a2 United States Patent

Boyter et al.

US009785540B2

US 9,785,540 B2
*QOct. 10, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

GENERIC LANGUAGE APPLICATION
PROGRAMMING INTERFACE
INTERPRETER

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Gerald K. Boyter, Charlotte, NC (US);

Duane R. Frederici, Sherrills Ford, NC

(US); David E. Kaplita, Charlotte, NC

(US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/175,233

Filed: Jun. 7, 2016

Prior Publication Data

US 2017/0147479 Al May 25, 2017

Related U.S. Application Data

Continuation of application No. 14/951,552, filed on
Nov. 25, 2015, now Pat. No. 9,672,141.

Int. CL.

GO6F 11/36 (2006.01)

U.S. CL

CPC ... GO6F 11/3668 (2013.01); GO6F 11/3608

(2013.01)
Field of Classification Search
None
See application file for complete search history.

Receive API function invocation
using programming language Z 5g5

!

Determine if interpreter ibrary
contains interpreter for a
programming language Z 510

" Programming
< language Z 820
supported? /

No

Raise an eror and wait for addition
of an interpreter for the

520 Yes

(56) References Cited

U.S. PATENT DOCUMENTS

7,921,406 B1* 42011 McGoldrick GOG6F 8/30
707/756
7,921,432 B2* 42011 Tolgu ...coevevnnnn GOG6F 9/541
717/136

(Continued)

OTHER PUBLICATIONS

Buck et al. “An API for runtime code patching.” The International
Journal of High Performance Computing Applications 14.4 (2000):
317-329. Retrieved on [Jan. 22, 2017] Retrieved from the
Internet: URL<http://journals.sagepub.com/doi/pdf/10.1177/
109434200001400404>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Cheneca Smith
(74) Attorney, Agent, or Firm — Cantor Colburn LLP

57 ABSTRACT

Technical solutions are described for facilitating a first
computer program product to communicate with a second
computer program product. The first computer program
product invokes an application programming interface (API)
function from an API of the second computer program
product, where the first computer program product and the
second computer program product use distinct programming
languages. The solutions described herein initiate a record
corresponding to the API function and invoke an interpreter
that calls the API function in the second programming
language. Upon receiving, from the interpreter, an indication
that the API function has completed execution, result of the
execution are obtained from the record and returned to the
first computer program product.

6 Claims, 7 Drawing Sheets

Use GLAI communicator to call the
AP} function 525

programming language Z 1o the
interpreter fibrary

US 9,785,540 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2005/0192984 Al* 9/2005 Shenfield GOGF 9/45508

2005/0283457 Al* 12/2005 Sonkin .. GO6F 17/30368

2007/0220527 Al* 9/2007 Tolgucccovvviininnne GO6F 9/541
719/316

2013/0139133 Al* 5/2013 Odaira GO6F 9/45516
717/148

2014/0068325 Al* 3/2014 Masser GO6F 11/3692
714/15

2015/0012259 Al* 1/2015 Guptaccocoeee. GO6F 17/289
704/2

OTHER PUBLICATIONS

Sullivan, Gregory T., et al. “Dynamic native optimization of inter-
preters.” Proceedings of the 2003 workshop on Interpreters, virtual
machines and emulators. ACM, 2003.Retrieved on [Jan. 22, 2017]
Retrieved from the Internet:URL<http://dl.acm.org/citation.
cfm?id=858576>*

Gerald K. Boyter et al., “Generic Language Application Program-
ming Interface Interpreter”, U.S. Appl. No. 14/951,552, filed Nov.
25, 2015.

List of IBM Patents or Patent Applications Treated as Related,;
(Appendix P), Filed Mar. 24, 2017; 2 pages.

Gerald K. Boyter et al., “Generic Language Application Program-
ming Interface Interpreter”, U.S. Appl. No. 15/497,947, dated Apr.
26, 2017.

List of IBM Patents or Patent Applications Treated as Related,;
(Appendix P), Filed Jun. 19, 2017, 2 pages.

* cited by examiner

US 9,785,540 B2

Sheet 1 of 7

Oct. 10, 2017

U.S. Patent

0G1 jonpoid
L2} sidy papoddng
NIz} aizl vigy
N-ldY Zldv bidv
v v v
G2 V19

A

y

72l uonesyddy Jasn

0z Aowopy

0g 1 Amnoug weshs
gaaa

ol
J08$8001d

<

001

} Bid

US 9,785,540 B2

z B4

Sheet 2 of 7

Oct. 10, 2017

I EY g
ey u..fw R ..).w Bl

g
EM LS

oy gy g e S
flms \M waliwr B3

U.S. Patent

N\ N
012 UOGBDIOAU} LONOUNS |dY ¢C) uofjedyddy sesn

US 9,785,540 B2

Sheet 3 of 7

Oct. 10, 2017

U.S. Patent

¢ B4

01¢ uopneooau| uooun4 |dy

N
221 uoneoyddy Jasn

US 9,785,540 B2

Sheet 4 of 7

Oct. 10, 2017

U.S. Patent

08 JOjealuNIWOD 19

NGOV as0v YGoy
N-Jeudigyuy | = | z-ejeudieny) || L-1er8adisiy)
ozy Aeigi Jeyeidieyu

O ¥ 4240AUL V1D

¢LIVIO

v ‘B4

US 9,785,540 B2

Sheet 5 of 7

Oct. 10, 2017

U.S. Patent

TSe] Areaqy Jojaidiau
ay} 03 7 abenbue; Buiwresboid

U} Jo} Jejeidielur Ue Jo

UOIIPPE 10} JIBM pUB JOLI Ue 8siey

5cs uonouny |dv
U} ||BO O} JOJEOIUNULIOD |YTS) 250

i pauoddns
025 7 sbenbueg
Bunuweiboid

0 7 abenbue} buiwwelboid
B 10} Jojaidio)ul SUIRILIOD
Areiqy sepaudisyur i suiIgleQ

A

05 7 abenbue; buiwwesboid Buisn
UONBOOAUI UOIDUR) | Y 9AI90Y

G big

US 9,785,540 B2

Sheet 6 of 7

Oct. 10, 2017

U.S. Patent

0¥9 uonesydde Jesn 0} J04UOD UORNISXS UINIOY

A

0€9 uoneoydde Josn 0] pJOIaI WO YNSal Uinsy

A

329 aje|dwiod UORNOAXS UOROUN] |dY 1ey) feubig
929 PI0J3 U} OJUI 1iNS8U 8I0IS
v29 UORNoaXa 10} Jonpoid 0} UoiUN4 |4y PUss
775 PI00S1 WOl sanjea isjalieied pesy

029 91n08Xa 0] uofouny |4y 8y} asne)

A

319 Y obenbue| burwesboid io} ejeidialy] 109198

919 pi0081 8y} Ojul sispweled 8101

719 P1099Y Ajeniu]

71,9 ©0Aul 0} g sbenbuey Buiwuwesbold Joj |4y Auep

010 UONoaXa Uonauny |dy Sjeniu|

A

509 y abenbue|
Buiwweiboid Buisn uoREIOAUI UOIIOUN} |dY SAI808Y

9 Biy

US 9,785,540 B2

Sheet 7 of 7

Oct. 10, 2017

U.S. Patent

771 S|dy peuoddng
NIZ) aI7L
N-1dV Zidv
(A vs

0z Aeiqi Jeiaidispu
1 >

¢s 4+ ¢es

{s)piooay
A

Zs

0€Y JOIEIUNWILLOD 1¥1O / 0Ly 19%0AU] V1D

1614

b 061 19npoid

IS

.

_ ZZ1 uoneonddy sesn

G2l V1D

US 9,785,540 B2

1
GENERIC LANGUAGE APPLICATION
PROGRAMMING INTERFACE
INTERPRETER

DOMESTIC PRIORITY

This application is a continuation of U.S. Non-Provisional
application Ser. No. 14/951,552, entitled “GENERIC LAN-
GUAGE APPLICATION PROGRAMMING INTERFACE
INTERPRETER,” filed Nov. 25, 2015, which is incorpo-
rated herein by reference in its entirety.

BACKGROUND

The present application relates to computer technology,
and more specifically, to interpreters that decode a program-
ming language.

Typically, computer technology products, such as hard-
ware, software, and a combination thereof, include an Appli-
cation Programming Interface (API). An API is a set of
functions that facilitates a user to develop and integrate
applications, such as by writing computer programs to
communicate and control attributes and/or features of the
product. For example, hardware such as co-processors, field
programmable gate array (FPGA) boards, robotic kits, and
other such products include a respective. Further, software
products such as browsers, integrated development environ-
ments (IDEs), graphics libraries, and many other such
software products include a respective API. Further yet,
products such as smartphones, smartwatches, and many
other products that are combination of hardware and soft-
ware include a respective APIL.

SUMMARY

According to an embodiment, a computer implemented
method for facilitating a first computer program product to
communicate with a second computer program product
includes receiving, from the first computer program product,
an identification of an application programming interface
(API) function from an API of the second computer program
product. The first computer program product includes com-
puter executable instructions in a first programming lan-
guage and the API of the second computer program product
includes computer executable instructions in a second pro-
gramming language. The first programming language is
distinct from the second programming language. The com-
puter implemented method also includes initiating a record
corresponding to the API function. The computer imple-
mented method also includes invoking an interpreter corre-
sponding to the second programming language that calls the
API function in the second programming language. The
computer implemented method also includes receiving,
from the interpreter, an indication that execution of the API
function is complete. The computer implemented method
also includes accessing a result of the execution of the API
function from the record. The computer implemented
method also includes returning, to the first computer pro-
gram product, the result of the execution of the API function.

According to another embodiment, a system for facilitat-
ing a first computer program product to communicate with
a second computer program product includes a memory and
a processor. The memory includes computer executable
instructions of the first program product, where the com-
puter executable instructions includes an invocation of an
application programming interface (API) function from an
API of the second computer program product. The computer

20

25

30

35

40

45

55

2

executable instructions of the first computer program prod-
uct are in a first programming language, and the API of the
second computer program product includes computer
executable instructions in a second programming language,
the first programming language distinct from the second
programming language. The processor initiates a record
corresponding to the API function. The processor also
executes an interpreter corresponding to the second pro-
gramming language that calls the API function in the second
programming language. The processor also receives, from
the interpreter, an indication that execution of the API
function is complete. The processor also accesses a result of
the execution of the API function from the record. The
processor also returns, to the first computer program prod-
uct, the result of the execution of the API function.

Yet another embodiment includes a computer program
product for facilitating a first computer program product to
communicate with a second computer program product. The
computer product includes computer readable storage
medium, the computer readable storage medium including
computer executable instructions. The computer readable
storage medium includes instructions to receive, from the
first computer program product, an invocation of an appli-
cation programming interface (API) function from an API of
the second computer program product. The computer
executable instructions of the first computer program prod-
uct are in a first programming language, and the API of the
second computer program product includes computer
executable instructions in a second programming language.
The first programming language is distinct from the second
programming language. The computer readable storage
medium also includes instructions to initiate a record cor-
responding to the API function. The computer readable
storage medium also includes instructions to execute an
interpreter corresponding to the second programming lan-
guage that calls the API function in the second programming
language. The computer readable storage medium also
includes instructions to receive, from the interpreter, an
indication that execution of the API function is complete.
The computer readable storage medium also includes
instructions to access a result of the execution of the API
function from the record. The computer readable storage
medium also includes instructions to return, to the first
computer program product, the result of the execution of the
API function.

BRIEF DESCRIPTION OF THE DRAWINGS

The examples described throughout the present document
may be better understood with reference to the following
drawings and description. The components in the figures are
not necessarily to scale. Moreover, in the figures, like-
referenced numerals designate corresponding parts through-
out the different views.

FIG. 1 illustrates an example system facilitating a user
application to call an API function of a product in accor-
dance with an embodiment.

FIG. 2 illustrates an example user application in accor-
dance with an embodiment.

FIG. 3 illustrates an example user application in accor-
dance with an embodiment.

FIG. 4 illustrates an example generic language application
programming interface interpreter in accordance with an
embodiment.

FIG. 5 illustrates a flowchart of example logic to update
a generic language application programming interface inter-
preter in accordance with an embodiment.

US 9,785,540 B2

3

FIG. 6 illustrates a flowchart of example logic for a user
application to call an API function of a product in accor-
dance with an embodiment.

FIG. 7 illustrates an example a user application calling an
API function of a product in accordance with an embodi-
ment.

DETAILED DESCRIPTION

A product may support multiple Application Program-
ming Interfaces (APIs) in different programming languages.
For example, the APIs may be identical in functionality, but
use different in programming languages. Supporting differ-
ent programming languages facilitates a user, such as an
end-user, a tester, an application programmer, or any other
user, that accesses the attributes and/or features of the
product to use an API with a programming language which
suits that user. For example, an application programmer may
be experienced in developing applications using the C
programming language. Accordingly, providing an API that
supports the C programming language facilitates the appli-
cation programmer to develop applications for the product,
such as to extend the functionality and/or a use of the
product. In addition, if a second application programmer is
more experienced (or comfortable) in developing applica-
tions using the JAVA programming language, providing an
API that supports the JAVA programming language facili-
tates the second application programmer to extend the
functionality and/or the use of the product. Accordingly,
product manufacturers, typically provide multiple APIs,
each supporting different programming languages, for a
product.

However, providing multiple APIs entails testing all the
APIs. Testing multiple APIs, in turn, typically includes
implementing code in each programming language that the
API is provided in. Thus, a test suite for each API language
has to be maintained, and further, staff with expertise in each
respective API language has to be available.

Alternatively, a product manufacturer may modify com-
puter executable instructions of a program or a test, using a
specific interface between each API language that a user
wishes to use. For example, the C programming language
can communicate with the JAVA programming language
using a JAVA supported interface, such as the JAVA Native
Interface (INI); or the C programming language can com-
municate with the C# (C-Sharp) programming language
using sockets or piping. However, such modification is far
from trivial or quick to implement, particularly if without
knowledge and/or experience in specific interfaces between
the several programming languages, and thus, staff with
expertise in each respective API language has to be avail-
able.

The technical solutions described herein provide a generic
language API interpreter (GLAI). The GLAI acts as an
interface between a first programming language, such as a
user’s program, or a test program, and the multiple lan-
guages that the product supports through the provided APIs.
The GLAI is configurable to select which API to use,
facilitating computer executable instructions in the first
programming language to invoke functions from any of the
API languages supported by the product.

Thus, the user can write an application in a programming
language of choice, and the GLAI facilitates the application
to communicate with the product via one of the several API
languages supported by the product, without the user having
to know the API language. Thus, the GLAI reduces the
amount of time the user takes to develop the application, or

10

15

20

25

30

35

40

45

50

55

60

65

4

to test multiple the APIs in different languages. Further, the
GLAI increases maintainability and agility of the computer
executable instructions of the multiple APIs. Additionally, if
the product manufacturer, or any other entity, adds a new
API in a new language for the product, the user’s program
continues to communicate with the product using the new
API with little or no change to the user’s program. Further
yet, the GLAI helps the product manufacturer to minimize
a skill set or know how to use multiple programming
languages to test the multiple APIs of the product.

FIG. 1 illustrates an example system 100 for facilitating
a user application 122 to interact with a product 150. The
system 100 includes, among other components, a processor
110, a memory 120, and system circuitry 130. The system
100 is a computer that includes hardware, such as electronic
circuitry. For example, the system 100 may be a desktop
computer, a server computer, a laptop computer, a tablet
computer, a smartphone, or any other computing device that
executes computer executable instructions. In an example,
the system 100 is used in conjunction with the product 150,
for example to enhance the functionality of the product 150.
In another example, the system 100 tests the functionality of
the product 150.

The processor 110 may be a central processor of the
system 100 and is responsible for execution of an operating
system, control instructions, and applications installed on
the system 100. The processor 110 may be one or more
devices operable to execute logic. The logic may include
computer executable instructions or computer code embod-
ied in the memory 120 or in other memory that when
executed by the processor 110, cause the processor 110 to
perform the features implemented by the logic. The com-
puter code may include instructions executable with the
processor 110. The computer code may include embedded
logic. The computer code may be written in any computer
language now known or later discovered, such as C++, C#,
Java, Pascal, Visual Basic, Perl, HyperText Markup Lan-
guage (HTML), JavaScript, assembly language, shell script,
or any combination thereof. The computer code may include
source code and/or compiled code. The processor 110 may
be a general processor, central processing unit, server,
application specific integrated circuit (ASIC), digital signal
processor, field programmable gate array (FPGA), digital
circuit, analog circuit, or combinations thereof. The proces-
sor 110 may be in communication with the memory 120, the
system circuitry 130, and other components of the system
100.

The memory 120 is a non-transitory computer storage
medium. The memory 120 includes primary memory and
secondary memory of the system 100. The memory 120 may
include volatile memory such as dynamic random access
memory (DRAM), static random access memory (SRAM),
Flash memory, or any other type of volatile memory or a
combination thereof. The memory 120 may include a mag-
netic disk, an optical disk, a hard disk drive (HDD), a
solid-state drive (SSD), or any other type of non-volatile
memory or a combination thereof. The memory 120 stores
control instructions and applications executable by the pro-
cessor 110. The memory 120 may contain other data such as
images, videos, documents, spreadsheets, audio files, and
other data that may be associated with operation of the
system 100.

The system circuitry 130 includes hardware components
that the processor 110 uses to execute the technical solutions
described herein. For example, the system circuitry 130 may
include input/output peripherals such as a keyboard and
mouse. Alternatively or in addition, the system circuitry 130

US 9,785,540 B2

5

includes human interaction components such as display and
audio input/output circuitry. Alternatively or in addition, the
system circuitry 130 includes computational devices such as
a graphics processing unit (GPU), arithmetic unit (AU), or
any other co-processor.

The product 150 is a computer program product that is
extendable via supported APIs 127. The product 150 may
support multiple APIs 127A-127N. Each API 127A-127N
includes computer executable instructions in different pro-
gramming languages. For example, the API-1 127A may be
in the C programming language, the API-2 127B may be in
the JAVA programming language, and so on. Of course,
different examples may include the supported APIs 127 in
different programming languages. In an example, the prod-
uct 150 is part of the system 100. For example, the product
150 may be an application that includes computer execut-
able instructions stored in the memory 120. In another
example, the product 150 may be separate from the system
100. For example, the product 150 may be a peripheral
device of the system 100, such as a mouse or a keyboard, or
any other peripheral device, the functionality of which the
system 100 extends via the supported APIs 127. In another
example, the product 150 is a separate computer, such as a
smartphone, a robotic kit, or any other apparatus, the func-
tionality of which the system 100 extends via the supported
APIs 127. The system 100 communicates with the product
150. The communication may be wired or wireless. For
example, the product 150 may communicate with the system
100 via a communication port such as an Ethernet port, a
universal serial bus (USB) port, or any other such commu-
nication port. In another example, the product 150 and the
system 100 communicate wirelessly, such as via WI-FI™,
BLUETOOTH™, or any other wireless communication
protocols.

The user application 122 is an application that the user of
the product 150 has developed. For example, the user
application 122 is a computer program product that includes
computer executable instructions that the processor 110
executes. The user application 122 may use any program-
ming language, such as the C programming language, the
JAVA programming language, or any other programming
language of the user’s choice. The user application 122
accesses the features and/or attributes of the product 150 via
the supported APIs 127.

FIG. 2 illustrates an example in which the user application
122 includes an API function invocation 210. The API
function is a computer executable procedure that facilitates
the user application 122 to access an attribute or feature of
the product 150. In an example, each of the APIs 127
includes the API function. For example, the API function
may facilitate the user application 122 to determine a status
of the product 150, or request the product 150 to execute a
procedure, such as an encryption, a media playback, a
computation, or any other such interaction with the product
150. In an example, the product 150 completes execution of
the API function in response to the API function invocation
210 and returns a result of the execution to the user appli-
cation 122. For example, the product 150 returns the status,
or an encryption key, or a result of an encryption, or result
of a computation, or any other result corresponding to the
API function the user application 122 invokes. As part of the
API function invocation 210, the user application 122 may
send to the product 150, one or more parameters. The
parameters may contain values to be used during execution
of the API function. Alternatively or in addition, the param-

35

40

45

6

eters may contain result values that the product 150 returns
to the user application 122 upon execution of the API
function.

In the illustrated example, “CSNBAPG” is a name of the
API function that the user application 122 invokes, followed
by parameters. In an example, the parameters may include
addresses of memory locations. The product 150, based on
the addresses, may access values stored at the memory
locations, and/or write values back to the memory locations,
for example as part of the results. Typically, the user
application 122 uses the same programming language as the
programming language of a specific API, such as API-1
127A. The user application 122 thus is not able to use any
of the other APIs, such as API-2 1278, and API-N 127N. For
example, consider that the user application 122 is a test
program to test the API function. The user in this case has
to develop and execute N different test programs, each test
program compatible with a respective API from the APIs
127.

FIG. 3 illustrates another example user application 122,
based on the technical solutions described herein, in which
the user application 122 includes an API function invocation
310 that is compatible with any of the APIs 127, irrespective
of the programming language of the user application 122
and the APIs 127. The API function invocation 310 includes
an identification of the API function to be executed, fol-
lowed by a sequence of identifiers of types of parameters
(%d%d%d%s%d %s%d%s Yos%s%s%s%d%s%s), further
followed by the parameters. The API function invocation
310 requests the same API function “CSNBAPG,” as the
API function invocation 210 in FIG. 2.

The GLAI 125 acts as an interface between the user
application 122, and the API languages supported by the
product 150. In an example, the user application 122 iden-
tifies which one of the APIs 127 to use. The GLAI 125 hides
communication between the programming languages of the
user application 122 and the selected API from the user. In
an example, the APIs 127 provide identical functionality, for
example by including API functions with similar names and
parameter definitions. Further, the APIs 127 may not contain
language specific functionality, for example, which is not
supported by a programming language of another AP

FIG. 4 illustrates example components of the GLAI 125.
In an example, the GLAI 125 includes a GLAI invoker 410,
an interpreter library 420, and a GLAI communicator 430,
among other components.

The GLAI invoker 405 facilitates the user application 122
to communicate with the GLAI 125. In an example, the
GLAI invoker 410 includes a function named “call_method”
(illustrated in FIG. 3), which the user application 122
includes and uses to invoke the API function. In an example,
the user application 122 informs the GLAI 125, via the
“call_method,” which API language to use. For example, the
user application 122 includes an “API Function Name” and
“Parameter Data,” and additionally identifies an API to use,
such as by specifying an API identifier. In an example, the
user application 122 specifies the API identifier during an
initialization of the GLAI 125. In an example, GLAI 125
includes more than one GLAI invoker 410, each GLAI
invoker using the same programming language as the user
application 122. Further the GLAI invoker 410 controls a
communication protocol between the interpreter library 420
and the user application 122 via the GLAI communicator
430.

The interpreter library 420 communicates information
between the GLAI communicator 430 and the product 150.
For example, the interpreter library 420 forwards data, such

US 9,785,540 B2

7

as parameter values from the API function to the product
150. The interpreter library 420 additionally returns data,
such as result from the product 150 API back to the user
application 122 via the GLAI communicator 430. In an
example, the interpreter library 420 includes more than one
interpreters, interpreter-1 405A, interpreter-2 405B, and
interpreter-N 405N. Each interpreter 405A-405N corre-
sponds to an APl 127A-127N from the APIs 127 that the
product 150 supports. For example, if the API-1 127A is in
programming language 7, which may be any programming
language, the interpreter-1 405A facilitates executing the
API function using the programming language Z. In an
example, without the interpreter library 420 including an
interpreter of the programming language Z, the user appli-
cation 122 may not be able to use GLAI to communicate to
the API-1 127A in the programming language Z.

FIG. 5 illustrates an example in which the GLAI 125 is
updated to include an interpreter for a specified program-
ming language. The GLAI 125 receives the API function
invocation 310 from that user application 122, as shown at
block 505. Consider that the user application 122 uses the
programming language 7, which may be any programming
language. The GLAI invoker 410 may determine if the
interpreter library 420 supports the programming language
Z, as shown at block 510. For example, the GLLAI invoker
determines if the interpreter library 420 contains an inter-
preter that corresponds to the programming language Z. If
the interpreter for the programming language Z exists, the
GLAI 125 continues to call the API function, as shown at
blocks 520 and 525. Else, if the interpreter library 420 does
not support the programming language 7, the GLAI 125
raises an error, as shown at block 530. In an example, in
response to the error, the user may add the interpreter for the
programming language 7. The GLAI 125 waits for the
addition of the interpreter and in response to the addition of
the interpreter calls the API function, as shown at blocks 530
and 525. Thus, the GLAI 125 can be updated to support any
programming language that the user is comfortable to
develop the user application 122 in.

The GLAI communicator 430 facilitates the interpreter
library 420 to communicate data back and forth with the
GLAI invoker 410. In an example, the GLAI communicator
430 creates a record that the components of the GLAI 125
use to share data. For example, the record is a data structure
such as a data stream, a file, or any other data structure. In
an example, the GLAI communicator 430 creates the record
in the memory 120, for example the volatile memory, or the
non-volatile memory and shares the location of the record
with the other components. For example, the GLAI com-
municator 430 creates the record at a memory address that
is accessible by the GLAI invoker 410 and the interpreter
library 420. The GLAI communicator 430 subsequently
identifies the memory address to the GLAI invoker 410 and
the interpreter library 420. In another example, the GLAI
communicator 430 creates the record at a predetermined
memory address that the GLAI invoker 410 and the inter-
preter library 420 already know. The GLAI invoker 410 and
the interpreter library 420 each may independently access
data stored in the record, and store data into the record.

In addition, the GLAI communicator 430 informs the
GLAI invoker 410 when the interpreter library 420 has
called the API function and also when the product 150 has
completed execution of the API function. For example, the
GLAI communicator 430 creates another record, such as
another file or data stream to indicate the completion.
Alternatively, the GLAI communicator 430 stores a comple-
tion identifier, such as a predefined symbol in the record that

20

25

40

45

50

8

was used to communicate data between the GLAI invoker
410 and the interpreter library 420. In yet another example,
the GLAI communicator 430 may add the completion iden-
tifier in a predetermined address in the memory 120 to
identify that the API function has been executed. By using
the memory 120, by creating the record(s), such as files
and/or data streams, the GLAI 125 facilitates an improved
cross-platform compatibility compared to pipes and/or sock-
ets.

FIG. 6 illustrates a flowchart of the user application 122
invoking the API function of an API, which uses a different
programming language than the user application 122. FIG.
7 illustrates an example operation of the flowchart in an
illustrative scenario in which the user application 122 uses
a programming language A and invokes an API function
from an API that uses a programming language B. The GLAI
125 receives the API function invocation 310, as shown at
block 605. The user application 122, written in the program-
ming language A may initialize the GLAI 125 during the
user application’s build process by including the GLAI
invoker 410 for the programming language A. In FIG. 7, Si
illustrates the user application 122 invoking the API func-
tion. The user application 122 invokes the GLAI 125 by
calling the “call_method” function with the parameters. In
an example, the parameters include options that inform the
GLAI invoker 410 of which API among other settings. The
parameters further include an API function Name of the API
function to call in the product’s API. In addition or alterna-
tively, the parameters include parameter values associated
with the function name in the product’s API.

The GLAI 125 initiates the execution of the API function,
as shown at block 620. For example, as part of the initiation,
the GLAI invoker 410 identifies the API to use, which uses
the programming language B, as shown at block 612. The
GLAI invoker 410 identifies the API based on the API
identifier, or the API function name in the API function
invocation 310. Further, the GLAI communicator 430 ini-
tiates the record, as shown at block 614. For example, the
GLAI communicator 430 creates a record. In an example,
the GLAI communicator 430 deletes a previous record that
was created for a previous API function invocation. Alter-
natively, in case the GLAI 125 uses a predetermined
memory address as the record, the GLAI communicator 430
clears the record at the predetermined memory address.
Further yet, the GLAI communicator 430 stores the param-
eter values into the record for use during execution of the
API function by the product 150, as shown at block 616. The
GLAI invoker 410 selects the interpreter to use based on the
programming language A and/or the programming language
B, as shown at block 618.

FIG. 7 illustrates the GLAI communicator 430 using a file
named ‘I/O File’ as the record to communicate the parameter
and results between the user application 122, the product
150, and the components of the GLAI 125. In addition, the
example in FIG. 7 illustrates the GLLAI communicator 430
using another file named ‘Indicator File’ to signal comple-
tion of the execution of the API function. Accordingly, in
FIG. 7, the GLAI communicator deletes these two files from
a previous API function and creates a new 1/O file and a new
Indicator file as the records, as shown at S3. The GLAI
communicator 430 stores the parameter data in the [/O file
and waits for the interpreter to signal completion of the API
function via the Indicator file. Here, the interpreter for the
programming language B is selected.

The GLAI 125 further causes the API function to execute,
as shown at block 620. To this end, the selected interpreter
reads the parameter data from the record, as shown at block

US 9,785,540 B2

9

622. In the case illustrated in FIG. 7, the interpreter library
reads the data from the I/O file, as shown at S3. The selected
interpreter sends the API function and the parameter data to
the product 150 for execution, as shown at block 624. For
example, the interpreter library 420 calls the product API in
the API’s programming language with the API function
name and parameter data, as shown at S4 in FIG. 7. The
selected interpreter library 420 waits for the product 150 to
complete executing the API function. The interpreter library
420 stores results from the product 150 in the record, as
shown at block 626. In the example scenario, the result is
stored in the 1/O file as shown at S5 in FIG. 7. In an example,
the result may be stored as a value of a parameter that was
earlier stored in the record. The interpreter library 420
signals the completion of the execution, as shown at block
628. For example, the interpreter library 420 updates the
completion record, such as the Indicator file in FIG. 7.
Alternatively, the interpreter library 420 updates the record,
such as the I/O file with a predefined completion identifier.

The GLAI invoker 410 resumes execution in response to
the completion signal. The GLAI invoker 410 reads the
parameter data and the result data from the record, such as
from the 1/O file of FIG. 7, and writes the result back to the
API function invocation 310, as shown at block 630. For
example, the API function invocation 310 identifies the
result parameters or the memory addresses of the result
parameters. The GLAI invoker 410 writes the parameter
data and the results into the parameters and/or the memory
addresses identified by the API function invocation 310, and
returns execution back to user application 122, as shown at
block 640. Thus, the GLLAI 125 facilitates the user applica-
tion 122 that is in programming language A to call the
product API in target language B.

In an example, the user application 122 may use more
than one of the APIs 127 that the product 150 supports. For
example, the user application 122, which is in a first pro-
gramming language, may include a first API function invo-
cation that uses the API-1 127A, which is in a second
programming language. The user application 122 may fur-
ther include a second API function invocation that uses the
API 128A, which is in a third programming language. The
GLAI 125, for each API function invocation, selects a
respective interpreter corresponding to the respective pro-
gramming languages of the APIs. In an example, the GLAI
125 creates separate records for each API function invoca-
tion. Alternatively, the GLAI 125 uses the same record, such
as at the predetermined memory location, for both API
function invocation.

The technical solutions described herein facilitate a user
application, which is developed in a programming language,
such as C or any other programming language to link and
call a method/function that is developed in a different
programming language, such as JAVA or any other program-
ming language. Further, if the other programming language
support is not present on the system that is executing the user
application (for example, (user application calls a CNM jar
file and JAVA is not present), the system returns an error. The
user may add an interpreter for JAVA to facilitate the system
to execute the API function call in the user application.

Consider an example where the user application in C
programming language is calling an API function in JAVA.
For example, the API function may be in a pre-compiled
JAVA program. In an example, a record such as an inter-
mediate file in which are the method name, parameter
definitions, and parameter values for the API function to be
executed by the JAVA program. Next, the pre-compiled
JAVA program is executed identifying the parameters and

10

15

20

25

30

35

40

45

50

55

60

65

10

data in the intermediate file and other arguments. For
example, the JAVA program reads in the intermediate file,
finds, and calls the specified method with the supplied
parameters. The JAVA program then rewrites to the inter-
mediate file, the output from the method call and creates an
indicator file to indicate to the user application in the C
programming language that the JAVA API function execu-
tion is complete. According to the technical solutions, in
response to the intermediate file being created, the interme-
diate file is read and the parameter values are returned to the
user application. Further, execution control is returned to the
user application to continue. Thus, the technical solutions do
not affect the user application (such as failure) if JAVA
support is not present on the system executing the user
application, and further facilitates the user application to
link to JAVA support files, such as a JAR file and call a JAVA
API function, without using sockets/piping.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,

US 9,785,540 B2

11

microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the

35

40

45

55

65

12

functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application, or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer implemented method for facilitating a first
computer program product to communicate with a second
computer program product, the method comprising:

receiving, from the first computer program product, an

identification of an application programming interface

(API) function from an API of the second computer

program product, wherein the first computer program

product comprises computer executable instructions in

a first programming language;

executing the API function of the second computer pro-

gram product using a plurality of programming lan-

guages, the plurality of programming languages com-

prising a second programming language and a third

programming language, which are distinct from the

first programming language, wherein execution of the

API function using the second programming language

comprises:

initiating a first record corresponding to the API func-
tion for the second programming language;

executing an interpreter corresponding to the second
programming language that calls the API function in
the second programming language;

receiving, from the interpreter, an indication that
execution of the API function is complete;

accessing a result of the execution of the API function
from the first record; and

returning, to the first computer program product, the
result of the execution of the API function; and

wherein execution of the API function using the third

programming language comprises:

initiating a second record corresponding to the API
function of the third programming language;

invoking an interpreter corresponding to the third pro-
gramming language that calls the API function in the
third programming language; and

returning, to the first computer program product, a
result of the execution of the API function using the
third programming language from the second record.

2. The computer implemented method of claim 1, further
comprising:

storing, in a record, a value of a parameter for the API

function; and

US 9,785,540 B2

13

accessing, from the record, the value of the parameter as
part of the result, in response to the indication that
execution of the API function is complete.
3. The computer implemented method of claim 1, wherein
initiating the first record comprises:
deleting a previous first record;
creating, in computer readable memory, the first record,
which is a data structure that is accessible by the
interpreter of the second programming language; and

identifying, to the interpreter of the second programming
language, a location of the first record in the computer
readable memory.

4. The computer implemented method of claim 1, wherein
the first record is at a predetermined location in computer
readable memory.

5. The computer implemented method of claim 1, further
comprising:

receiving, from the interpreter of the third programming

language, an indication that execution of the API func-
tion of the third programming language is complete;
and

accessing the result of the execution of the API function

of the third programming language from the second
record.

6. The computer implemented method of claim 1, further
comprising adding the interpreter of the second program-
ming language to a set of existing interpreters.

#* #* #* #* #*

10

15

20

25

14

