化合物、2）硬化性ポリシルセスキオキサン化合物の製造方法、3）硬化性組成物、4）硬化物、及び、5）光素子固定剤として使用する方法に従分けして詳細に説明する。

1）硬化性ポリシルセスキオキサン化合物

本発明の硬化性ポリシルセスキオキサン化合物は、式1CHR$_{1}$X2D=SiO$_{3/2}$で表される構成単位の少なくとも一種を有する硬化性ポリシルセスキオキサン化合物であって、29Si核磁気共鳴スペクトルにおいて、－7 3 p p m以上－6 5 p p m未満の領域に第1のピークトップ、－8 2 p p m以上－7 3 p p m未満の領域に第2のピークトップを有し、かつ、－6 5 p p m以上－5 5 p p m未満の領域に、実際にピークを有しないことを特徴とする。

本発明の硬化性組成物は、熟硬化性組成物であることが好ましい。

本発明の硬化性ポリシルセスキオキサン化合物は、前記式2CHR1X2O3D=SiO$_{3/2}$で表される構成単位で加えて、さらに、式3R2SiO$_{3/2}$で表される構成単位の少なくとも一種を有するものであるのが好ましい。

前記式4CHR1X2D=SiO$_{3/2}$中、R1は、水素原子又は炭素数1～
6 のアルキル基を表す。

R の、炭素数 1 〜 6 のアルキル基としては、メチル基、エチル基、n-ブロピル基、イソブロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ベンチル基、n-ヘキシル基等が挙げられる。

これらの中でも、R として水素原子が好ましい。

G は水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系の保護基；トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基；メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、トリラヒドロビラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基；t-ブチルキシカルボニル基等のアルコキシカルボニル基の保護基；メチル基、エチル基、t-ブチル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ベンチル基等の炭素数 1 〜 6 のアルキル基；又は、置換基を有していてもよいフェニル基；を表す。

前記 R は、炭素数 1 〜 20 のアルキル基、又は置換基を有していてもよいアリール基を表す。ここで、「置換基を有していてもよい」とは、「無置换又は置換基を有する」という意味である（以下にて同じである）。

R で表される置換基を有していてもよいフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等のア
ルキル基（炭素数1〜6のアルキル基）；フッ素原子、塩素原子、臭素原子等のハロゲン原子；メトキシ基、エトキシ基等のアルコキシ基（炭素数1〜6のアルコキシ基）；が挙げられる。

これらの中でも、Xが2〜20のアルキニレン基が有していてもよい置換基として、フッ素原子、塩素原子等のハロゲン原子；メトキシ基、エトキシ基等のアルコキシ基（炭素数1〜6のアルコキシ基）；メチルチオ基、アルキニレン基及びシアノ基から選ばれる基がより好ましく、シアノ基が特に好ましい。

Dは、単結合又は置換基を有していてもよい炭素数1〜20の2価の炭化水素基を表す。

炭素数1〜20の2価の炭化水素基としては、炭素数1〜20のアルキレン基、炭素数2〜20のアルケニレン基、炭素数2〜20のアルキニレン基、炭素数6〜20のアリーレン基、（アルキレン基、アルケニレン基、又はアルキニレン基）とアリーレン基との組み合わせからなる炭素数7〜20の2価の基等が挙げられる。

炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ベンタメチレン基、ヘキサメチレン基等が挙げられる。

炭素数2〜20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテンニレン基、ベンテニレン基等が挙げられる。

炭素数2〜20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。

炭素数6〜20のアリーレン基としては、o-_フエニレン基、m-_フエニレン基、p-_フエニレン基、2_,6-_ナフチレン基等が挙げられる。

これらの炭素数1〜20のアルキレン基、炭素数2〜20のアルケニレン基、及び炭素数2〜20のアルキニレン基が有していてもよい置換基としては、フッ素原子、塩素原子等のハロゲン原子；メトキシ基、エトキシ基等のアルコキシ基（炭素数1〜6のアルコキシ基）；メチルチオ基、エチルチオ
基等のアルキルチオ基（炭素数1〜6のアルキルチオ基）；メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基（炭素数2〜8のアルコキシカルボニル基）；等が挙げられる。

前記炭素数6〜20のアリーレン基の置換基としては、シアン基；ニトロ基；フッ素原子、塩素原子、臭素原子等のハロゲン原子；メチル基、エチル基等のアルキル基（炭素数1〜6のアルキル基）；メトキシ基、エトキシ基等のアルコキシ基（炭素数1〜6のアルコキシ基）；メチルチオ基、エチルチオ基等のアルキルチオ基（炭素数1〜6のアルキルチオ基）；等が挙げられる。

これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。

置換基を有していてもよい（アルキレン基、アルケニレン基、又はアルキニレン基）と置換基を有していてもよいアリーレン基との組み合わせからなる2個の基としては、前記置換基を有していてもよい（アルキレン基、アルケニレン基、又はアルキニレン基）の少なくとも一種と、前記置換基を有していてもよいアリーレン基の少なくとも一種とが直列に結合した基等が挙げられる。具体的には、下記式で表される基等が挙げられる。

これらの中で、Dとしては、高い接着力を有する硬化物が得られることから、炭素数1〜10のアルキレン基が好ましく、炭素数1〜6のアルキレン基
ン基がより好ましく、メチレン基又はエチレン基が特に好ましい。

前記式 :R²SiO₃/₂ 中、R²は、炭素数 1〜20 のアルキル基、又は置換
基を有していてもよいアリル基を表す。

R²の、炭素数 1〜20 のアルキル基としては、メチル基、エチル基、n-
プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-
ブチル基、n-ベンチル基、n-ヘキシル基、n-オクチル基、n-
デシル基、n-
プロピル基、イソプロピル基、n-
ブチル基、イソブチル基、t-
ブチル基等の炭素数 1〜6 のアルキル基 ; メトキシ基、エトキシ基、イソブチル基等の炭素数 1〜6 のアルコキシ基 ; フッ素原子、塩素原子等のハロゲン原子 ;
等が挙げられる。

ポリシルセスキオキサン化合物は、3 官能性オルガノシラン化合物の重締
合反応により得られるケイ素系重合体であり、主鎖のシロキサン (SiO -
Si) 結合が示す無機の特性と側鎖の有機基が示す有機の特性を有する。

本発明の硬化性ポリシルセスキオキサン化合物の構造は特に限定されない
が、例えばラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型
構造、環状型構造、ランダム型構造のものが挙げられる。

本発明の硬化性ポリシルセスキオキサン化合物は、式 :RSiO₃/₂ (式中、
Rは、前記式 :CHRiX。D-で表される基、又は、R²を表す。以下に
て同じ。) で表される構成単位の少なくとも一種を有する重合体である。

本発明の硬化性ポリシルセスキオキサン化合物が、前記式 :CHR₁Xₐ-
D-SiO₃/₂ で表される構成単位の二種以上、又は、前記式 :CHR₁X₀-
D-SiO₃/₂ で表される構成単位と、前記式 :R²SiO₃/₂ で表される構
成単位とを有する共重合体である場合、その形態は特に限定されず、ランダ
ム共重合体であっても、ブロック共重合体であってもよいが、入手容易性な
どの観点から、ランダム共重合体であることが好ましい。

本発明の硬化性ポリシルセスキオキサン化合物が有する式：

\[R \text{SiO}_{3/2} \]

表される構成単位は、一般にTサイトと総称され、ケイ素原子に酸素原子が3つ結合し、それ以外の基（R）が1つ結合している構造を有するものである。

Tサイトの構造としては、具体的には、下記式（a）～（c）で表されるものが挙げられる。

[化4]

\[\begin{align*}
* & - \text{SiO} - & * & - \text{SiO} - R^0 \\
O & & O & & O \\
(a) & & (b) & & (c)
\end{align*} \]

式中、Rは、水素原子又は炭素数1〜10アルキル基を表す。Rの炭素数1〜10アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、イソブチル基、s−ブチル基、n−ベンチル基、n−ヘキシル基等が挙げられる。複数のR同士は、すべて同→であっても相異なっていてもよい。また、上記式（a）～（c）中、* にはSi原子が結合している。

本発明の硬化性ポリシルセスキオキサン化合物は、一般に、クロロホルム等のハロゲン系溶媒；アセトン等のケトン系溶媒；ベンゼン等の芳香族炭化水素系溶媒；ジメチルスルホキシド等の含硫黄系溶媒；テトラヒドロフラン等のエーテル系溶媒；酢酸エチル等のエステル系溶媒等及び、これらの二種以上からなる混合溶媒等の各種有機溶媒に可溶である。本発明の硬化性ポリシルセスキオキサン化合物の、クロロホルムに対する20℃での溶解度は、1mg/100ml以上であることが好ましく、20mg/100ml以上であることがさらに好ましく、40mg/100ml以上であることが特に
に好ましい。

[0043] このように、本発明の硬化性ポリシルセスキオキサン化合物は、一般に、各種有機溶媒に溶解するため、溶液状態での29Si—NMRの測定が可能である。

29Si—NMRスペクトルを測定した場合、Tサイトに由来するピークとして、通常—8.5 ppm～—5.5 ppmに、T0～丁3の4種が観測される。

ここで、T0はシロキサン結合を持たないケイ素原子、T1は1個のシロキサン結合を有するケイ素原子（前記式（c）で表される構造中のケイ素原子）、T2は2個のシロキサン結合を有するケイ素原子（前記式（b）で表される構造中のケイ素原子）、T3は3個のシロキサン結合を有するケイ素原子（前記式（a）で表される構造中のケイ素原子）にそれぞれ対応するピークであると考えられている。

[0044] 本発明の硬化性ポリシルセスキオキサン化合物は、—7.3 ppm以上—6.5 ppm未満の領域に第1のピークトック（T2に該当）が、—8.2 ppm以上—7.3 ppm未満の領域に第2のピークトック（T3に該当）が存在するが、—6.5 ppm以上—5.5 ppm未満の領域に、実質的にピーク（T1に該当）を有しないものである。

ここで、「—6.5 ppm以上—5.5 ppm未満の領域に、実質的にピーク（T1に該当）を有しない」とは、本発明の硬化性ポリシルセスキオキサン化合物の29Si—NMRスペクトルを測定した場合、—6.5 ppm以上—5.5 ppm未満の領域において、ピーク（T1に該当）が観測されないか、観測された場合であっても、—6.5 ppm以上—5.5 ppm未満の領域におけるピーク（T1に該当）の積分値が、—7.3 ppm以上—6.5 ppm未満の領域におけるピーク（T2に該当）の積分値の0.5％未満であることをいう。

[0045] 本発明の硬化性ポリシルセスキオキサン化合物においては、本発明のより優れた効果が得られる観点から、—8.2 ppm以上—7.3 ppm未満の領域
におけるピーク（T 3 に該当）の積分値（P 2）が、7 3 p p m以上—6 5 p p m未満の領域におけるピーク（T 2 に該当）の積分値（P 1）に対し、6 0〜9 0％であるのが好ましい。

29S i—N M Rスペクトルにおいて、ピークトップが—6 5 p p m以上—5 5 p p m未満の領域に実質的に存在せず、第1のピークトップが—7 3 p p m以上—6 5 p p m未満の領域に、第2のピークトップが—8 2 p p m以上—7 3 p p m未満の領域に、それぞれ存在する硬化性ポリシルセスキオキサン化合物が、高温においても高い接着力を有し、耐熱性、耐剥離性に優れ、かつクラックの発生の少ない硬化物となる理由については、次のように考えることができる。

すなわち、T 1が存在する硬化性ポリシルセスキオキサン化合物は、加熱硬化した際に脱水や脱アルコール総合に脱離する部位が多いため、脱離成分に起因するボイドが発生し易くなり、その接着強度は低いものとなる。一方、T 3が多く存在すると、比較的密な構造を有する硬化物が生成するため、その接着強度は十分なものとなる、と考えられる。

29S i—N M Rスペクトルの測定は、例えば、以下のようにして行うことができる。

試料条件例）
測定溶媒を重水化クロホルム、及び、緩和時間短縮のため緩和試薬としてFe (acac) ₃を用いて測定する。
なお、各ピークの強度は内部標準テトラメチルシランの面積を1として規格化し、測定毎の誤差の影響を除く。

装置条件例）
核磁気共鳴分光装置（例えば、ブルカー・バイオスピノ社製AV 5 0 0）を用いて測定する。
29S i共鳴周波数：9 9. 3 5 2MHz
プローブ：5 mm φ溶液プローブ
測定温度：2 5℃
試料回転数：20 kHz
測定法：インバースゲートデカップリング法
2Siフリップ角：90°
2Si90°パルス幅：8.0 μs
繰り返し時間：5 s
積算回数：9200回
観測幅：30 kHz

[0050] 波形処理解析
フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行なう。

[0051] 本発明の硬化性ポリシルセスキオキサン化合物の質量平均分子量（M_w）は、800～5000の範囲であるのが好ましく、1000～3000の範囲であるのがより好ましい。

質量平均分子量（M_w）は、例えば、テトラヒドロフラン（THF）を溶媒とするゲル・パーミエーション・クロマトグラフィー（GPC）による標準ポリスチレン換算値として求めることができる。

[0052] 本発明の硬化性ポリシルセスキオキサン化合物の分子量分布（M_w/M_n、以下PDIということ。）は、特に制限されないが、通常1.0～6.0、好ましくは1.0～3.0の範囲である。当該範囲内にあることで、接着性により優れる硬化物が得られる。

[0053] 本発明の硬化性ポリシルセスキオキサン化合物の製造方法とは、特に制限はないが、後述する、本発明の硬化性ポリシルセスキオキサン化合物の製造方法が好ましい。

[0054] 2）硬化性ポリシルセスキオキサン化合物の製造方法

本発明の硬化性ポリシルセスキオキサン化合物の製造方法は、下記式（1）
【化5】

\[\text{CHR}^1 X \quad \text{D} - \text{Si} (\text{OR}^3)_3 \cdots (1) \]

【0056】（式中、R^1、X^0、Dは、前記と同じ意味を表す。R^3は、前記R^0と同様の、水素原子又は炭素数1〜10アルキル基を表す。複数のR^3はすべて同じでも相異なっていてもよい。）で表される化合物の少なくとも一種を、重結合触媒の存在下に、重結合させる工程（1）を有することを特徴とする。

【0057】本発明においては、前記式（1）で表される化合物の少なくとも一種、及び、下記式（2）

【化6】

\[\text{R}^2 \text{Si} (\text{OR}^4)_3 \cdots (2) \]

【0059】（式中、R^2は、前記と同じ意味を表す。R^4は、前記R^0と同様の、水素原子又は炭素数1〜10アルキル基を表す。複数のR^4はすべて同じでも相異なっていてもよい。）で表される化合物の少なくとも一種を、重結合触媒の存在下に、重結合させる工程（1）を有するものであるのがより好ましい。

【0060】（工程（1））

工程（1）は、前記式（1）で表されるシラン化合物（以下、「シラン化合物（1）」ということがある。）、又は、このものと前記式（2）で表されるシラン化合物（以下、「シラン化合物（2）」ということがある。）を、重結合触媒の存在下に、重結合させる工程である。

シラン化合物（1）の具体例としては、シナノメチルトリメトキシシラン、シナノメチルトリエトキシシラン、1-シナノエチルトリメトキシシラン、2-シナノエチルトリメトキシシラン、2-シナノエチルトリエトキシシラン、2-シナノエチルトリプロポキシシラン、3-シナノプロピルトリメトキシシラン、3-シナノプロピルトリエトキシシラン、3-シナノプロピルトリプロポキシシラン、3-シナノプロピルトリプロポキシシラン、4-シ
アノプチル トリメトキシシラン、5_シャノペンチル トリメトキシシラン、
2_シャノプロピル トリメトキシシラン、2_（シャノメトキシ）エチル トリメトキシシラン、
o_（シャノメチル）フエニル トリプロポキシシラン、m_（シャノメチル）フエニル トリエトキシシラン、
p_（2—シャノエチル）フエニル トリメトキシシラン、p_（2—aクリロイルオキシエチル）フエニル トリエトキシシラン、
2_クロロエチル トリエトキシシラン、2_プロモエチル トリエトキシシラン、
メトキシメチル トリエトキシシラン、メチルチオメチル トリエトキシシラン、
メトキシカルボニルメチル トリエトキシシラン、2—aクリロイルオキシエチル トリメトキシシラン、
3_メタクリロイルオキシプロピル トリエトキシシラン、等が挙げられる。

【0061】これの中でも、シラン化合物（1）としては、より優れた接着性を有する硬化物が得られることから、2—aクリロイル基を有する化合物、又は3—aクリロイル基を有する化合物がより好ましい。

【0062】シラン化合物（2）の具体例としては、メチル トリメトキシシラン、メチル トリエトキシシラン、エチル トリメトキシシラン、エチル トリエトキシシラン、n—aプロピル トリメトキシシラン、n—aブチル トリエトキシシラン、イソブチル トリメトキシシラン、n_ベンチル トリエトキシシラン、n_ヘキシル トリメトキシシラン、イソオクチル トリエトキシシラン、ドデシル トリメトキシシラン、メチルジメトキシエトキシシラン、メチルジェトキシメトキシシラン等のアルキル トリアルコキシシラン化合物類；

【0063】フエニル トリメトキシシラン、4—aメトキシフエニル トリメトキシシラン、
2_クロロフエニル トリメトキシシラン、フエニル トリエトキシシラン、
2—aメトキシフエニル トリエトキシシラン、フエニルジメトキシエトキシシラン、
フエニルジェトキシメトキシシラン等の置換基を有していてもよいフエニル トリアルコキシシラン化合物類；

等が挙げられる。
これらは、一種単独で、或いは二種以上を組み合わせて用いることができ
る。接着強度と、耐熱性や耐変色性を調整する観点から二種以上のシラン化
合物を用いることが好ましい。

用いる重縁合触媒としては、特に制限はないが、本発明の硬化性ポリシリ
セスキオキサン化合物が得られやすいことから、酸触媒が好ましい。酸触媒
としては、塩酸、硫酸、硝酸、リン酸、ホウ酸等の無機酸 ;メタンスルホン
酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p－トルエンス
ルホン酸、酢酸、トリフルオロ酢酸、クエン酸等の有機酸 ;等が挙げられる
。

これらの中でも、目的物が得られ易い観点から、塩酸、ホウ酸、クエン酸
、酢酸、硫酸、及びメタンスルホン酸から選ばれる少なくとも一種であるの
が好ましく、塩酸が特に好ましい。

重縁合触媒の使用量は、用いるシラン化合物 (1)、重縁合触媒の種類等
にもよるが、シラン化合物 (1) の総モル量に対して、通常、0.05 モル
% ～3.0 モル%、好ましくは0.1 モル% ～1.0 モル%、より好ましくは0
.2 モル% ～5 モル% の範囲である。

用いる溶媒は、シラン化合物 (1)、重縁合触媒の種類、使用量等に応じ
て、適宜選択することができる。例えば、水 ;ベンゼン、トルエン、キシレ
ン等の芳香族炭化水素類 ;酢酸メチル、酢酸エチル、酢酸プロピル、プロピ
オン酸メチル等のエステル類 ;アセトン、メチルエチルケトン、メチルイソ
プチルケトン、シクロヘキサノン等のケトン類 ;メチルアルコール、エチル
アルコール、n－プロピルアルコール、イソプロピルアルコール、n－ブチル
アルコール、イソブチルアルコール、s－ブチルアルコール、t－ブチル
アルコール等のアルコール類 ;等が挙げられる。これらの溶媒は一種単独で
、或いは二種以上を混合して用いることができる。

これらの中でも、目的物が得られ易い観点から、水、アルコール類が好ま
しく、水がより好ましい。

溶媒の使用量は、シラン化合物 (1) 1 モルにつき、通常1ml ～100
シラン化合物 (1) を重縮合 (反応) させるときの温度、反応時間は、用いるシラン化合物 (1) 、重縮合触媒及び溶媒の種類、使用量等によって選択される。

反応温度は、通常 0 ℃ から用いる溶媒の沸点までの温度範囲、好ましくは 20 ℃ 〜 100 ℃ の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。

反応時間は、通常数分から 10 時間である。

なかでも、反応温度 5 〜 35 ℃ で、数分から数時間、次いで、35 〜 100 ℃ にて、数十分から数時間反応させるのが好ましい。

本発明においては、工程 (1) を酸触媒の存在下で重合反応を行った場合、後述する工程 (1 I) をさらに有するのが好ましい。

前記工程 (1) で得られた反応液に有機溶媒を添加して、重縮合物を溶解させた後、前記工程 (1) において酸触媒を使用し、さらに後述する工程 (1 I I) を設けることにより、目的とする 29 Si — NMR スペクトルパターンを有する本発明の硬化性ポリシルセスキオキサン化合物を容易に得ることができる。

(工程 (1 I I))

工程 (1 I I) は、工程 (1) で得られた反応液に有機溶媒を添加して重縮合物を溶解させた後、用いた酸触媒に対して等モル当量以上の塩基を添加して、重縮合反応を行う工程である。

用いる有機溶媒としては、生成した重縮合物を溶解し得るものであれば特に制約はない。これらの中でも、後處理の容易性から、沸点が 60 〜 100 ℃ 程度の水非混和性有機溶媒が好ましい。水非混和性有機溶媒は、25 ℃ における水に対する溶解度が 10 g / L 以下であり、一般的に、水と分離して二層となる有機溶媒である。
このような有機溶媒としては、ベンゼン等の芳香族化合物類、酢酸エチル、酢酸プロピル等のエステル類、メチルイソブチルケトン等のケトン類、ヘプタン、シクロヘキサン等の脂肪族炭化水素類、クロホルム等のハロゲン化炭化水素類、テトラヒドロフラン等のエーテル類等が挙げられる。

有機溶媒の使用量は、生成した重縮合物を溶解し得る量であればよく、用いたシラン化合物 (1) 1 質量部に対して、通常、0.5 〜 5 質量部、好ましくは 1 〜 3 質量部である。

次いで、添加する塩基としては、本発明の目的物を得られやすいことから、アンモニア、又は、ビリジン、トリエチルアミン等の有機塩基を用いるのが好ましく、取扱いの容易性から、アンモニアを用いるのがより好ましい。

塩基の使用量は、工程 (I) で用いた酸触媒に対して、通常、1.2 〜 5 当量、好ましくは 1.5 〜 2.5 当量の範囲である。

塩基を添加した後の重縮合反応の温度は、通常、50 〜 100 ℃、反応時間は、反応規模等にもよるが、通常、30 分から 10 時間である。

このように、工程 (I) の重縮合反応に加えて、工程 (II) の反応を行うことで、分子量の大きい、65 ppm 以上、55 ppm 未満の領域に、実質的にピークを有しない、本発明の硬化性ポリシルセスキオキサン化合物を容易に得ることができる。

反応終了後は、有機合成における通常の後処理操作を行えばよい。具体的には、反応混合物を精製水で洗浄した後、有機層を濃縮し、乾燥することにより、目的とする硬化性ポリシルセスキオキサン化合物を得ることができる。

以上のように、本発明においては、用いるシラン化合物 (1)、触媒の種類等に応じて、反応条件を適宜設定することにより、目的とする 29Si-NMR スペクトルパターンを有する硬化性ポリシルセスキオキサン化合物を得ることができる。

本発明において、前記シラン化合物 (1) とシラン化合物 (2) を用いた
場合、得られる本発明の硬化性ポリシルセスキオキサン化合物は、下記式 (a-1) で表されると考えられる。

\[\text{(a-1)} \]

\[(CHR'X'-D-SiO_{2/3})_n (R^2SiO_{2/3}) (CHR'X'-D-SiZ_{2/3})_n (R^2SiZ_{2/3})_n (CHR'X'-D-SiZ_{2/3})_n (R^2SiZ_{2/3})_n, \]

(式中、R 1、R 2、X 0、D は前記と同じ意味を示す。Z 0、R 3 は前記と同じ意味を表す。) で表される基を表し、Z 2 は、式 :O R 3 (R 3 は前記と同じ意味を表す。) で表される基を表す。Z 0 は、式 :O R 4 (R 4 は前記と同じ意味を表す。) で表される基を表す。q、r は実質的に 0 であり、m−p はそれぞれ独立して、正の整数を示す。)

3) 硬化性組成物

本発明の硬化性組成物は、本発明の硬化性ポリシルセスキオキサン化合物、及びシランカップリング剤を含有することを特徴とする。本発明の硬化性組成物において、本発明の硬化性ポリシルセスキオキサン化合物の含有量は、通常、組成物全体に対して、60質量％～99.7質量％であることが好ましく、70質量％～95質量％であることがより好ましく、80質量％～90質量％であることがさらに好ましい。このような範囲で本発明の硬化性ポリシルセスキオキサン化合物を含有し、かつシランカップリング剤を含有する硬化性組成物は、高い接着力を有し、耐熱性、耐剝離性に優れ、かつクラックの発生の少ない硬化物となる。

用いるシランカップリング剤としては、特に制約はない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、p—スチリルトリメトキシシラン、ビニルトリオレステトキシシラン等のビニル基を有するシラン化合物；アーチロプロピルトリメトキシシラン、クロロメチルトリメトキシシラン、クロロメチルフエネチルトリメトキシシラン等のハロゲン原子を有するシラン化合物；アーチメタクリロキシプロピルトリメトキシシラン、アーチメタクリロキシプロ
ピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基を有するシラン化合物；アーメルカプトプロピルトリメトキシシラン等のメルカプト基を有するシラン化合物；
3-テレドプロピルトリエトキシシラン等のウレド基を有するシラン化合物；
3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン化合物；
1, 3, 5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1, 3, 5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート等のイソシアヌレート基を有するシラン化合物；

[0081] N-2-(アミノエチル)_3-アミノプロピルメチルジメトキシシラン、
N-2-(アミノエチル)_3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)_3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、
3-トリエトキシシリル_N-(1, 3-ジメチルブチリデン)プロピルアミン、N-フェニル_3-アミノプロピルトリメトキシシラン、アーニリノプロピルトリエトキシシラン等のアミノ基を有するシラン化合物；
2-(3, 4-エポキシクロヘキシル)エチルトリメトキシシラン、2-(3, 4-エポキシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジェトキシシラン等のエポキシ基を有するシラン化合物；
2-トリメトキシシリルエチル無水コハク酸、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸等の酸無水物構造を有するシランカップリング剤；
ビス(トリエトキシシリルプロピル)テトラスルフィド；オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド；等
が挙げられる。

これらのシランカップリング剤は一種単独で、或いは二種以上を組み合わせて用いることができる。

これらの中でも、本発明においては、耐熱性、透明性に優れ、より高い接着力を有する硬化物を得ることができることから、イソシアヌレート基を有するシラン化合物、酸無水物構造を有するシランカップリング剤を用いるのが好ましく、両者を併用するのがより好ましい。

イソシアヌレート基を有するシラン化合物と酸無水物構造を有するシランカップリング剤を併用する場合、その使用割合は、イソシアヌレート基を有するシラン化合物と酸無水物構造を有するシランカップリング剤との質量比で、10 : 0.5 〜 10 : 10の範囲である。

[0082] シランカップリング剤は、本発明の硬化性ポリシルセスキオキサン化合物との質量比で、（硬化性ポリシルセスキオキサン化合物）:（シランカップリング剤）= 100 : 0.3 〜 100 : 30、好ましくは、100 : 10 〜 100 : 20の割合で含有するのが好ましい。

このような割合でシランカップリング剤を用いることにより、透明性、接着性により優れ、さらに耐熱性に優れ、高温にしても接着力が低下しにくい硬化物が得られる硬化性組成物を得ることができる。

[0083] 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、さらに他の成分を含有させてもよい。他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。他の成分の使用量は、硬化性組成物全体に対して、通常、10質量％以下である。

[0084] 前記酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。

[0085] リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。

フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類
高分子型フエノール類等が挙げられる。
硫黄系酸化防止剤としては、ジラウリル_3, 3'—チオジプロピオネット、ジミリスチル—3, 3'—チオジプロピオネット、ジステアリル—3, 3'—チオジプロピオネット等が挙げられる。

これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、硬化性組成物全体に対して、通常、10%質量%以下である。

紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
紫外線吸収剤としては、サリチル酸類、ペンゾフエノン類、ペンゾトリアゾール類、ヘンダードアミン類等が挙げられる。
紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
紫外線吸収剤の使用量は、硬化性組成物全体に対して、通常、10%質量%以下である。

光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
光安定剤としては、例えば、ポリ[6{(1, 1, 3, 3, テトラメチルブチル)アミノ_1, 3, 5_トリジン—2, 4_ジル} (2, 2, 6, 6—テトラメチル_4—ビペリジン) イミノ] ヘキサメチレン {2, 2, 6, 6—テトラメチル_4—ビペリジン) イミノ} 等のヘンダーードアミン類等が挙げられる。
これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができるとができる。
光安定剤の使用量は、硬化性組成物全体に対して、通常、10%質量%以下である。

希釈剤は、硬化性組成物の粘度を調整するため添加される。
希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、
シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4—ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、ジグリシジルアニリン;等が挙げられる。

これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。

[0091] 本発明の硬化性組成物は、本発明の硬化性ポリシルセスキオキサン化合物、シランカツプリング剤、及び所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。

[0092] 以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態であっても、高い接着力を有する硬化物を得ることができる。

したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定剤の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定剤用組成物として好適に使用することができる。

[0093] 4) 硬化物

本発明の硬化物は、本発明の硬化性組成物を加熱することにより得られる。

加熱する温度は、通常、100～250℃、好ましくは150～200℃であり、加熱時間は、通常10分から15時間、好ましくは30分から8時間である。

[0094] 本発明の硬化物は、高エネルギーの光が照射される場合や高温状態であっても、高い接着力を有する。

したがって、本発明の硬化物は、光素子の高輝度化に伴う光素子固定剤の
劣化に関する問題を解決することができることから、光素子固定剤として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。

[0095] 本発明の硬化性組成物を加熱して得られる硬化物が高い接着力を有することとは、例えば、次のようにして確認することができる。

すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度（例えば、23℃、100℃）に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向（せん断方向）に応力をかけ、試験片と被着体との接着力を測定する。

硬化物の接着力は、23℃において90N/2mm口以上であり、かつ、100℃において60N/2mm口以上であることが好ましい。

[0096] 本発明の硬化性組成物を加熱して得られる硬化物が耐剝離性に優れることは、例えば、次のようにして確認することができる。

LEDリードフレームに、硬化性組成物を塗布した上に、サファイアチップを圧着し、170℃で2時間加熱処理して硬化させた後、封止剤をカップ内に流し込み、150℃で1時間加熱処理して硬化物の試験片を得る。この試験片を85℃、85％RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間の1Rリフローにて処理を行い、次いで、熱サイクル試験機にて、_40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施する。その後、封止材を除去し、その際に素子が一緒に剥がれるか否かを調べる。本発明の硬化物においては、剝離する確率は通常2.5％以下である。

[0097] 5）光素子固定剤として使用する方法

本発明の光素子固定剤として使用する方法は、本発明の硬化性ポリシルセスキオキサン化合物、又は、本発明の硬化性組成物を、光素子固定剤として使用する方法である。
光素子固定剤としての使用としては、光素子用接着剤や光素子用封止剤としての使用等が挙げられる。

光素子としては、LED、半導体レーザ（LD）等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。

〈光素子用封止剤〉
本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物は、光素子用接着剤として好適に使用することができる。

本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料（光素子とその基板等）の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。

光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類；セラミックス；鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス（SUS302、SUS304、SUS304L、SUS309等）等の金属類；ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン－酢酸ビニル共重合体、ポリスチレン、ポリカーボネイト、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフエニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネ系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂等が挙げられる。

加熱する温度は、用いる硬化性ポリシルセスキオキサン化合物の種類、硬化性組成物等にもよるが、通常、100～250℃、好ましくは150～200℃であり、加熱時間は、通常10分から15時間、好ましくは30分から8時間である。

〈光素子用封止剤〉
本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物は、光素
子封止体の封止剤として好適に用いることができる。

本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を光素子
用封止剤として使用する方法として、例えば、該組成物を所望の形状に成
形して、光素子を内包した封止体を得た後、そのものを加熱硬化させること
により光素子封止体を製造する方法等が挙げられる。

本発明の硬化性ポリシルセスキオキサン化合物又は硬化性組成物を所望の
形状に成形する方法としては、特に限定されるものではなく、通常のトラン
スファーセ変形法や、注型法等の公知のモールド法を採用できる。

[01 02] 加熱する温度は、用いる硬化性ポリシルセスキオキサン化合物の種類、硬
化性組成物等にもよるが、通常、100〜250℃、好ましくは150〜2
00℃であり、加熱時間は、通常10分から15時間、好ましくは30分か
ら8時間である。

[01 03] 得られる光素子封止体は、本発明の硬化性ポリシルセスキオキサン化合物
又は硬化性組成物を用いているので、接着性に優れるものである。

実施例

[01 04] 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下
記の実施例に限定されるものではない。

[01 05] 〈29Si—NMR測定条件〉

装置：ブールー ベライオスピニ製 A V — 5 0 0

29Si — NMR共振周波数 : 9 9 . 3 5 2 M H z

プローブ : 5 m m φ 溶液 プローブ

測定温度 : 室温 (25℃)

試料回転数 : 2 0 k H z

測定法: インバースゲート デカップリング法

29Si フリップ角 : 9 0 °

29Si 9 0° パルス幅 : 8 . 0 μ s

繰り返し時間 : 5 s

積算回数 : 9 2 0 0 回
観測幅：30kHz

[0106]（^9Si—NMR試料作製方法）
緩和時間短縮のため、緩和試薬としてFe(acac)_3を添加し測定した。
ポリシルセスキオキサン濃度：15%
Fe(acac)_3濃度：0.6%
測定溶媒：CDCl_3
内部標準：TMS

[0107]（波形処理解析）
フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行った。

[0108]（実施例1）
300mLのナス型フラスコに、フエニルトリエトキシシラン（東京化成工業社製）40.87g（170mmol）と2-シアノエチルトリエトキシシラン（アツマックス社製）6.52g（30mmol）を仕込んだ後、蒸留水10.8mLに35%塩酸0.05g（シラン化合物の計合量に対して0.25モル%）を溶解した水溶液（10.85g）を摂拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間摂拌したのち、酢酸プロピルを100g入れ摂拌し、さらに、28%アンモニア水0.06g（シラン化合物の計合量に対して0.5モル%）を摂拌しながら加え、全容を70℃に昇温して3時間摂拌した。反応液に精製水を加えて分液し、有機層を分取した。得られた有機層を水層がpH=7になるまで精製水にて洗浄した後、有機層をエバポレーターで濃縮した。得られた濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物（A1）を33.4g得た。このもののM_wは1870、PDIは1.42であった。
また、^9Si—NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、下記第1表に示すとおりだった。
図1に、^9Si—NMRスペクトル測定チャートを示す。図1中、横軸は
ケミカルシフト値 (p p m) と縦軸はピーク強度をそれぞれ表す。

[01 09] (比較例 1)

300 ml のナス型フラスコに、フエニルトリエトキシシラン（東京化成工業社製）40.8 7 g (170 mmol) と2-シアノエチルトリエトキシシラン（アズマックス社製）6.52 g (30 mmol) を仕込んだ後、蒸留水10.8 ml にジ酸 0.92 g (ジ酸化合物の合計量に対して 10 モル％) を溶解した水溶液 (11.72 g) を放置しながら加え、30 で 2 時間反応させた後、70 で昇温し 5 時間保持した。反応終了後、反応液に酢酸エチル 100 g を添加して分液し、有機層を水層が pH = 4 になるまで精製水にて洗浄した。有機層をエバボレーターで濃縮し、得られた濃縮物を真空乾燥することにより硬化性ポリシルセスキオキサン化合物 (A2) を 30.3 g 得た。このものの Mw は 1610, PDI が 1.460 であった。

また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3 のピーク積分値比は、下記第 1 表に示すとおりだった。

図 2 に、29Si-NMRスペクトル測定チャートを示す。図 2 中、横軸はケミカルシフト値 (p p m)、縦軸はピーク強度を表す。

[01 10] (比較例 2)

実施例 1 において、28% アンモニア水を添加しなかった以外は、実施例 1 と同様にして、硬化性ポリシルセスキオキサン化合物 (A3) を 33.7 g 得た。このものの Mw は 920, PDI が 1.1 であった。

また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3 のピーク積分値比は、下記第 1 表に示すとおりだった。

[01 11] (実施例 2)

実施例 1 で得た硬化性ポリシルセスキオキサン化合物 (A1) 100 部（質量部、以下同じ）に、シランカップリング剤としての、1,3,5-N-トリスス (トリメトキシシリル) プロピル) イソシアヌレート (下記第 1 表において、「(B1)」という。) 10 部、及び、3-トリメトキシシリルプロピル無水コハク酸 (下記第 1 表において、「(B2)」という。)
1部を加え、ジエチレングリコールモノエチルアセテートを添加して固形分 80 % として、全容を十分に混合、脱泡することにより、実施例 2 の硬化性組成物 1 を得た。

[01 12] (実施例 3, 4, 比較例 3 〜 8)

実施例 2 において、硬化性ポリシルセスキオキサン化合物の種類、シランカップリング剤の使用量（部）を、下記第 1 表に記載したものに変更した以外は、実施例 2 と同様にして、実施例 3, 4 の硬化性組成物 2, 3, 比較例 3 〜 8 の硬化性組成物 1 r 〜 6 r を得た。

[01 13] 実施例 2 〜 4, 比較例 3 〜 8 で得た硬化性組成物 1 〜 3, 1 r 〜 6 r の硬化物につき、下記に示す接着強度測定、クラック発生試験、及び耐剥離性試験を行い、クラック発生率、剥離発生率を算出した。

[01 14] [接着強度試験]

2 m m角のシリコンチップのミラー面に、硬化性組成物1 〜 3, 1 r 〜 6 r のそれぞれを、厚さが約 2 μm になるよう塗布し、塗布面を被着体（銀メツキ鋼板）の上に載せ圧着した。その後、170 ℃ で 2 時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度（2 〜 3 ℃, 100 ℃）に加熱したポンドテスター（シリーズ 400, ディジオ社製）の測定ステージ上に 30 秒間放置し、被着体から 50 μm の高さの位置より、スピード 200 μm/s で接着面に対し水平方法（せん断方向）に応力をつけ、23 ℃ 及び 100 ℃ における、試験片と被着体との接着強度（N/2 m m □）を測定した。測定結果を下記第 1 表に示す。

[01 15] [耐クラック性]

硬化性組成物 1 〜 3, 1 r 〜 6 r のそれぞれを、ジエチレングリコールモノブチルエーテルアセテートにて固形分 80 質量 % になるよう希釈した。2 m m角のシリコンチップのミラー面に、それぞれ厚さが約 2 μm になるよう塗布し、塗布面を被着体（銀メツキ鋼板）の上に載せ圧着した。その後、170 ℃ で 2 時間加熱処理して硬化させ、試験片付被着体を得た。デジタル顕微鏡（VHX-1000, キ-エンス製）を用い、シリコンチップからはみ
出している樹脂部（フィレット部）の幅を計測した。フィレット部が80nm〜120nmかつシリコンチップの4辺すべてにフィレットがあるものを評価サンプルとして、それぞれ15個選定した。

選定したサンプルのフィレット部を電子顕微鏡（キーエンス社製）にて観察し、クラックを有するサンプルの数を数え、クラック発生率が0％以上25％未満を「A」、25％以上50％未満を「B」、50％以上100％を「C」と評価した。この評価がA又はBであれば、良好な耐剥離性を有するといえる。

[0116] [耐剥離性試験]

LEDリードフレーム（エノモト社製、製品名：5050D/GPKG LEAD FRAME）に、硬化性組成物1〜3、1r〜6rを、0.4mmϕ程度塗布した上に、0.5mm角のサファイアチップを圧着した。その後、170℃で2時間加熱処理して硬化させた後、封止剤（信越化学工業社製、製品名：EG6301）をカプセル内に流し込み、150℃で1時間加熱処理して試験片を得た。

この試験片を85℃、85％RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー（リフロー炉：相模理工社製、製品名：WL_15_20DNX型）にて処理を行った。その後、熱サイクル試験機にて、_40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施した。その後、封止材を除去する操作を行い、その際に素子が一緒に剥がれるか否かを調べた。この試験を、各硬化性組成物につき12回行った。

下記第1表に、素子が一緒に剥がれた回数を数え、剥離発生率が25％以下であれば「A」、25％より大きく50％以下であれば「B」、50％より大きければ「C」と評価した。この評価がA又はBであれば、良好な耐剥離性を有するといえる。

[0117]
第 1 表から、実施例 1 の硬化性ポリシルセスキオキサン化合物（A1）を用いて得られる硬化性組成物 1 〜 3 の硬化物は、いずれも接着強度が 23 ℃で98 N/2 mm以上であり、接着強度に極めて優れていたことがわかった。また、100 ℃においても65 N/2 mm以上であり、耐熱性にも優れるものであることがわかった。また、クラック発生試験で、クラックの発生は全くみられず、評価はすべて A であった。耐剥離性試験の評価もすべて A であり、耐剥離性にも優れていることがわかった。

一方、比較例 1 、2 の硬化性ポリシルセスキオキサン化合物（A2）、（A3）を用いて得られた比較例 3 〜 8 の硬化性組成物 1 r 〜 6 r の硬化物は、接着強度が劣り、耐剥離性にも劣るものであった。
請求の範囲

[請求項1] 式：CHR¹XQ—D—SiO₃/2 式中、R¹は水素原子又は炭素数1〜6のアルキル基を表し、X。はハロゲン原子、シアノ基又は式：〇Gで表される基（式中、Gは水酸基の保護基を表す。）を表し、Dは単結合又は置換基を有していてもよい炭素数1〜20の2価の有機基を表す。）で表される構成単位の少なくとも一種を有する硬化性ポリシルセスキオキサン化合物であって、

2⁹Si核磁気共鳴スペクトルにおいて、_73ppm以上—65ppm未満の領域に第1のピークトップ、_82ppm以上—73ppm未満の領域に第2のピークトップを有し、かつ、_65ppm以上—55ppm未満の領域に、実質的にピークを有しないことを特徴とする硬化性ポリシルセスキオキサン化合物。

[請求項2] さらに、式：R²SiO₃/2（式中、R²は、炭素数1〜20のアルキル基、又は置換基を有していてもよいアリール基を表す。）で表される構成単位の少なくとも一種を有する、請求項1に記載の硬化性ポリシルセスキオキサン化合物。

[請求項3] 2⁹Si核磁気共鳴スペクトルにおいて、_82ppm以上—73ppm未満の領域におけるピークの積分値（P₂）が、_73ppm以上—65ppm未満の領域の積分値（P₁）に対し、60〜90%である、請求項1又は2に記載の硬化性ポリシルセスキオキサン化合物。

[請求項4] 質量平均分子量が800〜5000の化合物である、請求項1〜3のいずれかに記載の硬化性ポリシルセスキオキサン化合物。

[請求項5] 下記式（1）

\[\text{化1} \]

\[\text{CHR}^1 X. —D_S i (\text{OR}^3)_3 \cdot \text{s} \cdot \text{(1)} \]

式中、R¹は水素原子又は炭素数1〜6のアルキル基を表し、X。
はハロゲン原子、シ アノ基又は式 :〇Gで表される基 (式中、Gは水酸基の保護基を表す。) を表し、Dは単結合又は置換基を有していてもよい炭素数 1〜20 の2個の有機基を表し、R^3 は、水素原子又は炭素数 1〜10 アルキル基を表す。複数のR^3 はすべて同じでも相異なっていてもよい。) で表される化合物の少なくとも一種を、重縮合触媒の存在下に、重縮合させる工程 (I) を有する、請求項 1〜4 のいずれかに記載の硬化性ポリシルセスキオキサン化合物の製造方法。
[請求項7] 前記重縮合触媒が、塩酸、ホウ酸、クエン酸、酢酸、硫酸、及びメタンスルホン酸からなる群から選ばれる酸触媒の少なくとも一種である請求項5又は6に記載の硬化性ポリシルセスキオキサン化合物の製造方法。

[請求項8] さらに、前記工程（1）で得られた反応液に有機溶媒を添加して重縮合物を溶解させた後、前記酸触媒に対して等モル当量以上の塩基を添加して、さらに重縮合反応を行う工程（11）を有する、請求項7に記載の硬化性ポリシルセスキオキサン化合物の製造方法。

[請求項9] 請求項1〜4のいずれかに記載の硬化性ポリシルセスキオキサン化合物、及びシランカップリング剤を含有する硬化性組成物。

[請求項10] 請求項9に記載の硬化性組成物を加熱することにより得られる硬化物。

[請求項11] 請求項1〜4のいずれかに記載の硬化性ポリシルセスキオキサン化合物、又は、請求項9に記載の硬化性組成物を、光素子固定剤として使用する方法。
[図1]

[図2]
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2015/063217

A. CLASSIFICATION OF SUBJECT MATTER

C08G 7/22 (2006.01)i, C08G 7/06 (2006.01)i, C08K5/54 (2006.01)i, C08L83/08 (2006.01)i, C09J1/106 (2006.01)i, C09J1/83/08 (2006.01)i, H01L29/29 (2006.01)i, H01L23/31 (2006.01)i, H01L33/35 (2010.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08G7/00-77/62, C08K5/00-5/59, C08L83/00-83/16, C09J1/00-11/08, C09J1/183/00-183/16, H01L2/00-23/56, H01L3/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JST Plus / JMEDPlus / JST 7580 (JDream #1), CAplus / REGI STRY (STN), CAplus (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2012/73988 A1 (Linte c Corp.), 07 June 2012 (07.06.2012), ent ire text</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>JP 2012/197425 A (Linte c Corp.), 18 October 2012 (18.10.2012), ent ire text</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>(Family: none)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * “A” document defining the general state of the art which is not considered to be of particular relevance
 * “E” earlier application or patent but published on or after the international filing date
 * “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * “O” document referring to an oral disclosure, use, exhibition or other means
 * “P” document published prior to the international filing date but later than the priority date claimed
 * “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * “Z” document member of the same patent family

Date of the actual completion of the international search

04 June 2015 (04.06.15)

Date of mailing of the international search report

16 June 2015 (16.06.15)

Name and mailing address of the ISA/Authorized officer

Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Telephone No.
INTERNATIONAL SEARCH REPORT

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2008-179811 A (Asahi Kasei Corp.), 07 August 2008 (07.08.2008), entire text (Family: none)</td>
<td>1-11</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (IPC))

| Int.Cl. | C08G77/22 (2006. 01) i, C08G77/06 (2006. 01) i, C08K5/54 (2006. 01) i, C08L83/08 (2006. 01) i, C09J1 106 (2006. 01) i, C09J183/08 (2006. 01) i, H01L23/29 (2006. 01) i, H01L23/3 1 (2006. 01) i, H01L33/06 (2010. 01) i |

B. 調査を行った分野

<table>
<thead>
<tr>
<th>調査を行った最小限資料 (国際特許分類 (IPC))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行った分野に含まれるもの

<table>
<thead>
<tr>
<th>資料</th>
<th>日本国実用新案公報</th>
<th>1922-1</th>
</tr>
</thead>
</table>

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

JSTPlus/UMEDPlus/JST7560 (JDream II), CAplus/REGIS (STN) CAplus (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2012-197425 A (リネットック株式会社) 2012. 10. 18, 文献全体 (ファミリーなし)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

引文文献のカテゴリ

- A 特に選定のある文献で、一般的な技術水準を示すもの
- B 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの
- C 特に選定のある文献で、国際出願の出願時又は特許申請時および公表されたもの
- D 特に選定のある文献で、国際出願の出願時又は特許申請時および公表されたもの
- E 特に選定のある文献で、国際出願の出願時又は特許申請時および公表されたもの

国際調査を完了した日

04. 06. 2015

国際調査報告の発送日

16. 06. 2015

国際調査機関の名称及び住所

日本国特許庁 (ISA / JP) 郵便番号 100-0015 東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権利のある職名) 岡崎 喜 忠 電話番号 03-3581-1101 内線 3457

様式 PCT / ISA / 210 (第2ページ) (2009年7月)
C（続き）

関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2008-179811 A (旭化成株式会社) 2008.08.07, 文献全体 (ファミリーなし)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（2009年7月）