
(12) United States Patent

US009471589B2

(10) Patent No.: US 9,471.589 B2
Fries et al. (45) Date of Patent: Oct. 18, 2016

(54) MANAGEMENT OF LONG-RUNNING USPC 707/669, 703,704; 717/169
LOCKS AND TRANSACTIONS ON See application file for complete search history.
DATABASE TABLES

(56) References Cited
(71) Applicant: International Business Machines

Corporation, Armonk, NY (US) U.S. PATENT DOCUMENTS

(72) Inventors: Justin T. Fries, Raleigh, NC (US); 73.6 R: 1339, Statist al.
Venkataraghavan 9.037,558 B2B 5/205 Fries. G06F 17,30864
Lakshminarayanachar, Bangalore 707/703
(IN); Rajesh C. Lalgowdar, Bangalore 2005, 0080759 A1 4, 2005 Brown et al.
IN): Lohitashwa Th. 2006/0265704 A1 11, 2006 Holt 8 N alo in a yagara, 2007/0226217 A1 9/2007 Chatterjee et al.

9. 2010, 0161571 A1 6/2010 Schwarzmann

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, OTHER PUBLICATIONS

Armonk, NY (US) Gough, Corey et al., "Kernel Scalability—Expanding the Horizon
(*) Notice: Subject to any disclaimer, the term of this Beyond Fine Grain Locks'. Proceedings of the Linux Symposium,

patent is extended or adjusted under 35 vol. one, Jun. 27-30, 2007, Ottawa, Ontario, Canada, pp. 153-166.
U.S.C. 154(b) by 0 days. United States Patent and Trademark Office, Office Action for U.S.

Appl. No. 13/481,039, Sep. 12, 2014, pp. 1-14, Alexandria, VA,
(21) Appl. No.: 14/685,200 USA.

(Continued)
(22) Filed: Apr. 13, 2015

(65) Prior Publication Data Primary Examiner — Shahid Alam
(74) Attorney, Agent, or Firm — Lee Law, PLLC;

US 2015/0213050 A1 Jul. 30, 2015 Christopher B. Lee

Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 13/481,039, filed on Establishment of an exclusive lock on each of an outer

May 25, 2012, now Pat. No. 9,037,558. database ownership table and an inner database ownership
table is attempted. In response to establishing the exclusive

(51) Int. Cl. lock on each of the outer database ownership table and the
G06F 7/30 (2006.01) inner database ownership table, a Switch is made to a pair of

(52) U.S. Cl. overlapping shared locks on each of the outer database
CPC. G06F 17/30171 (2013.01); G06F 17/30339 ownership table and the inner database ownership table.

(2013.01); G06F 17/30362 (2013.01); G06F Release and re-acquisition of each of the pair of overlapping
17/30371 (2013.01); G06F 17/30864 shared locks on the outer database ownership table and the

(2013.01) inner database ownership table is alternated.
(58) Field of Classification Search

CPC G06F 17/30864; G06F 17/30171 12 Claims, 5 Drawing Sheets

ATTEMPT TO STABLISH, WIAAT
LEAST ONE PROCESSOR, AN

EXCLUSIVE LockoneACHOFAN 302
OUTER DATABASE WNERSHIP
TABLANANINNRDATABAS

OWNERSHIP TABLE

SWITCH, IN response to
ESTABLISHING THE EXCLUSIVELOCK
ONEACH THE OUTERATABASE
OWNERSHIP TABLE AND THE INNER
DATABASE owNERSHIP TABLE, To A-304
PAIROFOWERLAPPINGSHARD
LOCKSONEACH OF THE OUTER

DATABASEOWNERSHIPTABLE AND
THINNERATABASE OWNERSHIP

ALTERNATERELEASEANDRE
ACQUISITION OF ACH OF THPAIR
of ovERLAPPING SHARED Locks ON
THE OUTERATA3ASEWNERSHIP
TABL AND THE INNER DATABASE

OWNERSHIP TABL

TABLE

US 9,471589 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

United States Patent and Trademark Office, Notice of Allowance for
U.S. Appl. No. 13/481,039, Jan. 14, 2015, pp. 1-7, Alexandria, VA,
USA.
Isabelle Mauney, Simon Kapadia, Configuring IBM WebSphere
Process Server V6.1 with an Oracle Database, IBM Red Paper, Jul.
17, 2008, pp. 1-36, IBM Corporation, Poughkeepsie, NY, USA.
Author Unknown, Service integration, IBM Information Center
Webpage, Web Application Server Version 7 Release 0. Initial
publication date unknown, Last updated on Apr. 11, 2012, pp. 1-3,
IBM Corporation, Published at: http://publib.boulder.ibm.com/
infocenter wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.
Zseries.doc/info/ZSeries/ae/welcotech si.html.
Author Unknown, Database lock considerations, IBM Information
Center Webpage. iSeries Version 5 Release 3, 2002, pp. 1-3 (plus 1
citation page), IBM Corporation, Published at: http://publib.boul
der.ibm.com/infocentertiseries/višr3/index.
jsp?topic=%2Fdbp%2Frbafoapplck.htm.
Author Unknown, Lock Modes, MSDN Library: Microsoft SQL
Server Database Engine (archived), Oct. 6, 2010, pp. 1-4, Microsoft

Corporation, Published at: http://web.archive.org/web/
20101006084446.http://msdn.microsoft.com/en-us/library/
ms 175519.aspx.
Author Unknown, Oracle RAC Cluster on CS4/GFS, Chapter 1.1 of
Oracle Real Application Clusters GFS, 2006, pp. 1-6 (plus 3 citation
pages), Red Hat, Inc., Published at: http://www.centos.org/docs/4/
4.5/Oracle GFS-en-US/sample cluster.html.
Author Unknown, RCU-based dcache locking model, allinux.tv
Webpage, pp. 1-3 (plus 3 citation pages), May 16, 2010, Jay L.
Klepacs & aLinux, Published at: http://alinux.tv/Kernel-2.6.34/
filesystems/dentry-locking..txt.
David Tam, Performance Analysis and Optimization of the Hurri
cane File System on the K42 Operating System, Master's Thesis,
2003, pp. 1-99, Graduate Department of Electrical and Computer
Engineering, University of Toronto, Canada, Published at: http://
www.eecg...toronto.edu/~tamda?thesis.pdf.
Corey Gough, et al., Kernel Scalability—Expanding the Horizon
Beyond Fine Grain Locks, Proceedings of the 2007 Linux Sympo
sium, Jun. 27, 2007, pp. 153-166, vol. One, Linux Symposium Inc.,
Published at: http://www.kernel.org/doc/ols/2007/ols2007v1-pages
153-166.pdf.

* cited by examiner

US 9,471,589 B2 Sheet 1 of 5 Oct. 18, 2016 U.S. Patent

8 || ||

| TEOIAEG 5) NI LÍTICHWOO | NE||TO

US 9,471,589 B2 Sheet 2 of 5 Oct. 18, 2016 U.S. Patent

OZZ

r – – – – – – –=u |EN|0NE|
ZZZ

8 || ||

| ||

ZOZ

U.S. Patent Oct. 18, 2016 Sheet 3 of 5 US 9,471,589 B2

ATTEMPT TO ESTABLISH, VIA AT
LEAST ONE PROCESSOR, AN

EXCLUSIVE LOCK ONEACH OF AN 3O2
OUTER DATABASE OWNERSHIP
TABLE AND AN INNER DATABASE

OWNERSHIP TABLE

SWITCH, IN RESPONSE TO
ESTABLISHING THE EXCLUSIVE LOCK
ONEACH OF THE OUTER DATABASE
OWNERSHIP TABLE AND THE INNER
DATABASE OWNERSHIP TABLE, TO A 3O4
PAIR OF OVERLAPPING SHARED
LOCKS ONEACH OF THE OUTER

DATABASE OWNERSHIP TABLE AND
THE INNER DATABASE OWNERSHIP

TABLE

ALTERNATE RELEASE AND RE
ACOUISITION OF EACH OF THE PAIR
OF OVERLAPPING SHARED LOCKS ON
THE OUTER DATABASE OWNERSHIP
TABLE AND THE INNER DATABASE

OWNERSHIP TABLE

306

FIG. 3

U.S. Patent

STAR
MESSAGING

Oct. 18, 2016 Sheet 4 of 5 US 9,471,589 B2

ATTEMPT TO
STARTAN ACOURE AN

ME EXCLUSIVE LOCK ON
INSTANCE THE SIBOWNERO

TABLE

ATTEMPT TO ACQUIRE
AN EXCLUSIVE LOCK ON
THE SIBOWNER TABLE

422

UPDATE THE
SIBOWNER TABLE
WITH THE ME UID
INFORMATION TO
INDICATE THIS ME
IS THE ACTIVE ME

INSTANCE

COMMIT THE 424
TRANSACTION ON
THE SIBOWNER

TABLE

426

RELEASE THE
EXCLUSIVE LOCK ON
THE SIBOWNER TABLE

AND ACOUREA
SHARED LOCK ON THE
SIBOWNER TABLE

XCLUSIVE LOC
COURED2

STOP ME
INSTANCE

NOTIFY HA
MANAGER THAT
ME INSTANCE
WAS STOPPED

s

STOP ME
INSTANCE

NOTIFY HA
MANAGER THAT
ME INSTANCE
WAS STOPPED

RELEASE THE
EXCLUSIVE LOCK ON
THE SIBOWNERO

TABLE AND ACOUIRE
A SHARED LOCK ON
THE SIBOWNERO

COMMIT THE
TRANSACTION ON
THE SIBOWNERO

TABLE
TABLE

428

FIG. 4A

U.S. Patent Oct. 18, 2016 Sheet S of 5 US 9,471,589 B2

4 G) (c) 446 432 462

SHARED LOCK TIME DELAY FOR SHARED LOCK
ON SIBOWNER COMMITTING ONSIBOWNERO

TABLE SIBOWNER TABLE TABLE

GET CONFIGURED TIME
DELAY FOR COMMITTING
SIBOWNERO TABLE

SET
CONFIGURED
SHARED LOCK SHARED
RELEASE TIME LOCK HELD
DELAY FOR ON
SIBOWNERO SIBOWNERO

TABLE SET
CONFIGURED

SHARED SHARED LOCK
LOCK HELD RELEASE TIME

ON DELAY FOR
COMMIT THE SIBOWNER SIBOWNER

TRANSACTION ON TABLE
THE SIBOWNER

TABLE
NOTIFY

THREAD B
HOLDING

RELEASE THE SIBOWNERO
SHARED LOCK ON TABLE TO
THE SIBOWNER TAKE OVER

TABLE TRANSACTION

COMMIT THE
TRANSACTION ON
THE SIBOWNERO

TABLE

RELEASE THE
SHARED LOCK ON
THE SIBOWNERO

TABLE

444
SET CONFIGURED1 NOTIFY
SHARED LOCK THREAD A
RE-ACOUISITION sIEWS:
TIMEDELAY FOR SET CONFIGURED
SIBOWNER TABLE TABLE TO SHARED LOCK

TAKE OVER
TRANSACTION RE-ACOUISITION

TIMEDELAY FOR
SIBOWNERO

TABLE
FIG. 4B

US 9,471589 B2
1.

MANAGEMENT OF LONG-RUNNING
LOCKS AND TRANSACTIONS ON

DATABASE TABLES

BACKGROUND

The present invention relates to database tables and
long-running locks. More particularly, the present invention
relates to management of long-running locks and transac
tions on database tables.

Messaging engines (MEs) provide a runtime environment
for certain web application servers, such as Websphere(R)
application servers (WAS). Each ME relies on a database to
store runtime information along with application messages.
Every ME maintains a set of tables to store its runtime and
persistence information within the database for recovery in
the event of disaster.

BRIEF SUMMARY

A method includes attempting to establish, via at least one
processor, an exclusive lock on each of an outer database
ownership table and an inner database ownership table;
Switching, in response to establishing the exclusive lock on
each of the outer database ownership table and the inner
database ownership table, to a pair of overlapping shared
locks on each of the outer database ownership table and the
inner database ownership table; and alternating release and
re-acquisition of each of the pair of overlapping shared locks
on the outer database ownership table and the inner database
ownership table.
A system includes a memory device including an outer

database ownership table and an inner database ownership
table; and a processor programmed to attempt to establish an
exclusive lock on each of the outer database ownership table
and the inner database ownership table; Switch, in response
to establishing the exclusive lock on each of the outer
database ownership table and the inner database ownership
table, to a pair of overlapping shared locks on each of the
outer database ownership table and the inner database own
ership table; and alternate release and re-acquisition of each
of the pair of overlapping shared locks on the outer database
ownership table and the inner database ownership table.
A computer program product includes a computer read

able storage medium including computer readable program
code, where the computer readable program code when
executed on a computer causes the computer to attempt to
establish an exclusive lock on each of an outer database
ownership table and an inner database ownership table;
Switch, in response to establishing the exclusive lock on
each of the outer database ownership table and the inner
database ownership table, to a pair of overlapping shared
locks on each of the outer database ownership table and the
inner database ownership table; and alternate release and
re-acquisition of each of the pair of overlapping shared locks
on the outer database ownership table and the inner database
ownership table.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an example of an imple
mentation of a system for management of long-running
locks and transactions on database tables according to an
embodiment of the present subject matter;

FIG. 2 is a block diagram of an example of an imple
mentation of a core processing module capable of perform

10

15

25

30

35

40

45

50

55

60

65

2
ing automated management of long-running locks and trans
actions on database tables according to an embodiment of
the present Subject matter;

FIG. 3 is a flow chart of an example of an implementation
of a process for automated management of long-running
locks and transactions on database tables according to an
embodiment of the present subject matter;

FIG. 4A is a flow chart of an example of an implemen
tation of initial processing within a process for automated
management of long-running locks and transactions on
database tables using a multi-threaded messaging engine
according to an embodiment of the present Subject matter;
and

FIG. 4B is a flow chart of an example of an implemen
tation of additional processing within a process for auto
mated management of long-running locks and transactions
on database tables using a multi-threaded messaging engine
according to an embodiment of the present Subject matter.

DETAILED DESCRIPTION

The examples set forth below represent the necessary
information to enable those skilled in the art to practice the
invention and illustrate the best mode of practicing the
invention. Upon reading the following description in light of
the accompanying drawing figures, those skilled in the art
will understand the concepts of the invention and will
recognize applications of these concepts not particularly
addressed herein. It should be understood that these con
cepts and applications fall within the scope of the disclosure
and the accompanying claims.
The subject matter described herein provides technology

for management of long-running locks and transactions on
database tables. The present subject matter operates within
the present examples using a messaging engine (ME),
though other implementations are considered within the
Scope of the present Subject matter. Because multiple mes
saging engine instances may be activated concurrently, each
messaging engine performs initial processing to attempt to
acquire exclusive ownership of a database/data store using
exclusive locks on outer and inner database ownership
tables. Once the exclusive locks are acquired by any mes
Saging engine, that messaging engine designates itself as the
owner of the database, releases the exclusive locks and
commits table transactions on the respective database own
ership tables, and transitions to overlapping shared locks and
transactions on the inner and outer database ownership
tables. The messaging engine further transitions to multi
threaded concurrent processing to alternate release and
re-acquisition of the overlapping shared locks and overlap
ping shared transactions on the outer and inner database
ownership tables. This use of overlapping shared locks and
overlapping transactions ensures that no other messaging
engine can take ownership of the database/data store, while
providing intervals of time during which maintenance tools
may access the respective database ownership tables for
maintenance and/or update of the database/data store, as
well as maintenance and/or update of the messaging engines
themselves including the outer and inner database ownership
tables. Accordingly, tools and batch processes running on
tables (e.g., utilities Such as ImageOopy, Backup, Analyzing
queries, reorganization, backups, recovery, online version
to-version migration, versioning of messaging engines
themselves, etc.) are not prohibited from executing by
long-running transactions and exclusive locks.

It should be noted that conception of the present subject
matter resulted from recognition of certain limitations asso

US 9,471589 B2
3

ciated with locks and transactions on database tables by
messaging engines (MEs). For example, it was observed that
redundant ME instances (identical entities) are utilized in
messaging environments and only one is allowed to be
active and access/own a data store (e.g., database) at any one
time within the messaging environment, while the other
ME(s) are on standby to prevent downtime in the event of
failure of the active ME instance. However, it was further
observed that it is possible for two application servers to lose
contact with each other or for one to suspect that the other
is unhealthy while a messaging engine instance is still
actively performing database work. It was additionally
observed that, as a result, service integration bus (SIBus/
SIB) table space and table locks, maintained within a
long-running transaction, are used to ensure that there is no
possibility of two instances damaging customer data by
attempting to update the messaging engine database con
currently. In was recognized that, in order to overcome this
problem, MEs of previous systems hold 'enduring locks' in
the database, and that these enduring locks cause several
issues and problems in a production environment. It was
further observed that the problems described above are
applicable to multiple operating systems and platforms (e.g.,
z/OS.R, Linux(R/Unix(R/Windows(R (LUW), etc.). It was
additionally recognized that many systems operate within a
twenty-four hour/seven days-per-week (24x7) production
environment and that all maintenance and version-to-ver
sion migration is performed online (e.g., while systems are
active). Within this context, it was determined that because
the service integration bus (SIBuS/SIB) messaging engine
keeps locks as long as a WebSphere.R. Application Server
(WAS) is active (e.g., the internal DB2R) (Database 2)
Z/OSR) skeleton package table (SKPT) Lock caused by not
committing the connection), the skeleton package table
space (e.g., SPTO1 directory) database of DB2(R) is nega
tively affected. It was further determined that all operations
that require an exclusive access on SPTO1 (e.g., reorgani
Zation, backups, recovery, online version-to-version migra
tion, versioning of messaging engines themselves, etc.)
cannot run while enduring locks are held by an ME on the
database?tables and that a WAS has to be shut down for these
operations, which is not possible in a 24x7 production
environment. It was further recognized that there are several
applications connecting to these DB2R) Subsystems and that
administrators may want to pool idle connections (e.g.,
connections that are inactive) to save resources. However, it
was determined that such a pooling (e.g., ZPARM CMT
STAT) may only occur if the connections are committed
periodically, which is not possible within previous systems
while enduring locks are held by an ME on the database/
tables. It was additionally recognized that other tools and
batch processes run on all tables (e.g., utilities like Image
Copy, Backup, Analyzing queries, etc.). However, it was
determined that because there is no commit operation within
previous systems due to the enduring locks held by an ME
on the database?tables, claims/drains are held, utilities may
fail, and timeouts occur. It was further recognized that the
locking problems are multiplied in implementations where
database sharing is used.

In view of the several recognitions and determinations
discussed above, it was concluded that if a database table is
used to serialize several application server (e.g., WAS)
instances, this should not be performed by locks that are held
the whole life of an application server instance (e.g., mes
saging engine), even if this is only a shared lock, and that
periodic commits may be used to eliminate the database
maintenance and administration problems described above.

10

15

25

30

35

40

45

50

55

60

65

4
The present Subject matter improves management of long
running locks and transactions on database tables by allow
ing ongoing maintenance operations, upgrades, and other
service issues to be performed while instances of messaging
engines are active, using periodic commits of transactions
on database tables to temporarily release enduring locks held
by the messaging engines. The present technology provides
a solution of not holding a long-enduring exclusive lock on
the tables, and instead alternating overlapping shared locks
between two different tables, thus ensuring a timely commit
of the transactions is performed and that there is no one
single transaction that is open and running for a long
duration. With these changes, the above problems are
addressed, and at the same time the present technology
ensures that no two different MEs are allowed to access the
system tables concurrently.

For purposes of the present examples, two database
ownership tables are utilized. However, it is understood that
the present technology may be applied to additional database
ownership tables without departure from the scope of the
present Subject matter. The two example database ownership
tables represent an outer database ownership table and an
inner database ownership table against which transactions
are performed and locks are obtained to gain access to data
within a database/data store. For ease of illustration of the
following examples, the outer database ownership table will
be referred as a service integration bus owner “outer
(SIBOWNERO) table, where the suffix “O'” is appended.
The inner database ownership table will be referred to as a
service integration bus owner (SIBOWNER) table without
any Suffix. However, it is understood that other naming
conventions may be used without departure from the scope
of the present Subject matter, and the present Subject matter
may be applied to any data area for which multiple instances
of an entity are attempting to gain access to and control of
the data area.
As detailed below, the present technology introduces

overlapping transactions alternating between the
SIBOWNER and SIBOWNERO tables. A shared lock by
any messaging engine (ME) on either table will keep other
MEs from taking over the database/data store. This approach
also maintains a low profile for service interfaces, such as
SIB, since no ME will have an excessively long-running
transaction. As such, the present technology allows for
periods of inactivity for both database ownership tables
while an ME is active during which database tools may run
normally to perform updates, analysis, and other database
maintenance tasks, as described above and in more detail
below.
The management of long-running locks and transactions

on database tables described herein may be performed in
real time to allow prompt processing of transactions and
maintenance of database tables. For purposes of the present
description, real time shall include any time frame of Suf
ficiently short duration as to provide reasonable response
time for information processing acceptable to a user of the
subject matter described. Additionally, the term “real time”
shall include what is commonly termed “near real time'—
generally meaning any time frame of Sufficiently short
duration as to provide reasonable response time for on
demand information processing acceptable to a user of the
Subject matter described (e.g., within a portion of a second
or within a few seconds). These terms, while difficult to
precisely define are well understood by those skilled in the
art.

FIG. 1 is a block diagram of an example of an imple
mentation of a system 100 for management of long-running

US 9,471589 B2
5

locks and transactions on database tables. A client comput
ing device 1 102 through a client computing device N104
communicate via a network 106 with one or more of a
server 1108 through a server M 110. Each of the server 1
108 through the server M110 execute one or more instances
of an application server, such as a WebSphere R application
server (WAS), that may generally be referred to herein
alternatively as messaging engine (ME) instances. A high
availability (HA) management server 112 manages the
server 1108 through the server M 110 to ensure that only
one messaging engine (ME) of one of the application server
instances obtains ownership and control of a database 114.
The client computing device device 1102 through the client
computing device N104 may interact with one another and
with one or more of the server 1108 through the server M
110 using an ME instance.
An outer database ownership table SIBOWNERO table)

116 and an inner database ownership table (SIBOWNER
table) 118 are utilized by the respective MEs of the appli
cation server instances to obtain a data area 120 of the
database 114. As described above, for ease of illustration
within the present examples, the outer database ownership
table has been referred to as a service integration bus owner
“outer” (SIBOWNERO) table 116, with the suffix “O'”
appended, while the inner database ownership table has been
referred to as a service integration bus owner (SIBOWNER)
table without any suffix. However, it is understood that other
naming conventions may be used without departure from the
Scope of the present Subject matter, and the present Subject
matter may be applied to any data area for which multiple
instances of an entity are attempting to gain access to and
control of the data area.
As will be described in more detail below in association

with FIG. 2 through FIG. 4B, the server 1108 through the
server M 110 provide automated management of long
running locks and transactions on database tables. The
automated management of long-running locks and transac
tions on database tables is based upon use by messaging
engines (MEs) of alternating enduring shared locks on the
respective SIBOWNERO table 116 and the SIBOWNER
table 118, and the selective/alternating release of these
enduring shared locks to allow intervals of time for main
tenance activities on the database to be performed without
termination of the ME instance that currently owns the data
area 120 of the database 114.

For purposes of the present example, all devices shown
within FIG. 1 represent computing devices. It should be
noted that the respective computing devices shown within
FIG.1 may be portable computing devices, either by a user's
ability to move the computing devices to different locations,
or by the computing devices association with a portable
platform, Such as a plane, train, automobile, or other moving
vehicle. It should also be noted that the computing devices
may be any computing device capable of processing infor
mation as described above and in more detail below. For
example, the computing devices may include devices Such
as a personal computer (e.g., desktop, laptop, etc.) or a
handheld device (e.g., cellular telephone, personal digital
assistant (PDA), email device, music recording or playback
device, etc.), or any other device capable of processing
information as described in more detail below.
The network 106 may include any form of interconnec

tion Suitable for the intended purpose, including a private or
public network Such as an intranet or the Internet, respec
tively, direct inter-module interconnection, dial-up, wireless,
or any other interconnection mechanism capable of inter
connecting the respective devices.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 2 is a block diagram of an example of an imple

mentation of a core processing module 200 capable of
performing automated management of long-running locks
and transactions on database tables. The core processing
module 200 may be associated with any of the server 1108
through the server M 110, as appropriate for a given imple
mentation, for implementation of the automated manage
ment of long-running locks and transactions on database
tables described herein. The core processing module 200
may also be associated with any of the client computing
device device 1102 through the client computing device N
104, and the HA management server 112, as appropriate for
a given implementation. Further, the core processing module
200 may provide different and complementary processing of
enduring locks and transactions on database tables in asso
ciation with each implementation, as described in more
detail below.
As such, for any of the examples below, it is understood

that any aspect of functionality described with respect to any
one device that is described in conjunction with another
device (e.g., sends/sending, etc.) is to be understood to
concurrently describe the functionality of the other respec
tive device (e.g., receives/receiving, etc.).
A central processing unit (CPU) 202 provides computer

instruction execution, computation, and other capabilities
within the core processing module 200. A display 204
provides visual information to a user of the core processing
module 200 and an input device 206 provides input capa
bilities for the user.
The display 204 may include any display device. Such as

a cathode ray tube (CRT), liquid crystal display (LCD), light
emitting diode (LED), electronic ink displays, projection,
touchscreen, or other display element or panel. The input
device 206 may include a computer keyboard, a keypad, a
mouse, a pen, a joystick, or any other type of input device
by which the user may interact with and respond to infor
mation on the display 204.

It should be noted that the display 204 and the input
device 206 are illustrated with a dashed-line representation
within FIG. 2 to indicate that they may be optional compo
nents for the core processing module 200 for certain imple
mentations. Accordingly, the core processing module 200
may operate as a completely automated embedded device
without direct user configurability or feedback. However,
the core processing module 200 may also provide user
feedback and configurability via the display 204 and the
input device 206, respectively.
A communication module 208 provides interconnection

capabilities that allow the core processing module 200 to
communicate with other modules within the system 100.
The communication module 208 may include any electrical,
protocol, and protocol conversion capabilities useable to
provide the interconnection capabilities. Though the com
munication module 208 is illustrated as a component-level
module for ease of illustration and description purposes, it
should be noted that the communication module 208 may
include any hardware, programmed processor(s), and
memory used to carry out the functions of the communica
tion module 208 as described above and in more detail
below. For example, the communication module 208 may
include additional controller circuitry in the form of appli
cation specific integrated circuits (ASICs), processors,
antennas, and/or discrete integrated circuits and components
for performing communication and electrical control activi
ties associated with the communication module 208. Addi
tionally, the communication module 208 may include inter
rupt-level, stack-level, and application-level modules as

US 9,471589 B2
7

appropriate. Furthermore, the communication module 208
may include any memory components used for storage,
execution, and data processing for performing processing
activities associated with the communication module 208.
The communication module 208 may also form a portion of
other circuitry described without departure from the scope of
the present Subject matter.

The database 114 is also shown associated with the core
processing module 200 within FIG. 2 to show that the
database 114 may be coupled to the core processing module
200 without requiring external connectivity, such as via the
network 106.
A memory 210 includes a lock and transaction informa

tion storage area 212 that stores universal identifiers (UIDs),
lock status, and other information associated with ownership
of a database table. A configuration information storage area
214 stores configuration information for use in association
with alternating enduring locks on database ownership
tables, such as the SIBOWNERO table 116 and the
SIBOWNER table 118. The configuration information may
be used to provide configured time delays for committing
transactions on database ownership tables and releasing
shared locks on database tables, and time delays for re
acquisition of shared locks, as described in more detail
below, and other configuration information as appropriate
for a given implementation.

It is understood that the memory 210 may include any
combination of volatile and non-volatile memory suitable
for the intended purpose, distributed or localized as appro
priate, and may include other memory segments not illus
trated within the present example for ease of illustration
purposes. For example, the memory 210 may include a code
storage area, an operating System storage area, a code
execution area, and a data area without departure from the
Scope of the present Subject matter.
A messaging engine 216 is illustrated in a dashed-line

representation as both an application that is stored and
executed from within the memory 210 by the CPU 202 and
as a separate hardware component/module of the core pro
cessing module 200. It is understood that multiple instances
of the messaging engine 216 may be instantiated/imple
mented in association with the core processing module 200
and that each Such messaging engine 216 may attempt to
gain ownership of the data area 120 of the database 114, as
described above and in more detail below.
The memory 210 also includes a maintenance application

218 that may be utilized to update the database 114 as
described above. The maintenance application 218 may be
executed, for example, on any of the computing devices
shown and described in association with FIG. 1.

Regarding the hardware component/module implementa
tion of the messaging engine 216, though this module is
illustrated as a component-level module for ease of illustra
tion and description purposes, it should be noted that the
messaging engine 216 may include any hardware, pro
grammed processor(s), and memory used to carry out the
functions of the messaging engine 216 as described above
and in more detail below. For example, the messaging
engine 216 may include additional controller circuitry in the
form of application specific integrated circuits (ASICs),
processors, and/or discrete integrated circuits and compo
nents for performing communication and electrical control
activities associated with the respective devices. Addition
ally, the messaging engine 216 may include interrupt-level.
stack-level, and application-level modules as appropriate.
Furthermore, the messaging engine 216 may include any

5

10

15

25

30

35

40

45

50

55

60

65

8
memory components used for storage, execution, and data
processing for performing processing activities associated
with the module.

It should also be noted that the messaging engine 216 may
form a portion of other circuitry described without departure
from the scope of the present subject matter. Further, as
described above, the messaging engine 216 may alterna
tively be implemented as an application stored within the
memory 210. In Such an implementation, the messaging
engine 216 may include instructions executed by the CPU
202 for performing the functionality described herein. The
CPU 202 may execute these instructions to provide the
processing capabilities described above and in more detail
below for the core processing module 200. The messaging
engine 216 may form a portion of an interrupt service
routine (ISR), a portion of an operating system, a portion of
a browser application, or a portion of a separate application
without departure from the scope of the present subject
matter.
A timericlock module 220 is illustrated and used to

determine timing and date information, Such as for use in
association with configured time delays for committing
transactions on database ownership tables, as described
above and in more detail below. As such, the messaging
engine 216 may utilize information derived from the timer/
clock module 220 for information processing activities, such
as the management of long-running locks and transactions
on database tables described herein.
The CPU 202, the display 204, the input device 206, the

communication module 208, the database 114, the memory
210, the messaging engine 216, and the timer/clock module
220 are interconnected via an interconnection 222. The
interconnection 222 may include a system bus, a network, or
any other interconnection capable of providing the respec
tive components with suitable interconnection for the
respective purpose.

While the core processing module 200 is illustrated with
and has certain components described, other modules and
components may be associated with the core processing
module 200 without departure from the scope of the present
subject matter. Additionally, it should be noted that, while
the core processing module 200 is described as a single
device for ease of illustration purposes, the components
within the core processing module 200 may be co-located or
distributed and interconnected via a network without depar
ture from the scope of the present subject matter. For a
distributed arrangement, the display 204 and the input
device 206 may be located at a point of sale device, kiosk,
or other location, while the CPU 202 and memory 210 may
be located at a local or remote server. Many other possible
arrangements for components of the core processing module
200 are possible and all are considered within the scope of
the present subject matter. It should also be understood that,
though the SIBOWNERO table 116, the SIBOWNER table
118, and the data area 120 are shown within the database
114, they may also be stored within the memory 210 without
departure from the scope of the present Subject matter.
Accordingly, the core processing module 200 may take
many forms and may be associated with many platforms.

FIG. 3 through FIG. 4B described below represent
example processes that may be executed by devices, such as
the core processing module 200, to perform the automated
management of long-running locks and transactions on
database tables associated with the present Subject matter.
Many other variations on the example processes are possible
and all are considered within the scope of the present subject
matter. The example processes may be performed by mod

US 9,471589 B2

ules, such as the messaging engine 216 and/or executed by
the CPU 202, associated with such devices. It should be
noted that time out procedures and other error control
procedures are not illustrated within the example processes
described below for ease of illustration purposes. However,
it is understood that all such procedures are considered to be
within the scope of the present subject matter. Further, the
described processes may be combined, sequences of the
processing described may be changed, and additional pro
cessing may be added or removed without departure from
the scope of the present Subject matter.

FIG. 3 is a flow chart of an example of an implementation
of a process 300 for automated management of long-running
locks and transactions on database tables. At block 302, the
process 300 attempts to establish, via at least one processor,
an exclusive lock on each of an outer database ownership
table and an inner database ownership table. At block 304,
the process 300 switches, in response to establishing the
exclusive lock on each of the outer database ownership table
and the inner database ownership table, to a pair of over
lapping shared locks on each of the outer database owner
ship table and the inner database ownership table. At block
306, the process 300 alternates release and re-acquisition of
each of the pair of overlapping shared locks on the outer
database ownership table and the inner database ownership
table.

FIGS. 4A-4B illustrate a flow chart of an example of an
implementation of a process 400 for automated management
of long-running locks and transactions on database tables
using a multi-threaded messaging engine. It should be noted
that the process 400 may be executed by multiple messaging
engines (MEs) and that each ME is assumed to be imple
mented as a multi-threaded module within the present
example. However, it is understood that the processing
described herein may be performed by a single-threaded
module without departure from the scope of the present
Subject matter.

FIG. 4A illustrates initial processing within the process
400 and illustrates an initial lock acquisition phase during
which exclusive locks on the outer and inner database
ownership tables (SIBOWNERO and SIBOWNER, respec
tively) are acquired by a messaging engine to take owner
ship of the database/data store. As described in more detail
below, these exclusive locks are released and converted to
overlapping shared locks once ownership of the database/
data store is obtained. It should be noted that once ownership
of the database/data store is obtained, the overlapping shared
locks on the database ownership tables will prevent other
messaging engines from taking ownership of the database/
data store. FIG. 4B illustrates a lock maintenance phase
during which the overlapping shared locks on the outer and
inner database ownership tables (SIBOWNERO and
SIBOWNER, respectively) are alternately released and re
acquired. It should be noted that the processing during the
lock maintenance phase operates without holding long
running locks. This processing allows maintenance tools, for
example and as described above, to have access to the
database ownership tables and to the data store for mainte
nance, versioning, and other authorized purposes, including
updates to the messaging engines and database ownership
tables themselves.

Within FIG. 4A, at decision point 402, the process 400
makes a determination as to whether a request to start a
messaging engine (ME) has been received, such as via a
startup sequence, reboot, or otherwise. In response to deter

10

15

25

30

35

40

45

50

55

60

65

10
mining that a request to start a messaging engine (ME) has
been received, the process 400 starts a messaging engine
(ME) instance at block 404.
At block 406, the process 400 attempts to acquire an

exclusive lock on the outer database ownership table,
referred to as the SIBOWNERO table for purposes of the
present example. At decision point 408, the process 400
makes a determination as to whether an exclusive lock on
the SIBOWNERO table was acquired. It should be noted
that acquiring the shared lock on the SIBOWNERO table
also starts a transaction on the SIBOWNERO table. It should
also be noted that this transaction that is opened, and all
other table transactions that are described as being started
herein, is/are different from an application transaction. In
response to the application requesting the lock, the database
(DB) implicitly creates a transaction and it is this transaction
that is kept open until committed as described herein. In
response to determining that an exclusive lock was not
acquired, the process 400 stops the messaging engine at
block 410. For example, another messaging engine may
have already acquired the exclusive lock on the
SIBOWNERO table. At block 412, the process 400 notifies
the high availability (HA) manager that the messaging
engine was stopped and returns to decision point 402 and
iterates as described above.

Returning to the description of decision point 408, in
response to determining that an exclusive lock on the
SIBOWNERO table was acquired, the process 400 attempts
to acquire an exclusive lock on the inner database ownership
table at block 414, referred to as the SIBOWNER table for
purposes of the present example. At decision point 416, the
process 400 makes a determination as to whether an exclu
sive lock on the SIBOWNER table was acquired. It should
be noted that acquiring the shared lock on the SIBOWNER
table also starts a transaction on the SIBOWNER table. In
response to determining that an exclusive lock was not
acquired, the process 400 stops the messaging engine at
block 418. For example, another messaging engine may
have already acquired the lock on the SIBOWNER table. At
block 420, the process 400 notifies the high availability
(HA) manager that the messaging engine was stopped and
returns to decision point 402 and iterates as described above.

Returning to the description of decision point 416, in
response to determining that an exclusive lock on the
SIBOWNER table was acquired, the process 400 updates
the SIBOWNER table with the messaging engine universal/
unique identifier (UID) information to indicate that the
current messaging engine is the active messaging engine
instance at block 422. It should be noted that acquiring the
shared lock on the SIBOWNER table also starts a transac
tion on the SIBOWNER table. As such, and as described in
more detail below, during the lock maintenance phase
described in association with FIG. 4B, when a shared lock
on the inner database ownership table (SIBOWNER) is
released, a maintenance tool or other authorized process may
view the messaging engine UID within the inner database
ownership table to determine which messaging engine is the
active messaging engine instance.
At block 424, the process 400 commits the transaction on

the inner database ownership table (SIBOWNER). At block
426, the process 400 releases the exclusive lock on the
SIBOWNER table and acquires a shared lock on the
SIBOWNER table. Acquiring the shared lock on the
SIBOWNER table also starts a transaction on the
SIBOWNER table. At block 428, the process 400 commits
the transaction on the outer database ownership table (SI
BOWNERO). At block 430, the process 400 releases exclu

US 9,471589 B2
11

sive lock on the SIBOWNERO table and acquires a shared
lock on the SIBOWNERO table. Acquiring the shared lock
on the SIBOWNERO table also starts a transaction on the
SIBOWNERO table.

Processing within the process 400 transitions to multi
threaded processing within the present example in response
to acquiring the shared lock on the SIBOWNER table at
block 426 as represented by the circled reference (A) and in
response to acquiring the shared lock on the SIBOWNERO
table at block 430 as represented by the circled reference
(B). The process 400 transitions to the processing shown and
described in association with FIG. 4B and performs multi
threaded processing of the overlapping shared locks on the
inner and outer database ownership tables to alternate
release and re-acquisition of each of the overlapping shared
locks on the outer database ownership table and the inner
database ownership table.

FIG. 4B illustrates additional processing associated with
the process 400 for automated management of long-running
locks and transactions on database tables using a multi
threaded messaging engine. As described above, FIG. 4B
illustrates multi-threaded processing that initiates at the
circled reference (A) and circled reference (B). For ease of
description purposes, these threads will be referred to as
“Thread A' and “Thread B, respectively, relative to the
respective circled references. Each of these multi-threaded
processes alternates release and re-acquisition of one of the
overlapping shared locks on the respective database owner
ship tables. Thread A operates to release and re-acquire the
overlapping shared lock on the inner database ownership
table (SIBOWNER), while Thread B operates to release
and re-acquire the overlapping shared lock on the outer
database ownership table (SIBOWNERO).

Beginning with a description within FIG. 4B of Thread A
processing within the process 400 for alternating release and
re-acquisition of the overlapping shared lock on the
SIBOWNER table at the circled reference (A), the
Thread A of the process 400 gets a configured time delay for
committing the SIBOWNER table, such as from the con
figuration information storage area 214 within the memory
210, at block 432. It should be noted that this time delay may
be configured as a single time delay usable both for waiting
to determine when ownership of the SIBOWNERO table is
acquired by the other thread (e.g., Thread B) and for waiting
to re-acquire a shared lock on the SIBOWNER table by the
current thread (e.g., Thread A). However, this time delay
may also be configured as two separate time delays, with a
first time delay referred to within the present examples as a
“shared lock release time delay' for waiting to determine
when ownership of the SIBOWNERO table is acquired by
the other thread (e.g., Thread B) and a second time delay
referred to within the present examples as a “shared lock
re-acquisition time delay for waiting to determine when to
re-acquire the shared lock on the SIBOWNER table within
the current thread (Thread A).

For purposes of the present description, it should be noted
that the process 400 operating within the current thread
(Thread A) has already acquired a shared lock on the
SIBOWNER table, as described above in association with
FIG. 4A. At decision point 434, the Thread A of the process
400 makes a determination as to whether a shared lock is
also held on the outer database ownership table (SI
BOWNERO) by the other thread (e.g., Thread B). In
response to determining that a shared lock is not currently
held on the SIBOWNERO table by the other thread (e.g.,
Thread B), the Thread A of the process 400 sets the con
figurable shared lock release time delay associated with

10

15

25

30

35

40

45

50

55

60

65

12
acquisition of a lock on the SIBOWNERO table by the other
thread (e.g., Thread B) at block 436. This time delay
ensures that the shared locks on both database ownership
tables are overlapping prior to release of the shared lock on
the SIBOWNER table by the current thread (e.g.,
Thread A). This time delay also ensures that the respective
transactions on the two database ownership tables are also
overlapping prior to committing either transaction. To avoid
crowding within the drawing figure, processing to determine
when the configured shared lock release time delay has
expired is not shown. However, it is understood to form a
part of the processing within the Thread A of the process
400.

In response to expiration of the configured shared lock
release time delay, the Thread A of the process 400 returns
to decision point 434. In response to determining at decision
point 434 that the shared lock is also held on the
SIBOWNERO table by the other thread (e.g., Thread B),
the Thread A of the process 400 commits the transaction on
the inner database ownership table (SIBOWNER) at block
438. Two actions are performed responsive to commitment
of the transaction on the SIBOWNER table by the Thread A
of the process 400. The first action performed by the
Thread A is to notify the Thread B that is holding the
SIBOWNERO table to take over the transaction at block
440. This action is symbolically represented within FIG. 4B
by a transition represented by the circled (C), though this
should not be considered limiting as the notification may be
synchronous or asynchronous, and may occur with respect
to any stage of processing within the Thread B of the
process 400. The second action performed by Thread A is to
release the shared lock on the SIBOWNER table at block
442.
The Thread A of the process 400 sets the configured

shared lock re-acquisition time delay for the SIBOWNER
table at block 444. To avoid crowding within the drawing
figure, processing to determine when the configured shared
lock re-acquisition time delay has expired is not shown.
However, it is understood to form a part of the processing
within the Thread A of the process 400. In response to
expiration of the configured shared lock re-acquisition time
delay, the Thread A of the process 400 re-acquires the
shared lock on the SIBOWNER table at block 446, and
iterates back to block 432 to continue iterative processing to
alternate the release and re-acquisition of the overlapping
shared locks and transactions on the inner database owner
ship table as described above. Re-acquiring the shared lock
on the SIBOWNER table also starts a new transaction on the
SIBOWNER table. As such, the Thread A of the process
400 alternates release and re-acquisition of the overlapping
shared locks on the inner database ownership table (SI
BOWNER), and alternates transactions and release of trans
actions on the inner database ownership table (SI
BOWNER).

Regarding the Thread B of the process 400 beginning at
the circled (B) within FIG. 4B, the Thread B performs
processing for alternating release and re-acquisition of the
overlapping shared lock on the outer database ownership
table (SIBOWNERO). The Thread B of the process 400
gets a configured time delay for committing the
SIBOWNERO table, such as from the configuration infor
mation storage area 214 within the memory 210, at block
448. It should be noted that this time delay may be config
ured as a single time delay usable both for waiting to
determine when ownership of the inner database should
table (SIBOWNER) is acquired by the other thread (e.g.,
Thread A) and for waiting to re-acquire a shared lock on the

US 9,471589 B2
13

SIBOWNERO table by the current thread (e.g., Thread B).
However, this time delay may also be configured as two
separate time delays, with a first time delay referred to
within the present examples as a “shared lock release time
delay' for waiting to determine when ownership of the
SIBOWNER table is acquired by the other thread (e.g.,
Thread A) and a second time delay referred to within the
present examples as a “shared lock re-acquisition time
delay' for waiting to determine when to re-acquire the
shared lock on the SIBOWNERO table within the current
thread (Thread B).

For purposes of the present description, it should be noted
that the process 400 operating within the current thread
(Thread B) has already acquired a shared lock on the outer
database ownership table (SIBOWNERO), as described
above in association with FIG. 4A. At decision point 450,
the Thread B of the process 400 makes a determination as
to whether a shared lock is also held on the SIBOWNER
table by the other thread (e.g., Thread A). In response to
determining that a shared lock is not currently held on the
SIBOWNER table by the other thread (e.g., Thread A), the
Thread B of the process 400 sets the configurable shared
lock release time delay associated with acquisition of a lock
on the SIBOWNER table by the other thread (e.g.,
Thread A) at block 452. This time delay ensures that the
shared locks on both database ownership tables are over
lapping prior to release of the shared lock on the outer
database ownership table (SIBOWNERO) by the current
thread (e.g., Thread B). This time delay also ensures that the
respective transactions on the two database ownership tables
are also overlapping prior to committing either transaction.
To avoid crowding within the drawing figure, processing to
determine when the configured shared lock release time
delay has expired is not shown. However, it is understood to
form a part of the processing within the Thread B of the
process 400.

In response to expiration of the configured shared lock
release time delay, the Thread B of the process 400 returns
to decision point 450. In response to determining at decision
point 450 that the shared lock is also held on the
SIBOWNER table by the other thread (e.g., Thread A), the
Thread B of the process 400 commits the transaction on the
SIBOWNERO table at block 454. Two actions are per
formed responsive to commitment of the transaction on the
SIBOWNERO table by the Thread B of the process 400.
The first action performed by the Thread B is to notify the
Thread A that is holding the SIBOWNER table to take over
the transaction at block 456. This action is symbolically
represented within FIG. 4B by an arrow to the input of block
446 within the Thread. A processing, though this should not
be considered limiting as the notification may be synchro
nous or asynchronous, and may occur with respect to any
stage of processing within the Thread A of the process 400.
The second action performed by Thread B is to release the
shared lock on the SIBOWNERO table at block 458.
The Thread B of the process 400 sets the configured

shared lock re-acquisition time delay for the SIBOWNERO
table at block 460. To avoid crowding within the drawing
figure, processing to determine when the configured shared
lock re-acquisition time delay has expired is not shown.
However, it is understood to form a part of the processing
within the Thread B of the process 400. In response to
expiration of the configured shared lock re-acquisition time
delay, the Thread B of the process 400 re-acquires the
shared lock on the SIBOWNERO table at block 462, and
iterates back to block 448 to continue iterative processing to
alternate release and re-acquisition of the overlapping shared

10

15

25

30

35

40

45

50

55

60

65

14
locks and transactions on the outer database ownership table
as described above. Re-acquiring the shared lock on the
SIBOWNERO table also starts a new transaction on the
SIBOWNERO table. As such, the Thread B of the process
400 alternates release and re-acquisition of the overlapping
shared locks on the outer database ownership table (SI
BOWNERO), and alternates transactions and release of
transactions on the outer database ownership table (SI
BOWNERO).
As such, the process 400 performs initial processing to

acquire exclusive ownership of the database/data store using
exclusive locks on the outer and inner database ownership
tables. The process 400 then releases the exclusive locks,
commits the respective table transactions, and transitions to
overlapping shared locks and transactions on the inner and
outer database ownership tables. The process 400 transitions
to multi-threaded processing to alternate release and re
acquisition of overlapping shared locks and overlapping
shared transactions on the outer and inner database owner
ship tables. This use of overlapping shared locks and over
lapping transactions ensures that no other messaging engine
can take ownership of the database/data store, while allow
ing intervals of time for maintenance and/or update of the
database/data store and the messaging engines themselves
including the outer and inner database ownership tables.
Accordingly, tools and batch processes running on tables
(e.g., utilities such as ImageOopy, Backup, Analyzing que
ries, etc.) are not prohibited from executing by long-running
transactions and exclusive locks.
As described above in association with FIG. 1 through

FIG. 4B, the example systems and processes provide tech
nology for management of long-running locks and transac
tions on database tables. Many other variations and addi
tional activities associated with management of long
running locks and transactions on database tables are
possible and all are considered within the scope of the
present Subject matter.

Those skilled in the art will recognize, upon consideration
of the above teachings, that certain of the above examples
are based upon use of a programmed processor, Such as the
CPU 202. However, the invention is not limited to such
example embodiments, since other embodiments could be
implemented using hardware component equivalents such as
special purpose hardware and/or dedicated processors. Simi
larly, general purpose computers, microprocessor based
computers, micro-controllers, optical computers, analog
computers, dedicated processors, application specific cir
cuits and/or dedicated hard wired logic may be used to
construct alternative equivalent embodiments.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.
Any combination of one or more computer readable

medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi

US 9,471589 B2
15

conductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), a portable compact
disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any Suitable combi
nation of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro
magnetic, optical, or any Suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language Such as
Smalltalk, C++ or the like and conventional procedural
programming languages, such as the 'C' programming
language or similar programming languages. The program
code may execute entirely on the user's computer, partly on
the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention have been described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia
gram block or blocks.

These computer program instructions may also be stored
in a computer-readable storage medium that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions

10

15

25

30

35

40

45

50

55

60

65

16
stored in the computer-readable storage medium produce an
article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in Succession may, in fact, be executed Substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least Some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening I/O
controllers.
Network adapters may also be coupled to the system to

enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modems and Ethernet cards are just a few of
the currently available types of network adapters.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an and “the are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,

US 9,471589 B2
17

or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
Suited to the particular use contemplated.
What is claimed is:
1. A method, comprising:
by a messaging engine processor:

attempting to establish an exclusive lock on each of an
outer database ownership table and an inner database
ownership table;

Switching, in response to establishing the exclusive
lock on each of the outer database ownership table
and the inner database ownership table, to a pair of
overlapping shared locks on each of the outer data
base ownership table and the inner database owner
ship table; and

alternating release and re-acquisition of each of the pair
of overlapping shared locks on the outer database
ownership table and the inner database ownership
table comprising processing each of the outer data
base ownership table and the inner database owner
ship table within separate threads of the messaging
engine processor, and where processing each of the
outer database ownership table and the inner data
base ownership table within the separate threads of
the messaging engine processor comprises:
determining, within each thread, whether the other

thread of the separate threads owns the respective
other one of the inner database ownership table
and the outer database ownership table processed
by the other thread; and

in response to determining that the other thread owns
the other respective database ownership table:
committing an overlapping shared lock transac

tion on the respective one of the inner database
ownership table and the outer database owner
ship table processed within the current thread;

releasing an overlapping shared lock of the pair of
overlapping shared locks on the respective one
of the inner database ownership table and the
outer database ownership table processed
within the current thread;

setting a shared lock re-acquisition time delay; and
in response to expiration of the shared lock re

acquisition time delay:
re-acquiring the shared lock on the respective
one of the inner database ownership table and
the outer database ownership table processed
within the current thread.

2. The method of claim 1, where Switching, in response to
establishing the exclusive lock on each of the outer database
ownership table and the inner database ownership table, to
the pair of overlapping shared locks on each of the outer
database ownership table and the inner database ownership
table comprises:

releasing the exclusive lock on each of the outer database
ownership table and the inner database ownership
table;

5

10

15

25

30

35

40

45

50

55

60

65

18
acquiring the pair of overlapping shared locks on each of

the outer database ownership table and the inner data
base ownership table:

committing an exclusive lock transaction on each of the
outer database ownership table and the inner database
ownership table; and

starting processing of overlapping shared lock transac
tions on each of the outer database ownership table and
the inner database ownership table.

3. The method of claim 2, where alternating the release
and re-acquisition of each of the pair of overlapping shared
locks on the outer database ownership table and the inner
database ownership table further comprises:

alternating commitment and re-start of the overlapping
shared lock transactions on each of the outer database
ownership table and the inner database ownership
table.

4. The method of claim 1, further comprising:
in response to determining that the other thread does not
own the other respective database ownership table:
setting a shared lock release time delay; and
in response to expiration of the shared lock release time

delay:
re-determining, within each thread, whether the

other thread owns the other respective database
ownership table.

5. A system, comprising:
a memory device comprising an outer database ownership

table and an inner database ownership table; and
a messaging engine processor programmed to:

attempt to establish an exclusive lock on each of the
outer database ownership table and the inner data
base ownership table;

Switch, in response to establishing the exclusive lock
on each of the outer database ownership table and the
inner database ownership table, to a pair of overlap
ping shared locks on each of the outer database
ownership table and the inner database ownership
table; and

alternate release and re-acquisition of each of the pair
of overlapping shared locks on the outer database
ownership table and the inner database ownership
table, comprising the messaging engine processor
being programmed to process each of the outer
database ownership table and the inner database
ownership table within separate threads of the mes
Saging engine processor, and where, in being pro
grammed to process each of the outer database
ownership table and the inner database ownership
table within the separate threads of the messaging
engine processor, the messaging engine processor is
programmed to:
determine, within each thread, whether the other

thread of the separate threads owns the respective
other one of the inner database ownership table
and the outer database ownership table processed
by the other thread:

in response to determining that the other thread owns
the other respective database ownership table:
commit an overlapping shared lock transaction on

the respective one of the inner database own
ership table and the outer database ownership
table processed within the current thread;

release an overlapping shared lock of the pair of
overlapping shared locks on the respective one
of the inner database ownership table and the

US 9,471589 B2
19

outer database ownership table processed
within the current thread;

set a shared lock re-acquisition time delay; and
in response to expiration of the shared lock re

acquisition time delay:
re-acquire the shared lock on the respective one
of the inner database ownership table and the
outer database ownership table processed
within the current thread.

6. The system of claim 5, where, in being programmed to
Switch, in response to establishing the exclusive lock on
each of the outer database ownership table and the inner
database ownership table, to the pair of overlapping shared
locks on each of the outer database ownership table and the
inner database ownership table, the messaging engine pro
cessor is programmed to:

release the exclusive lock on each of the outer database
ownership table and the inner database ownership
table;

acquire the pair of overlapping shared locks on each of the
outer database ownership table and the inner database
ownership table:

commit an exclusive lock transaction on each of the outer
database ownership table and the inner database own
ership table; and

start processing of overlapping shared lock transactions
on each of the outer database ownership table and the
inner database ownership table.

7. The system of claim 6, where, in being programmed to
alternate the release and re-acquisition of each of the pair of
overlapping shared locks on the outer database ownership
table and the inner database ownership table, the messaging
engine processor is further programmed to:

alternate commitment and re-start of the overlapping
shared lock transactions on each of the outer database
ownership table and the inner database ownership
table.

8. The system of claim 5, where the messaging engine
processor is further programmed to:

in response to determining that the other thread does not
own the other respective database ownership table:
set a shared lock release time delay; and
in response to expiration of the shared lock release time

delay:
re-determine, within each thread, whether the other

thread owns the other respective database owner
ship table.

9. A computer program product comprising a computer
readable storage medium including computer readable pro
gram code, where the computer readable storage medium is
not a transitory signal per se and where the computer
readable program code when executed on a computer imple
mented as a messaging engine causes the computer to:

attempt to establish an exclusive lock on each of an outer
database ownership table and an inner database own
ership table:

Switch, in response to establishing the exclusive lock on
each of the outer database ownership table and the
inner database ownership table, to a pair of overlapping
shared locks on each of the outer database ownership
table and the inner database ownership table; and

alternate release and re-acquisition of each of the pair of
overlapping shared locks on the outer database owner
ship table and the inner database ownership table,
comprising the computer readable program code when
executed on the computer causing the computer to
process each of the outer database ownership table and

10

15

25

30

35

40

45

50

55

60

65

20
the inner database ownership table within separate
threads of the messaging engine, and where, in causing
the computer to process each of the outer database
ownership table and the inner database ownership table
within the separate threads of the messaging engine, the
computer readable program code when executed on the
computer causes the computer to:
determine, within each thread, whether the other thread

of the separate threads owns the respective other one
of the inner database ownership table and the outer
database ownership table processed by the other
thread; and

in response to determining that the other thread owns
the other respective database ownership table:
commit an overlapping shared lock transaction on

the respective one of the inner database ownership
table and the outer database ownership table pro
cessed within the current thread;

release an overlapping shared lock of the pair of
overlapping shared locks on the respective one of
the inner database ownership table and the outer
database ownership table processed within the
current thread:

set a shared lock re-acquisition time delay; and
in response to expiration of the shared lock re

acquisition time delay:
re-acquire the shared lock on the respective one of

the inner database ownership table and the outer
database ownership table processed within the
current thread.

10. The computer program product of claim 9, where, in
causing the computer to Switch, in response to establishing
the exclusive lock on each of the outer database ownership
table and the inner database ownership table, to the pair of
overlapping shared locks on each of the outer database
ownership table and the inner database ownership table, the
computer readable program code when executed on the
computer causes the computer to:

release the exclusive lock on each of the outer database
ownership table and the inner database ownership
table;

acquire the pair of overlapping shared locks on each of the
outer database ownership table and the inner database
ownership table:

commit an exclusive lock transaction on each of the outer
database ownership table and the inner database own
ership table; and

start processing of overlapping shared lock transactions
on each of the outer database ownership table and the
inner database ownership table.

11. The computer program product of claim 10, where, in
causing the computer to alternate the release and re-acqui
sition of each of the pair of overlapping shared locks on the
outer database ownership table and the inner database own
ership table, the computer readable program code when
executed on the computer further causes the computer to:

alternate commitment and re-start of the overlapping
shared lock transactions on each of the outer database
ownership table and the inner database ownership
table.

12. The computer program product of claim 9, where the
computer readable program code when executed on the
computer further causes the computer to:

in response to determining that the other thread does not
own the other respective database ownership table:
set a shared lock release time delay; and

US 9,471589 B2
21

in response to expiration of the shared lock release time
delay:
re-determine, within each thread, whether the other

thread owns the other respective database owner
ship table. 5

22

