
US009785540B2

(12) United States Patent
Boyter et al .

(10) Patent No . : US 9 , 785 , 540 B2
(45) Date of Patent : * Oct . 10 , 2017

(56) References Cited (54) GENERIC LANGUAGE APPLICATION
PROGRAMMING INTERFACE
INTERPRETER U . S . PATENT DOCUMENTS

7 , 921 , 406 B1 * (71) Applicant : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US)

7 , 921 , 432 B2 *

4 / 2011 McGoldrick G06F 8 / 30
707 / 756

4 / 2011 Tolgu GOOF 9 / 541
717 / 136

(Continued) (72) Inventors : Gerald K . Boyter , Charlotte , NC (US) ;
Duane R . Frederici , Sherrills Ford , NC
(US) ; David E . Kaplita , Charlotte , NC
(US)

OTHER PUBLICATIONS

(73) Assignee : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US)

Buck et al . “ An API for runtime code patching . " The International
Journal of High Performance Computing Applications 14 . 4 (2000) :
317 - 329 . Retrieved on [Jan . 22 , 2017] Retrieved from the
Internet : URL < http : / / journals . sagepub . com / doi / pdf / 10 . 1177 /
109434200001400404 > *

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

Primary Examiner — Thuy Dao
Assistant Examiner — Cheneca Smith
(74) Attorney , Agent , or Firm — Cantor Colburn LLP

(21) Appl . No . : 15 / 175 , 233
(22) Filed : Jun . 7 , 2016

(65) Prior Publication Data
US 2017 / 0147479 A1 May 25 , 2017

Related U . S . Application Data
(63) Continuation of application No . 14 / 951 , 552 , filed on

Nov . 25 , 2015 , now Pat . No . 9 , 672 , 141 .
(51) Int . Ci .

G06F 11 / 36 (2006 . 01)
U . S . CI .
CPC GO6F 11 / 3668 (2013 . 01) ; G06F 11 / 3608

(2013 . 01)
(58) Field of Classification Search

None
See application file for complete search history .

(57) ABSTRACT
Technical solutions are described for facilitating a first
computer program product to communicate with a second
computer program product . The first computer program
product invokes an application programming interface (API)
function from an API of the second computer program
product , where the first computer program product and the
second computer program product use distinct programming
languages . The solutions described herein initiate a record
corresponding to the API function and invoke an interpreter
that calls the API function in the second programming
language . Upon receiving , from the interpreter , an indication
that the API function has completed execution , result of the
execution are obtained from the record and returned to the
first computer program product .

6 Claims , 7 Drawing Sheets

Receive API function invocation
using programming language Z 505

Determine it interpreter library
contains interpreter for a
programming language Z 510

Programming Yes Yes 520 language Z
supported ?

Use GLAI communicator to call the
API function 525

No

Raise an error and wait for addition
of an interpreter for the
programming language Z to the
interpreter library 530

US 9 , 785 , 540 B2
Page 2

(56) References Cited

U . S . PATENT DOCUMENTS
2005 / 0192984 A1 * 9 / 2005 Shenfield GO6F 9 / 45508
2005 / 0283457 A1 * 12 / 2005 Sonkin GO6F 17 / 30368
2007 / 0220527 Al * 9 / 2007 Tolgu . GO6F 9 / 541

719 / 316
2013 / 0139133 A1 * 5 / 2013 Odaira GO6F 9 / 45516

717 / 148
2014 / 0068325 A1 * 3 / 2014 Masser GO6F 11 / 3692

714 / 15
2015 / 0012259 A1 * 1 / 2015 Gupta G06F 17 / 289

704 / 2

OTHER PUBLICATIONS
Sullivan , Gregory T . , et al . “ Dynamic native optimization of inter
preters . " Proceedings of the 2003 workshop on Interpreters , virtual
machines and emulators . ACM , 2003 . Retrieved on [Jan . 22 , 2017]
Retrieved from the Internet : URL < http : / / dl . acm . org / citation .
cfm ? id = 858576 > *
Gerald K . Boyter et al . , “ Generic Language Application Program
ming Interface Interpreter ” , U . S . Appl . No . 14 / 951 , 552 , filed Nov .
25 , 2015 .
List of IBM Patents or Patent Applications Treated as Related ;
(Appendix P) , Filed Mar . 24 , 2017 ; 2 pages .
Gerald K . Boyter et al . , “ Generic Language Application Program
ming Interface Interpreter ” , U . S . Appl . No . 15 / 497 , 947 , dated Apr .
26 , 2017 .
List of IBM Patents or Patent Applications Treated as Related ;
(Appendix P) , Filed Jun . 19 , 2017 ; 2 pages .

* cited by examiner

100

U . S . Patent atent

Processor 110

Memory 120 User Application 122

8603

Oct . 10 , 2017

GLA } 125

Oct . 10 , 2012

System Circuitry 130

AP - 1 127A

API - 2 127B

APIN 127N

Sheet 1 of 7

IIE

Supported APIs 127

-

-
-

-

Product 150

US 9 , 785 , 540 B2

Fig . 1

User Application 122

API Function Invocation 210

1

=

atent

CSNBAPG (Com - > Returncode & Com - > Reasoncode & exit data len exit data
& apgin . rule _ count apa in . rule array

Sapgin . inbound pinenc keyidlen apg _ in . inboundpin _ enc _ key _ id

apgin . enc . pin block
apgin . issuer domestic _ code

apgin . card secure code apgin . pan _ data & apgin . ap . enc key idlen apgin . ap . enckey . id
apg _ out . ap _ value) ;

Oct . 10 , 2017

* *

Sheet 2 of 7

1

1

1

US 9 , 785 , 540 B2

Fig . 2

API Function Invocation 310

User Application 122
1

1

1

atent

d ie een ding

Oct . 10 , 2017

canthod (Cox , YOONBARG * , * coxoxo assist

2009 . RecomCode Com - seasoncoca exitdetalen exitats

91280 data

taon . Clecount apgm . in . ourney

zeof (apgun .
Q

ays

tapen inbound pin enakeyoen ape 10 . 1000undoinen keyin
Sizeof (apan . obound 90010)
og in ene pin lock

612007 (apo 10 en 1001006) ,

10 . 1990conext10 . coco

$ 12 . 04 (apon . Issuerdomestic code)

10 . oard SecureCodo

gizeof (apawn . carousecure . codels sizeof (ang . n . powdata) x

wapoin . agenc key iwlen
ape . . aneocy .

> sizeof (apo agencemia) ,

apgavalo

x sizeof tape moutapuvalue)

on

Sheet 3 of 7

1

1

US 9 , 785 , 540 B2

Fig . 3

GLAI 125 GAI Invoker 410

atent

Interpreter Library 420

- Interpreter - 1
405A

Interpreter - 2
405B

Interpreter - N
405N

Oct . 10 , 2017

GLAI Communicator 430

Sheet 4 of 7 US 9 , 785 , 540 B2

Fig . 4

Receive API function invocation
using programming language Z 505

atent

Determine if interpreter library contains interpreter for a programming language Z

510

Oct . 10 , 2017

Programming language Z supported ?
520

Yes

apartamente su takuar

Use GLAI communicator to call the

API function

525

INo Raise an error and wait for addition
of an interpreter for the

programming language Z to the

interpreter library

Sheet 5 of 7

530

US 9 , 785 , 540 B2

Fig . 5

Receive API function invocation using programming
language A

605

U . S . Patent

Initiate API function execution 610 Identify API for programming language B to invoke 612

Initiate Record

614

Store parameters into the record

616

Oct . 10 , 2017

Select Interpreter for programming language A

618

Cause the API function to execute 620
Read parameter values from record

622

Sheet 6 of 7

Send API Function to product for execution

624

Store result into the record

626

Signal that API function execution complete

628

Return result from record to user application 630 Return execution control to user application

640

US 9 , 785 , 540 B2

Fig . 6

Fig . 7

US 9 , 785 , 540 B2

Supported APIs 127

-

-

-

-

-

-

11€

Product 150

het in 127N APUN

127B AP - 2

127A APL - 1

Prodet 182 K

-

*

S4 54

- - -

- - - - - - - - - - - - -

- - - - - - - - -

- - - - - - - -

- - - - - - - - - - - - - - - - - -

-

Sheet 7 of 7

33 - 1 [85 Interpreter Library 420
S5

S3

Oct . 10 , 2017

Record (s)

S2

sa

on
se

User Application 122 una persones

S6

U . S . Patent

GLAI Invoker 410 / GLA Communicator 430 GLAZ 125

US 9 , 785 , 540 B2

GENERIC LANGUAGE APPLICATION executable instructions of the first computer program prod
PROGRAMMING INTERFACE uct are in a first programming language , and the API of the

INTERPRETER second computer program product includes computer
executable instructions in a second programming language ,

DOMESTIC PRIORITY the first programming language distinct from the second
programming language . The processor initiates a record

This application is a continuation of U . S . Non - Provisional corresponding to the API function . The processor also
application Ser . No . 14 / 951 , 552 , entitled “ GENERIC LAN executes an interpreter corresponding to the second pro
GUAGE APPLICATION PROGRAMMING INTERFACE gramming language that calls the API function in the second
INTERPRETER , ” filed Nov . 25 , 2015 , which is incorpo - 10 programming language . The processor also receives , from
rated herein by reference in its entirety . the interpreter , an indication that execution of the API

function is complete . The processor also accesses a result of
BACKGROUND the execution of the API function from the record . The

processor also returns , to the first computer program prod
The present application relates to computer technology , 15 uct , the result of the execution of the API function .

and more specifically , to interpreters that decode a program Yet another embodiment includes a computer program
ming language . product for facilitating a first computer program product to

Typically , computer technology products , such as hard communicate with a second computer program product . The
ware , software , and a combination thereof , include an Appli - computer product includes computer readable storage
cation Programming Interface (API) . An API is a set of 20 medium , the computer readable storage medium including
functions that facilitates a user to develop and integrate computer executable instructions . The computer readable
applications , such as by writing computer programs to storage medium includes instructions to receive , from the
communicate and control attributes and / or features of the first computer program product , an invocation of an appli
product . For example , hardware such as co - processors , field cation programming interface (API) function from an API of
programmable gate array (FPGA) boards , robotic kits , and 25 the second computer program product . The computer
other such products include a respective . Further , software executable instructions of the first computer program prod
products such as browsers , integrated development environ - uct are in a first programming language , and the API of the
ments (IDES) , graphics libraries , and many other such second computer program product includes computer
software products include a respective API . Further yet , executable instructions in a second programming language .
products such as smartphones , smartwatches , and many 30 The first programming language is distinct from the second
other products that are combination of hardware and soft programming language . The computer readable storage
ware include a respective API . medium also includes instructions to initiate a record cor

responding to the API function . The computer readable
SUMMARY storage medium also includes instructions to execute an

35 interpreter corresponding to the second programming lan
According to an embodiment , a computer implemented guage that calls the API function in the second programming

method for facilitating a first computer program product to language . The computer readable storage medium also
communicate with a second computer program product includes instructions to receive , from the interpreter , an
includes receiving , from the first computer program product , indication that execution of the API function is complete .
an identification of an application programming interface 40 The computer readable storage medium also includes
(API) function from an API of the second computer program instructions to access a result of the execution of the API
product . The first computer program product includes com - function from the record . The computer readable storage
puter executable instructions in a first programming lan - medium also includes instructions to return , to the first
guage and the API of the second computer program product computer program product , the result of the execution of the
includes computer executable instructions in a second pro - 45 API function .
gramming language . The first programming language is
distinct from the second programming language . The com BRIEF DESCRIPTION OF THE DRAWINGS
puter implemented method also includes initiating a record
corresponding to the API function . The computer imple . The examples described throughout the present document
mented method also includes invoking an interpreter corre - 50 may be better understood with reference to the following
sponding to the second programming language that calls the drawings and description . The components in the figures are
API function in the second programming language . The not necessarily to scale . Moreover , in the figures , like
computer implemented method also includes receiving , referenced numerals designate corresponding parts through
from the interpreter , an indication that execution of the API out the different views .
function is complete . The computer implemented method 55 FIG . 1 illustrates an example system facilitating a user
also includes accessing a result of the execution of the API application to call an API function of a product in accor
function from the record . The computer implemented dance with an embodiment .
method also includes returning , to the first computer pro - FIG . 2 illustrates an example user application in accor
gram product , the result of the execution of the API function . dance with an embodiment .
According to another embodiment , a system for facilitat - 60 FIG . 3 illustrates an example user application in accor

ing a first computer program product to communicate with dance with an embodiment .
a second computer program product includes a memory and FIG . 4 illustrates an example generic language application
a processor . The memory includes computer executable programming interface interpreter in accordance with an
instructions of the first program product , where the com - embodiment .
puter executable instructions includes an invocation of an 65 FIG . 5 illustrates a flowchart of example logic to update
application programming interface (API) function from an a generic language application programming interface inter
API of the second computer program product . The computer preter in accordance with an embodiment .

US 9 , 785 , 540 B2
FIG . 6 illustrates a flowchart of example logic for a user to test multiple the APIs in different languages . Further , the

application to call an API function of a product in accor GLAI increases maintainability and agility of the computer
dance with an embodiment . executable instructions of the multiple APIs . Additionally , if

FIG . 7 illustrates an example a user application calling an the product manufacturer , or any other entity , adds a new
API function of a product in accordance with an embodi - 5 API in a new language for the product , the user ' s program
ment . continues to communicate with the product using the new

API with little or no change to the user ' s program . Further
DETAILED DESCRIPTION yet , the GLAI helps the product manufacturer to minimize

a skill set or know how to use multiple programming
A product may support multiple Application Program - 10 languages to test the multiple APIs of the product .

ming Interfaces (APIs) in different programming languages . FIG . 1 illustrates an example system 100 for facilitating
For example , the APIs may be identical in functionality , but a user application 122 to interact with a product 150 . The
use different in programming languages . Supporting differ - system 100 includes , among other components , a processor
ent programming languages facilitates a user , such as an 110 , a memory 120 , and system circuitry 130 . The system
end - user , a tester , an application programmer , or any other 15 100 is a computer that includes hardware , such as electronic
user , that accesses the attributes and / or features of the circuitry . For example , the system 100 may be a desktop
product to use an API with a programming language which computer , a server computer , a laptop computer , a tablet
suits that user . For example , an application programmer may computer , a smartphone , or any other computing device that
be experienced in developing applications using the C executes computer executable instructions . In an example ,
programming language . Accordingly , providing an API that 20 the system 100 is used in conjunction with the product 150 ,
supports the C programming language facilitates the appli - for example to enhance the functionality of the product 150 .
cation programmer to develop applications for the product , In another example , the system 100 tests the functionality of
such as to extend the functionality and / or a use of the the product 150 .
product . In addition , if a second application programmer is The processor 110 may be a central processor of the
more experienced (or comfortable) in developing applica - 25 system 100 and is responsible for execution of an operating
tions using the JAVA programming language , providing an system , control instructions , and applications installed on
API that supports the JAVA programming language facili the system 100 . The processor 110 may be one or more
tates the second application programmer to extend the devices operable to execute logic . The logic may include
functionality and / or the use of the product . Accordingly , computer executable instructions or computer code embod
product manufacturers , typically provide multiple APIs , 30 ied in the memory 120 or in other memory that when
each supporting different programming languages , for a executed by the processor 110 , cause the processor 110 to
product . perform the features implemented by the logic . The com

However , providing multiple APIs entails testing all the puter code may include instructions executable with the
APIs . Testing multiple APIs , in turn , typically includes processor 110 . The computer code may include embedded
implementing code in each programming language that the 35 logic . The computer code may be written in any computer
API is provided in . Thus , a test suite for each API language language now known or later discovered , such as C + + , C # ,
has to be maintained , and further , staff with expertise in each Java , Pascal , Visual Basic , Perl , HyperText Markup Lan
respective API language has to be available . guage (HTML) , JavaScript , assembly language , shell script ,

Alternatively , a product manufacturer may modify com or any combination thereof . The computer code may include
puter executable instructions of a program or a test , using a 40 source code and / or compiled code . The processor 110 may
specific interface between each API language that a user be a general processor , central processing unit , server ,
wishes to use . For example , the C programming language application specific integrated circuit (ASIC) , digital signal
can communicate with the JAVA programming language processor , field programmable gate array (FPGA) , digital
using a JAVA supported interface , such as the JAVA Native circuit , analog circuit , or combinations thereof . The proces
Interface (JNI) ; or the C programming language can com - 45 sor 110 may be in communication with the memory 120 , the
municate with the C # (C - Sharp) programming language system circuitry 130 , and other components of the system
using sockets or piping . However , such modification is far 100 .
from trivial or quick to implement , particularly if without The memory 120 is a non - transitory computer storage
knowledge and / or experience in specific interfaces between medium . The memory 120 includes primary memory and
the several programming languages , and thus , staff with 50 secondary memory of the system 100 . The memory 120 may
expertise in each respective API language has to be avail - include volatile memory such as dynamic random access
able . memory (DRAM) , static random access memory (SRAM) ,

The technical solutions described herein provide a generic Flash memory , or any other type of volatile memory or a
language API interpreter (GLAI) . The GLAI acts as an combination thereof . The memory 120 may include a mag
interface between a first programming language , such as a 55 netic disk , an optical disk , a hard disk drive (HDD) , a
user ' s program , or a test program , and the multiple lan - solid - state drive (SSD) , or any other type of non - volatile
guages that the product supports through the provided APIs . memory or a combination thereof . The memory 120 stores
The GLAI is configurable to select which API to use , control instructions and applications executable by the pro
facilitating computer executable instructions in the first cessor 110 . The memory 120 may contain other data such as
programming language to invoke functions from any of the 60 images , videos , documents , spreadsheets , audio files , and
API languages supported by the product . other data that may be associated with operation of the

Thus , the user can write an application in a programming system 100 .
language of choice , and the GLAI facilitates the application The system circuitry 130 includes hardware components
to communicate with the product via one of the several API that the processor 110 uses to execute the technical solutions
languages supported by the product , without the user having 65 described herein . For example , the system circuitry 130 may
to know the API language . Thus , the GLAI reduces the include input / output peripherals such as a keyboard and
amount of time the user takes to develop the application , or mouse . Alternatively or in addition , the system circuitry 130

US 9 , 785 , 540 B2

includes human interaction components such as display and eters may contain result values that the product 150 returns
audio input / output circuitry . Alternatively or in addition , the to the user application 122 upon execution of the API
system circuitry 130 includes computational devices such as function . function .
a graphics processing unit (GPU) , arithmetic unit (AU) , or in the illustrated example , " CSNBAPG ” is a name of the
any other co - processor . 5 API function that the user application 122 invokes , followed

The product 150 is a computer program product that is by parameters . In an example , the parameters may include
extendable via supported APIs 127 . The product 150 may addresses of memory locations . The product 150 , based on

the addresses , may access values stored at the memory support multiple APIs 127A - 127N . Each API 127A - 127N
includes computer executable instructions in different pro locations , and / or write values back to the memory locations ,
gramming languages . For example , the API - 1 127A may be 10 for example as part of the results . Typically , the user

application 122 uses the same programming language as the in the C programming language , the API - 2 127B may be in programming language of a specific API , such as API - 1 the JAVA programming language , and so on . Of course , 127A . The user application 122 thus is not able to use any different examples may include the supported APIs 127 in of the other APIs , such as API - 2 127B , and API - N 127N . For different programming languages . In an example , the prod 15 example , consider that the user application 122 is a test uct 150 is part of the system 100 . For example , the product program to test the API function . The user in this case has
150 may be an application that includes computer execut to develop and execute N different test programs , each test
able instructions stored in the memory 120 . In another program compatible with a respective API from the APIs
example , the product 150 may be separate from the system 127 .
100 . For example , the product 150 may be a peripheral 20 FIG . 3 illustrates another example user application 122 ,
device of the system 100 , such as a mouse or a keyboard , or based on the technical solutions described herein , in which
any other peripheral device , the functionality of which the the user application 122 includes an API function invocation
system 100 extends via the supported APIs 127 . In another 310 that is compatible with any of the APIs 127 , irrespective
example , the product 150 is a separate computer , such as a of the programming language of the user application 122
smartphone , a robotic kit , or any other apparatus , the func - 25 and the APIs 127 . The API function invocation 310 includes
tionality of which the system 100 extends via the supported an identification of the API function to be executed , fol
APIs 127 . The system 100 communicates with the product lowed by a sequence of identifiers of types of parameters
150 . The communication may be wired or wireless . For % d % d % d % s % d % s % d % s % s % s % s % s % d % s % s) , further
example , the product 150 may communicate with the system followed by the parameters . The API function invocation

100 via a communication port such as an Ethernet port , a 30 310 requests the same API function " CSNBAPG , ” as the
API function invocation 210 in FIG . 2 . universal serial bus (USB) port , or any other such commu The GLAI 125 acts as an interface between the user nication port . In another example , the product 150 and the application 122 , and the API languages supported by the system 100 communicate wirelessly , such as via WI - FITM

BLUETOOTHTM , or any other wireless communication 25 product 150 . In an example , the user application 122 iden 011 35 tifies which one of the APIs 127 to use . The GLAI 125 hides protocols . communication between the programming languages of the The user application 122 is an application that the user of user application 122 and the selected API from the user . In the product 150 has developed . For example , the user an example , the APIs 127 provide identical functionality , for
application 122 is a computer program product that includes example by including API functions with similar names and
computer executable instructions that the processor 110 40 parameter definitions . Further , the APIs 127 may not contain
executes . The user application 122 may use any program - language specific functionality , for example , which is not
ming language , such as the C programming language , the supported by a programming language of another API .
JAVA programming language , or any other programming FIG . 4 illustrates example components of the GLAI 125 .
language of the user ' s choice . The user application 122 In an example , the GLAI 125 includes a GLAI invoker 410 ,
accesses the features and / or attributes of the product 150 via 45 an interpreter library 420 , and a GLAI communicator 430 ,
the supported APIs 127 . among other components .

FIG . 2 illustrates an example in which the user application The GLAI invoker 405 facilitates the user application 122
122 includes an API function invocation 210 . The API to communicate with the GLAI 125 . In an example , the
function is a computer executable procedure that facilitates GLAI invoker 410 includes a function named “ call method ”
the user application 122 to access an attribute or feature of 50 (illustrated in FIG . 3) , which the user application 122
the product 150 . In an example , each of the APIs 127 includes and uses to invoke the API function . In an example ,
includes the API function . For example , the API function the user application 122 informs the GLAI 125 , via the
may facilitate the user application 122 to determine a status " call _ method , ” which API language to use . For example , the
of the product 150 , or request the product 150 to execute a user application 122 includes an “ API Function Name ” and
procedure , such as an encryption , a media playback , a 55 “ Parameter Data , ” and additionally identifies an API to use ,
computation , or any other such interaction with the product such as by specifying an API identifier . In an example , the
150 . In an example , the product 150 completes execution of user application 122 specifies the API identifier during an
the API function in response to the API function invocation initialization of the GLAI 125 . In an example , GLAI 125
210 and returns a result of the execution to the user appli - includes more than one GLAI invoker 410 , each GLAI
cation 122 . For example , the product 150 returns the status , 60 invoker using the same programming language as the user
or an encryption key , or a result of an encryption , or result application 122 . Further the GLAI invoker 410 controls a
of a computation , or any other result corresponding to the communication protocol between the interpreter library 420
API function the user application 122 invokes . As part of the and the user application 122 via the GLAI communicator
API function invocation 210 , the user application 122 may 430 .
send to the product 150 , one or more parameters . The 65 The interpreter library 420 communicates information
parameters may contain values to be used during execution between the GLAI communicator 430 and the product 150 .
of the API function . Alternatively or in addition , the param - For example , the interpreter library 420 forwards data , such

US 9 , 785 , 540 B2

as parameter values from the API function to the product was used to communicate data between the GLAI invoker
150 . The interpreter library 420 additionally returns data , 410 and the interpreter library 420 . In yet another example ,
such as result from the product 150 API back to the user the GLAI communicator 430 may add the completion iden
application 122 via the GLAI communicator 430 . In an tifier in a predetermined address in the memory 120 to
example , the interpreter library 420 includes more than one 5 identify that the API function has been executed . By using
interpreters , interpreter - 1 405A , interpreter - 2 405B , and the memory 120 , by creating the record (s) , such as files
interpreter - N 405N . Each interpreter 405A - 405N corre and / or data streams , the GLAI 125 facilitates an improved
sponds to an API 127A - 127N from the APIs 127 that the cross - platform compatibility compared to pipes and / or sock
product 150 supports . For example , if the API - 1 127A is in ets .
programming language Z , which may be any programming 10 FIG . 6 illustrates a flowchart of the user application 122
language , the interpreter - 1 405A facilitates executing the invoking the API function of an API , which uses a different
API function using the programming language Z . In an programming language than the user application 122 . FIG .
example , without the interpreter library 420 including an 7 illustrates an example operation of the flowchart in an
interpreter of the programming language Z , the user appli illustrative scenario in which the user application 122 uses
cation 122 may not be able to use GLAI to communicate to 15 a programming language A and invokes an API function
the API - 1 127A in the programming language Z . from an API that uses a programming language B . The GLAI

FIG . 5 illustrates an example in which the GLAI 125 is 125 receives the API function invocation 310 , as shown at
updated to include an interpreter for a specified program - block 605 . The user application 122 , written in the program
ming language . The GLAI 125 receives the API function ming language A may initialize the GLAI 125 during the
invocation 310 from that user application 122 , as shown at 20 user application ' s build process by including the GLAI
block 505 . Consider that the user application 122 uses the invoker 410 for the programming language A . In FIG . 7 , Si
programming language Z , which may be any programming illustrates the user application 122 invoking the API func
language . The GLAI invoker 410 may determine if the tion . The user application 122 invokes the GLAI 125 by
interpreter library 420 supports the programming language calling the “ call _ method ” function with the parameters . In
Z , as shown at block 510 . For example , the GLAI invoker 25 an example , the parameters include options that inform the
determines if the interpreter library 420 contains an inter - GLAI invoker 410 of which API among other settings . The
preter that corresponds to the programming language Z . If parameters further include an API function Name of the API
the interpreter for the programming language Z exists , the function to call in the product ' s API . In addition or alterna
GLAI 125 continues to call the API function , as shown at tively , the parameters include parameter values associated
blocks 520 and 525 . Else , if the interpreter library 420 does 30 with the function name in the product ' s API .
not support the programming language Z , the GLAI 125 The GLAI 125 initiates the execution of the API function ,
raises an error , as shown at block 530 . In an example , in as shown at block 620 . For example , as part of the initiation ,
response to the error , the user may add the interpreter for the the GLAI invoker 410 identifies the API to use , which uses
programming language Z . The GLAI 125 waits for the the programming language B , as shown at block 612 . The
addition of the interpreter and in response to the addition of 35 GLAI invoker 410 identifies the API based on the API
the interpreter calls the API function , as shown at blocks 530 identifier , or the API function name in the API function
and 525 . Thus , the GLAI 125 can be updated to support any invocation 310 . Further , the GLAI communicator 430 ini
programming language that the user is comfortable to tiates the record , as shown at block 614 . For example , the
develop the user application 122 in . GLAI communicator 430 creates a record . In an example ,

The GLAI communicator 430 facilitates the interpreter 40 the GLAI communicator 430 deletes a previous record that
library 420 to communicate data back and forth with the was created for a previous API function invocation . Alter
GLAI invoker 410 . In an example , the GLAI communicator natively , in case the GLAI 125 uses a predetermined
430 creates a record that the components of the GLAI 125 memory address as the record , the GLAI communicator 430
use to share data . For example , the record is a data structure clears the record at the predetermined memory address .
such as a data stream , a file , or any other data structure . In 45 Further yet , the GLAI communicator 430 stores the param
an example , the GLAI communicator 430 creates the record eter values into the record for use during execution of the
in the memory 120 , for example the volatile memory , or the API function by the product 150 , as shown at block 616 . The
non - volatile memory and shares the location of the record GLAI invoker 410 selects the interpreter to use based on the
with the other components . For example , the GLAI com - programming language A and / or the programming language
municator 430 creates the record at a memory address that 50 B , as shown at block 618 .
is accessible by the GLAI invoker 410 and the interpreter FIG . 7 illustrates the GLAI communicator 430 using a file
library 420 . The GLAI communicator 430 subsequently named ‘ I / O File ' as the record to communicate the parameter
identifies the memory address to the GLAI invoker 410 and and results between the user application 122 , the product
the interpreter library 420 . In another example , the GLAI 150 , and the components of the GLAI 125 . In addition , the
communicator 430 creates the record at a predetermined 55 example in FIG . 7 illustrates the GLAI communicator 430
memory address that the GLAI invoker 410 and the inter - using another file named ' Indicator File ' to signal comple
preter library 420 already know . The GLAI invoker 410 and tion of the execution of the API function . Accordingly , in
the interpreter library 420 each may independently access FIG . 7 , the GLAI communicator deletes these two files from
data stored in the record , and store data into the record . a previous API function and creates a new I / O file and a new

In addition , the GLAI communicator 430 informs the 60 Indicator file as the records , as shown at S3 . The GLAI
GLAI invoker 410 when the interpreter library 420 has communicator 430 stores the parameter data in the I / O file
called the API function and also when the product 150 has and waits for the interpreter to signal completion of the API
completed execution of the API function . For example , the function via the Indicator file . Here , the interpreter for the
GLAI communicator 430 creates another record , such as programming language B is selected .
another file or data stream to indicate the completion . 65 The GLAI 125 further causes the API function to execute ,
Alternatively , the GLAI communicator 430 stores a comple - as shown at block 620 . To this end , the selected interpreter
tion identifier , such as a predefined symbol in the record that reads the parameter data from the record , as shown at block

US 9 , 785 , 540 B2
10

622 . In the case illustrated in FIG . 7 , the interpreter library data in the intermediate file and other arguments . For
reads the data from the I / O file , as shown at S3 . The selected example , the JAVA program reads in the intermediate file ,
interpreter sends the API function and the parameter data to finds , and calls the specified method with the supplied
the product 150 for execution , as shown at block 624 . For parameters . The JAVA program then rewrites to the inter
example , the interpreter library 420 calls the product API in 5 mediate file , the output from the method call and creates an
the API ' s programming language with the API function indicator file to indicate to the user application in the C
name and parameter data , as shown at S4 in FIG . 7 . The programming language that the JAVA API function execu
selected interpreter library 420 waits for the product 150 to tion is complete . According to the technical solutions , in
complete executing the API function . The interpreter library response to the intermediate file being created , the interme
420 stores results from the product 150 in the record , as 10 diate file is read and the parameter values are returned to the
shown at block 626 . In the example scenario , the result is user application . Further , execution control is returned to the
stored in the I / O file as shown at S5 in FIG . 7 . In an example , user application to continue . Thus , the technical solutions do
the result may be stored as a value of a parameter that was not affect the user application (such as failure) if JAVA
earlier stored in the record . The interpreter library 420 support is not present on the system executing the user
signals the completion of the execution , as shown at block 15 application , and further facilitates the user application to
628 . For example , the interpreter library 420 updates the link to JAVA support files , such as a JAR file and call a JAVA
completion record , such as the Indicator file in FIG . 7 . API function , without using sockets / piping .
Alternatively , the interpreter library 420 updates the record , The present invention may be a system , a method , and / or
such as the I / O file with a predefined completion identifier . a computer program product at any possible technical detail

The GLAI invoker 410 resumes execution in response to 20 level of integration . The computer program product may
the completion signal . The GLAI invoker 410 reads the include a computer readable storage medium (or media)
parameter data and the result data from the record , such as having computer readable program instructions thereon for
from the I / O file of FIG . 7 , and writes the result back to the causing a processor to carry out aspects of the present
API function invocation 310 , as shown at block 630 . For invention .
example , the API function invocation 310 identifies the 25 The computer readable storage medium can be a tangible
result parameters or the memory addresses of the result device that can retain and store instructions for use by an
parameters . The GLAI invoker 410 writes the parameter instruction execution device . The computer readable storage
data and the results into the parameters and / or the memory medium may be , for example , but is not limited to , an
addresses identified by the API function invocation 310 , and electronic storage device , a magnetic storage device , an
returns execution back to user application 122 , as shown at 30 optical storage device , an electromagnetic storage device , a
block 640 . Thus , the GLAI 125 facilitates the user applica - semiconductor storage device , or any suitable combination
tion 122 that is in programming language A to call the of the foregoing . A non - exhaustive list of more specific
product API in target language B . examples of the computer readable storage medium includes

In an example , the user application 122 may use more the following : a portable computer diskette , a hard disk , a
than one of the APIs 127 that the product 150 supports . For 35 random access memory (RAM) , a read - only memory
example , the user application 122 , which is in a first pro - (ROM) , an erasable programmable read - only memory
gramming language , may include a first API function invo (EPROM or Flash memory) , a static random access memory
cation that uses the API - 1 127A , which is in a second (SRAM) , a portable compact disc read - only memory (CD
programming language . The user application 122 may fur - ROM) , a digital versatile disk (DVD) , a memory stick , a
ther include a second API function invocation that uses the 40 floppy disk , a mechanically encoded device such as punch
API 128A , which is in a third programming language . The cards or raised structures in a groove having instructions
GLAI 125 , for each API function invocation , selects a recorded thereon , and any suitable combination of the fore
respective interpreter corresponding to the respective pro - going . A computer readable storage medium , as used herein ,
gramming languages of the APIs . In an example , the GLAI is not to be construed as being transitory signals per se , such
125 creates separate records for each API function invoca - 45 as radio waves or other freely propagating electromagnetic
tion . Alternatively , the GLAI 125 uses the same record , such waves , electromagnetic waves propagating through a wave
as at the predetermined memory location , for both API guide or other transmission media (e . g . , light pulses passing
function invocation . through a fiber - optic cable) , or electrical signals transmitted

The technical solutions described herein facilitate a user through a wire .
application , which is developed in a programming language , 50 Computer readable program instructions described herein
such as C or any other programming language to link and can be downloaded to respective computing processing
call a method / function that is developed in a different devices from a computer readable storage medium or to an
programming language , such as JAVA or any other program - external computer or external storage device via a network ,
ming language . Further , if the other programming language for example , the Internet , a local area network , a wide area
support is not present on the system that is executing the user 55 network and / or a wireless network . The network may com
application (for example , (user application calls a CNM . jar p rise copper transmission cables , optical transmission fibers ,
file and JAVA is not present) , the system returns an error . The wireless transmission , routers , firewalls , switches , gateway
user may add an interpreter for JAVA to facilitate the system computers and / or edge servers . A network adapter card or
to execute the API function call in the user application network interface in each computing processing device

Consider an example where the user application in C 60 receives computer readable program instructions from the
programming language is calling an API function in JAVA . network and forwards the computer readable program
For example , the API function may be in a pre - compiled instructions for storage in a computer readable storage
JAVA program . In an example , a record such as an inter - medium within the respective computing / processing device .
mediate file in which are the method name , parameter Computer readable program instructions for carrying out
definitions , and parameter values for the API function to be 65 operations of the present invention may be assembler
executed by the JAVA program . Next , the pre - compiled instructions , instruction - set - architecture (ISA) instructions ,
JAVA program is executed identifying the parameters and machine instructions , machine dependent instructions ,

US 9 , 785 , 540 B2
12

microcode , firmware instructions , state - setting data , con functions noted in the blocks may occur out of the order
figuration data for integrated circuitry , or either source code noted in the Figures . For example , two blocks shown in
or object code written in any combination of one or more succession may , in fact , be executed substantially concur
programming languages , including an object oriented pro rently , or the blocks may sometimes be executed in the
gramming language such as Smalltalk , C + + , or the like , and 5 reverse order , depending upon the functionality involved . It
procedural programming languages , such as the “ C ” pro - will also be noted that each block of the block diagrams
gramming language or similar programming languages . The and / or flowchart illustration , and combinations of blocks in
computer readable program instructions may execute the block diagrams and / or flowchart illustration , can be
entirely on the user ' s computer , partly on the user ' s com - implemented by special purpose hardware - based systems
puter , as a stand - alone software package , partly on the user ' s 10 that perform the specified functions or acts or carry out
computer and partly on a remote computer or entirely on the combinations of special purpose hardware and computer
remote computer or server . In the latter scenario , the remote instructions .
computer may be connected to the user ' s computer through The descriptions of the various embodiments of the
any type of network , including a local area network (LAN) present invention have been presented for purposes of
or a wide area network (WAN) , or the connection may be 15 illustration , but are not intended to be exhaustive or limited
made to an external computer (for example , through the to the embodiments disclosed . Many modifications and
Internet using an Internet Service Provider) . In some variations will be apparent to those of ordinary skill in the
embodiments , electronic circuitry including , for example , art without departing from the scope and spirit of the
programmable logic circuitry , field - programmable gate described embodiments . The terminology used herein was
arrays (FPGA) , or programmable logic arrays (PLA) may 20 chosen to best explain the principles of the embodiments , the
execute the computer readable program instructions by practical application , or technical improvement over tech
utilizing state information of the computer readable program nologies found in the marketplace , or to enable others of
instructions to personalize the electronic circuitry , in order to ordinary skill in the art to understand the embodiments
perform aspects of the present invention . disclosed herein .

Aspects of the present invention are described herein with 25 What is claimed is :
reference to flowchart illustrations and / or block diagrams of 1 . A computer implemented method for facilitating a first
methods , apparatus (systems) , and computer program prod - computer program product to communicate with a second
ucts according to embodiments of the invention . It will be computer program product , the method comprising :
understood that each block of the flowchart illustrations receiving , from the first computer program product , an
and / or block diagrams , and combinations of blocks in the 30 identification of an application programming interface
flowchart illustrations and / or block diagrams , can be imple (API) function from an API of the second computer
mented by computer readable program instructions . program product , wherein the first computer program

These computer readable program instructions may be product comprises computer executable instructions in
provided to a processor of a general purpose computer , a first programming language ;
special purpose computer , or other programmable data pro - 35 executing the API function of the second computer pro
cessing apparatus to produce a machine , such that the gram product using a plurality of programming lan
instructions , which execute via the processor of the com guages , the plurality of programming languages com
puter or other programmable data processing apparatus , prising a second programming language and a third
create means for implementing the functions / acts specified programming language , which are distinct from the
in the flowchart and / or block diagram block or blocks . These 40 first programming language , wherein execution of the
computer readable program instructions may also be stored API function using the second programming language
in a computer readable storage medium that can direct a comprises :
computer , a programmable data processing apparatus , and / initiating a first record corresponding to the API func
or other devices to function in a particular manner , such that tion for the second programming language ;
the computer readable storage medium having instructions 45 executing an interpreter corresponding to the second
stored therein comprises an article of manufacture including programming language that calls the API function in
instructions which implement aspects of the function / act the second programming language ;
specified in the flowchart and / or block diagram block or receiving , from the interpreter , an indication that
blocks . execution of the API function is complete ;

The computer readable program instructions may also be 50 accessing a result of the execution of the API function
loaded onto a computer , other programmable data process from the first record ; and
ing apparatus , or other device to cause a series of operational returning , to the first computer program product , the
steps to be performed on the computer , other programmable result of the execution of the API function ; and
apparatus or other device to produce a computer imple wherein execution of the API function using the third
mented process , such that the instructions which execute on 55 programming language comprises :
the computer , other programmable apparatus , or other initiating a second record corresponding to the API
device implement the functions / acts specified in the flow function of the third programming language ;
chart and / or block diagram block or blocks . invoking an interpreter corresponding to the third pro

The flowchart and block diagrams in the Figures illustrate gramming language that calls the API function in the
the architecture , functionality , and operation of possible 60 third programming language ; and
implementations of systems , methods , and computer pro returning , to the first computer program product , a
gram products according to various embodiments of the result of the execution of the API function using the
present invention . In this regard , each block in the flowchart third programming language from the second record .
or block diagrams may represent a module , segment , or 2 . The computer implemented method of claim 1 , further
portion of instructions , which comprises one or more 65 comprising :
executable instructions for implementing the specified logi - storing , in a record , a value of a parameter for the API
cal function (s) . In some alternative implementations , the function ; and

US 9 , 785 , 540 B2
13 14

accessing , from the record , the value of the parameter as
part of the result , in response to the indication that
execution of the API function is complete .

3 . The computer implemented method of claim 1 , wherein
initiating the first record comprises :

deleting a previous first record ;
creating , in computer readable memory , the first record ,
which is a data structure that is accessible by the
interpreter of the second programming language ; and

identifying , to the interpreter of the second programming 10
language , a location of the first record in the computer
readable memory .

4 . The computer implemented method of claim 1 , wherein
the first record is at a predetermined location in computer
readable memory .

5 . The computer implemented method of claim 1 , further
comprising :

receiving , from the interpreter of the third programming
language , an indication that execution of the API func
tion of the third programming language is complete ; 20
and

accessing the result of the execution of the API function
of the third programming language from the second
record .

6 . The computer implemented method of claim 1 , further 25
comprising adding the interpreter of the second program
ming language to a set of existing interpreters .

* * * *

