

PATENT SPECIFICATION

(11) 1 588 264

1 588 264 (21) Application No. 37784/77 (22) Filed 9 September 1977
 (31) Convention Application Nos. 51/108310 52/052533
 (32) Filed 9 September 1976 7 May 1977 in
 (33) Japan (JP)
 (44) Complete Specification Published 23 April 1981
 (51) INT. CL.³ G03B 17/00
 (52) Index at Acceptance G2E 161 167 CA

(54) IMPROVEMENTS IN OR RELATING
 TO CINEMATOGRAPHIC CAMERAS

(71) We, CANON KABUSHIKI KAISHA, a
 Japanese Company, of No. 3-30-2, Shimo-
 maruko, Ohta-ku, Tokyo, Japan, do hereby
 declare the invention, for which we pray that a
 5 patent may be granted to us, and the method
 by which it is to be performed, to be particu-
 larly described in and by the following state-
 ment:—

10 This invention relates to cinematographic
 cameras, and more particularly to an inter-
 mittent film advance cinematographic camera
 having a circuit to control the operation
 thereof.

15 It is known to provide a cinematographic
 camera (cine camera) capable of performing not
 only "normal" motion picture operation but
 also special operations such as fade-in and fade-
 out effects. In conventional cinematographic
 20 cameras having such functions, use has been
 made of an analogue type of control circuit, the
 complexity of which tends to increase as the
 required number of specific operating modes is
 increased. Consequently, when manufacturing
 25 small-size cine-cameras, it has been impossible
 to provide as many operating modes as desired
 because of the limitations on space in the
 camera to accommodate the complex control
 circuits.

30 Attempts have been made to overcome the
 above-mentioned drawback of analogue control
 circuits by employing hard-wired logic circuits
 in constructing the control circuit. Such a
 digital type of control circuit, however, gives
 35 rise to another problem, that the number of
 hard-wired logic circuits necessary is increased
 with an increase in the number of operating
 modes, as each of the hard-wired logic circuits
 is designed to perform only one particular
 40 sequential operation corresponding to one of
 the operating modes. This is because it is
 impossible to pre-design a common circuit
 portion by which different operating modes can
 be selectively processed. Thus, the use of a
 45 digital circuit also leads to an increase in the
 complexity of circuit construction, and thus to
 the camera space required.

50 On the other hand, the mechanical construc-
 tion of known cinematographic cameras
 capable of producing fade-in and fade-out
 effects is characterised by use of two rotatable

shutter blades arranged to vary the relative
 position of their exposing cut-outs, a variation
 in the effective opening angle thereof being
 possible from zero up to a certain value, usually
 150°. In a recently developed XL type of
 55 camera, however, the shutter opening angle has
 had to be extended to about 200° at the
 maximum, thereby making it impossible to
 have two shutter blades which can also be set to
 zero degrees of opening. To overcome this
 60 problem, one solution is to use three shutter
 blades arranged to define a single variable
 opening having a range of 0° to 200°. This pro-
 posal has, however, disadvantages such that the
 control mechanism for these three shutter
 65 blades becomes complicated in construction
 and that a completely different control method
 from that for two shutter blades must be made,
 to produce fade effects. As has been mentioned
 above, however, the control circuit of the
 70 camera is itself of the analogue or hard-wired
 logic type which is incapable of performing a
 sequential operation in fade-in and fade-out
 modes, because such operations exceed the
 capacity of the prior art control circuits.

75 The principal aim of the present invention is
 to provide a cinematographic camera which
 selectively can operate in any one of a number
 of modes and which employs a processing
 circuit.

80 According to this invention, there is
 provided an intermittent film advance cinema-
 tographic camera including: a film transport
 motor; a shutter for exposing a transported
 film; a shutter control mechanism co-operative
 85 with said film transport motor; a control circuit
 for controlling at least the driving and stopping
 operations of said motor; and a multimode
 processing circuit having a number of pre-
 programmed operating modes and arranged so
 90 as to control said control circuit in accordance
 with a manually-selected programme, thereby
 automatically to carry out a required mode of
 photographic exposing operation.

95 The programme is preferably stored in a
 memory circuit, which advantageously is a read-
 only memory.

100 It will be appreciated that with a cinema-
 tographic camera of this invention, various
 operating modes can selectively be carried out

using the same control circuit, for the control circuit itself is operated under the control of the programme. By providing the camera with an auxiliary shutter blade independently controllable to adjust the opening of the main shutter, yet more operating modes can be provided in a simple and convenient manner.

By way of example only, one specific embodiment of cinematographic camera constructed in accordance with this invention will now be described, reference being made to the accompanying drawings, in which:—

Figure 1 is a side elevational view of a cinematographic camera constructed in accordance with this invention;

Figure 2 is a perspective view of the camera of Figure 1 but partly broken away to show the arrangement of the basic parts within the camera casing;

Figure 3A is a front view of a shutter control mechanism for the main and auxiliary shutter blades shown in Figure 2;

Figure 3B is a fragmentary horizontal view, partly in section, of the internal construction of the mechanism shown in Figure 2;

Figure 3C is a longitudinal vertical view, partly in section, of the shutter control mechanism and an intermittent film advancing control mechanism shown in Figures 2 and 3A;

Figure 4 is a plan view of the main shutter blade, showing two different examples of arrangement of slits provided therein;

Figure 5A is a schematic electrical circuit diagram, partly in block form, of one embodiment of a control system for a cinematographic camera according to this invention;

Figure 5B is a detailed circuit diagram of part of the system of Figure 5A;

Figure 5C is a table in which the possible combinations of the switch positions of SW1 to SW21 of Figure 5A for various information settings are related to the corresponding combinations of four input signals entered into lines MBADATA0-L to MBADATA3-L;

Figure 5D is a table in which the conditions of operation of the individual output devices of the camera are related to corresponding combinations of output signals appearing at respective lines MBDATA0-L to 7-L;

Figure 5E is a table in which the reference numbers representing the individual devices are related to the symbols representing the individual programme instructions;

Figure 6 is a chart showing the co-ordination of operation of the main shutter blade, film pull-down claw and electromagnet 19 shown in Figures 2 and 3 with respect to the phase angle of the main shutter;

Figures 7(a), 7(b) and 7(c) are diagrams showing a process for variation of the shutter opening angle when in a fade-out mode;

Figure 7(d) is a diagram showing the variation of the shutter opening angle when in a diaphragm preselection automatic exposure mode;

Figures 8(a) and 8(b) are diagrams showing a process for increasing the shutter opening angle when in a fade-in mode;

Figures 9A, 9B and 9C are front views of the auxiliary shutter blade respectively in three successive operating positions relative to the picture aperture when in a wipe-in mode;

Figures 10A and 10B are similar views respectively at two successive operating positions when in a wipe-to-lap mode;

Figures 11 is a list of microprocessor instructions;

Figures 12—1 to 12—32 are lists of programme instructions as programmed in a ROM of the CPU in a microcomputer system shown in Figure 5A; and

Figures 13A to 13D are schematic electrical circuit diagrams, partly in block form, of the blocks AD, AD', EXT, LEVEL and MC shown in Figure 5B.

In Figure 1, there is shown a cinematographic camera having a housing 1 with a zoom objective lens barrel 2 attached to the front panel of the housing 1 and a manual release lever 6 extending forwardly of the front panel. On one side of the camera housing 1, there is shown a control panel having arranged thereon a plurality of control knobs including a main switch 5, a mode selecting dial 7, a frame speed selecting dial 8, a time data selecting dial 9 for selective control of a time interval or intervals such as a self-timer operation period, and a shutter opening angle data selecting dial 10. The mode selecting dial 7 is associated with a push button 7a arranged coaxially with the dial 7 and upon depression starts the performance of a programme for the selected mode. The time and angle selecting dials 9 and 10 are provided with respective data input push buttons 9a and 10a arranged coaxially with the dials 9 and 10 to effect entry of the selected data into the CPU, which will be described later. The push buttons 9a and 10a respectively carry a red and a blue light-emitting diode 9b and 10b. In order to clear the date entered by the push buttons 9a and 10a, there is provided a clear push button 11.

Referring to Figures 2 and 3, the internal construction of the camera of Figure 1 includes a first electrical motor or film motor 12 having an output shaft 12a transmitting the drive of the motor 12 through a suitable torque buffering spring 14 positioned around the shaft 12a to a pinion 13 rotatable on the shaft 12a. The pinion 13 drives, through an idler gear 15, a shutter gear 16 which has a main shutter blade 21 fixed on the front surface thereof. On the rear surface of the gear 16 is mounted a cam 16a for controlling the intermittent operation of a film driving pull-down plate 17 in front of an aperture 20. The pull-down plate 17 is guided for vertical movement by a pair of pins 41a and 41b extending from a frame structure 41 of the housing into respective slots provided in the pull-down plate 17 at upper and lower

positions thereof. Mounted on the pull-down plate 17 is a claw pin 17a arranged to be brought into driving engagement with one of the perforations of a photographic film 18

5 when an electromagnet 19 carried by the plate 17 is de-energised. When the electromagnet 19 is energised, an armature 19a is attracted against the force of a spring 19b, causing the pull-down claw pin 17a to be retracted from the perforations against the force of the spring 17c.

10 As shown in Figure 4, the main shutter blade is larger in radius than the drive gear 16 therefore by an amount sufficient to provide an annular zone in which thirty-six slits 21a are

15 arranged in an equi-spaced relation, as designated by numerals 0 to 35. The radius of the central circular portion is sufficiently small to clear the aperture 20 (Figure 3A) when the phase of the main shutter blade is from 100 to 20 280° with respect to an index point A. The main shutter has an initial phase angle of zero degree in the illustrated position, where the slot 21a designated zero is placed in registry with the index point A. As the shutter is rotated 25 from this position, each time a slit comes to registration with the index point A, the resulting phase angle is advanced 10° from the just-preceding one. For example, in Figure 4 the aperture starts to be opened when the 30 shutter takes a phase angle of 60°. Then, the shutter continues to be fully open during the range of phase angles of 100° to 280°, and then is fully closed at a phase angle of 320°. This configuration of the main shutter blade, therefore, provides a shutter opening angle of 220°.

35 Referring again to Figures 2 and 3, in order to detect the angular phase of the aforesaid main shutter 21, there is provided a detector means 22 positioned in alignment with the ring 40 of slits, to detect the 0 slit as the shutter 21 assumes the illustrated position in Figures 3A and 4. A second detector means 23 is provided so as to produce a pulse when the shutter 21 is rotated from the final phase angle to the initial 45 phase angle (i.e. as shown in Figures 3 and 4). In order that the main shutter 21 can be stopped from further rotation in either of two discrete positions, namely, the aperture fully closed or fully open positions, there is provided 50 an arresting means comprising an electromagnet 24 (Mg1), and an engaging shaft 24a operable by an armature 24b of the electromagnet 24 and arranged parallel to the axis of the idler gear 15 so as to be movable when the 55 electromagnet is energised into selective engagement with either of two arcuate slots 15a and 15b provided in the idler gear 15. When de-energised, the engaging shaft 24a is retracted under the action of a spring 24c connected 60 between the housing and the opposite end of the armature 24b to that carrying the engaging shaft 24a, thereby the engaging shaft 24a is disengaged from the slot 15a or 15b to permit rotation of the main shutter 21. It is of course 65 possible to reverse the operation of the electro-

magnet 24 and spring with respect to the movement of the engaging shaft 24a, to effect an equivalent result to the above.

Drive from the first motor 12 (Figure 2) is also transmitted to a take-up reel of a film magazine 27 through a known slipping clutch and gear train, the latter comprising the pinion 13, the idler gear 15, a worm 15c coaxially connected to the idler gear 15 and meshing with a worm wheel 25, and a winding worm wheel 26 meshing with the wheel 25 and fixed on a shaft having an adapter piece (not shown) engageable with a hub (not shown) of the take-up reel of the film magazine 27.

70 There is provided a second electrical motor or capstan motor 28 having an output shaft on which a worm 30 is fixed. The worm 30 meshes with a worm wheel 29a affixed to a capstan 29 against which the film 18, having first and

75 second magnetic sound recording tracks 18b and 18c, is pressed by a pinch roller 32. In order to detect the rotational phase of the capstan 29, there is provided a magnetic head 31 positioned adjacent the periphery of the worm wheel 29a so as to detect variation of

80 magnetic resistance due to the displacement of the teeth of the wheel 29a. The pinch roller 32 drives the sound film 18, which has been driven intermittently by the pull-down plate 17, at a constant speed past the position of first and second magnetic recording heads 33a and 33b, located at a position corresponding to the first and second magnetic recording tracks 18b and 18c. The pinch roller 32 is pressed on the capstan 29 by electromagnet 34 (Mg3), when the electromagnet 34 is energised.

85 Upon detection of a variation in the slack loop of the film 18 by a loop sensor 35, the speed of either of the first or the second motors 12 and 28 is controlled so as to compensate for the difference

90 between the speed VI of the transport of the film 18 at a point under the sound recording heads 33a and 33b and the average speed V2 of intermittent advancement of the film 18 driven by the pull-down plate 17. The output of the sensor 35 thus controls the rotational rate of the film motor 12 or the capstan motor 28 so as to maintain a constant film loop under the driving condition. Third and fourth electrical

95 motors for driving the zoom lens 2 and a diaphragm mechanism (not shown) are respectively indicated at 36 and 37.

100 An auxiliary shutter blade 39 is fixed on the output shaft of a fifth motor 38 which is, in this instance, of the pulse-controlled type (i.e. a stepping motor). The blade 39 has an

105 effective area so configured as to be able fully to cover the aperture or partially to cover the aperture, or to leave the aperture fully uncovered, as shown in Figures 9 and 10. The movement of the blade, corresponding to rotation of the motor, is dependent on the number of pulses supplied to the motor. In

110 order to stop movement of the blade 39 at the initial position for the fully open aperture 20,

115

120

125

130

there is provided a stop pin 40a fixed on the housing to the right of the blade 39 as viewed in Figure 3A. The leftward limit of movement 5 of the blade 39 is controlled by another stop pin 40b arranged to be movable in an arcuate slot 101c by a linkage having an operating member (not shown) so that the blade 39 when driven into abutment therewith can be stopped 10 either in a fully closed, or in a partly closed position. Instead of using a pulse motor as the fifth motor 38, use may be made of a D.C. motor or the like.

Figures 3A to 3C show the detailed construction of the main shutter and the auxiliary shutter. The electromagnet 24 is fixed to the frame structure 41 fixed to the camera body 1, the engaging shaft 24a being slidably supported for axial movement on supporting portion 41a 15 and biased by the restoring spring 24c away from the idler gear 15. The armature 24b is connected to the engaging shaft with some degree of freedom and when the electromagnet is energised it drives the engaging shaft 24a 20 against the force of the spring 24c to a position in which the shaft can engage with the holes 15a and 15b in the idler gear.

The electromagnet 19 is also fixed to the frame structure 41. The pull-down plate 17 is 25 guided by the guide pins 41b, 41c fixed to the frame structure and is driven by the cam 16a so as to move up and down in the Y direction. A sleeve having a notched portion 17b1 and connected to the pull-down plate 17, slidably 30 mounts the pin 17a for axial movement, this pin 17a being biased by a restoring spring 17b so as to engage with film perforations. The end 19a1 of the armature 19a of the electromagnet 19 is inserted into the notched portion 17b1 of 35 the sleeve 17b to engage with the shouldered portion 17a1 of the pin 17a.

Referring to Figures 5A and 5B, one embodiment of a control circuit for a cinematographic camera according to the present 40 invention is shown, and this includes a micro-computer SMP which may be for example that available from SORD Co. Ltd., under the trade name SMP80/20 and having a CPU (for example, 8080), for performing programmes 45 which will be described in detail later. Various inputs and the control circuit section IOD for controlling the cine camera are shown, these being operatively connected to the microcomputer SMP through eight data bus lines 50 MBADD0-L to MBDATA7-L, eight address bus lines MBADD0-L to MBADD7-L for addressing which devices are to receive or produce the output or input data respectively, and two data input and output control lines MB I/O RS-L and MB I/O WS-L at which respective signals of 55 low level appear when data are to be introduced to and produced by the microcomputer SMP respectively. The outputs from a network of switches SW1 to SW21, controlled by a decoder CD40281, and some of the outputs from a 60 binary counter CD4520 are selectively intro-

duced into the data bus lines MBDATA0-L to MBDATA3-L through a data selector CD4019 and through respective NAND gates NANDRO to NANDR3, the gating control input terminals of which are connected by way of a common lead to the signal output line MB I/O RS-L through a NAND gate NANDRS. The remaining outputs from the binary counter CD4520 are introduced to the remaining data input bus lines MBDATA4-L to MBDATA7-L through respective NAND gates NANDR4 to NANDR7 the gating control input terminals of which are also connected to the output terminal of NANDRS. The data output bus lines MBDATA0-L to MBDATA7-L are connected through respective inverters IN1 to IN8 to the respective input terminals of six D-type flip-flops CD4035#10, CD4035#11, CD4013#12, CD4013#13, CD4013#14 and CD4013#15 the clock input terminals CL of which are connected to the respective output terminals of AND gates A#10 to A#14. One of the input terminals of the AND gates are connected to the respective output terminals 0 to 5 of the decoder CD40281, and their other input terminals are connected by way of a common lead to the output write signal line MB I/O WS-WS-L through an inverter IN17. The first three address bus lines MBADD0-L to MBADD2-L are connected through respective inverters IN9 to IN11 to input terminals A, B and C of the decoder CD40281. The fourth terminal MBADD3-L is connected through inverters IN12 and IN51 to one input terminal of an AND gate ANDSR1 and also through inverter IN12 to one input terminal of an AND gate ANDSR2, the output terminals of these AND gates being connected to the data selector CD4019. The other input terminals of ANDSR1 and ANDSR2 are connected to the output terminal of an AND gate AND MB2 to which is also connected, through an inverter, an input terminal D of the decoder CD40281. ANDMB2 has two input terminals one of which is connected through an inverter IN13 to MBADD4-L and the other of which is connected to an output terminal of an AND gate ANDBM1. It is to be noted here that the symbols CD4019, CD40281, CD4013, CD4035 and CD452 are the type numbers of the corresponding integrated circuit devices available from the Radio Corporation of America (RCA). 110

The outputs Q0 to Q3 of CD4035#10 are connected to respective light-emitting diodes LED0 to LED3, and the outputs Q0 and Q1 of CD4013#13 are connected to respective light-emitting diodes LEDT and LEDD. The outputs Q0 to Q3 of CD4035#11 are connected at Q0 to an electronic switch for the electromagnet 24 (Mg1) of Figures 1 to 3, and at Q1 and Q2 to a control circuit for the film motor 12 (EM). This control circuit includes seven transistors TF1 to TF7 arranged so that when signals of high level appear at Q1 and Q2, TF1 and TF7 are turned on and therefore TF2, 115 120

125

130

TF3 and TF5 are turned off while TF4 and TF6 are turned on to drive the motor EM for forward rotation; when signals of high and low levels appear at Q1 and Q2 respectively, TF1 is turned on while TF7 is turned off, thus all the other transistors are turned off to stop the motor EM; and when signals of low level appear at Q1 and Q2, TF1 and TF7 are turned off, then TF4 and TF6 are turned off, and then TF2, TF3 and TF5 are turned on to drive the motor EM for reverse rotation. The outputs Q0 and Q1 of CD4013#12 are connected to a control circuit PS-ILD-1 for the pulse motor 38 (PM), available from Japan Pulse Motor Co. Ltd. When high and low level signals appear at Q0 and Q1 respectively PS-ILD-1 drives the motor PM for rotation in a counter-clockwise direction; when low and high level signals appear at Q0 and Q1 respectively, the direction of rotation is reversed; and when both signals are of low level, the drive is stopped. A light-emitting diode LEDP1, a photo-transistor PT1 and a transistor TrP1 constitute the shutter phase detector means 22, while a light-emitting diode LEDP2, a photo-transistor PT2 and a transistor TrP2 constitute the initial shutter phase detector means 23. The outputs of these means 22 and 23 are connected respectively to clock and reset input terminals CLOCK and RESET of a binary counter CD4520. The first six outputs 0 to 5 of the binary counter CD4520 are selectively combined by a NOR gate NOR2, and two AND gates ANDD1 and ANDD2 to set and reset a flip-flop FF' by the outputs of ANDD1 and ANDD2 respectively. The output of FF' is connected to an electronic switch Tr for the electromagnet 19. Switches SW1 and SW2 are arranged to operate with the aforementioned manual release lever 6 in such a manner that upon depression to a first release position, SW1 is turned on, and, upon further depression to a second position, SW2 is turned on while SW1 remains in the ON state. SW3 is turned on when the button 7a is pushed down. SW4 is turned on when the button 11 is pushed down. A combination of the switched positions of SW5 to SW8 is dependent upon the selected mode on the dial 7. A combination of the switched positions of SW9 to SW11 depends upon the selected frame frequency on the dial 8. A combination of the switched positions of SW12 to SW15 is dependent upon the selected time on the dial 9. A combination of the switched positions of SW16 to SW19 is dependent upon the selected shutter opening angle on the dial 10. SW20 and SW21 are turned on when the buttons 9a and 10a are pushed down respectively. The first four NANDs R0 to R3 are selectively receptive of the outputs not only from SW1 to SW21 through the data selector CD4019 but also from AND gates AA1 to AA12 shown in Figure 5B. EXT is a light measuring circuit responsible to the level of brightness of a scene being photographed to produce an analogue output which is then converted to a digital output by an analogue-to-digital converter AD. The converter AD has four output terminals connected respectively to one of the inputs of AND gates AA1 to AA4, the other inputs of which being connected by way of a common lead to terminal 8 of the decoder CD40281. LEVEL is a circuit for producing a digital output representative of a predetermined constant and constructed from a number of switches as shown in Figure 13B. Circuit LEVEL has four output terminals connected respectively to one of the inputs of AND gates AA5 to AA8, the other inputs of which being connected by way of a common lead to terminal 9 of the decoder CD40281. Output terminal 10 of CD40281 is connected both to the set input S of a flip-flop FFL and to one input of each of the AND gates AA9 to AA12, the other inputs of which being connected respectively to the output terminals of an analogue-to-digital converter AD'. The input terminal of the converter AD' is connected to the common connection between a resistor and a capacitor C1, the output from the light measuring circuit EXT being supplied to the resistor. Connected across the capacitor C1 is a transistor Tra having its base connected to the output terminal \bar{Q} of the flip-flop FFL. The reset terminal R of FFL is connected to the output terminal of a comparator MC having input terminals connected to LEVEL and AA9 to AA12.

An example of the light measuring circuit EXT is shown in Figure 13A. This includes a photo-cell SPCC such as SPC connected across two input terminals of an amplifier AmSP1, and a diode DSD connected in the feedback network of AmSP1, the parts SPCC, DSD and AmSP1 constituting a logarithmic converter. SvR is a variable resistor for setting film speed information. AmSP2 and AmSP3 are operational amplifiers connected in series with each other and with the logarithmic converter and SvR, so that the brightness information and the film speed information are combined to produce a light value.

An example of the A-to-D converter of Figure 5B is shown in Figure 13C, and includes a number of comparators COMPA, inverters IN, AND gates AND and an encoder ECD. The arrangement and construction of these components of a converter are known in the art as a parallel comparison AD converter. An example of the comparator circuit of Figure 5B is shown in Figure 13D, and includes Exclusive-OR and NOR gates constituting a coincidence detecting circuit, of known construction.

Before consideration is given to the operation of the cinematographic camera with the control circuit of the invention, a programme usable in this embodiment of the invention will be explained in connection with Figures 12-1 to 12-32 for the various sub-routines. The

instructions listed in Figures 12-1 to 12-32	actuate the plunger 24a, to arrest the rotating
are written in a read only memory (ROM) within the CPU, and the addresses of the instructions are advanced in the same order as the	shutter. After the motor 12 and the main
5 statement numbers in Figures 12-1 to 12-32.	shutter blade 21 have been stopped, the electromagnet 24 is again de-energised to save an electrical energy consumption, which otherwise
In this Specification, hexadecimal (hex) numbers are indicated by square brackets; viz hexadecimal 06 is shown by [06]. In the drawings, however, such numbers are indicated by a	would wastefully be used. 70
10 'hash'; viz hexadecimal 06 is shown as #06.	** Reverse Sub-routine **
** Start sub-routine **	This sub-routine covers statements Nos. 512 to 515.
This sub-routine covers Statements Nos. 501 to 504 inclusive.	MVI A,[00] : Transfer a digital value representative of [00] to the accumulator. 75
15 MVI A, [06] : Transfer a digital value representative of [06] to the accumulator.	OUT CONT1 : Likewise as in the start sub-routine, a pulse is applied to the clock terminal of CD4035#11, and the content [00] of the accumulator is fed to the data lines. As all the data lines go high, all the input signals to CD4035#11 are low, and all the levels appearing at terminals Q0 to Q2 are low with the result that the motor 12 is driven for rotation 80
OUT CONT 1 : Write on the address lines MBADDs \emptyset -L to 7-L a digital value representative of [11].	in a reverse direction. 85
Hence, MBADD lines \emptyset -L and 4-L only	** Pulse Motor Open (PMO) Sub-routine **
20 become low with a high level output at terminal 1 of the decoder CD40281, and line MB I/O WS-L becomes low. This causes an AND gate A#11 to go high so that a pulse is applied to the clock terminal of the D-type flip-flop	This sub-routine covers statements Nos. 516 to 519.
25 CD4035#11. At the same time, the content [06] of the accumulator is fed to the data lines MBDATAs \emptyset -L to 7-L with the result that only lines 1-L and 2-L become low to apply high signals to the input terminals P1 and P2 of	MVI A,[10] : Transfer the digital value representative of [10] to the accumulator. 90
30 the D-type flip-flop CD4035#11. Therefore, an output appearing at the terminals Q1 and Q2 of CD4035#11 actuates the film motor 12 (EM) for forward drive rotation.	OUT CONT2 : Produce the digital output representative of [12] to the address lines MBADDs \emptyset -L to 7-L, so only 1-L and 4-L become low to apply a signal of high level to the input terminal B of the decoder CD40281. Thus only output terminal 2 of CD40281 produces a high level output signal and this is applied to one of the input terminals of the AND gate A#12. On the other hand, MB I/O WS-L goes low so that the inverter IN17 produces a high level signal which is then applied to the other input terminal of A#12. The output of A 12 therefore goes high, applying a clock pulse to the D-type flip-flop CD4013#12. Further, the content of the accumulator, that is, [10] is fed to the data lines MBDATAs \emptyset -L to 7-L with only the 4-L line going low, to apply a high level signal from the inverter IN5 to the input terminal P0 of CD4013#12, which in turn produces a high level signal at the terminal Q0 thereof. This signal is fed to the input terminal Q0 of the pulse motor control circuit PS-ILD-1, thereby the pulse motor 38 is driven by one step in a counter-clockwise direction. 95
35 ** Stop Sub-routine **	100
This sub-routine covers statements Nos. 505 to 511.	As the auxiliary shutter 39 is left in an operative position where the aperture is fully closed, said one step of the pulse motor 38 causes the auxiliary shutter 39 to be moved to an operative position where the aperture 20 is uncovered laterally by one half of the aperture area thereof, as shown in Figure 9B. Upon a further step of the pulse motor 38 in the same direction, the aperture is fully opened, as shown in Figure 9C. 105
35 MVI A,[03] : Transfer a digital value representative of [03] to the accumulator.	110
OUT CONT1 : Likewise as in the start sub-	** Pulse Motor Close (PMC) Sub-routine **
40 routine, a pulse is applied to the clock terminal of the D-type flip-flop CD4035#11, and also the content [03] of the accumulator is fed to the data lines with only \emptyset -L and 1-L going low to apply high level signals to the input terminals	This sub-routine covers statements Nos. 520 to 523.
45 P0, P1 of CD4035#11, with the result that an output appearing at terminals Q0 and Q1 energises the electromagnet 24 and also stops the motor 12.	MVI A,[20] : Transfer the digital value representative of [20] to the accumulator. 125
CALL MS5 : Perform a sub-routine MS5, to	OUT CONT2 : Likewise as in the PMO sub-
50 be described later, so that the aforesaid state is maintained for 5 milliseconds.	130
MVI A, [02] : Transfer a digital value representative of [02] to the accumulator.	
OUT CONT1 : Likewise as in the start sub-	
55 routine, a pulse is applied to the clock terminal of CD4035#11, and the content [02] of the accumulator is fed to the data lines with only 1-L going low to apply a high level signal to the input terminal P1 of CD4035#11 with the	
60 result that an output appearing at only terminal Q1 maintains the motor 12 stopped and de-energises the electro-magnet 24.	
Thus, the motor 12 gets stopped and maintained in this state, while the electromagnet 24	
65 is supplied with a current for 5 milliseconds to	

routine, CD4013#12 is given one clock pulse, while the content [20] of the accumulator is fed to the data lines so only the 5-L line goes low. A high level signal is transmitted by IN6	that a jump to the address denoted by PMOST1 is effected, to perform again the aforesaid programme. The B register becomes 0 and thus the zero flip-flop changes state when the aforesaid programme has been repeated 3 times, and thus the pulse motor 38 is caused to perform three steps in the same counter-clockwise direction; the auxiliary shutter is set in this way to the initial position where the aperture is fully open.	70
5 to the P1 output terminal of CD4013#12 which in turn produces a high level signal at the output terminal Q1. As a result, low and high level signals are applied to the input terminals Q0 and Q1 of the pulse motor control	** Pulse Motor Close Set (PMCST)	75
10 circuit PS-ILD-1 respectively, thereby causing the pulse motor 38 to rotate one step in a clockwise direction.	Sub-routine ** This sub-routine covers statements Nos. 538 to 547.	
As the auxiliary shutter 39 is initially set in a position where the aperture 20 is fully open	MVI B,3 : Transfer the digital value representative of decimal 3 to the B register.	80
15 as shown in Figure 9C, said one step of the pulse motor 38 causes the auxiliary shutter 39 to cover one half the area of the aperture 20. A further one step of the pulse motor 38 results in the entire closure of the aperture 20.	MVI A,[20] : Transfer a digital value representative of [20] to the accumulator.	
20 ** Pulse Motor Stop (PMSTOP) Sub-routine ** This sub-routine covers statements Nos. 524 to 527.	OUT CONT2 : Perform the programme of the PMC sub-routine together with the aforementioned MVI A,[20] to result in one clockwise step of the pulse motor 38.	85
25 MVI A,[00] : Transfer the digital value representative of [00] to the accumulator.	CALL MS05 : Perform the MS05 sub-routine to maintain the aforesaid state for 0.5 millisecond.	90
25 OUT CONT2 : Likewise as in the PMO sub-routine, CD4013#12 is addressed, while the content [00] of the accumulator is fed to the data lines. As all the data lines become high, all the outputs of IN1 to IN8 go low, so that	CALL PMSTOP : Perform the PMSTOP sub-routine to stop the pulse motor 38.	
30 CD4013#12 produces low level output signals at Q0 and Q1, which are applied to the input terminals Q0 and Q1 of the pulse motor control circuit PS-ILD-1 to terminate the driving of the pulse motor 38.	CALL MS5 : Perform the MS5 sub-routine to maintain the aforesaid state for 5 milliseconds.	
35 ** Pulse Motor Open Set (PMOST) Sub-routine ** This sub-routine covers statements Nos. 529 to 537.	DCR B : Subtract 1 from the content of the B register, as in the PMOST sub-routine.	95
40 MVI B,3 : Transfer the digital value representative of decimal 3 to B register.	JNZ PMCST1 : jump to the address denoted by the branch name PMCST1 except when the content of the B register is 0, thereby to perform again aforesaid programme.	100
40 MVI A,[10] : Transfer the digital value representative of [10] to the accumulator.	In this way, the pulse motor 38 is driven three steps in the clockwise direction to set the auxiliary shutter in the aperture-closed position.	
45 OUT CONT2 : Likewise as in the PMO sub-routine, CD4013#12 is addressed, while the content [10] of the accumulator is fed to the data line so that the pulse motor 38 is rotated one step in the counter-clockwise direction.	** Display Sub-routine ** This sub-routine covers statements Nos. 548 to 551.	105
50 CALL MS05 : Perform a MS05 sub-routine, which will be described later, to maintain the aforesaid state for 0.5 millisecond.	MOV A,E : Transfer the content of the E register to the accumulator.	
50 CALL PMSTOP : Perform the aforementioned PMSTOP sub-routine to stop the pulse motor 38.	OUT DISP1 : Produce to the address lines MBADDs 0-L to 7-L the digital output representative of [10]. As only the 4-L line goes low, all the inputs A to D of the decoder CD40281 become low so that only output terminal 0 of CD40281 produces a high level signal, which is applied to one of the input terminals of the AND gate A#10, to the other input terminal of which is applied a high level signal from IN17 because a low level signal is applied to IN17 from MB I/O WS-L. The output of A#10 is applied to the clock terminal of the D-type flip-flop CD4035#10. On the other hand, the content of the accumulator is transmitted through the data lines to the input terminals P0 to P3 of CD4035#10, with the resulting output signals from the terminals Q0 to Q3 of CD4035#10 depending upon the content of the accumulator and being displayed by the light-emitting diodes LEDs 0 to 3 respectively.	110
55 CALL MS5 : Perform a MS5 sub-routine, to be described later, to maintain the aforesaid state for 5 milliseconds.	** Time Set (TSET) Sub-routine **	120
55 DCR B : Subtract 1 from the content of the B register. Thereafter, the content of B register becomes 2. By such subtraction, all the condition flip-flops, except the carry, are affected.		125
60 JNZ PMOST1 : Jump to an address denoted by the branch name PMOST1 when the aforesaid DCR B results in that the zero flip-flop is 0. As the aforesaid DCR B leads to the B register having a content 2, the zero flip-flop is 0 so		130

10	This sub-routine covers statements Nos. 562 to 572.	enter the NANDs NANDR0 to NANDR7. On the other hand, at only output terminal 5 of the decoder CD40281 there appears a high level output, so that a digital value, depending upon the switched positions of the data setting switches SW20 and SW21, are selected for entry through the data input terminals A4 and A3 to the accumulator. As mentioned before, when the push button 9a is depressed, SW20 in closed, causing NANDR0 to produce a low level signal and causing the other NANDs to produce high level signals. In this way, a digital value representative of [01] enters the accumulator.	70
15	OUT DISP2 : Produce the digital output representative of [13] to the address lines MBADDs 0-L to 7-L. As only 0-L, 1-L and 4-L become low, CD40281 receives high level signals at the input terminals A and B, and then	CPI [01] Compare the content of the accumulator with [01]. When the content of the accumulator is coincident with [01], the zero flip-flop is set. Now assuming that the push button 9a was depressed, the content of the accumulator was [01] and thus CPI [01] leads to the setting of the zero flip-flop.	75
20	produces a high level output signal at 3 which is applied to the AND gate A#13 to one input terminal thereof. To the other input terminal of A#13 is applied a high level signal from IN17, as a low level signal is applied thereto from MB I/O WS-L. The output of A#13 is applied to the clock terminal of the D-type flip-flop CD4013#13. On the other hand, the content [40] of the accumulator is fed to the data lines, so only 6-L becomes low. This signal, after being inverted, is applied to the input terminal PO of CD4013#13, which in turn produces an output at Q0, thereby illuminating the light-emitting diode LEDT.	JNZ TSET : Jump to the address denoted by the branch name TSET when the zero flip-flop is not set. When the push button 9a was depressed, the zero flip-flop is set. Thus, with sub-routine comes to end.	80
25	CALL MS500 : Perform sub-routine MS500, which will be described later, to maintain LEDT illuminated for 500 milliseconds.	In conclusion, the light-emitting diode LEDT continues to flash until the push button 9a is depressed to set a desired time value selected on dial 9.	85
30	MVI A, [00] : Transfer the digital value representative of [00] to the accumulator.	** Degree Set (DEGSET) Sub-routine **	90
35	OUT DISP2 : Likewise as in the aforementioned OUT DISP2, a high level signal is applied to the clock terminal of CD4013#13, while the content of the accumulator is fed to the data lines. As the content of the accumulator is [00], all the data lines go high with the application of low level signals to both of the input terminals P0 and P1 of CD4013#13, thereby turning off the light-emitting diode LEDT;	This sub-routine covers statements Nos. 573 to 582.	95
40	CALL MS500 : Perform sub-routine MS500, to be described later, so that LEDT is turned off for 500 milliseconds.	MVI A, [80] : Transfer the digital value representative of [80] to the accumulator.	100
45	IN DATASET : Produce to the address lines the digital value representative of [15]. As only 4-L, 2-L and 0-L lines go low, the decoder CD40281 receives through IN9 and IN11 high level signals at its input terminals A and C, and then produces a high level signal at the output terminal 5. On the other hand, MB I/O RS-L goes low, causing the NANDRS gate to produce	OUT DISP2 : Likewise as in the aforementioned TSET sub-routine, a high level signal is applied to the clock terminal of CD4013#13, while the content [80] of the accumulator is fed to the data lines. As only 7-L data line goes low, CD4013#13 receives a high level input signal at the input terminal P1 and then illuminates the light-emitting diode LEDD.	105
50	a high level signal which is applied to one input terminal of each NAND gates NANDR0 to NANDR7. At this time, as the address lines 0-L, 2-L and 4-L provide low level signals, and the output of the ANDMB1 gate is applied to	CALL MS500 : Perform sub-routine MS500, to be described later, to maintain LEDD illuminated for 500 milliseconds.	110
55	one input terminal of the AND gate ANDMB2, the ANDMB2 produces a high level output which is applied to one terminal of each of ANDSR1 and ANDSR2. As the other input terminal of ANDSR1 is connected through the	MVI A, [00] : Transfer the digital value representative of [00] to the accumulator.	115
60	inverter INS1 to the address line 3-L, only ANDSR1 produces a high output. For this reason, a high level signal is applied to input terminal Ka of the data selector CD4019, so that only signals appearing at the input terminals A1 to A4 of the selector are permitted to	OUT DISP2 : Likewise as in the aforementioned OUT DISP2, the light-emitting diode LEDD is turned off.	120
65	IN DATASET : Likewise as in the aforementioned TSET sub-routine, a digital value dependent upon the switched positions of SW20 and SW21 are transmitted through the input terminals A4 and A3 of the selector CD4019 and the NAND gates to the accumulator. When the push button 10a is depressed to close SW21, only data line 1-L goes low and thus the digital value representative of [02] enters the accumulator.	CALL MS500 : Perform sub-routine MS500 to maintain the LEDD turned off for 500 milliseconds.	125
70	CPI [02] : Compare the content of the accumulator [02]. Likewise as in the aforemen-	CPI [02] : Compare the content of the accumulator [02]. Likewise as in the aforemen-	130

tioned CPI instruction, the conditions of the zero flip-flop is determined. If the push button 10a was depressed, the zero flip-flop is set.	[03] is repeated until [00] results is three so that the content of the accumulator — that is, [01] — is shifted left three bits: the resulting content is [08] which, in the following step MOV H,A is transferred to a H register. In this way, when a time interval of 1 second is set, this time information is stored in the form of a digital value representative of [08] in the H register. In other words, in this embodiment of the present invention, [01] provides 125 milliseconds, so that [08] provides $125 \times 8 = 1000$ milliseconds. In general, if a time data in question is X, the content of the H register is in the form of 125XX.	70
5 JNZ DEGSET : Terminate operation of this sub-routine when the zero flip-flop is set; otherwise, jump to the address corresponding to branch DEGSET. In this way, the light-emitting diode LEDD continues to flash until the push button 10a is depressed.	** Time One Set (T1SET) Sub-routine **	75
This sub-routine covers statements Nos. 603 to 613.		
CALL TSET : Perform the aforementioned 15 TSET sub-routine to flash LEDT until the push button 9a is depressed. Upon depression of the push button 9a, the following instructions are performed.		80
IN TIME : Provide the digital value representative of [13] to the address lines, so only 0-L, 1-L and 4-L go low. As IN9 and IN10 produce high level signals which are applied to the input terminals A and B of the decoder CD40281, only at output terminal 3 of 20 CD40281 is a high level signal for selection of SWs 12 to 15. As IN13 produces a high level signal which is transmitted through ANDMB2 and ANDSR1 to the input terminal Ka of the selector CD4019, and MB I/O RS-L produces a low level signal which, after being inverted by NANDRS, is applied to NANDR0 and NANDR3 and a digital value dependent upon the switched positions of SWs 12 to 15 and representative of a desired value of time selected by 25 the dial 9, are transferred through the selector CD4019 and NANDR0 to NANDR3 to the accumulator.	** Time One and Two Set (T12SET) Sub-routine **	85
DCR A : Subtract the digital value representative of decimal 1 from the content of the 30 accumulator.	This sub-routine covers statements Nos. 583 to 602. CALL TSET; IN TIME; DCR A; MOV B,A; MVI A,[01]; RLC; DCR B; JNZ T12SET; and MOV H,A are performed so that the first set time information is stored in the H register, as in the aforementioned sub-routine T1SET. In the next place, CALL TSET; IN TIME; DCR A; MOV B,A; MVI A,[01]; RLC; DCR B; JNZ T12SET2 are performed to process the subsequently set time information, as in the aforementioned T1SET sub-routine. By MOV L,A, the content of the accumulator resulting from the processing of the time information is transferred to a L register. In conclusion, when two values of time are required for a single operating mode, a first required value of time is stored in the H register, while the second required value of time is stored in the L register.	90
40 MOV B,A : Transfer the content of the accumulator to B register.	** Degree One and Two Set (D12SET) Sub-routine **	95
MVI A,[01] : Transfer the digital value representative of [01] to the accumulator.	This sub-routine covers statements Nos. 614 to 620.	100
45 RLC : Shift the content of the accumulator left one bit. As the accumulator contained the digital value representative of [01], the resulting new content of the accumulator is the digital value representative of [02].	CALL D1SET : Perform sub-routine D1SET (Degree One Set).	105
50 DCR B : Subtract the digital value representative of a decimal 1 from the content of the accumulator.	** Degree One Set (D1SET) Sub-routine **	
JNZ T1SET1 : Proceed to the following 55 instructions when the DCR B results in setting the zero flip-flop, otherwise jump to the address denoted by the branch T1SET1.	This sub-rotuine covers statements Nos. 621 to 628.	
Hence, the subtraction of 1 from the time data selected by the dial 9 is repeated until the time data become zero, and therefore [01] 60 is shifted to left by the number of repetitions. For example, let us now assume that the dial 9 was operated to select 1 second, [04] enters the accumulator as can be seen from Figure 5C. By DCR A, [03] can be obtained. The number 65 of times by which the subtraction of [01] from	CALL DEGSET : Perform the aforesaid DEGSET sub-routine with the result that the light-emitting diode LEDD is flashed until the push button 10a is depressed.	110
	IN DEG : Provide the digital value representative of [14] to the address lines, so only 2-L and 4-L go low. The inverters IN11 produces a high level signal which is applied to the input terminal C of the decoder CD40281, giving a high level output at terminal 4 only of CD40281, for selection of the angular degree setting switches SWs 16 to 19. The inverter IN13 produces a high level signal which is applied to one input of ANDMB2, the other input receiving a high level signal from ANDMB1. ANDMB2 then produces a high level signal which is applied to ANDSR1 and ANDSR2. As the 3-L line is high, only ANDSR1 produces an output which is applied to the input terminal Ka of the selector CD4019, so that the input terminals A1 to A4 are gated on, while MB I/O RS-L produces a	115
		120
		125
		130

low level signal which is converted by NANDRS to a high level signal, gating on NANDR0 to NANDR7. Thus, a digital value output representative of a desired value of shutter opening angle, selected by the dial 10 and dependent upon the switched positions of SWs 16 to 19, is transmitted through the data lines to the accumulator.	setting of the zero flip-flop to "1"; otherwise perform the following instructions.
5 CPI [00] : Compare the content of the accumulator with the digital value representative of [00]. If the content of the accumulator is coincident with [00], the zero flip-flop is set; i.e. to binary state "1". Such a situation occurs only when the dial 10 is set in a position for the "Auto" mode, as can be seen from Figure 5C.	CPI [07] : Compare the content of the accumulator with [07]. Upon coincidence, set the zero flip-flop to "1".
10 JN AA : Jump to the address denoted by branch AA when the zero flip-flop is set, otherwise perform the following instructions. Thus, 20 except for the "Auto" mode, the following instructions are performed.	JZ A17 : Jump to the address denoted by branch A17 when the CPI [07] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.
15 CALL DEGA : Perform sub-routine DEGA. ** Degree A (DEGA) Sub-routine ** This sub-routine covers statements Nos. 25 629 to 653.	CPI [08] : Compare the accumulator with [08]. Upon coincidence, set the zero flip-flop to "1".
CPI [01] : Compare the content of the accumulator with [01]. If the content of the accumulator is coincident with [01], the zero flip-flop is set to "1".	JZ A19 : Jump to the address denoted by branch A19 when the CPI [08] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.
30 JZ A5 : Jump to the address denoted by branch A5 when the zero flip-flop is set to "1"; otherwise perform the following instructions.	CPI [09] : Compare the content of the accumulator with [09]. Upon coincidence, set the zero flip-flop to "1".
CPI [02] : Compare the content of the accumulator with [02]. Upon coincidence, set 35 the zero flip-flop to "1".	JZ A21 : Jump to the address denoted by branch A21 when the CPI [09] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.
JZ A7 : Jump to the address denoted by branch A7 when the zero flip-flop is set to "1"; otherwise perform the following instructions.	CPI [0A] : Compare the content of the accumulator with [0A]. Upon coincidence, set 90 the zero flip-flop to "1".
40 CPI [03] : Compare the content of the accumulator with [03]. Upon coincidence, set the zero flip-flop to "1".	JZ A23 : Jump to the address denoted by branch A23 when the CPI [0A] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.
JZ A9 : Jump to the address denoted by branch A9 when the CPI [03] results in the 45 setting of the zero flip-flop to "1"; otherwise perform the following instructions.	CPI [0B] : Compare the content of the accumulator with [0B]. Upon coincidence, set the zero flip-flop to "1".
CPI [04] : Compare the content of the accumulator with [04]. Upon coincidence, set the zero flip-flop to "1".	JZ A25 : Jump to the address denoted by branch A25 when the CPI [0B] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.
50 JZ A11 : Jump to the address denoted by branch A11 when the CPI [04] results in the setting of the zero flip-flop to "1"; otherwise perform the following instructions.	MVI A,27 : Transfer the digital value representative of decimal 27 to the accumulator.
CPI [05] : Compare the content of the 55 accumulator with [05]. Upon coincidence, set the zero flip-flop to "1".	The DEGA sub-routine achieves the entry of 105 the shutter opening angle data in the form of hexadecimal numbers selectively into the accumulator and the performance of the programme of the selected one of the addresses denoted by the branch A5, A7, A9, A11, A13, 110 A15, A17, A19, A21, A23 and A25, which depend upon the selected angle data. The programme of the various branches are:
JZ A13 : Jump to the address denoted by branch A13 when the CPI [05] results in the setting of the zero flip-flop to "1"; otherwise 60 perform the following instructions.	A5: MVI A,5; JMP DEGA1
CPI [06] : Compare the content of the accumulator with [06]; Upon coincidence, set the zero flip-flop to "1".	A7: MVI A,7; JMP DEGA1
JZ A15 : Jump to the address denoted by 65 branch A15 when the CPI [06] results in the	A9: MVI A,9; JMP DEGA1
	A11: MVI A,11; JMP DEGA1
	A13: MVI A,13; JMP DEGA1
	A15: MVI A,15; JMP DEGA1
	A17: MVI A,17; JMP DEGA1
	A19: MVI A,19; JMP DEGA1
	A21: MVI A,21; JMP DEGA1
	A23: MVI A,23; JMP DEGA1
	A25: MVI A,25; JMP DEGA1
	The MVI instruction transfers to the accumulator a digital value representative of the same decimal number as the numeral given to the branch, and is followed by the JMP instruction to jump to the address denoted by the branch DEGA1. Hence, stored in the accumu-
	115
	120
	125
	130

lator is the digital value representative of a decimal number corresponding to the selected shutter opening angle, and then the programme of the address denoted by the branch DEGA1 is	obtain one second, based on the formula $125 \times 8 = 1000$ milliseconds.
5 performed. As the DEGA1 instruction is identical to a RET (Return) instruction of the DEGA sub-routine, the CALL DEGA instruction is followed by the STA DEG1M instruction.	** Time Two (T2) Sub-routine ** This sub-routine covers statements Nos. 557 to 561.
10 (Continued)	70 MOV B,L : Transfer the content of the L register to the B register.
STA DEG1M : Store the content of the accumulator in a first memory area addressed by [41F1].	The subsequent procedure is similar to that of the T1 sub-routine. The time is produced on the basis of the time data memorized in the L register.
15 RET : Return to the CALL DEGSET instruction preceded by the CALL D1SET of the D12SET sub-routine.	75 ** Shutter Sub-routine ** This sub-routine covers statements Nos. 471 to 500.
20 ** D12SET Sub-routine ** (Continued)	IN PHASE : Provide a digital output representative of [18] to the address lines, so only 4-L and 3-L go low. Inverter IN12 produces a signal of binary level "1" which is applied to ANDSR2, and at the input terminal Kb of the selector CD4019 a signal of level "1" appears so 85 that digital information appearing at the B input terminals of CD4019 is permitted to pass therethrough; that is, the output of the binary counter CD4520 is selected to enter the accumulator of the CPU.
25 The CALL DEGSET instruction is followed by IN DEG and CALL DEGA instructions in sequence with the result that the light-emitting diode LEDD is flashed until the push button 10 α is depressed as in the aforementioned D1SET sub-routine. Upon depression of the push button 10 α , the selected angle data enters the accumulator.	90 The binary counter CD4520 is operated to count the number of pulses supplied from the light-emitting diode LEDP1, a pulse being generated each time a slit of the main shutter blade 21 comes into alignment therewith. Therefore, the number of pulses counted by CD4520 represents the phase angle of the shutter 21 and is written in the accumulator by the IN PHASE instruction. The main shutter blade 21 is provided with thirty six slots angularly spaced by 10°. As the counting starts from the time when a pulse is applied from the resetting circuit 23 to the RESET terminal of the binary counter CD4520, the phase angle from the initial position can be determined by multiplying the number of pulses counted by a factor of 10.
30 STA DEG2M : Store the content of the accumulator in a second memory area addressed by [41F2].	95 Hence, the first selected opening angle data is stored in the first memory area addressed by [41F1], and the subsequently selected opening angle data is stored in the second memory area addressed by [41F2]. Thus, data of two opening angles are recorded.
35 ** Time One (T1) Sub-routine **	100 This sub-routine covers statements Nos. 552 to 556.
36 MOV B,H : Transfer the content of the H register to the B register.	105 40 CALL MS125 : Perform sub-routine MS125, which will be described later, to provide a time interval of 125 milliseconds.
45 DCR B : Subtract the digital value representative of decimal 1 from the content of the B register. As the time data X is set in the form of 125X 9y the T1SET sub-routine, this instruction performs a calculation defined by X-1. At the time when the content of the B register becomes zero, therefore, the duration 50 of a time interval corresponding to the selected time data is terminated.	110 CPI [00] : Subtract [00] from the content of the accumulator. If the result is zero, the zero flip-flop is set to "1".
55 JNZ T1 : Jump to the address denoted by branch T1 when the zero flip-flop has not yet been set to "1". When the DCR B results in the occurrence of zero in the content of B register, the zero flip-flop is set to "1", so as to proceed to the following instruction.	115 JNZ SHUTTER : Jump to the address denoted by branch SHUTTER except when the CPI [00] results in the setting of the zero flip-flop to "1". If such setting occurs, the following address instruction is performed.
60 In consequence, by the number of times necessary to reduce the content of the B register to zero, the MS125 sub-routine is repeated to provide a time interval equal to 125 times the content of the B register, in milliseconds. For example, when [08] — representative of one second — was stored in the B register, the 65 DCR B instructed is repeated eight times to	120 Until the zero flip-flop is set to "1", therefore, the procedure comprising the steps IN PHASE; CPI [00] and JNZ SHUTTER repeats. Upon occurrence of zero in the CPI [00] step — that is, upon attainment of the initial phase angle of the shutter shown in Figure 4 — the photo-diode PT2 receives light from the light-emitting diode LEDP2 of Figure 5A to produce a pulse which is applied to the RESET terminal of CD4520. Only when the resetting of CD4520 is established, the following MVI B,2 instruction gets performed. Before the shutter arrives at the initial position, therefore, the performance of the subsequent programme is inhibited from starting.
	125 130

5	MVI B,2 : Transfer the digital value representative of decimal 2 to the B register when the shutter has reached the initial position as shown in Figure 4.	JNZ STR1 : Jump to the address denoted by branch STR1 when the zero flip-flop has not yet been set to "1"; otherwise perform the following address instruction.	70
10	5 IN PHASE : Detect the actual phase angle of the shutter as in the aforesaid IN PHASE instruction.	As the zero flip-flop is not set to "1", the programme of statements Nos. 476 to 484 for the branch STR1 is again performed so that the auxiliary shutter advances two steps. When the main shutter has a phase of 40° , the aperture is fully closed, and then the following programme starts to be performed. It is to be noted that the main shutter starts to uncover the aperture at a phase of 60° and then reaches the aperture fully open position at a phase of 100° . In the above mentioned procedure, therefore, the auxiliary shutter reaches the aperture fully closed position before the main shutter starts to uncover the aperture.	75
15	10 AN1 [01] : AND the content of the accumulator with [01]. If the content of the accumulator is an odd number, the zero flip-flop is prevented from being set to "1".	JZ STR1 : Jump to the address denoted by branch SRT1 when the aforesaid AN1 [01] step results in the setting of the zero flip-flop to "1"; otherwise perform the following address instruction.	80
20	15 JZ STR1 : Jump to the address denoted by branch SRT1 when the aforesaid AN1 [01] step results in the setting of the zero flip-flop to "1"; otherwise perform the following address instruction.	For this reason, only when the content of the accumulator is an odd number, the following address instruction gets performed.	85
25	20 When the content is an even number, the steps of IN PHASE, AN1 [01] and JN STR1 are repeated. In other words, after the phase of the shutter is set to "0", the programme of the address corresponding to the statement No. 474 and those that follow is performed. Until the shutter rotates 10° from the initial position to effect application of one pulse to the binary counter CD4520, the performance of the following programme is inhibited from starting.	25 When the content is an even number, the steps of IN PHASE, AN1 [01] and JN STR1 are repeated. In other words, after the phase of the shutter is set to "0", the programme of the address corresponding to the statement No. 474 and those that follow is performed. Until the shutter rotates 10° from the initial position to effect application of one pulse to the binary counter CD4520, the performance of the following programme is inhibited from starting.	90
30	30 After the shutter has rotated 10° , the following programme is performed.	30 After the shutter has rotated 10° , the following programme is performed.	95
35	35 CALL PMC : Call the aforementioned PMC sub-routine and perform this sub-routine with the result that the auxiliary shutter is turned in such a direction as to close the aperture as the pulse motor is moved one step.	35 CALL PMC : Call the aforementioned PMC sub-routine and perform this sub-routine with the result that the auxiliary shutter is turned in such a direction as to close the aperture as the pulse motor is moved one step.	100
40	40 IN PHASE : Introduce the actual phase of the shutter into the accumulator as in the aforementioned IN PHASE.	40 IN PHASE : Introduce the actual phase of the shutter into the accumulator as in the aforementioned IN PHASE.	105
45	45 AN1 [01] : AND the content of the accumulator with [01] as in the aforesaid AN1 [01]. When the content of the accumulator is an even number, the zero flip-flop is set to "1". This occurs after the phase of the shutter has advanced from 10° to 20° .	45 AN1 [01] : AND the content of the accumulator with [01] as in the aforesaid AN1 [01]. When the content of the accumulator is an even number, the zero flip-flop is set to "1". This occurs after the phase of the shutter has advanced from 10° to 20° .	110
50	50 JNZ STR2 : Jump to the address denoted by branch STR2 when the zero flip-flop has not yet been set to "1"; otherwise perform the following address instruction.	50 JNZ STR2 : Jump to the address denoted by branch STR2 when the zero flip-flop has not yet been set to "1"; otherwise perform the following address instruction.	115
55	55 50 Until the shutter advances 20° in phase, therefore, IN PHASE; AN1 [01]; and JNZ STR2 are repeatedly performed. Upon advancement to 20° , CALL PMSTOP is performed.	55 50 Until the shutter advances 20° in phase, therefore, IN PHASE; AN1 [01]; and JNZ STR2 are repeatedly performed. Upon advancement to 20° , CALL PMSTOP is performed.	120
60	55 CALL PMSTOP : Perform the aforementioned PMSTOP sub-routine with the result that the energisation of the pulse motor is stopped.	55 CALL PMSTOP : Perform the aforementioned PMSTOP sub-routine with the result that the energisation of the pulse motor is stopped.	125
65	60 DCR B : Subtract 1 from the content of the B register.	60 DCR B : Subtract 1 from the content of the B register.	130
65	65 As mentioned before, at this time, the content of the B register is 2 so that the DCR B results in 1 being the new content of the B register. If the DCR B results in the occurrence of 0, the zero flip-flop is set to "1". Because the new content of the B register is 1, the zero flip-flop is not yet sent to "1".	65 As mentioned before, at this time, the content of the B register is 2 so that the DCR B results in 1 being the new content of the B register. If the DCR B results in the occurrence of 0, the zero flip-flop is set to "1". Because the new content of the B register is 1, the zero flip-flop is not yet sent to "1".	

IN PHASE.

ANI [01] : As in the aforesaid ANI [01], when the phase of the shutter is advanced by 10° more, in other words by 20° from the 5 phase stored in the E register, the zero flip-flop is not set to "1".

JZ STR5 : Jump to the address denoted by branch STR5 when the zero flip-flop is set to "1", otherwise perform the following address 10 instruction.

Until the shutter is advanced by 20° from the phase equal to that stored in the E register, therefore, IN PHASE, ANI [01] and JZ STR5 are repeatedly performed. Upon advancement 15 of 20° from the phase of the E register, the following CALL PMSTOP instruction is performed.

CALL PMSTOP : Perform the aforementioned PMSTOP sub-routine with the result that 20 the power supply to the pulse motor is stopped.

DCR B : Subtract 1 from the content of B register. When the subtraction results in 0, the zero flip-flop is set to "1".

JNZ STR4 : Jump to the address denoted 25 by branch STR4 when the zero flip-flop is not set to "1", otherwise perform the following address instruction.

As the initial content of the B register is 2, the DCR B results in the production of 1 based 30 on the calculation: $2 - 1 = 1$, so that the instructions beginning with IN PHASE of statement No. 490 of branch STR4 and terminating at JNZ STR4 of statement No. 499 are again performed, resulting in the setting of the zero 35 flip-flop to "1". Thereafter, the following RET instruction is performed.

Hence, the pulse motor is driven two steps. When the main shutter has advanced by 40° from the phase of the E register, the auxiliary 40 shutter is set to open fully the aperture.

** 0.5 Milliseconds (MS05) Sub-routine **

This sub-routine covers statements Nos. 678 to 681.

MVI C, [40] : Transfer [40] to the C 45 register.

DCR C : Subtract 1 from the [40] in the C register.

JNZ MS05A : When the DCR C results in the setting of the zero flip-flop to "1", the 50 following address instruction is performed, otherwise the instruction of the address denoted by branch MS05A is performed.

As the calculation of $[40] - 1 = 63$ (decimal), DCR C and JNZ MS05A are therefore performed 64 times before the following address or RET instruction is performed to terminate the programme. As a result, an interval of time obtained by the computation is 0.5 millisecond.

60 ** 5 Millisecond (MS5) Sub-routine **

This sub-routine covers statements Nos. 682 to 688.

MVI C, [0A] : Transfer [0A] to the C register.

65 MVI D, [40] : Transfer [40] to the D

register.

DCR D : Subtract 1 from [40] in the D register.

JNZ MSSB : If the DCR D does not result in 70 0, the instruction of the address denoted by branch MSSB is performed. After DCR D and JNZ MSSB are performed 64 times, the following instruction is performed.

DCR C : Subtract 1 from the content of the C register. The result is 9.

JNZ MS5A : If the result of the DCR C is not zero, jump to the address of branch MS5A to perform the programme beginning with MVI D, [40]. After the DCR C and JNZ MS5B are repeated 10 times, the following RET instruc- 80 tion is performed to obtain 5 milliseconds.

** 500 Milliseconds (MS500) Sub-routine **

This sub-routine covers statements Nos. 696 to 704.

MVI C, [FF] : Transfer [FF] to the C 85 register.

MVI D, [7F] : Transfer [7F] to the D register.

DCR D : Subtract 1 from the content of the D register.

JNZ MS500B : If the above DCR D does not result in zero, the instruction of the address denoted by branch MS500B is performed. Hence, the DCR D and JNZ MS500B are repeated [7F] times, before the following 95 instruction is performed.

DCR C : Subtract 1 from the content of the C register.

JNZ MS500A : If the above DCR C does not result in zero, the instructions of the addresses 100 beginning with the branch MS500A are performed. Hence, the DCR instruction is performed [FF] x [7F] times to obtain 500 milliseconds.

** 125 Millisecond (MS125) Sub-routine **

This sub-routine covers statements Nos 689 to 695.

MVI C, [80] : Transfer [80] to the C register.

MVI D, [7F] : Transfer [80] to the D 110 register.

DCR D : Subtract 1 from [7F] in the D register.

JNZ MS125B : If the results of the DCR D is not zero, the instruction of the address of the statement number for branch MS125B is performed. Hence, the instructions of the DCR D to JNZ MS125B are performed [7F] times before the following instruction is performed.

DCR C : Subtract 1 from [80] in the C 120 register.

JNZ MS125A : If the result of the above DCR C is not zero, the instructions beginning with branch MS125A are performed. Hence, the instructions MVI D, [7F] to JNZ MS125B are performed [80] times to obtain 125 milliseconds.

The various operating modes of the cinematographic camera to this invention will next be described.

130

(1) Normal (NORMAL) mode:
The operator will first turn the mode setting dial 7 to place an index mark cut thereon in registry with a symbol NORM, and then turn the main switch 5 to place an index mark cut thereon in registry with a symbol ON. The CPU is thereby rendered operative to start performance of a programme written in the ROM with the memory addresses corresponding to statement No. 21 and those that follow.

The statement No. 21 (hereinafter abbreviated as Stm. 21) involves an instruction designated IN with an operand designated MODE and, upon performance, provides digital signals representative of [11] (i.e. hexadecimal 11) appearing at respective address lines MBADDs \emptyset -L to 7-L, so only \emptyset -L and 4-L lines go low. Inventors IN9 and IN13 apply high level signals to input terminal A of decoder CD40281 and ANDMB2 respectively. The performance of Stm. 21 for the instruction IN with the operand MODE (which will be hereinafter abbreviated as IN/MODE) also causes the production of a low level signal appearing at line MB I/O RS-L. This signal is inverted by NANDRS to a high level signal which is applied to one input terminal of each of the NAND gates R0 to R7 so that these NAND gates produce inverted signals to those entered.

The address line MBADD goes high, and this is applied through inverters IN12 and INS1 to one input terminal of gate ANDSR1, and as the output of ANDMB2 is high, said gate ANDSR1 also goes high so that the data selector CD4019 is operated to pass to NANDs R0 to R3. Further, as the decoder CD40281 only produces an input signal at terminal 1, only those switches which are connected to the output terminal 1 of CD40281 are rendered effective. In this way, digital signals representing the switched positions of SWs 5 to 8 are introduced through NANDs R0 to R3 to the accumulator. In the case of the NORMAL mode, upon setting of dial 7 to the corresponding position, all SWs 5 to 8 remain open, so the digital signals fed to the data lines MBDATAs \emptyset -L to 7-L represent [00] which is stored. Thereafter, Stm. 22 CPI/[00] is performed and then followed by Stm. 23 JZ/NORM. When the content of the accumulator is [00], Stm. 23 is followed by Stm. 52 for addresses denoted by a branch NORM.

The above performance of Stm. 21 IN/MODE leads to the entry of [00] in the accumulator, and therefore a programme of Stms. 51 to 68 is to be performed. Upon Stm. 52 CALL/PMOST, the sub-routine PMOST is performed with the result that the auxiliary shutter of Figure 2 is set to the initial position as shown in Figure 3A, where the aperture is fully open with respect to the auxiliary shutter. Upon Stm. 53 IN/RL, digital signals representative of [10] are fed to the address lines MBADDs \emptyset -L to 7-L with only 4-L going low so that all the inputs A to D of the decoder are low, and so that only output terminal 0 of the decoder produces a high level signal. In a similar manner to that described in connection with Stm. 21 IN, digital signals dependent upon the switched positions of SWs 1 to 4 are caused to enter the accumulator. Let us now assume that the manual release 6 is actuated to the second position, then SWs 1 and 2 are in the ON states. This leads to the entry of [03] in the accumulator. Upon operation of Stm. 54 CPI/[03], the content of the accumulator is compared with [03]. If the result is "0", the zero flip-flop is set to "1". Upon Stm. 55 JNZ/MRM with the setting of the zero flip-flop to "1", Stm. 56 CALL/START follows. Alternately, assuming that the release 6 is not yet depressed to the second position, then the zero flip-flop is not set to "1", so that the performance of Stm. 55 JNZ/NRM results in a jump to the address denoted by branch NRM.

When the lever 6 has been advanced to the second position, the performance of Stms. 501-504 START sub-routine starts to drive the film motor 12 in a forward direction, with the simultaneous initiation of the taking of a first normal motion picture frame. Upon Stm. 57 IN/RL of branch NORM2, identical to that of branch NORM1, a digital value depending upon the switched positions of SWs 1 to 4 are written in the accumulator. Upon Stm. 58 SUI/[02], subtraction of [02] from the content of the accumulator is performed. If the content of the accumulator is less than [02] — in other words, if the lever 6 is released — the carry flip-flop is set to "1" so that Stm. 59 JP/NORM2 is followed by Stm. 60 IN/PHASE. So long as the lever 6 remains depressed to the second position SW1 and SW2 are left ON to enter [03] into the accumulator, so that Stm. 58 SUI/[02] results in the maintenance of the carry flip-flop reset at "0". Upon Stm. 59 JP/NORM2, therefore, the programme of Stms. 57-59 starts again to be performed. Thus, rotation of the film motor 12 continues until the lever 6 is released.

When the trigger 6 is released from the second position to the first, or further from the first position to the unactuated position, SW2 is, or both SW1 and SW2 are, opened respectively, and Stm. 57 IN/RL results respectively in the entry of [01] or [00] into the accumulator. Upon Stm. 60, as mentioned before, a digital value representative of the actual phase of the main shutter 21 is transferred from the counter CD4520 to the accumulator. Upon Stm. 61 CPI/34, the content of the accumulator is compared with 34. When the content of the accumulator is in coincidence with the digital value representative of 34, the zero flip-flop is set to "1". If so, Stm. 62 JNZ/Z1 is followed by Stm. 63 CALL/STOP.

The binary counter CD4520 counts the number of pulses beginning with the first pulse which occurred when the shutter 1 had rotated 10° from the initial phase position of Figure 4. Therefore, only when the shutter 21 has

rotated 340° from the initial position, Stm. 63 is rendered effective, causing the shaft 24a of Figure 3a to engage in the first arcuate slot 15a near or at the leading edge thereof. After a further slight rotation of the gear 15, the trailing edge of the slot 15a abuts the shaft 24a, thereby arresting the shutter 21 in its initial phase position as shown in Figures 3A and 4, while the energisation of the film motor is terminated.

Upon Stm. 64 MVI/B, [00], [00] is entered into the B register. Upon Stm. 65 IN/MODE, as mentioned before, digital signals from SWs 5 to 8 are entered into the accumulator. In the subsequent Stm. 66 CMP/B, the content of B register is compared with the content of the accumulator. If these contents are coincident with each other, the zero flip-flop is set to "1". Otherwise, if the content of B register is smaller than the content of the accumulator, the carry flip-flop is set to "1". Upon Stm. 67 JZ/NORM1, with the setting of the zero flip-flop to "1", Stm. 67 is succeeded by Stm. 53 for branch NORM1. With the alternate setting of the zero flip-flop, Stm. 67 is succeeded by Stm. 68 JMP/INITI1. If the mode setting dial 7 is unchanged in position during the above-mentioned exposure operation, as Stm. 65 IN/MODE results in the entry of [00] into the accumulator, and Stm. 66 results in the setting of the zero flip-flop to "1", the programme beginning with Stm. 53 is performed. When the lever 6 is actuated again, a next normal motion picture sequence starts. If the dial 7 is moved from the NORM position, Stm. 68 JMP/INITI1 is followed by Stm. 24 for the entry of the selected mode information.

During the process of taking a normal motion picture sequence, the film advancing mechanism operates in such a manner that the phase angle of the main shutter 21 is sensed by the binary counter CD4520, because the CD4520 counts the number of pulses caused by the slits 21a passing the detector means 22. When the number of pulses counted is 6, an actuating signal is applied through AND1 to the flip-flop FF', thereby turning transistor Tr on to energise the electromagnet 19. When the number of pulses counted is 25, a deactuating signal is applied through AND2 to FF' to reset the latter. As a result, the period of actuation of the electromagnet 19 is controlled in accordance with the phase angle of the shutter, ranging from 60° to 250° . As shown in Figure 6, the main shutter moves through a range of angles from 60° to 320° to open at least in part the area of the aperture 20, while the pull-down claw pin 17a is retracted by the energised electromagnet 19 out of engagement with the perforations 18a of the film 18. Further, the pull-down plate 17 remains stationary over 200° during the rotation of the shutter. When the electromagnet 19 is de-energised at shutter phase 250° , the claw pin 17a is permitted to engage in one of the perforations, but remains

stationary until the shutter assumes a 320° phase. During a rotational angle of 320° to 60° , therefore, one cycle of claw operation is completed with the film 18 advanced one frame past the aperture 20.

The above-described control process will change the sequence of branches before the actuation of lever 6 is depressed to the second position, as follows. By Stm. 55 JNZ/NRM, a jump to Stm. 712 shown by the branch name, NRM occurs. Upon Stm. 712 MVI/B, [00] the digital value representative of [00] is transferred to B register. Upon Stm. 713 IN/MODE, the digital value corresponding to the mode selected by the dial 7 is transferred to the accumulator. Upon Stm. 714 CMP/B, the digital value representative of [00] entered in B register is compared with the digital value representative of the selected mode entered in the accumulator. When the selected mode is NORMAL, the zero flip-flop is set to "1", so that Stm. 715 JZ/NORM1 is succeeded by Stm. 53 IN/RL. Alternately, when the selected mode is not NORMAL, Stm. 715 is succeeded by Stm. 716 JMP/NORM3, then by Stm. 68 JMP/INITI1, and then by Stm. 24. Accordingly, when the index on dial 7 is left in registry with NORMAL, the camera operates to take a normal motion picture. When the dial 7 is turned to select any mode other than the normal mode, the push button 7a must be depressed to start an exposure operation in the selected mode.

(2) Diaphragm preference mode (DIAPHRAGM)

This mode makes possible the automatic adjustment of the shutter opening angle in accordance with the level of brightness of an object being photographed, so that correct exposure can be always effected when taking normal motion picture frames.

At first, the mode setting dial 7 is turned to place the index in registry with a symbol SHI, and then the main switch 5 is turned ON, thereby rendering the CPU operative to start performance of Stm. 21 IN/MODE. In the SHI position, only SW5 of the mode setting switches SW5 to SW8 is turned on to provide the digital value representative of [01] to data lines MBDATAs 0-L to 3-L, as shown in Figure 5C, and which are written in the accumulator. Upon Stm. 22 CPI/[00], the content of the accumulator is compared with [00]. As the content of the accumulator is [01], the zero flip-flop is not set to "1" so that Stm. 23 JZ/NORM is succeeded by Stm. 24 CPI/[01]. Upon Stm. 24, the zero flip-flop is set to "1", so that Stm. 25 JZ/DIAPHRAGM is succeeded by Stm. 70 CALL/PMOST. The performance of the PMOST sub-routine results in the setting of the auxiliary shutter to the initial open position. Upon Stm. 71 IN/RL, as mentioned before, the switched positions of SW1 and SW2 are written in the accumulator. Upon Stm. CPI/[01], the content of the accumulator is compared with

NORM is succeeded by Stm. 24 CPI/[01]. Upon Stm. 24, the zero flip-flop is set to "1", so that Stm. 25 JZ/DIAPHRAGM is succeeded by Stm. 70 CALL/PMOST. The performance of the PMOST sub-routine results in the setting of the auxiliary shutter to the initial open position. Upon Stm. 71 IN/RL, as mentioned before, the switched positions of SW1 and SW2 are written in the accumulator. Upon Stm. CPI/[01], the content of the accumulator is compared with [07]. If the content of the accumulator is not [07], the zero flip-flop is not set to "1". Only SW1 and SW2 of switches SW1 to SW4 are arranged to co-operate with the manual release lever 6, so that the actuation of lever 6 cannot achieve the entry of any small number than [03]. Upon Stm. 73 JNZ/SBRI with "0" condition of the zero flip-flop, there is a jump to Stm. 717 MVI/B,[01] with which branch SBRI begins. This branch SBRI contains Stms. 717 MVI/B,[01], 718 IN/MOD, 719 CMP/B, 720 JZ/DIAPHRAGM 1 and 721 JMP/DIA--PHRAGM 4 which are identical to Stms. 712 to 716 respectively, except that instead of transferring [00] into B register, [01] is transferred, and that when the selected mode is not the diaphragm preference mode, Stm. 721 JMP/DIAPHRAGM 4 is succeeded by Stm. 89 JMP/INITI2 which is then succeeded by Stm. 26 CPI/[02] with which branch INITI2 begins. When the mode setting dial 7 is left in the position for the diaphragm preference mode, Stm. 720 JZ/DIAPHRAGM 1 is succeeded by Stm. 71 IN/RL with which branch DIAPHRAGM 1 begins. So long as the dial 7 remains in the position for the diaphragm preference mode, therefore, the performance of Stm. 71 IN/RL, Stm. 72 CPI/[07] and Stm. JNZ/SBRI are repeated.

When the push button 7a is depressed at a time during the repetition of the performance of Stms. 71 to 73, switch SW3 is closed so that with the lever 6 depressed to the second position, Stm. 71 IN/RL results in the entry of [07] into the accumulator. Upon Stm. 72 CPI/[07], the zero flip-flop is set to "1". Now first, Stm. 73 JNZ/SBRI is succeeded by Stm. 74 CALL/START. In conclusion, only when the depression of the lever 6 to the second position and the depression of the programme start button 7a occur, the performance of the programme for the diaphragm preference mode starts. Upon Stm. 74 CALL/START, the aforementioned START sub-routine results in the film motor 12 starting in the forward direction.

Upon Stm. 75 IN/EXT, in a similar manner to that described in connection with the IN instruction, the digital value representative of [20] corresponding to the operand EXT is applied to the address lines MBADDs \emptyset -L to 7-L. As only one MBADD line 5-L becomes low, ANDMB2 produces an output signal of "0" level which, after being inverted, is applied to the D input terminal of the decoder CD40281, while all the other input terminals A to C of the decoder receive "0" level signals,

causing only output terminal 8 of CD40281 to produce a "1" level output signal. This signal actuates the AND gates AA1 to AA4 of Figure 5B to pass digital signals from the analogue-to-digital converger AD to data lines MBDATAs \emptyset -L to 3-L and therefrom to the accumulator, representative of a proper exposure value. In this instance, this is a proper shutter opening angle, dependent upon the level of brightness of the object as photo-electrically sensed by SPCC of Figure 13A and the sensitivity of the film set on the variable resistor SvR. Upon Stm. 76 MOV/E,A, the content of the accumulator is transferred to the E register. Upon Stm. 77 CALL/SHUTTER, when the main shutter 21 has rotated 40° from the initial phase position, the auxiliary shutter 39 is driven to close fully the aperture 20 and maintain this state. When the shutter 21 has advanced 40° from the phase entered in E register, the auxiliary shutter 39 is set fully open with respect to the aperture 20. By this, the phase of the main shutter stored in E register, in other words the object brightness level, is made use of in controlling the shutter opening angle.

Assuming that E register stores a decimal number 11 which corresponds to a shutter opening angle of 160° , when the main shutter has rotated 40° from the initial phase position, the auxiliary shutter 39 reaches the aperture fully closed position as shown by dashed lines in Figure 7 (d). When the main shutter assumes a phase of 110° , this is detected. When the phase of the main shutter becomes 120° , the pulse motor 38 is driven one step to turn the auxiliary shutter 39 counter-clockwise by one step, thus starting to open the picture aperture. Further rotation of the main shutter to 140° is accompanied by counter-clockwise movement of the auxiliary shutter 39 to uncover the picture thereof. At 140° , the pulse motor 38 is further driven by one more step. When the main shutter has reached 150° , the auxiliary shutter fully uncovers the aperture 20.

When the object brightness level is increased from the above, Stms. 75 and 76 enter a larger decimal number than 11 into the E register so that the auxiliary shutter 39 starts to open the aperture 20 after a corresponding time delay from the moment the main shutter has assumed a phase of 120° , with the resulting shutter opening angle being made smaller.

After the performance of Stm. 77, a succession of Stms. 78 IN/RL, 79 SUI/[02] and 80 JP/DIAPHRAGM 2 is performed, which is identical to that of Stms. 57 to 59m so that, so long as the lever 6 is depressed, a programme of Stms. 75 to 80 is repeatedly performed to take a normal motion picture sequence with automatic adjustment of the shutter opening angle in accordance with the object brightness level.

When the lever 6 is released Stm. 81 IN PHASE follows. Upon Stm. 83 JNZ/Z2, when the main shutter 21 has reached 340° as mea-

sured from the initial phase position, there occurs a jump to Stm. 84 CALL/STOP in a similar manner to that described in connection with the NORMAL mode, so that the main

5 shutter 21 gets stopped at the final phase position coincident with the initial phase. Then, the programme proceeds in performance with Stm. 85 to 88, 85 MVI/B,[01], 86 IN/MODE, 87 CMP/B and 88 JZ/DIAPHRAGM 1, which are

10 identical to Stms. 64 to 67 respectively. When the mode setting dial 7 is left in SHI position, Stm. 88 is succeeded by Stm. 71 with which the branch DIAPHRAGM 1 begins, so that when the lever is actuated again, the camera is

15 rendered operative to take a second normal motion picture sequence in the diaphragm preference mode. If the dial 7 is moved from the SHI mode, Stm. 88 is succeeded by Stm. 89 JMP/INITI2 which is then succeeded by Stm.

20 26 for the entry of the selected mode.

(3) Memo Motion (MM) mode:—

This mode performs a succession of single frame operations with each intervening time period previously set to a desired value. The

25 operator first turns the mode setting dial 7 to place the index in registry with a symbol MM, and then throws the power switch, thereby rendering the CPU operative with the performance of Stm. 21 IN/MODE. In the MM position

30 of the dial 7, only SW6 of SWs 5 to 8 is closed to enter the digital value representative of [02] through the respective lines MBDATAs \emptyset -L to 3-L to the accumulator, as shown in Figure 5C. Upon Stm. 22 CPI/[00], the zero flip-flop is

35 set if the content of the accumulator is [00]. Now, Stm. 22 compares [02] with [00], so that the zero flip-flop remains un-set, causing Stm. 23 JZ/NORM to be succeeded by Stm. 24 CPI/[01]. This succession continues until the

40 performance of the last CPI instruction in said succession sets the zero flip-flop to "1". Upon the JZ instruction of the next statement following that CPI instruction which caused the zero flip-flop to be set, the programme branches

45 to that point indicated on the same line as the effective JZ instruction statement. The content of the accumulator is [02], so Stm. 26 CPI/[02] sets the zero flip-flop and Stm. 27 JZ/MM, jumps to Stm. 91 whereat the Memo Motion

50 (MM) branch begins. Upon Stm. 91 CALL/PMOST, the pulse motor 38 is set to the initial open position. Upon Stm. 92 CALL/T1SET, the aforementioned T1SET sub-routine is performed to effect intermittent lighting of LEDT

55 until the push button 9a is depressed to enter a digital value into H register representative of the time value selected by dial 9. Let us now assume that the selected value of time is 1 second, then the digital value representative of

60 [08] is stored in the H register, as has been mentioned before. Upon Stm. 91 IN/RL, a digital value depending upon the switched positions of SW1 and SW2 co-operative with the lever 6 are written in the accumulator.

65 Upon Stm. 94 CPI/[07], the content of the

accumulator is a value other than [07], the zero flip-flop is not set to "1", but when at [07], the flip-flop is set. Only SW1 and SW2 of SWs 1 to 4, however, are operated by the lever 6 to derive one of the numbers [00] and [03]. Hence, it is impossible to set the zero flip-flop. Upon Stm. 95, the "0" condition of the zero flip-flop is detected, causing a jump to Stm. 722 with which the branch MMB begins. This branch MMB is comprised of Stms. 722 MVI/B,[02], 723 IN/MODE, 724 CMP/B, 725 JZ/MM1 and 726 JMP/MM3, which are identical to the aforementioned stms. 712 to 716. Although a detailed description is omitted, instead of transfer of [00] to the B register, there is a transfer of [02]. If the selected mode is not MM mode, Stm. 726 JMP/MM3 is succeeded by Stm. 110 JMP/INITI3 which is then succeeded by Stm. 28.

70 Thus, the selected mode is scanned. Alternately when the mode setting dial 7 is left unchanged in the MM position, Stm. 725 JZ/MM1 is succeeded by Stm. 93 with which the branch MM1 begins. So long as the dial 7 is in the MM position, therefore, a number of successive cycles of Stms. 93 IN/RL, 94 CPI/[07] and 95 JNZ/MMB are repeated. When the push button 7a is depressed at a time during the repetition of the performance of Stms. 93 to 95, SW3 is

75 closed. With the lever 6 depressed to the second position, therefore, the depression of the push button 7a realises simultaneous closure of SWs 1 to 3, causing a digital value representative of [07] to enter the accumulator when Stm. 93 is ON. Upon Stm. 94, the content of the accumulator is compared with [07] to result in the setting of the zero flip-flop to "1", and Stm. 95 JNZ/MMB is succeeded by Stm. 96 CALL/START. As described above, unless the lever 6 is depressed to the second position and the push button 7a is depressed, the MM code programme will not be performed.

80 Upon Stm. 96 CALL/START, the aforementioned START sub-routine is performed to start forward rotation of the film motor 12. As the film motor 12 rotates, the actual phase of the main shutter 21 is sensed by IN/PHASE. When the phase as sensed has become 340° from the initial phase position, there occurs a jump to Stm. 100 CALL/STOP by CPI 34, JNZ/K1. By the aforementioned STOP sub-routine the main shutter gets stopped after the completion of one revolution. In other words, based on the programme of Stms. 96 CALL/START to 100 CALL/STOP, the film motor 12 is operated to drive the main shutter through a rotation from the initial phase of 0° position to the first 340° phase position, and rotation of the shutter is stopped when the initial phase is regained. During this single cycle of shutter operation, a first single frame is exposed.

85 Upon Stm. 101 CALL/T1, the T1 sub-routine of Stms. 552 to 556 is performed to generate a time delay based on the time data stored in the H register. As the required time

90

95

100

105

110

115

120

125

130

value time is 1 second, after the main shutter has been maintained stationary in the 360° phase position for 1 second, Stms. 101 IN/RL, 103 SUI/[02] and 104 JP/MM2 are performed, these being identical with Stms. 57 to 59 of the NORMAL mode. So long as the lever 6 is depressed, Stm. 104 is succeeded by Stm. 96 CALL/START (branch name MM2), thus starting a second cycle of the programme of Stms. 96 to 104, with the result that a second frame is exposed. In such a manner, the time period between successive single frame exposures can be adjusted to a desired value by the dial 9. When the lever 6 is released, Stm. 105 CALL/STOP is rendered effective to terminate a particular continuous series of single frame exposures. Thereafter, in a manner similar to that shown in connection with Stms. 64 to 68 for the NORMAL code, there occurs a succession of Stms. 106 MVI/B,[02], 107 IN/MODE, 108 CMP/B and 109 JZ/MM1. If the selected mode is left unchanged from the MM mode, Stm. 109 is succeeded by Stm. 93 so that upon a second actuation of the lever, the camera starts to operate again in the MM mode. If a different mode has been selected, Stm. 109 is succeeded by Stm. 93 so that upon a second actuation of the lever, the camera starts to operate again in the MM mode. If a different mode has been selected, Stm. 109 is succeeded by Stm. 110 JMP/INIT13 which is then succeeded by Stm. 28 with which the branch INIT13 begins.

The MM mode has been explained in connection with an intervening time period of 1 second. It is of course possible to vary the time period over the wide range of values available on the control panel shown in Figure 1.

(4) Indent Work Sampling (IWS) mode:

This mode enables four successive single frames to be taken separated by a pre-set time interval, followed by another desired time interval after which the next succession of four single frame exposures are made.

At first, the mode setting dial 7 is turned to select symbol IWS, and then the main switch is closed, thereby rendering the CPU operative and the performance of Stm. 21 IN/MODE for the entry of the switched positions of SWs 5 to 8 into the accumulator. The dial 7 is in IWS position where SW5 and SW6 are simultaneously closed to derive the digital value representative of [03] to the data lines MBDATAs 0-L to 3-L as shown in Figure 5C. Upon Stm. 22 CPI/[00], the content of the accumulator is compared with [00], to determine the condition of the zero flip-flop as has been mentioned before. As the accumulator contains [03], the zero flip-flop is not set. The programme proceeds through Stm. JZ/NORM, Stm. 24 CPI/[01] and so on until the zero flip-flop is set to "1". The next JZ instruction following the CPI instruction which caused the zero flip-flop to be set starts performance of a succession of statements for the branch the name of which is given in the effective JZ instruction. As the content of the accumulator for the IWS mode is [03], the performance of Stm. 28 CPI/[03] results in the setting of the zero flip-flop and Stm. 29 JZ/IWS is therefore to start the Indent Work Sampling sub-routine beginning at Stm. 112. Upon Stm. 112 CALL/PMOST, the aforementioned PMOST sub-routine is performed to set the auxiliary shutter in the initial open position. Upon Stm. 113 CALL/T12SET, the aforementioned T12SET sub-routine is performed with the result that a digital value representative of a time value first selected by the dial 9 is stored in the H register, and then a digital value representative of another time value selected by the dial 9 is stored in the L register. Let us now assume that the first and second selected times are 1/4 and 1 second respectively, the aforementioned T12SET sub-routine transfers to the accumulator [02] (the hexadecimal number corresponding to 1/4 second), dependent upon the switched positions of SWs 12 to 15. Upon Stm. 586 DCR/A, the content of the accumulator is reduced to [01]. Upon Stm. 587 MOV/B,S, the [01] is transferred to the B register. Upon Stm. 588 MVI/A[01], [01] is transferred to the accumulator. Upon Stm. 589 RLC, the content of the accumulator becomes [02]. Upon Stm. 590 DCR/B, the content of the B register becomes [00]. Upon Stm. 951 JNZ/T12SET followed by Stm. 592 MOV/H,A, the [02] in the accumulator is transferred to the H register.

[08] is transferred to the L register for the 1 second delay in the following manner. Upon Stms. 593 to 594, a value representative of [04] is transferred to the accumulator. Upon Stm. 595 CDR/A, the content of the accumulator becomes [03]. Upon Stm. 596 MOV/B,A, the [03] is transferred to the B register. Upon Stm. 597 MVI/A,[01], [01] is transferred to the accumulator. Upon Stm. 598 RLC, DCR/B, the content of the B register becomes [02]. Upon Stm. 600 JNZ/T12SET2, there is a jump to Stm. 598 RLC. This jump is repeated two more times until the content of the B register becomes [00]. Finally, the content of the accumulator is [08] which is transferred to the L register.

After the entry of the time data into the H and L registers has been completed, Stm. 113 CALL/T12SET is succeeded by Stm. 114 MVI/D,4 to transfer the digital value representative of decimal 4 into the D register. Upon Stm. 115 IN/RL, the switched positions of SW1 and SW2 co-operative with the lever 6 are written in the accumulator. Upon Stm. 116 CPI/[07], the content of the accumulator contains [07] is the zero flip-flop set to "1" but as only SW1 and SW2 co-operate with lever 6, the accumulator can contain only [00] or [03], and the zero flip-flop is not set. Upon Stm. 117 JNZ/IWSB, the "0" condition of the zero flip-flop is detected, causing a jump to Stm. 727 with

which the branch ISWB begins. This branch	70
IWSB comprises Stms. 727 MVI/B,[03], 728	
IN/MODE, 729 CMP/B, 730 JZ/IWS1, and	
731 JMP/IWS4 which are identical with the	
5 aforementioned Stms. 712 to 716. Although	
a detailed description is omitted, instead of	
transferring [00] to B register, there is a	
transfer of [03]. If the selected mode is not	
IWS mode, Stm. 731 JMP/IWS4 is succeeded	
10 by Stm. 136 JMP/INITI4 which is then suc-	
ceeded by Stm. 30 (represented by the branch	
name INITI4). Thus, the selected mode is	
scanned. Alternately when the mode setting	
dial 7 is left unchanged from the IWS position,	
15 Stm. 730 JZ/IWS1 is succeeded by Stm. 115	
IN/RL with which the branch IWS begins. So	
long as the dial 7 is in IWS position, therefore,	
a number of cycles of Stms. 115 IN/RL, 116	
CPL/[07] and 117 JNZ/IWSB sequence are	
20 repeated. When the push button 7a is depressed	
during the repetition of such cycles, SW3 is	
closed. With lever 6 depressed to the second	
stroke, therefore, the depression of the push	
button 7a effects simultaneous closure of	
25 three switches SW1 to SW3, causing the digital	
value representative of [07] to enter the accu-	
mulator on Stm. 115. Upon Stm. 116 CPI/[07],	
the content of the accumulator is compared	
with [07] to result in the setting of the zero	
30 flip-flop to "1", and then Stm. 117 JNZ/IWSB	
is succeeded by Stm. 118 CALL/START. As	
has been indicated above, when the depression	
of the lever 6 to the second position and the	
depression of the push button 7a occur	
35 together, the IWS programme is performed.	
Upon Stms. 118 to 123, which are identical	
with Stms. 96 to 101 for the MM mode, a first	
single frame operation takes place. Based on the	
time data stored in H register, for 1/4 second	
40 the main shutter is maintained stationary in the	
aperture fully closed position. At the termina-	
tion of 1/4 second, Stm. 124 DCR/D subtracts	
1 from 4 with the resulting content of the D	
register becoming a digital value representa-	
45 of decimal 3. Upon Stm. 125 JNZ/IWS2, the	
condition of the zero flip-flop is detected.	
When the condition of the zero flip-flop as	
detected is "1", the following statement,	
namely Stm. 126 CALL/T2, is rendered effec-	
50 tive. Or otherwise, the programme beginning	
with Stm. 118 is performed again. As indicated	
just above, the new content of the D register is	
3 so that the zero flip-flop is prevented from	
being set to "1", causing a second performance	
55 of the programme beginning with Stm. 118,	
with the result that a second single frame op-	
eration is performed. After the duration of 1/4	
second from the closure of the aperture by the	
main shutter, Stms. 124 CDR/D and 125 JNZ/	
60 IWS2 are performed. Until the zero flip-flop is	
set to "1" by the JNZ instruction, a number of	
repetitions of the programme of Stms. 118 to	
125 are performed. As mentioned just above,	
the initial content of D register is decimal 4	
65 so that there are 4 repetitions. A fourth opera-	
tion of Stm. 125 is succeeded by Stm. 26	
CALL/T2. As a result, only after four single	
frame exposures have taken place at intervals	
of 1/4 second, the statement CALL/T2 is per-	
formed.	
Upon Stm. 126 CALL/T2, the aforemen-	75
tioned sub-routine T2 is performed with the	
result that the film motor and the shutter are	
maintained stationary, with the aperture fully	
closed, for the time interval previously stored	
in L register. The time interval stored in L	
register is in the above example [08], corre-	
sponding to 1 second, so that the aforemen-	
tioned MS125 sub-routine is performed eight	
times before the zero flip-flop is set to "1",	
by the DCR instruction of the T2 sub-routine.	
In this way, a continuous time interval of 1	
second based on the calculation: $125 \times 8 =$	
1000 milliseconds, is obtained.	
After the four single frame exposures at	80
intervals of 1/4 second have been completed	
and then after a further 1 second, counting	
from the termination of the last single frame	
exposure, Stm. 127 MVI/D,4 starts to perform	
with the result that digital value representative	
of decimal 4 is transferred again to the D regis-	
ter. As Stms. 128 IN/RL, 129 SUI/[02] and	
130 JP/IWS2 are identical with Stms. 57 to 59	
for the NORMAL mode, provided the lever 6	
is still fully depressed, a number of repetitions	
of the programme beginning with Stm. 118	
CALL/START (represented by the branch	
name IWS2) and terminating at Stm. 130 are	
performed. In this way a number of cycles each	
having 4 exposures at preset intervals followed	
by a preselected interval are performed. The	
present interval is stored in the H register (in	
this example, corresponding to 1/4 second) and	
the preselected interval is stored in the L regis-	
ter (in this example, corresponding to 1 second).	100
When lever 6 is released, Stm. 131 CALL/	
STOP is rendered effective to terminate the	
taking of a particular picture frame sequence	
made in the Indent Work Sampling mode.	
Thereafter, in a manner similar to that shown	110
in connection with Stms. 64 to 68 for	
NORMAL mode, there occurs a succession of	
Stms. 132 MVI/B,[03], 133 IN/MODE, 134	
CMP/B and 135 JZ/IWS1. If the selected mode	
is left unchanged from IWS mode, Stm. 135	
JZ/IWS1 is succeeded by Stm. 115 (represented	
by the branch name IWS1) so that upon a sub-	
sequent actuation of lever 6, the camera starts	
to operate in the IWS mode. If a different mode	
from the IWS mode is selected, Stm. 135 is suc-	
ceeded by Stm. 136 JMP/INITI4 which is then	115
succeeded by Stm. 30, and thus, the newly	
selected mode is scanned.	120
(5) Work Sampling (WS) mode:	125
This mode repeats a number of cycles of	
motion picture operations with each cycle last-	
ing for a desired time, the cycles being spaced	
from each other by a preset time. The mode	
setting dial 7 is first turned to the WSP posi-	
tion, and then the main switch is closed, there-	130

by rendering the CPU operative with the performance of Stm. 21 which effects the entry of the information representative of the switched positions of SWs 5 to 8 into the accumulator.

5 In WSP position, only SW7 is closed to give a value representative of [04] to lines MBDATAs \emptyset -L to 3-L as shown in Figure 5C; thus the accumulator stores [04]. Upon Stm. 22 CPI/[00], the content of the accumulator is compared with [00] to determine the condition of the zero flip-flop, as mentioned before. The instant comparison concerns [04] and [00], so that the zero flip-flop is not set to "1".

The programme proceeds as has been described until the zero flip-flop is set and the next following JZ instruction branches to the statement at which the selected mode programme begins. As the content of the accumulator for the WS mode is [04], Stm. 30 CPI/[04]

10 causes the zero flip-flop to be set to "1", and Stm. 31 JZ/WS causes a jump to Stm. 138, at which the branch "Work Sampling" begins. Upon Stm. 138 CALL/PMOST, the auxiliary shutter is set to the initial open position. Upon

15 Stm. 139 CALL/T12SET, as explained in connection with IWS mode, a first required time value set by the dial 9, is entered into the H register, and a second required time value, also set by the same dial 9, is entered into the L

20 register. Now assuming that the first and second required values of time are 1/4 and 1 second respectively (as described in the IWS mode), the contents of the H and L registers are [02] and [08] respectively.

25 Upon Stm. 140 IN/RL, the switched positions of SW1 and SW2, controlled by lever 6, are written in the accumulator. Upon Stm. 141 CPI/[07], the content of the accumulator is compared with [07]. If the content of the

30 accumulator is different from [07], the zero flip-flop is prevented from being set to "1" but the flip-flop is set to "1" when the accumulator coincides with [07].

35 As only SW1 and SW2 of switches SW1 to SW4 are controlled by lever 6, only [00] and [03] are possible, so that Stm. 141 CPI/07 fails to set the zero flip-flop. Upon Stm. 142 JNZ/WSB, the "0" condition of the zero flip-flop is detected, causing a jump to Stm. 732, at which

40 the branch WSB begins. This branch comprises Stms. 732 MVI/B[04], 733 IN/MODE, 734 CMP/B, 735 JZ/WS1 and 736 JMP/WS3, which are identical with Stms. 712 to 716 for the NORMAL branch. Although a detailed explanation of these statements is omitted, note should be made of the following. Instead of transferring [00] to the B register, [04] is transferred thereto. If a newly selected mode is different from the WS mode, Stm. 136 JMP/WS3 is succeeded by Stm. 158 JMP/INIT15 which is then succeeded by Stm. 32, at which the selected mode scanning programme begins. If the mode setting dial 7 is left unchanged from the WS mode position, Stm. 735 JZ/WS1 is succeeded by Stm. 140 IN/RL at which the branch WS1

45 begins. This WS1 branch is performed repeatedly until the push button 7a is depressed. Upon depression of button 7a, the programme for the WS mode beginning with Stm. 143 CALL/START commences.

50 After the aforementioned START subroutine is performed, starting the film motor at the frame frequency, Stm. 144 CALL/T1 is rendered effective to control the period of actuation of the film motor, to establish one cycle of motion picture operation based on the stored time data – in this instance, 1/4 second stored as [02] in the H register. At the termination of the duration of the 1/4 second, Stms. 145 IN/PHASE, 146 CPI/34, 147 JNZ/K3 and 148 CALL/STOP are rendered effective to stop the main shutter in the initial phase position.

55 Upon Stm. 149 CALL/T2, the aforementioned T2 sub-routine is performed to maintain the main shutter stationary in the aperture closed position for 1 second, based on the time data stored as [08] in the L register. In other words, by the programme beginning with Stm. 143 CALL/START and terminating at Stm. 149 CALL/T2, a motion picture sequence is performed for 1/4 second, according to the time data stored in the H register, and subsequently the exposure operation is stopped for 1 second, according to the time data stored in the L register. After the completion of Stm. 149 CALL/T2, there occurs a sequence of Stms. 150 IN/RL, 151 SUI/[02] and 152 JP/WS2 which are identical with Stms. 57 to 59 for the NORMAL mode. So long as the lever 6 remains depressed, a number of repetitions of the programme to take the corresponding number of motion picture sequences, while controlling the first and second time intervals in the manner mentioned above.

60 When the lever 6 is released, Stm. 152 JP/WS2 is succeeded by Stm. 153 CALL/STOP. After that, Stms. 154 MVI/B,[04], 155 IN/MODE, 156 CMP/B, 157 JZ/WS1 and 158 JMP/INIT15, which are identical with Stms. 64 to 68 for the NORMAL mode, are repeatedly performed in sequence. If the mode setting dial 7 is maintained at WSP and when the lever 6 is actuated again the programme beginning with Stm. 140 takes place. If the dial 7 is set to a position different from the WSP position, the mode scanning programme takes place.

65 (6) Self Timer mode:

This mode delays the start of a motion picture sequence by a preset time interval and limits the duration of the motion picture sequence to a preselected time interval. The operator first turns the mode setting dial 7 to place the index in registry with a symbol ST, and then turns on the main switch. The accumulator thereby stores a value representative of [05] which is then discriminated in the manner as has been described above in connection with any of the previously-mentioned modes. Thus, upon Stm. 32 CPI/[05], the zero flip-flop is set to "1", and Stm. 33 JZ/ST causes a jump to

5	Stm. 160 CALL/PMOST. The aforementioned PMOST sub-routine sets the auxiliary shutter to the initial open position. Upon Stm. 161 CALL/T12SET, the T12SET sub-routine of Stms. 583 to 602 is performed to effect the entry of a first and second required time value into the H and L registers respectively. Let us now assume that the first and second required time values are 8 and 1 second respectively,	70
10	then the T12SET sub-routine enters a value in the accumulator dependent upon the switched positions of SWs 12 to 15 for 8 seconds, this being [07]. Upon the DCR/A, the content of the accumulator is reduced to [06], but instead	75
15	the content of H register – namely [01] – is shifted left one bit. This procedure repeats itself six times until the content of the accumulator becomes [00] with the result that the final content of the H register is [40], which corresponds to decimal 64. On the other hand, entered into the L register is a value representative of [08], as in either the IWS or WSP modes.	80
20	When the lever 6 is depressed to the second position and when the push button 7a is depressed, a succession of Stms. 162 IN/RL, 163 CPI/[07] and 164 JNZ/STB is further succeeded by Stm. 165 CALL/T1. If the push button 7a is not yet depressed, Stm. 164 JNZ/STB is succeeded by Stm. 737 with which the	85
25	branch STB begins. This branch comprises Stms. 737 MVI/B,[05]; 738 IN/MODE; 139 CMP/B; 740 JZ/ST1 and 741 JMP/ST2. If a new mode different from the ST mode is selected, this new mode is scanned. If however the	90
30	mode setting dial 7 remains in the ST mode, a number of repetitions of the programme beginning with Stm. 162 and terminating at Stm. 740 are performed until the push button 7a is depressed.	95
35	Upon depression of the push button 7a at a time during the course of repetitions of said programme, Stm. 165 CALL/T1 starts to perform, causing the T1 sub-routine to repeat the MS125 sub-routine 64 times, based on the	100
40	digital value of decimal 64 stored in the H register. At the termination of the duration of 125 milliseconds x 64 = 8 seconds, Stm. 166 CALL/START starts to drive the film motor so as to take a motion picture sequence. In other words,	105
45	after the elapse of 8 seconds from the time at which the push button 7a is depressed, the taking of the motion picture sequence starts. Upon Stms. 167 CALL/T2 to 171 CALL/STOP, the aforesaid motion picture sequence continues to take place for 1 second, as this time value is stored in the L register. After the elapse of 1 second, the particular motion picture sequence is terminated. Thus, the start of the particular motion picture sequence is delayed	110
50	by a time set in the H register, and the period of duration of the particular motion picture sequence is for a time set in the L register.	115
55	After the completion of the particular motion picture sequence, the programme beginning with Stm. 172 is performed so that, in a	120
60	manner similar to that described in connection with the NORMAL mode, further depression of the lever 6 causes the camera to operate in the ST mode, provided that the mode setting dial 7 remains in the ST position. If a new mode is selected different from the ST mode, the mode scanning programme is rendered effective.	125
65	(7) Time Exposure One (TE1) mode: This mode takes a continuous series of single frame exposures with each exposure of a long duration, previously selected, while the times between the successive exposures are adjusted to a value previously preselected. The operator first turns the mode setting dial 7 to place the index in registry with a symbol TE1, and then turns the main switch, thereby causing the accumulator to store the digital value representative of [06], which is then discriminated in such a manner as will be appreciated from the foregoing description. Upon Stm. 34 CPI/[06], therefore, the zero flip-flop is set to "1", and Stm. 35 JZ/TE1, causes a jump to Stm. 178 CALL/PMOST. The aforementioned PMOST sub-routine sets the auxiliary shutter to the initial open position. Upon Stm. 179 CALL/T12SET, the T12SET sub-routine of Stms. 583 to 602 is performed to effect the entry of a first and second required time value into the H and L registers respectively. Let us now assume that the first and second required values of time are 8 and 1 second respectively, then the T12SET sub-routine enters a values in the accumulator dependent upon the switched positions of SWs 12 to 15 for 8 seconds, this being [07]. Upon the DCR/A, the content of the accumulator is reduced to [06], but instead the content of H register – namely [01] – is shifted left one bit. This procedure repeats itself six times until the content of the accumulator becomes [00] with the result that the final content of the H register is [40], which corresponds to decimal 64. On the other hand, a value representative of [08] is entered into the L register, as described above.	130
	In performance of Stms. 180 IN/RL; 181 CPI/[07]; and 182 JNZ/TE1B, only when the depression of the push button 7a occur simultaneously can Stm. 183 CALL/T1 succeed. If the push button 7a is not depressed, Stm. 182 JNZ/TE1B is succeeded by Stm. 742 with which the branch TE1B begins. This branch contains Stms. 752 MVI/B,[06]; 143 IN/MODE; 745 CMP/B; 745 JZ/TE11; and 746 JMP/TE14. As explained in connection with the above modes, when a new mode different from the TE1 mode is selected, this mode is scanned so as to be effective. If the mode setting dial 7 remains in the TE1 position, the programme of Stms. 180 to 182 and 742 to 745 are repeated until the push button 7a is depressed.	
	Upon depression of the push button 7a during the repetitions of said programme, Stm. 183 CALL/START with the aforesaid START sub-routine is performed, to start the film	

motor for forward rotation. Upon Stms. 184 IN/PHASE; 185 CPI/16; and 186 JNZ/TE12, the main shutter is permitted to advance through an angular distance of 160° from the initial phase position. When the shutter has advanced 160° , Stm. 187 CALL/STOP is performed, causing the aforementioned STOP subroutine to energise the electromagnet 24, thereby the shaft 24a engages the second arcuate slot 15b (Figure 3A), and simultaneously the film motor is stopped. By inertia, the main shutter 21 rotates further to assume a phase of 180° , and is then held in the position where the aperture 20 is fully open starting the exposure of a first frame. This state is maintained for 8 seconds by Stm. 188 CALL/T1.

At the termination of 8 seconds, Stm. 189 CALL/START with the START sub-routine starts the film motor again. Upon Stms. 190 20 IN/PHASE; 191 CPI/34; 191 JNZ/K5; and 192 CALL/STOP, the main shutter gets stopped in a position coincident with the initial phase position, so completing the first frame exposure, the exposure time corresponding to the time value set in the H register. Upon Stm. 194 CALL/T2 with the aforementioned T2 subroutine, this state of the main shutter is maintained for 1 second, as this time value is set in the L register. As a result, by the programme of Stms. 183 to 194, the camera is operated in TE1 mode to make a single frame exposure of a preset duration followed by a wait of a pre-selected duration.

So long as the lever 6 remains depressed, as detected by Stms. 195 to 197, namely 195 IN/RL; 196 SUI/[02] and 197 JP/TE13, which are identical with Stms. 57 to 59 for the NORMAL mode, a number of repetitions of the programme of Stms. 183 to CALL/START to 197 JP/TE13 are performed to make a continuous series of single frame exposures.

When the lever 6 is released, Stm. 197 JP/TE13 is succeeded by Stm. 198 CALL/STOP. After that, Stms. 199 MVI/B,[06]; 200 IN/MODE; 201 CMP/B; 202 JZ/TE11 and 203 JMP/INIT17, which are identical with Stms. 64 to 68 for the NORMAL mode, are performed repeatedly in this order. When the mode setting dial 7 is maintained in the TE1 position, and when the lever 6 is actuated again, the camera is again operated in the TE1 mode. When the dial 7 is set to a position different from the TE1 position, the mode scanning programme is performed.

(8) Time Exposure Two (TE2) mode: This mode makes a continuous series of single frame exposures while controlling the exposure time in accordance with the brightness level of an object being photographed. The operator first turns the mode setting dial 7 to place the index in registry with a symbol TE2, and then turns the main switch, thereby causing the accumulator to store a value [07], which is then discriminated in such a manner as will be appreciated from the foregoing description.

Upon Stm. 36 CPI/[07], the zero flip-flop is set to "1", and Stm. 37 JZ/TE2, causes a jump to Stm. 205 CALL/PMOST, which sets the auxiliary shutter to the initial open position.

Upon Stms. 206 IN/RL; 207 CPI/[07], and 208 JNZ/TE2B, only a simultaneous occurrence of the depression of the lever 6 to the second position and the depression of the push button 7a leads to start an exposure operation in the TE2 mode by the programme beginning with Stm. 209. If the push button 7a is not yet depressed, Stm. 208 JNZ/TE2B is succeeded by Stm. 747 with which the branch TE2B begins. This branch contains Stms. 747 MVI/B,[07]; 748 IN/MODE; 749 CMP/B; 750 JZ/TE21 and 751 JMP/TE25. As explained in each of the heretofore described modes, when a new mode is selected which is different from the TE2 mode, this new mode is scanned so as to be effective. If the mode setting dial 7 is permitted to remain in the TE2 position, a number of repetitions of the programme of Stms. 206 to 208 and 747 to 750 are performed until the push button 7a is depressed.

Upon depression of the push button 7a during the course of repetitions of the aforesaid programme, Stm. 209 IN/LEVEL is performed. Now the operated LEVEL applies to the address lines MBADDs \emptyset -L to 7-L; only \emptyset -L and 5-L thereby go low. This leads to only input terminals A and D of decoder CD40281 going high, causing CD40281 to produce an output of "1" at output terminal 9. This output is applied to AND gates AA5 to AA8 of Figure 5B, through which binary data representative of a predetermined value set in LEVEL circuit are introduced to the accumulator, in a manner similar to that in which the aforesaid IN instruction is performed. Upon Stm. 210 MOV/E,A, the content of the accumulator is transferred to the E register. Upon Stms. 211 to 215, which are identical with Stms. 183 to 187, the main shutter is driven but then arrested in a 180° phase position, where the aperture 20 is fully open. Next, Stm. 216 IN/ICC is performed, this operand ICC applying [22] to the address lines MBADDs \emptyset -L to 7-L in a similar manner to that in which the just mentioned IN instruction is performed; only 1-L and 5-L go low. As the input terminals B and D of decoder CD40281 receive "1" signals, decoder CD40281 produces a "1" output at terminal 10, thereby the AND gates AA9 to AA12 are gated on and the flip-flop FFL is set from "1" to "0" condition at \bar{Q} output, simultaneously turning OFF transistor Tra. The light measuring circuit EXT produces an output proportional to the brightness level of the object, which output is integrated by the capacitor C1. The integrated output on the capacitor C1 is converted by the analog-to-digital converter AD' to a digital output which is loaded into the accumulator. Upon Stm. 217 SUB/E, the reference value in the E register is compared with the output of AD', and on coincidence the zero 130

flip-flop is set to "1", so that the programme can proceed to Stm. 219 CALL/START. If coincidence is not attained, a sequence of instructions with Stms. 216 to 218, designated 5 by the branch TE23, is carried out repeatedly.

When coincidence has been attained, in other words, when the output of the capacitor C1 has attained the reference level dependent upon the output of the LEVEL circuit of 10 Figure 5B, Stm. 219 CALL/START is carried out. After the time interval corresponding to the output of the light measuring circuit EXT, the main shutter starts, to be rotated from the 180° phase position to the 360° phase position, 15 at which the main shutter will be stopped by the next sequence of the instructions with Stms. 220 IN/PHASE; 221 CPI/34; 222 JNZ/K6; and 223 CALL/STOP. It is to be noted here that the occurrence of coincidence of the 20 C1 output with the LEVEL output leads to the production of an output from the comparator, and this causes the flip-flop FFL to be reset to the initial state, so that the capacitor C1 is discharged ready for the next cycle of single frame 25 operation.

So long as the lever 6 is depressed, as detected by the instructions of Stms. 224 IN/RL; 225 SUI/[02]; and 226 JP/TE24, which are identical with Stms. 57 to 59 for the NORMAL 30 mode, a number of cycles of single frame operation are performed to take a continuous series of single exposures while controlling the exposure time in accordance with the object brightness level, the number of cycles corresponding 35 to the number of repetitions of the programme of Stms. 211 CALL/START to 226 JP/TE24, designated by the branch T24. When the lever 6 is released, Stm. 226 JP/TE24 is followed next by Stm. 227 MVI/B,[07]. In a similar 40 manner to that in which the programme for the NORMAL mode is carried out, the camera is then ready for a further operation in the TE2 mode, provided that the mode setting dial 7 remains unchanged from the TE2 position. Upon 45 displacement of the dial 7 from the TE2 position, the mode-scanning programme is started.

(9) Fade-in (FI) mode:

The mode setting dial 7 is first turned to place the index in registry with a symbol FI, 50 and then the main switch is turned, thereby writing the FI mode in the accumulator, and the mode discriminating operation is performed in a manner similar to that described in any of the heretofore described modes. The symbol 55 FI causes [08] to be loaded in the accumulator and Stm. 38 sets the zero flip-flop to "1". Stm. 39 JZ/FI, therefore, causes a jump to Stm. 233 CALL/PMOST with which the branch FI begins and which sets the auxiliary shutter to 60 the initial open position. Upon Stm. 234, CALL/D12SET, with the D12SET sub-routine of Stms. 615 to 619, two kinds of opening angle data selected by the dial 10 are stored in respective memory locations addressed by 65 [41F1] and [41F2] respectively. As shown in Figure 5C, there are available 12 values of shutter opening angle in 20° steps, which are selected one at a time by the dial 10, the selected value depending upon the particular combination of the switched positions of SWs 16 to 19 co-operative with the dial 10. The first and second data of the opening angles set in this order represent degrees of initial and final angles, at which a fade-in effect respectively starts and terminates.

After such setting of the opening angle data has been performed, a sequence of instructions with Stms. 235 IN/RL; 236 CPI/[07]; and 237 JNZ/FIB is carried out. As in any of the heretofore described modes, only when the depression of the lever 6 to the second position and the depression of the push button 7a occur simultaneously, can an exposure operation with fade-in effect be carried out by a sequence of instructions beginning with Stm. 238. If the push button 7a is not yet depressed, Stm. 237 JNZ/FIB is followed next by Stm. 752 at which the branch FIB begins. This branch FIB contains 752 MVI/B,[08]; 753 IN/MODE; 754 CMP/B; 755 JZ/FI1 and 756 JMP/FI4. As explained in each of the heretofore described modes, when a new mode is selected from the FI mode, this new mode is rendered effective. When the mode setting dial 7 is left unchanged from the FI mode position, the programme of Stms. 235 to 237 and 752 to 755 is repeatedly carried out until the push button 7a is depressed.

Upon depression of the push button 7a during the process of carrying out the just-mentioned programme, Stm. 238 LDA/DEG1M; in other words, the opening angle data stored in [41F1] is loaded in the accumulator. Upon Stm. 239 MOV/E,A, the opening angle data in the accumulator is transferred to the E register. Upon Stm. 240 CALL/START, the aforementioned START sub-routine is carried out. By this, the film motor is driven in the forward direction. Upon Stm. 241 MVI/D,6, a value representative of decimal 6 is set in the D register. Upon Stm. 242 CALL/SHUTTER, the aforementioned SHUTTER sub-routine is carried out.

Now assuming that the first and second values of the shutter opening angle entered by the aforementioned D12SET sub-routine are 0° and 220° respectively, then decimal numbers 27 and 5 are stored in [41F1] and [41F2] respectively. When the main shutter 21 of Figure 3A has rotated from the initial phase of 40°, the auxiliary shutter 39 fully covers the aperture. When the main shutter 21 has reached a phase of 280°, in other words, when the aperture 20 starts to be closed by the main shutter 21, the pulse motor 38 is driven through one step in the direction to open the aperture 20. During the turning movement of the auxiliary shutter 39 to the aperture half-open position, however, the main shutter moves from 280° to 300°. Then the pulse motor 38 is further

driven through more one step to open fully the aperture, while the main shutter is advanced to 320° at which the aperture is fully closed. In total, therefore, the entire area of the aperture 5 is covered by either or both of the auxiliary shutter and the main shutter during the period when the main shutter moves from 60° to 320°, as can be seen from Figure 8(a) where the ordinate represents the proportion of the 10 aperture which is open to the entire area thereof, and the abscissa represents the phase angle of the main shutter. In other words, the initiation of aperture opening operation of the auxiliary shutter is controlled in accordance 15 with the data stored in the memory location [41F1] by the SHUTTER sub-routine. As the data stored in [41F1] is, in this instance, 27, the auxiliary shutter starts to open the aperture at a time when the main shutter has arrived at a 20 phase of 280°. The selection of 27 as the first opening angle data leads to the maintenance of a closed aperture during the first complete revolution of the main shutter.

After a first frame exposure has been completed, the SHUTTER sub-routine is followed 25 by Stm. 243 DCR/D which subtracts 1 from 6 in the D register. The result of the subtraction is discriminated by Stm. 244 JNZ/F12. If not 0, the branch F12 is repeatedly carried out. In 30 this instance, the necessary number of repetitions of the branch F12 is 6, so that the first six frames are not exposed to light, as the aperture is maintained closed. Thereafter, upon Stm. 245 DCR/E, subtraction of 1 from the 35 content of the E register, in this instance from 27, is carried out with the resulting content of the E register being 26. Next, CALL/DISPLAY1 is carried out to display the content of the E register by the light-emitting diodes LEDs 0 to 40 3 of Figure 5(A). Upon Stm. 247 LDA/DEG2M, the content of the memory location addressed by DEG2M or [41F2] is loaded to the accumulator. As the opening angle data stored in [41F2] was assumed to be 5, the resulting content 45 of the accumulator becomes 5. Upon Stm. 248 SUB/E, the content of the accumulator is subtracted from the content of the E register with a result: 26-5 = 21. Stm. 249 JNZ/F15, detects whether or not the result of SUB/E is 50 zero. If not zero, the instruction of the address denoted by the branch F15 is carried out. In this way, a number of repetitions of the programme of Stms. 241 to 249 are carried out, until the content of the E register comes into 55 coincidence with the opening angle set in [41F2].

Because the result of the SUB/E is not zero, the just mentioned programme is carried out again. At this time, however, as the content of 60 the E register was decreased from 27 to 26, performance of the SHUTTER sub-routine causes the pulse motor to be driven when the main shutter has rotated to a phase of 270°, so that the resulting opening angle defined by the auxiliary shutter and the main shutter is wider 65

by 10° than that for which the first six frame exposures were made, as shown by dashed line B in Figure 8(b). With a new opening angle of 10°, the next six frame exposures are made. To take a motion picture sequence with fade-in effect, the initiation of the operation of the auxiliary shutter is caused to be progressively earlier with respect to the phase angle of the main shutter, with the resulting opening angle being increased by 10° for every six frame 70 exposures, as shown by a sequence of dashed sloping lines A to V in Figure 8(b). When the final performance of SUB/E occurs with a result of zero, in other words, when the opening angle is widened to an angle narrower by 10° than the angle set in [41F2], Stm. 249 JNZ/F15 is followed next by Stm. 250 CALL/SHUTTER. In this instance, after the opening angle has reached 210°, Stm. 250 CALL/SHUTTER is carried out to make six more 75 frame exposures with the widest opening angle of 220°, which was entered as [05] in [41F2] as shown by a sloping line in W in Figure 8(b). Thus, operation of the auxiliary shutter is controlled to increase the shutter opening angle from a first value of angle record stored in [41F1] to a second value of angle stored in [41F2], in discrete steps of variation separated by 10° from each other for each six frame 80 exposures.

After the completion of the last frame exposure with the widest opening angle dependent upon the data stored in [41F2], Stm. 251 IN/RL is carried out, thereby writing the states of switches SW1 and SW2 of Figure 5(A) in the 100 accumulator, as mentioned before. Upon Stm. 252 SUI/[02], the content of the accumulator is reduced by [02]. So long as the lever 6 remains depressed to the second position, the content of the accumulator written by IN/RL is [03], so that the sign flip-flop is not set. Upon Stm. 253 JP/F13, the instruction of the address denoted by the branch F13 is carried out. Until the lever 6 is released from the second position, a number of repetitions of the 105 programme of Stms. 250 CALL/SHUTTER; 251 IN/RL; 252 SUI/[02]; and 253 JP/F13 are carried out with the result that the particular motion picture sequence with fade-in effect is followed by a continuous series of the corresponding number of frame exposures with the opening angle dependent upon the data stored in [41F2], and remaining unchanged throughout. When the lever 6 is released, Stm. 251 IN/RL results in the entry of [00] or [01] into 110 the accumulator. Upon Stm. 253 JR/F13, Stms. 254 IN/PHASE to 257 CALL/STOP succeed in sequence. When the main shutter nears to the position equivalent to the initial phase position, the film motor is stopped, and a current is allowed to flow through the solenoid of electromagnet 24 for 5 milliseconds to drive the shaft 24a into engagement with the first arcuate slot 15a. 115

After that, upon Stm. 258 MVI/B, [08], a 120 125

[08] is written in the B register. Upon Stm. 259 IN/MODE, as mentioned before, the states of switches SW5 to SW8 are written in the accumulator. Upon Stm. 260 CMP/B, the content of the accumulator is compared with the content of the B register and when the contents are equal, the zero flip-flop is set to "1". When the content of the B register is smaller than that of the accumulator, the carry flip-flop is set to "1". Upon Stm. 261 JZ/F11, the condition of the zero flip-flop is detected. When the zero flip-flop was set to "1", the instruction of Stm. 235 denoted by the branch FI1 is carried out. Otherwise, Stm. 261 JZ/FI1 is followed next by Stm. 262 JMP/INITI9. If the mode setting dial 7 is not moved out of registry with the FI mode during the above mentioned process of exposure operation, Stms. 259 IN/MODE and 260 CMP/B select the programme beginning with Stm. 235 of the branch FI1 to be carried out, because the FI mode provides [08] as mentioned before. A subsequent depression of the lever 6 will lead to the start of another motion picture sequence with fade-in effect. If the dial 7 is operated to select a new mode different from the FI mode, the programme of the mode set by the JMP/INITI9 instruction is carried out.

In operating the camera in the fade-in mode, it is possible to vary the length of that portion of the film which is to be exposed with the fade-in effect by selecting the initial and final degrees of the variable opening angle as desired. Further, in order to vary the intensity of the image in a linear relation to the number of frames exposed with fade-in effect, the equispaced arrangement of slits 21a shown in Figure 4 may be modified so as to be spaced by progressively larger angular distances. For example, the spacing may be proportional to the logarithms of angles in radians, as indicated by dotted lines in Figure 4.

(10) Fade-out (FO) mode:

The mode setting dial 7 is first turned to place the index in registry with a symbol FO, and then the main switch is turned, thereby writing the selected FO mode in the accumulator, and the mode discriminating operation is performed in a manner similar to that described in any of the heretofore described modes. The symbol FO causes [09] to be loaded to the accumulator and Stm. 40 sets the zero flip-flop to "1". Stm. 41 JZ/F0, therefore, causes a jump to Stm. 264 CALL/START with which the branch F0 begins and which sets the auxiliary shutter to the initial open position. Upon Stm. 265 CALL/D12SET with the D12SET sub-routine of Stms. 615 to 619, two kinds of opening angle data selected by the dial 10 are stored in respective memory locations addressed by [41F1] and [41F2] respectively. As shown in Figure 5(C), there are available 12 values of shutter opening angle in 20° steps, which are selected one at a time by the dial 10, the selected value depending upon the par-

ticular combination of the switched positions of SW16 to SW19 co-operative with the dial 10. The first and second data of the opening angles set in this order represent degrees of initial and final angles, at which a fade-out effect respectively starts and terminates.

After such setting of the opening angle data has been performed, a sequence of instructions with Stms. 266 IN/RL; 267 CPI/[07]; and 268 JNZ/FOB is carried out. As in any of the heretofore described modes, only when the depression of the lever 6 to the second position and the depression of the push button 7a occur simultaneously, can an exposure operation with fade-out effect be carried out by a sequence of 80 instructions beginning with Stm. 269. If the push button 7a is not yet depressed, Stm. 268 JNZ/FOB is followed next by Stm. 757 with which the branch FOB begins. This branch FOB contains 757 MVI/B,[09]; 758 IN/MODE; 85 759 CMP/B; 760 JZ/FO1; and 761 JMP/FO4. As explained in each of the heretofore described modes, when a new mode is selected different from the FO mode, this new mode is rendered effective. When the mode setting dial 7 is left unchanged from the FO mode position, the programme of Stms. 266 to 268 and 757 to 760 is repeatedly carried out until the push button 7a is depressed.

Upon depression of the push button 7a during the process of carrying out the just mentioned programme, Stm. 269 LDA/DEG1M is carried out so that the content of the memory location [41F1] is addressed by DEG1M; in other words, the opening angle data stored in [41F1] is loaded in the accumulator. Upon Stm. 270 MOV/E,A, the opening angle data in the accumulator is transferred to the E register. Upon Stm. 271 CALL/START, the aforementioned START sub-routine is carried out. In this, the film motor is driven in the forward direction. Upon Stm. 272 MVI/D,6, a value of decimal 6 is set in the D register. Upon Stm. 273 CALL/SHUTTER, the aforementioned SHUTTER sub-routine is carried out.

Now assuming that the first and and second values of the shutter opening angle entered by the aforementioned D12SET sub-routine are 220° and 160° respectively, then decimal numbers 5 and 11 are stored in [41F1] and [41F2] respectively. When the main shutter 21 of Figure 3A has rotated from the initial phase of 0° to a phase of 40°, the auxiliary shutter 39 fully covers the aperture. When the main shutter 21 of Figure 3A has rotated from the initial phase of 0° to a phase of 40°, the auxiliary shutter 39 fully covers the aperture. When the main shutter has advanced by more than 10°, reaching a phase of 50°, this is detected. When the main shutter has reached a phase of 60°, in other words, when the aperture 20 starts to be opened, the pulse motor is driven by one step to turn the auxiliary shutter in a counter-clockwise direction to open the aperture 20 to

a point at which laterally half the entire area of the picture gate 20 is uncovered by the auxiliary shutter 39. When the main shutter further advances to a phase of 80°, the pulse 5 motor is further driven by more than one step. When the main shutter reaches a phase of 100°, in other words, when the aperture is fully opened with respect to the main shutter, the auxiliary shutter is also moved completely clear 10 of the aperture 20 so that the aperture 20 is fully open to an image-forming light beam.

Whilst the main shutter is operated to open the aperture at least in part over a range of 60 to 280° in phase angle, operation of the 15 auxiliary shutter is controlled in such a manner that when the main shutter is in the range of 0 to 40° in phase angle, in other words, when the aperture is fully covered by the main shutter, the auxiliary shutter also fully covers the aperture; when the main shutter reaches a phase of 60° to start uncovering the aperture, the auxiliary shutter uncovers the aperture by half the entire area thereof; and when the main shutter reaches a phase of 100°, in other words, 20 when the aperture is fully uncovered by the main shutter, the auxiliary shutter also fully uncovers the aperture. Thus, the auxiliary shutter is entirely removed from the aperture when the main shutter is uncovering the aperture, 25 thereby a first frame exposure is made with a maximum possible opening angle of 220° of the main shutter as will be seen from Figure 7(a) wherein the main shutter covers and uncovers the aperture as indicated by the solid lines, while the auxiliary shutter covers and uncovers the aperture as indicated by the dashed lines. The auxiliary shutter covers the aperture over the same time interval as the main shutter, 30 to prevent the auxiliary shutter from effecting the first exposure.

After the first frame exposure has been completed, the SHUTTER sub-routine is followed by Stm. 274 DCR/D which subtracts 1 from 6 in the D register. The result of the subtraction 35 is discriminated by Stm. 275 JNZ/FO2. If not 0, the branch FO2 is repeatedly carried out. In this instance, the necessary number of repetitions of the branch FO2 is six so that the first six frames are exposed with the same opening angle of 220°. Thereafter, upon Stm. 276 INR/E, addition of 1 to the content of the E register is carried out, in this instance to 5 with the resulting content of the E register being increased to 6. Next, Stm. 277 CALL/ 40

55 DISPLAY1 is carried out to display the new content of E register by the light-emitting diodes LEDs 0 to 3 of Figure f(A). Upon Stm. 278 LDA/DEG2M, the content of the memory location addressed by DEG2M, i.e. [41F2], is 50 loaded to the accumulator, thereby the opening angle data stored in [41F2] is transferred to the accumulator. As the opening angle data stored in [41F2] was assumed to be 11, the resulting content of the accumulator becomes 60 65 11. Upon Stm. 279 SUB/E, the content of the

E register is subtracted from the content of the accumulator to obtain a result: 11 - 6 = 4. Stm. 280 JNZ/FO5, detects whether or not the result of SUB/E is zero. If not zero, the instruction of the address denoted by the branch FO5 70 is carried out. In this way, a number of repetitions of the programme of Stms. 272 to 280 are carried out, until the content of the E register comes into coincidence with the opening angle set in [41F2].

Now because the result of the SUB/E is not zero, the just mentioned programme is carried out again. At this time, however, as the content of the E register was increased from 5 to 6, performance of the SHUTTER sub-routine causes 80 the pulse motor to be driven when the main shutter has rotated to a phase of 70°, so that the resulting opening angle defined by the auxiliary shutter and the main shutter is narrower by 10° than that for which the first six frame exposures were made, being equal to 210° as shown by the dashed line in Figure 7(b). With a new opening angle of 210°, the next six frame exposures are made. To take a motion picture sequence with fade-out effect, the start of the operation of the auxiliary shutter is caused to be delayed by a progressively longer time with respect to the phase angle of the main shutter with the resulting opening angle being decreased by 10° for every six frame exposures. When the final performance of SUB/E occurs with a result of zero, in other words, when the opening angle is narrowed to an angle equal to the data set in [41F2], Stm. 280 JNZ/FO5 is followed by Stm. 281 CALL/SHUTTER. In this instance, after the opening angle has reached 160°, Stm. 281 CALL/SHUTTER is carried out to make six more frame exposures with the narrowest opening angle of 160° which was entered as [11] in [41F2] as shown in Figure 7(c). Thus, operation of the auxiliary shutter is controlled to decrease the shutter opening angle from a first value of angle stored in [41F1] to a second value of angle stored in [41F2], in discrete 90 steps of variation separated by 10° from each other for each six frame exposures.

After the completion of the last frame exposure with the narrowest opening angle dependent upon the data stored in [41F2], Stm. 282 IN/RL is carried out, thereby writing the state of switches SW1 and SW2 of Figure 5(A) in the accumulator, as mentioned before. Upon Stm. 283 SUI/[02], the content of the accumulator is subtracted by [02]. So long as the lever 6 remains depressed to the second position, the content of the accumulator written by IN/RL is [03], so that the sign flip-flop is not set. Upon Stm. 284 JP/FO3, the instruction of the address denoted by the branch FO3 is carried out. Until the lever 6 is released from the second position, a number of repetitions of the programme of Stms. 281 CALL/SHUTTER; 100 110 120 125 130 282 IN/RL; 283 SUI/[02] and 284 JP/FO3 are carried out with the result that the particular

motion picture sequence with fade-out effect is followed by a continuous series of the corresponding number of frame exposures with the opening angle dependent upon the data stored in [41F2], and remaining unchanged throughout. When the lever 6 is released, Stm. 282 IN/RL results in the entry of [00] or [01] into the accumulator. Upon Stm. 284 284 JR/RO3, Stms. 285 IN/PHASE to 288 CALL/STOP succeed in sequence. When the main shutter nears to the position equivalent to the initial phase position, the film motor is stopped, and a current is allowed to flow through the solenoid of electromagnet for 5 milliseconds to drive the shaft 24a into engagement with the first arcuate slot 15a.	loaded in the accumulator, and Stm. 42 CPI/[OA] is carried out to effect the setting of the zero flip-flop to "1". Upon Stm. 43 JZ/OL, therefore, there occurs a jump to Stm. 295 CALL/PMOST with which the branch OL begins. This branch OL covers Stms. 295 CALL/PMOST to 311 JNZ/OL5 which are identical with Stms. 264 to 280 for the FO mode. Branch OL is thus carried out to take a motion picture sequence with the fade-out effect in discrete steps of a decrease in the shutter opening angle from a previously selected value to a value larger by 10° than another previously selected value of angle, each step occurring for the taking six frame exposures in sequence; Stm. 311 JNZ/OL5 is followed by a sequence of Stms. 312 IN/PHASE to 315 CALL/STOP so that the main shutter and the film motor are stopped in the position equivalent to the initial phase position. Thereafter, Stms. 316 IN/RL; 317 SUI/[02] and 318 JP/OL3 are carried out to permit this state to be maintained so long as the lever 6 remains depressed.	70 75 80 85
Upon Stm. 289 MVI/B, [09], [09] is written in the B register. Upon Stm. 290 IN/MODE, as mentioned before, the states of switches SW5 to SW8 are written in the accumulator. Upon Stm. 291 CMP/B, the content of the accumulator is compared with the content of the B register and when the contents are equal, the zero flip-flop is set to "1". When the content of the B register is smaller than that of the accumulator the carry flip-flop is set to "1". Upon Stm. 292 JZ/FO1, the condition of the zero flip-flop is detected. When the zero flip-flop was set to "1", the instruction of Stm. 266 denoted by the branch FO1 is carried out. Otherwise, Stm. 292 JZ/FO1 is followed by Stm. 293 JMP/INITI10. If the mode setting dial 7 is not moved out of registry with the FO mode during the above mentioned process of exposure operation, Stms. 290 IN/MODE and 291 CMP/B select the programme beginning with Stm. 266 of the branch FO1 to be carried out because FO mode provides [09], as mentioned before. A subsequent depression of the lever 6 will lead to the start of another motion picture sequence with fade-out effect. If the dial 7 is operated to select a new mode different from the FO mode, the programme of the mode set by the JMP/INITI10 instruction is carried out.	When the lever 6 is released, the next Stm. 319 LDA/DEG1M is carried out. The memory location addressed by DEG1M is loaded to the accumulator, this being the opening angle data for the start of the fade-out effect stored in [41F1]. Upon Stm. 320 MOV/E,A, the content of the accumulator is transferred to the E register. Upon Stm. 321 CALL/PMOST, the aforementioned PMOST sub-routine is carried out to turn the auxiliary shutter 39 in a clockwise direction to close the aperture. Upon Stm. 322 CALL/REV, the aforementioned REVERSE sub-routine is carried out to drive the film motor 12 in the reverse direction, thereby rewinding the film. Upon Stm. 323 MVI/D, 6, a transfer of 6 to the D register occurs. Upon Stms. 324 IN/PHASE; 325 CPI/[00] and 326 JNZ/OL4, the main shutter is rotated counter-clockwise (as viewed in Figure 3A) to the initial phase position at which the film has been rewound by a length corresponding to one frame. Upon Stms. 327 IN/PHASE; 328 CPI/[00] and 329 JZ/K11, the main shutter is further rotated counter-clockwise causing the film to be rewound by one more frame. During this time, Stm. 330 DCR/D is carried out to subtract 1 from the content of the D register. This procedure is repeated until the subtraction results in zero. When the result is zero, Stm. 332 INR/E is permitted to follow, for otherwise the branch OL4 of Stms. 324 to 331 is carried out again. Now, because of the fact that the initial content of the D register was 6, the rewinding of the film by a length corresponding to the sum of six picture frames is required to set the zero flip-flop to "1" by carrying out Stm. 330 DCR/D. When the zero flip-flop is set to "1", Stm. 331 JNZ/OL4 is followed by Stm. INR/E which adds 1 to the content of the E register. Upon Stm. 333 LDA/DEG2M, the opening angle data for the finish	90 95 100 105 110 115 120 125 130
It will be understood from the foregoing that the length of that portion of the film which is to be exposed with fade-out effect can be varied by suitable selection of the initial and final values of the variable opening angle. By a similar modification to the arrangement of the slits 21a to that described in connection with the FI mode, the intensity of the imaging light can be varied in a linear manner over the entire length of that portion of the film which is exposed with fade-out effect.		
(11) Overlap (OL) mode: The mode setting dial 7 is first turned to place the index in registry with a symbol OL, and then the main switch is turned, thereby writing the OL mode in the accumulator, and the mode discriminating operation is performed in a similar manner to that described in any of the heretofore described modes. Now, when the OL mode is selected by the dial 7, [OA] is		

of fade-out effect is transferred to the accumulator. Upon Stms. 334 SUB/E and 335 JNZ/K12, the content of the E register is subtracted from the content of the accumulator, and when 5 the content of the E register has come to coincidence with the content of the accumulator, the zero flip-flop is set to "1". When the condition of the zero flip-flop is "1", the programme beginning with Stm. 336 is carried out. Otherwise, the branch K12 of Stms. 323 to 335 is carried out repeatedly until the result of the SUB/E is zero. At the end, the film has been rewound to the point at which the fade-out was commenced.

10 Now assuming that a fade-out is to be effected with variation of the shutter opening angle from 220° to 180° , upon instructions of Stms. 300 to 311, a continuous series of six frame exposures are made four times with a stepwise variation of 10° in the opening angle from 220° to 190° , so that $4 \times 6 = 24$ frames are made with the fade-out effect. Therefore, upon Stms. 319 to 335, the rewinding of six frames for each 10° interval from 220 to 190° is performed – thus 4 times. When the film has been rewound by 24 frames based on the formula: $6 \times 4 = 24$, a sequence of Stms. 336 IN/PHASE; 337 CPI/34; 338 JNZ/K13 and 339 CALL/STOP are performed to stop the film motor 20 with the shutter in the initial phase position.

25 When the lever 6 is depressed to the second position simultaneously with the depression of the push button 7a again, as detected by carrying out Stms. 340 IN/RL; 341 CPI/[07] and 342 JNZ/OL41, the aforesaid PMOST subroutine is selected by Stm. 343 CALL/PMOST, and carried out to set the auxiliary shutter to the initial open position. Upon Stms. 344 to 363, which are identical with Stms. 239 to 257 30 for FI mode, that particular motion picture sequence which has been taken with fade-out effect is now re-exposed with a fade-in effect while the shutter opening angle is varied from the second angle data stored in the memory location [41F2] addressed by DEG2M, to the first angle data stored in the memory location [41F1] addressed by DEG1M. After the completion of the taking of the particular overlapped motion picture sequence, the shutter is 40 maintained stationary in the aperture closed position, while the instructions of Stms. 364 MVI/B,[OA]; 365 IN/MODE; 366 CMP/B; 367 JZ/OL1; and 368 JMP/INITI11 are carried out in sequence. As for the programme of the 45 NORMAL mode, a second of actuation of the release lever 6 followed by the depression of the push button 7a will lead to another start of the OL mode of the camera operation, provided that the mode setting dial 7 has not been 50 moved from the OL mode position. If however the mode setting dial 7 has not been moved to select a new mode, the mode scanning programme starts.

55 It is to be noted again that the use of a modified arrangement of the slits 21a so the angular spacing follows a geometrical progression is particularly preferable on this overlap mode, because the total intensities of the overlapped exposures will then be made uniform.

(12) Wipe-in mode: 70

In this mode, the exposure operation is made with the picture aperture fully closed for a previously selected time interval, and thereafter exposures are made through an area which gradually is increasing from zero to the maximum. The mode setting dial 7 is first turned to place the index in registry with a symbol WI, and then the main switch is turned, thereby writing the WI mode in the accumulator, and the mode discriminating operation is performed in a manner similar to that described in any of the heretofore described modes. Now, when the WI mode is selected by the dial 7, [OB] is loaded in the accumulator and Stm. 44 is carried out to set the zero flip-flop to "1". Upon Stm. 45 JZ/WI, therefore, there occurs a jump to Stm. 370 CALL/PMCST with which the branch WI begins and which sets the auxiliary shutter to the aperture closed position, as shown in Figure 9(A). Upon Stm. 371 CALL/T1SET, the aforementioned T1SET sub-routine is carried out to set a time data in the H register. Now assuming that the selected time data is 1 second, [06] is transferred to the H register as mentioned before. Upon the simultaneous depression of the lever 6 to the second position and the depression of the push button 7a as detected by carrying out Stms. 372 IN/RL; 373 CPI/[07]; and 374 JNZ/WIB, an exposure operation in wipe-in mode starts to be performed by a sequence of instructions beginning with Stm. 375. If the push button 7a is not yet depressed, Stm. 374 JNZ/WIB is followed next by Stm. 767 with which the branch WIB begins. This branch WIB contains 767 MVI/B.[OB]; 768 IN/MODE; 769 CMP/B; 770 JZ/WI1; and 771 JMP/WI4. As has been explained in each of the heretofore described modes, when a new mode different from WI mode is selected this new mode is rendered effective. If the mode setting dial 7 is left unchanged from WI mode position, the programme of Stms. 372 to 374 and 767 to 770 is repeatedly carried out until the push button 7a is depressed. 90

95

100

105

110

115

120

125

130

Upon depression of the push button 7a during the steps of the just mentioned programme, Stm. 375 CALL/START is carried out by the START sub-routine causing the film motor to start rotating. As the auxiliary shutter has been operated to close fully the aperture 20, no exposure is made. Upon Stm. 376 MVI/D,2, a value of decimal 2 are transferred to the D register. Upon next Stm. 377 CALL/PMO, the pulse motor is driven for rotation in a direction to open the picture gate, thereby the auxiliary shutter half-opens the aperture, as shown in Figure 9B. Upon Stm. 378 CALL/MS5, this state is maintained for 5 milliseconds by the MS5 sub-routine. Upon Stm. 379 CALL/PMSTOP, the power supply to the pulse motor

38 is stopped by the PMSTOP sub-routine. Upon Stm. 380 CALL/T1, an exposure operation is performed for 1 second by the T1 sub-routine, with the auxiliary shutter half opened.

- 5 Thereafter, upon Stm. 381 DCR/D, a subtraction of 1 from the content of the D register is performed. If the subtraction results in zero, Stm. 382 JNZ/WI2 is followed by Stm. 382 IN/RL. If not zero, the programme of Stms. 10 377 to 380 is carried out repeatedly until the DCR/D results in zero. Now, the content of the D register was 2 so that after the programme of Stms. 377 to 380 has been carried out two times, the instructions of Stm. 383 and those that follow are carried out. Accordingly, after an exposure operation has been performed with an aperture as shown in Figure 9B for 1 second the pulse motor is driven by one more step causing the auxiliary shutter to open fully the aperture as shown in Figure 9C and a further exposure operation is performed for 1 second. Then, the programme beginning with Stm. 383 is carried out. In such a manner, the aperture is half open 20 for the first 1 second exposure, and thereafter in the fully open state for a second 1 second exposure; thereby the film is first exposed over half the entire area thereof, and then exposed 25 over the entire area thereof.

30 After the wipe-in exposure operation has been performed as described, the programme of Stms. 383 IN/RL to 385 JPWI3 is carried out. As in the instructions of Stms. 57 to 59 for the NORMAL mode, so long as the lever 6 remains 35 depressed, the programme of Stms. 383 IN/RL to 385 JP/WI3 for the branch WI3 is carried out repeatedly to continue exposing with a fully open aperture. When the lever 6 is released, the JP instruction of Stm. 385 proceeds to the 40 CALL/STOP of Stm. 389, and the STOP subroutine is carried out to terminate the exposure operation. Thereafter, the instructions of Stms. 390 to 349 are carried out so that if the mode setting dial is left in the WI mode position, a 45 second of actuation of the release starts an exposure operation in WI mode, while if the dial 7 has been displaced from the WI position, the mode scanning programme is carried out. This procedure is similar to that for the 50 NORMAL mode.

(13) Wipe-out (WO) mode:

In this mode, the exposure operation is made while the picture aperture is first fully opened for a previously selected time interval and then gradually decreased to zero. The mode setting dial 7 is first turned to place the index in registry with a symbol WO, and then the main switch is turned, thereby writing the WO mode in the accumulator, and the mode discriminating operation is performed in a manner similar to that described in any of the heretofore described modes. Now, when the WO mode is selected by the dial 7, [OC] is loaded in the accumulator, and Stm. 46 CPI/[OC] is carried out to set the zero flip-flop to "1".

Upon Stm. 47 JZ/WO, therefore, there occurs a jump to Stm. 396 CALL/PMOST with which the branch WO begins and which sets the auxiliary shutter to the initial aperture open position. Upon Stm. 397 CALL/T1SET, the aforementioned T1SET sub-routine is carried out to set a desired time data in the H register. Now assuming that the selected time data is 1 second, [06] is transferred to the H register as mentioned before. Upon the simultaneous depression of the lever 6 to the second position and the depression of the push button 7a as detected by carrying out Stms. 398 IN/RL; 399 CPI/[07] and 400 JNZ/WOB, Stm. 401 CALL/START follows to start an exposure operation in the WO mode. If the push button 7a is not yet depressed, Stm. 400 JNZ/WOB is followed next by Stm. 772 with which the branch WOB begins. This branch contains 772 MVI/B, [OC]; 773 IN/MODE; 774 CMP/B; 775 JZ/WO1; and 776 JMP/WO3. As has been explained in each of the heretofore described modes, when a new mode different from WO mode is selected, this new mode is rendered effective. If the mode setting dial 7 is left unchanged from WO mode position, the programme of Stms. 398 to 400 and 772 to 775 is repeatedly carried out until the push button 7a is depressed.

Upon depression of the push button 7a during the steps of the just mentioned programme, Stm. 401 CALL/START is carried out to start an exposure operation. Thereafter, upon Stm. 402 MVI/D,2, a transfer of a value representative of decimal 2 to the D register occurs. Upon the next Stm. 403 CALL/PMC, the aforementioned PMC sub-routine is carried out to set the auxiliary shutter in a position where the aperture is open over a half of its entire area. Upon Stms. 404 CALL/MS5 and 405 CALL/PMSTOP, the power supply to the pulse motor is stopped, as in WI mode. Thereafter, upon Stm. 406 CALL/T1, this state (where the aperture is half closed) is maintained for 1 second, while permitting the exposure operation to proceed. Upon Stms. 407 DCR/D and 408 JNZ/WO2, which are identical with Stms. 381 and 382 for WI mode, there occurs a number of jumps to Stm. 403 until the result of the DCR/D is zero. Now the content of the D register was 2, so that after an exposure operation has been performed with the half closed aperture for the first 1 second and with the fully closed aperture for a second 1 second, Stms. 409 IN/PHASE to 412 CALL/STOP are carried out to stop the main shutter in the position equivalent to the initial phase position. After that, the instructions of Stms. 413 to 417 are carried out so that if the mode setting dial 7 is left unchanged from the wipe-out mode position, a second of actuation of the lever 6 starts an exposure operation in the WO mode, while if the dial 7 is displaced from the WO position, the mode scanning programme is carried out. The procedure is similar

to that for the NORMAL mode.

As a result, by a succession of exposure operations the first one of which is performed for 1 second with the half closed aperture and the second one of which is performed with the fully closed aperture for 1 second, picture images are first formed on film frames only over half the area of each frame, and then no picture images are formed on subsequent film frames; thus a picture sequence is taken in the WO mode.

(14) Wide Lap (WL) mode:

This mode makes wipe-out exposure and then a wipe-in exposure over the same portion 15 of the film. Prior to making a wipe lap exposure, an operating member (not shown) is manipulated so that the stop pin 40b (Figure 3A) is moved from the normal position (shown in Figure 9) to the left, reaching the position shown 20 in Figure 10. Here, the stop pin 40b is held in abutment against the left-hand end of the arcuate slot 101c. Then, the mode setting dial 7 is turned to place the index in registry with a symbol WL, and the main switch is turned, 25 thereby writing the WL mode in the accumulator and the mode discriminating operation is performed in a manner similar to that described in any of the heretofore described modes. Now, when the WL mode is selected by the dial 7, 30 [OD] is loaded in the accumulator, and Stm. 48 CPI/[OD] is carried out to set the zero flip-flop to "1". Upon Stm. 49 JZ/WL, therefore, there occurs a jump to Stm. 419 CALL/PMOST with which the branch WL begins and 35 which sets the auxiliary shutter to the initial aperture open position. Upon Stm. 420 CALL/T1SET, the aforementioned T1SET sub-routine is carried out to set a desired time data in the H register. Upon simultaneous depression of the 40 lever 6 to the second position and the depression of the push button 7a as detected by carrying out Stms. 421 IN/RL; 422 CPI/[07]; and 423 JNZ/WLB, Stm. 424 CALL/START follows to start an exposure operation in the WL 45 mode. If the push button 7a is not yet depressed, Stm. 423 JNZ/WLB is followed by Stm. 777 with which the branch WLB begins. This branch WLB contains Stms. 777 MVI/B, [OD]; 778 IN/MODE; 779 CMP/B; 780 JZ/WL1; and 781 JMP/WL7. As has been explained 50 in each of the heretofore described modes, when a new mode different from WL mode is selected, this new mode is rendered effective. If the mode setting dial 7 is left unchanged 55 from WL mode position, the programme of Stms. 421 to 423 and 777 to 780 is repeatedly carried out until the push button 7a is depressed.

Upon depression of the push button 7a 60 during the steps of the just mentioned programme, Stm. 424 CALL/START is carried out to start an exposure operation, while the aperture is fully open. Upon Stm. 425 CALL/T1, the exposure operation is permitted to proceed 65 for a time interval dependent upon the time

data stored in the H register. The subsequent Stms. 426 to 436 are identical with Stms. 402 to 412 for the wipe-out mode, so that a continuous succession of exposure operations are made with a variation in the open aperture area from the fully open state through half open to the fully closed state.

When the lever is released as detected by Stms. 437 IN/RL; 438 SUI/[02] and 439 JP/WL3, a programme beginning with Stm. 440 is carried out. This programme comprises instructions of Stms. 440 MVI/D,3; 441 CALL/REV; 442 CALL/T1; 443 DCR/D and 444 JNZ/WL4. Upon Stm. 440 MVI/D,3, a transfer of 3 to the D register occurs. Upon 441 CALL/REV, the film motor is driven for rotation in the reverse direction to rewind the film for a time interval which is controlled by the next Stm. 442 CALL/T1. At the termination of this time interval, Stm. 443 is carried out to subtract 1 from the content of the D register. When the result of DCR/D as detected by the next Stm. 444 JNZ/WL4 is not zero, the sequence of the instructions of Stms. 442 to 444 is carried out again. This procedure repeats until the DCR/D results in zero. Now, the content of the D register was 3, so that after the CALL/T1 has been repeated 3 times, the result of the DCR/D becomes zero, to start a programme of Stms. 445 IN/PHASE to 448 CALL/STOP. As a result, the rewinding of the film takes place for a time interval equal to 3 times the selected time data. This means that the film is rewound to that frame at which the wipe-out exposure operation began.

When the lever 6 is actuated the second time, as detected by Stms. 449 IN/RL; 450 CPI/[03]; and 451 JNZ/WL5, Stm. 452 CALL/START is carried out to start driving the film motor for rotation in the forward direction. Upon Stm. 453 CALL/T1, an exposure operation is performed with the aperture fully closed for the time interval T1. Subsequently, Stms. 454 to 460, which are identical with Stms. 376 to 382 of the wipe-in mode except that the CALL/PMO is replaced by the CALL/PMC, are carried out with the result that the auxiliary shutter assumes the position shown in Figure 10A to open one half of the aperture while an exposure operation is performed for the time interval T1, and then takes the position shown in Figure 10B where the aperture is fully open to perform a subsequent exposure operation again for the time interval T1. Thereafter, Stms. 461 IN/PHASE; 462 CPI/34; 463 JNZ/K19; and 464 CALL/STOP are carried out to stop the main shutter in the position equivalent to the initial phase position.

In summary, for the first time interval, an image of a first scene is formed on the film through the fully open aperture as shown in Figure 9C; for the second time interval, images of the first scene and a second scene (which is different from the first scene) are formed on the film along the same length thereof but on

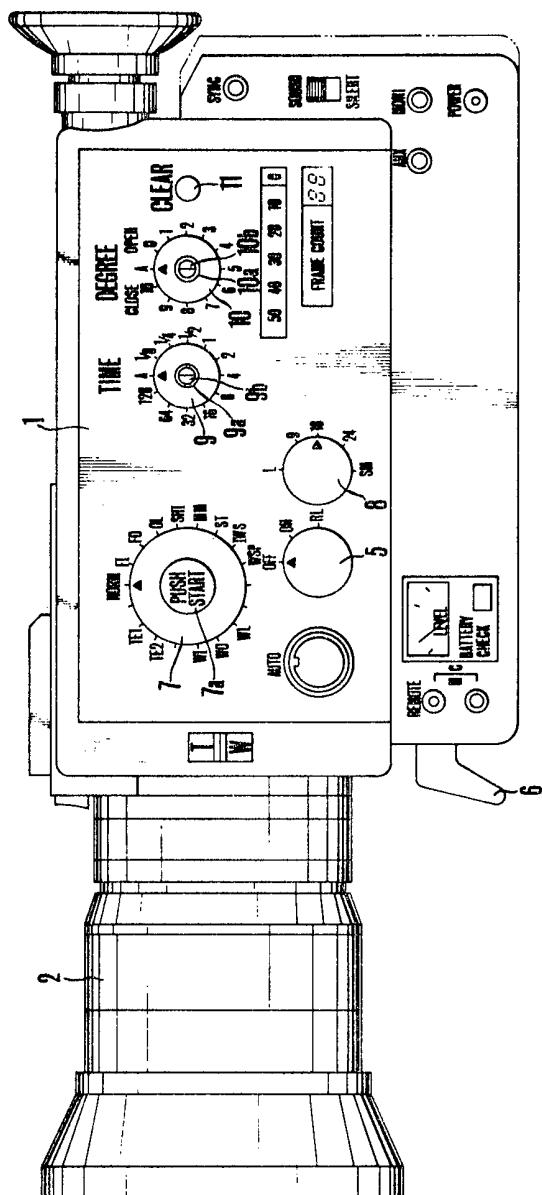
areas laterally separated as these images are projected through the respective areas of the aperture as shown in Figures 9B and 10A; and for the third time interval, only the second 5 scene is photographed through the fully open aperture shown in Figure 10B, on that portion of the film which was run past the fully closed aperture shown in Figure 9A. As a result, the first scene is wiped out from right to left as 10 viewed in Figures 9 and 10, and at the same time the second scene is wiped in from the same direction.

After the completion of the wipe lap exposure operation, Stms. 464-1 CALL/PM0; 15 464-2 CALL/MS5; 464-3 CALL/PMSTOP; and 465 CALL/PMOST are carried out in sequence with the result that the auxiliary shutter is set to the initial open position. Upon Stms. 466 MVI/B, [OD]; 467 IN/MODE; 468 20 CMP/B; 469 JZ/WL1 and 470 JMP/INIT14, a second of actuation of the release lever 6 followed by the depression of the push button 7a will lead to the camera starting in the WL mode provided that the mode setting dial 7 is left unchanged from the WL mode position. 25 Otherwise, if the mode setting dial 7 has been turned from the WL position to select a new mode, the mode scanning programme starts.

It will be seen from the foregoing that the 30 cinematographic camera of this invention is controlled by the use of a microprocessor and an associated programme. Although this programme is described as written in ROM, it is of course possible to write this programme in 35 RAM (random access memory). Furthermore, the use of a programme in controlling the cinematographic camera makes it possible selectively to perform a wide variety of operating modes while nevertheless preserving a relatively 40 simple control circuit.

WHAT WE CLAIM IS:—

1. An intermittent film advance cinematographic camera including: a film transport motor; a shutter for exposing a transported 45 film; a shutter control mechanism co-operative with said film transport motor; a control circuit for controlling at least the driving and stopping operations of said motor; and a multi-mode processing circuit having a number of 50 pre-programmed operating modes and arranged so as to control said control circuit in accordance with a manually-selected programme, thereby automatically to carry out a required mode of photographic exposing operation.
- 55 2. A cinematographic camera according to claim 1, wherein said programme is stored in a memory circuit.
3. A cinematographic camera according to claim 2, wherein said memory circuit is a read-only memory.
- 60 4. A cinematographic camera according to any of claims 1 to 3, wherein the manually-selected programme corresponding to an operating mode for photographic exposure is selected 65 by a mode selecting programme.


5. A cinematographic camera according to claim 4, wherein there is provided a manually operable mode selecting means for selecting a photographic mode and for forming a signal corresponding to the selected mode, said processing circuit being arranged to carry out said mode selecting programme in response to said signal. 70
6. A cinematographic camera according to any of claims 1 to 5, wherein an auxiliary shutter is provided to open and close a picture aperture independently of the shutter (main shutter) controlled by said shutter control mechanism. 75
7. A cinematographic camera according to claim 6, wherein both the main shutter and the auxiliary shutter are controlled by said control circuit under instructions from the processing circuit, the auxiliary shutter being actuated only at a predetermined phase of the main shutter dependent upon the selected exposure operation. 80
8. A cinematographic camera according to any of the preceding claims, wherein manually-operable release means are provided, said programme operating to detect the manual actuation of the release means and then to effect the required control to drive said film transporting motor. 90
9. A cinematographic camera according to claim 8, wherein the termination of the actuation of the release means is detected by a step in said programme whereafter a stop signal is applied to the control circuit to stop the driving of said film transport motor. 95
10. A cinematographic camera according to claim 9, wherein phase detecting means are provided for detecting the phase of the shutter, said programme operating to produce said stop signal when the shutter assumes the phase at which the aperture is closed. 100
11. A cinematographic camera according to claim 6, or any claim appendent thereto, wherein in a light measuring circuit is provided for producing an output corresponding to the brightness of an object to be photographed, the auxiliary shutter being actuated under the control of said programme to close the aperture on the basis of the output of said light measuring circuit. 110
12. A cinematographic camera according to any of the preceding claims, wherein time information setting means are provided for setting time information into the processing circuit, the film transport motor being actuated under the control of said programme for a set time interval whereafter the motor is stopped. 115
13. A cinematographic camera according to any of claims 1 to 11, wherein means are provided for setting first and second time informations into the processing circuit. 120
14. A cinematographic camera according to claim 13, wherein the control circuit is controlled by the programme to perform a number of single frame exposure operations, each successive single frame exposure operation follow- 125
- 130

ing the preceding operation by said pre-set first time interval, whereafter the second time interval elapses before the next series of single frame exposures occurs.	
5 15. A cinematographic camera according to claim 13, wherein the control circuit is controlled by the programme to actuate the film transport motor after the elapse of said first pre-set time interval, the motor being actuated for said second pre-set time interval.	60
10 16. A cinematographic camera according to claim 13, wherein the control circuit is controlled by the programme to actuate the film transport motor for a time equal to the first pre-set time, whereafter the motor is stopped for a time equal to the second pre-set time.	65
15 17. A cinematographic camera according to claim 13, wherein the control circuit is controlled by the programme to hold the shutter in a phase at which the aperture is open for the first pre-set time, and then to hold the shutter in a phase at which the aperture is closed for the second pre-set time.	70
20 18. A cinematographic camera according to any of the preceding claims, wherein a light measuring circuit is provided for producing an output corresponding to the brightness of an object to be photographed, the control circuit operating under the control of the programme to hold the shutter in a phase at which the aperture is open for a time corresponding to the output of said light measuring circuit, the film transport motor being stopped, during such time.	75
25 19. The cinematographic camera according to any of the preceding claims, wherein the shutter comprises a rotatable blade and there is provided an opening angle control circuit for controlling the angle of the shutter for which the aperture is open.	80
30 20. A cinematographic camera according to claim 19, wherein the opening angle control circuit is controlled by the programme so as to reduce the angle over which the shutter is open as a film is transported and exposed.	85
35 21. A cinematographic camera according to claim 19, wherein the opening angle control circuit is controlled by the programme so as to increase the angle over which the shutter is open as a film is transported and exposed.	90
40 22. A cinematographic camera according to claim 19, wherein the opening angle control circuit is controlled by the programme so that in a first period of transport of the film by the film transport motor the angle over which the shutter is open is reduced as the film is transported and exposed, and in a second period of transport of the film the angle over which the	95
45	
50	
55	
shutter is open is increased as the film is transported and exposed, the film transport motor being driven for reverse rotation to rewind the film between the first and second periods whereby the same length of film is exposed twice, once with decreasing opening angle and then with increasing opening angle.	100
60 23. A cinematographic camera according to any of claims 19 to 22, wherein said shutter has a fixed opening angle, and an auxiliary shutter is provided and which is controlled by the opening angle control circuit to decrease the effective opening angle of the said shutter.	105
65 24. A cinematographic camera according to claim 23, wherein said auxiliary shutter comprises a blade movable across the picture aperture by means of a motor under the control of the opening angle control circuit.	110
70 25. A cinematographic camera according to claim 25, wherein said motor is a pulse controlled stepping motor.	
75 26. A cinematographic camera substantially as hereinbefore described with reference to and as illustrated in the accompanying drawings.	
80 27. A method of controlling a cinematographic camera according to any of claims 1 to 26 and substantially as hereinbefore described.	
85 28. A method of operating a cinematographic camera according to claim 1, in which method the processing circuit follows a series of steps defined in a programme so as to control the control circuit, whereby the film transport motor and shutter are operated to perform a selected exposure operation on a film.	
90 29. A method according to claim 29 in which the processing circuit reads the programme from a read-only memory.	
95 30. A method according to claim 28 or claim 29, in which the cinematographic camera has an auxiliary shutter and means to sense the brightness of an object being filmed, the programme including instructions for the processing circuit to assess the correct exposure time taking into account the film speed and the object brightness and to cause the control circuit to actuate the auxiliary shutter in conjunction with the main shutter thereby correctly to expose the film.	
100 31. A method of operating a cinematographic camera according to claim 28 and substantially as hereinbefore described with reference to the accompanying drawings.	
105	
110	

SANDERSON & CO.,
Chartered Patent Agents,
97, High Street,
Colchester, Essex.
Agents for the Applicants.

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 1

FIG. 1

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 2

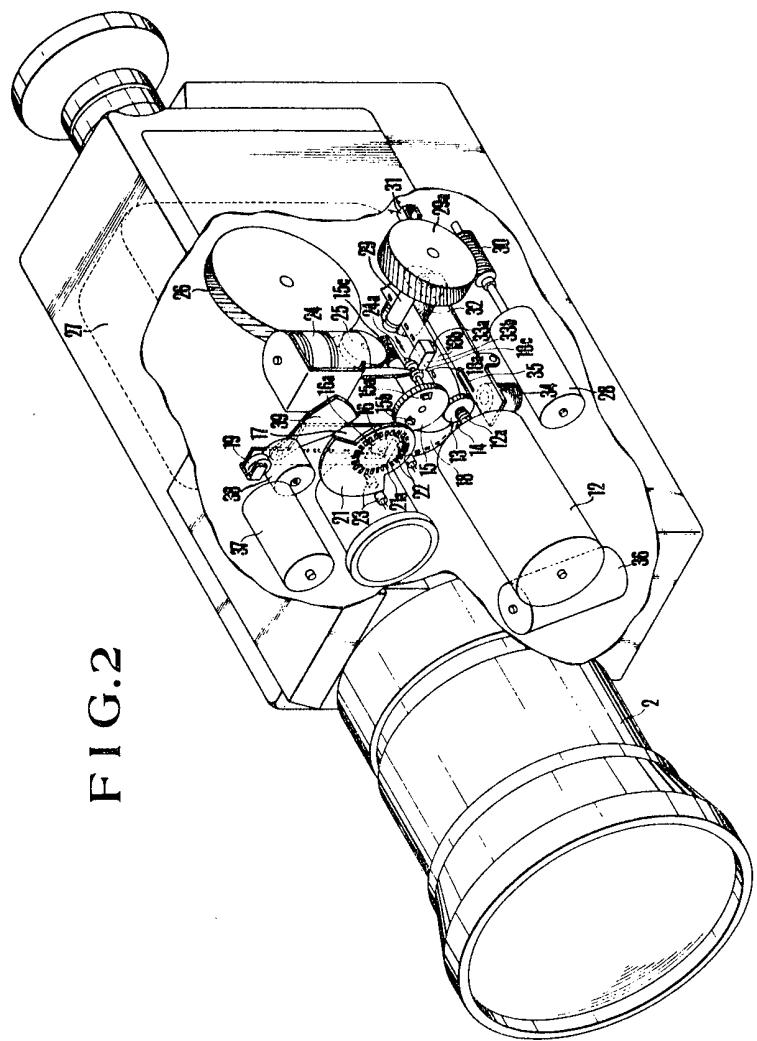


FIG. 2

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 3

FIG. 3A

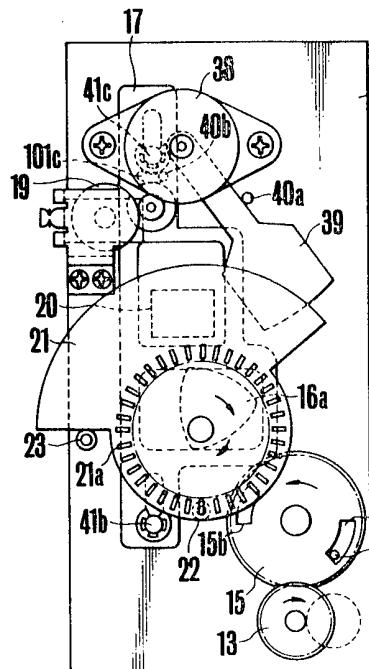


FIG. 3c

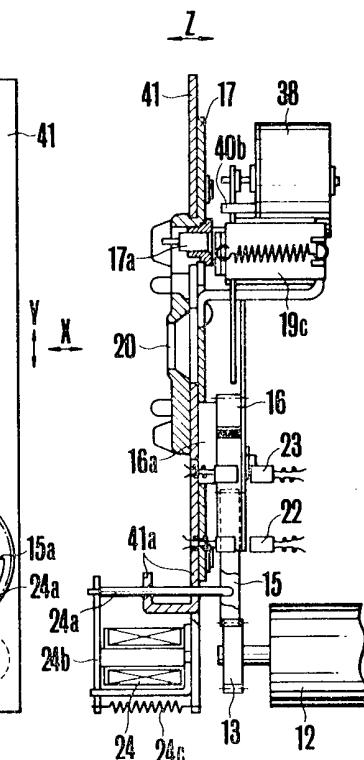
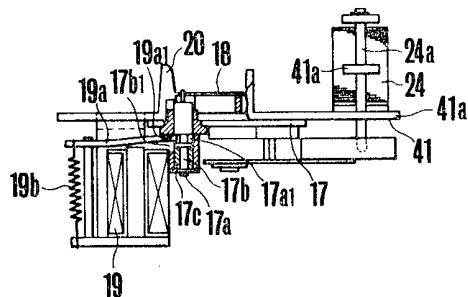
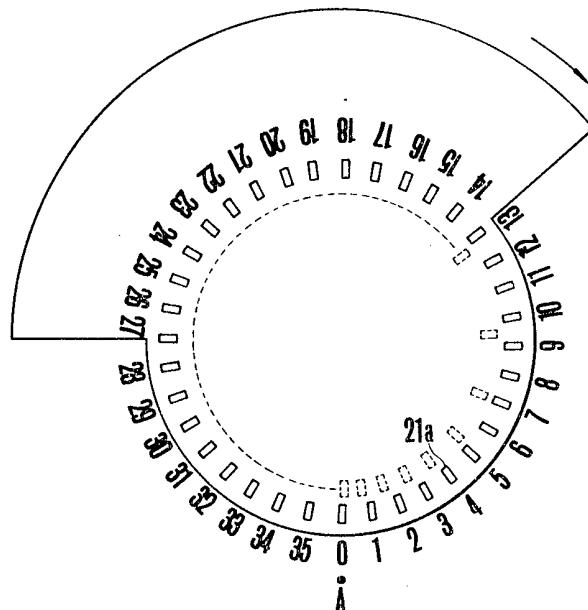
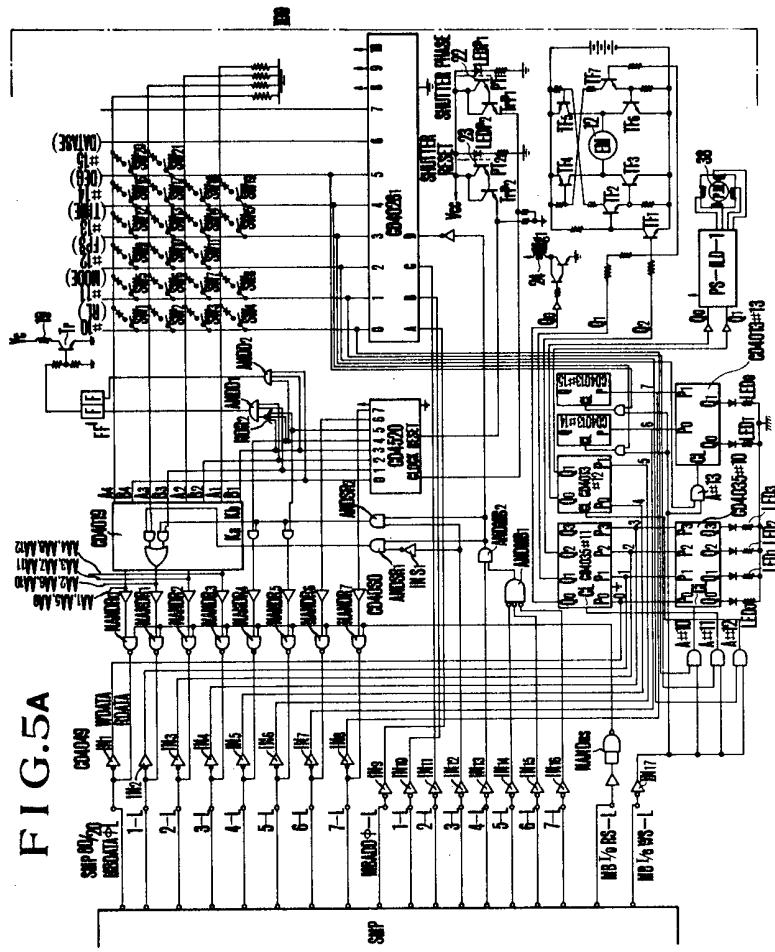



FIG. 3 B

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 4

FIG.4




FIG.5e

IN		OUT		
HEX	PROGRAM INSTRUCTION	HEX	PROGRAM INSTRUCTION	DEVICE
# 10	R L	# 10	DISP 1	LED
# 11	MODE	# 11	CONT 1	Mg1, FILM MOTOR
# 12	FPS	# 12	CONT 2	PULSE MOTOR
# 13	TIME	# 13	DISP 2	LED
# 14	DEG	# 14	CONT 3	Mg2
# 15	DATA SET	# 15	CONT 4	Mg3
# 18	PHASE	# 16	CONT 5	
# 20	EXT	# 17	CONT 6	
# 21	LEVEL			
# 22	ICC			

1588264 COMPLETE SPECIFICATION

47 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 5

FIG. 5A

1588264


COMPLETE SPECIFICATION

47 SHEETS

*This drawing is a reproduction of
the Original on a reduced scale*

Sheet 6

FIG.5B

1588264

COMPLETE SPECIFICATION

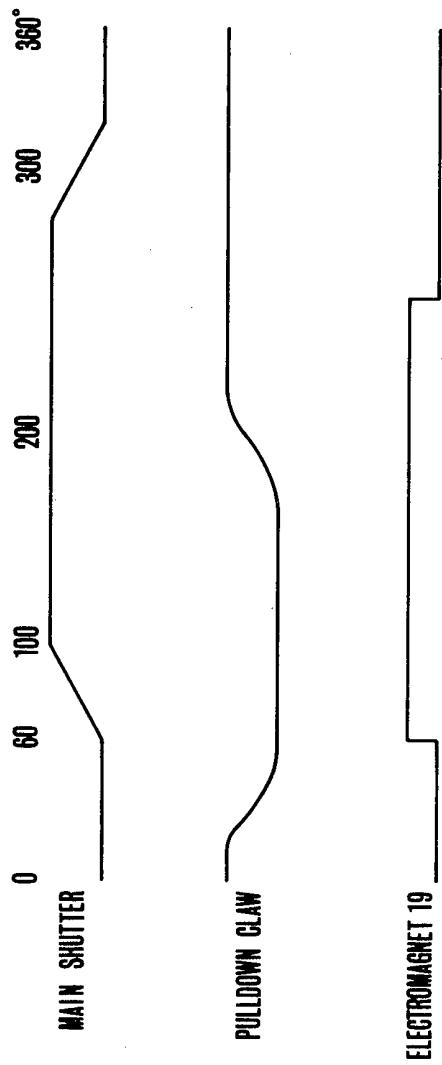
47 SHEETS

This drawing is a reproduction of
the Original on a reduced scale

Sheet 7

FIG. 5C

FIG.5d


MB1000~7 HEX DATA		MBDATA 0 ~ 7							
		HEX							
		7	6	5	4	3	2	1	0
# 10	LED DISPLAY (SHUTTER PHASE)	# 00~#0f	H	H	H	H	H	H	H
			H	H	H	H	L	L	L
	M 1 DE-ENERGIZED	# 02	H	H	H	H	H	L	H
	FM (FILM MOTOR)	# 06	H	H	H	H	H	L	H
	FORWARD DIRECTION	# 00	H	H	H	H	H	H	H
# 11	"	"	H	H	H	H	H	H	H
	REVERSE DIRECTION	# 03	H	H	H	H	L	L	L
	ENERGIZED	# 07	H	H	H	H	L	L	L
	STOP								
# 12	PULSE MOTOR	# 00	H	H	H	H	H	H	H
	STOP	# 20	H	H	L	H	H	H	H
	"	CLOCKWISE DIRECTION	H	H	L	H	H	H	H
	"	COUNTER CLOCKWISE DIRECTION	# 10	H	L	L	H	H	H
# 13	LED	ON	# 30	H	H	H	H	H	H
		OFF	# 00	H	H	H	H	H	H
			H	# 40	H	L	H	H	H
# 14	TIME DATA LED	ON	# 00	H	H	H	H	H	H
		OFF	# 80	L	H	H	H	H	H
# 15	OPENING ANGLE DATA LED	ON	# 00	H	H	H	H	H	H
		OFF	# 00	H	H	H	H	H	H

1588264 COMPLETE SPECIFICATION
 47 SHEETS This drawing is a reproduction of
 the Original on a reduced scale
 Sheet 8

1588264 COMPLETE SPECIFICATION

47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale
Sheet 9*

FIG.6

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 10

FIG.7 (a)

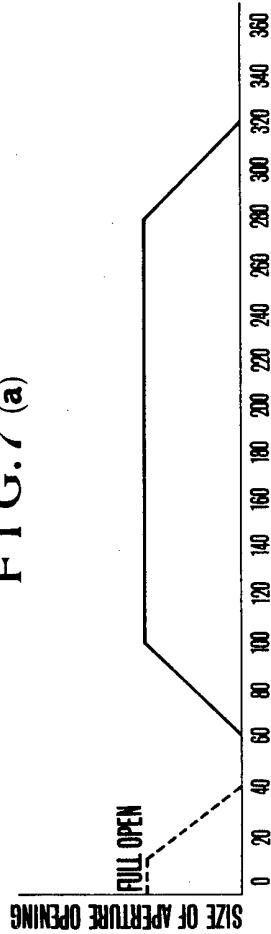


FIG.7 (b)

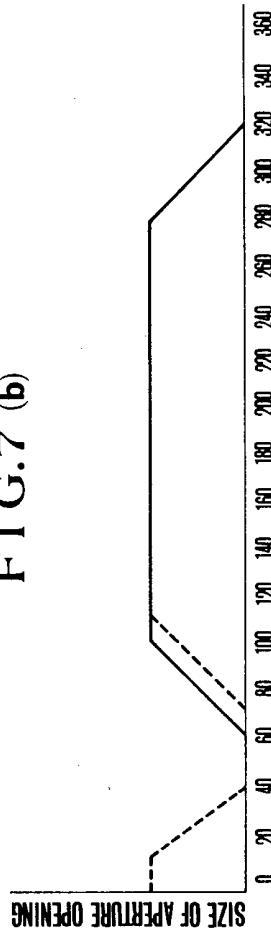


FIG. 7 (c)

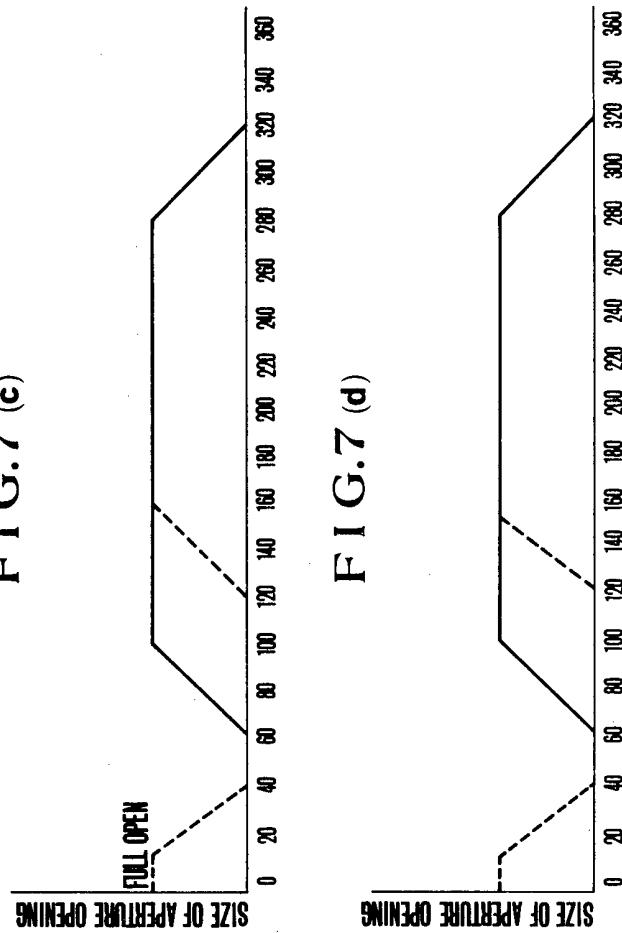
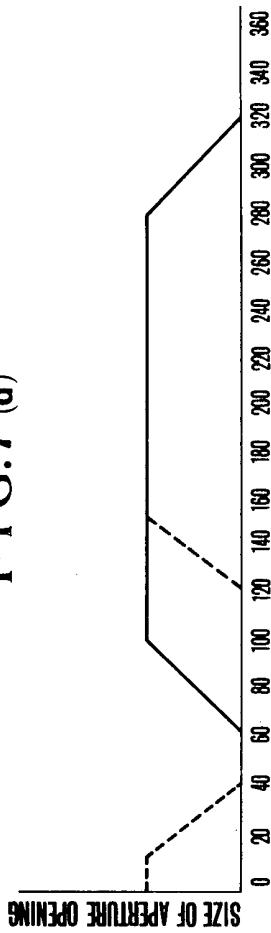



FIG. 7 (d)

1588264 COMPLETE SPECIFICATION

47 SHEETS *This drawing is a reproduction of the Original on a reduced scale*
Sheet 12

FIG.8 (a)

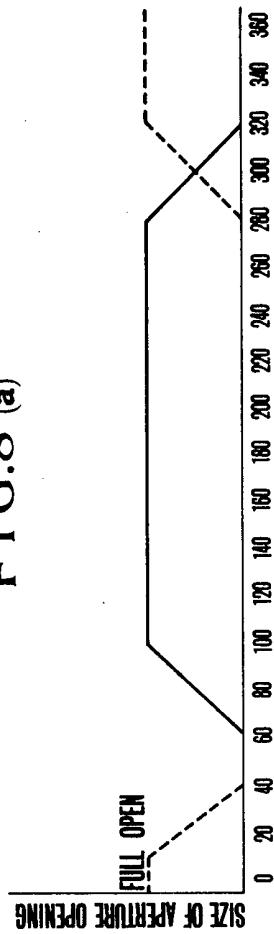
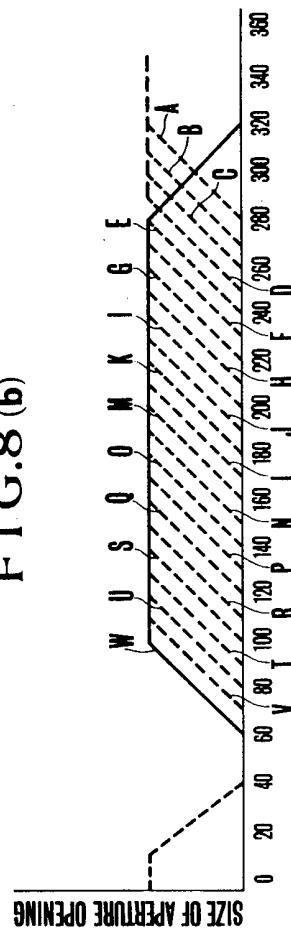
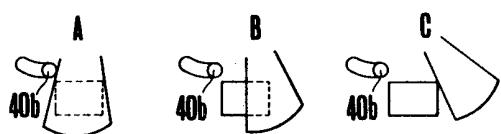




FIG.8 (b)

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 13

FIG.9

FIG.10

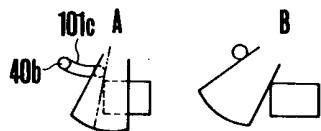


FIG. II

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 15

F I G.12-1

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
STMT	SOURCE	STATEMENT	
1	RL	EQU	*10 RELEASE SW
2	MODE	EQU	*11 MODE SW
3	FPS	EQU	*12 FRAMES/SEC DATA SW
4	TIME	EQU	*13 TIME DATA SW
5	DEG	EQU	*14 DEGREE DATA SW
6	PHASE	EQU	*18 SHUTTER PHASE PULSES
7	DATASET	EQU	*15 TIME, DEG DATASET SW
8	DISP 1	EQU	*10 DISPLAY 1
9	CONT 1	EQU	*11 CONTROL 1
10	CONT 2	EQU	*12 CONTROL 2
11	DISP 2	EQU	*13 DISPLAY 2
12	CONT 3	EQU	*14
13	CONT 4	EQU	*15
14	CONT 5	EQU	*16
15	CONT 6	EQU	*17
16	EXT	EQU	*20 QUANTITY OF EXPOSURE
17	LEVEL	EQU	*21 EXPOSURE LEVEL SETTING
18	DEG1M	EQU	*41F1 INITIAL DEG MEMORY
19	DEG2M	EQU	*41F2 END DEG MEMORY
20		ORG	*4200
21	INITIAL	IN	MODE
22		CPI	*00
23		JZ	NORM NORMAL = 0
24	INITI 1	CPI	*01
25		JZ	DIAPHRAGM DIAPHRAGM PREFERENCE=*01

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 16

F I G.12-2

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND	
26	INITI 2	CPI	*02	
27		JZ	MM	MEMO MOTION =*02
28	INITI 3	CPI	*03	
29		JZ	IWS	INDENT WORK SAMPLING =*03
30	INITI 4	CPI	*04	
31		JZ	WS	WORK SAMPLING =*04
32	INITI 5	CPI	*05	
33		JZ	ST	SELF TIMER =*05
34	INITI 6	CPI	*06	
35		JZ	TE 1	TIME EXPOSURE1 =*06
36	INITI 7	CPI	*07	
37		JZ	TE 2	TIME EXPOSURE2 =*07
38	INITI 8	CPI	*08	
39		JZ	FI	FADE IN =*08
40	INITI 9	CPI	*09	
41		JZ	FO	FADE OUT =*09
42	INITI 10	CPI	*0A	
43		JZ	OL	OVER LAP =*0A
44	INITI 11	CPI	*0B	
45		JZ	WI	WIPE IN =*0B
46	INITI 12	CPI	*0C	
47		JZ	WO	WIPE OUT =*0C
48	INITI 13	CPI	*0D	
49		JZ	WL	WIPE LAP =*0D
50	INITI 14	JMP	INITIAL	

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 17

F I G.12-3

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
5 1	•NORMAL•		
5 2	NORM	CALL	PMOST
5 3	NORM 1	IN	RL
5 4		CPI	#03
5 5		JNZ	NRM
5 6		CALL	START
5 7	NORM 2	IN	RL
5 8		SUI	#02
5 9		JP	NORM 2
6 0	Z 1	IN	PHASE
6 1		CPI	34
6 2		JNZ	Z 1
6 3		CALL	STOP
6 4		MV1	B, #00
6 5		IN	MODE
6 6		CMP	B
6 7		JZ	NORM 1
6 8	NORM 3	JMP	INITI 1
6 9	DIAPHRAGM PREFERENCE		
7 0	DIAPHRAGM	CALL	PMQST
7 1	DIAPHRAGM ₁	IN	RL
7 2		CPI	#07
7 3		JNZ	SBRI
7 4		CALL	START
7 5	DIAPHRAGM ₂	IN	EXT

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 18

FIG.12-4

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
7 6		MOV	E, A
7 7		CALL	SHUTTER
7 8		IN	RL
7 9		SUI	*02
8 0		JP	DIAPHRAGM
8 1	Z2	IN	PHASE
8 2		CPI	34
8 3		JNZ	Z2
8 4		CALL	STOP
8 5		MVI	B, *01
8 6		IN	MODE
8 7		CMP	B
8 8		JZ	DIAPHRAGM 1
8 9	DIAPHRAGM	JMP	INITI 2
9 0	• MEMO MOTION.		
9 1	MM	CALL	PMOST
9 2		CALL	T1SET
9 3	MM 1	IN	RL
9 4		CPI	*07
9 5		JNZ	MMB
9 6	MM 2	CALL	START
9 7	K1	IN	PHASE
9 8		CPI	34
9 9		JNZ	K1
100		CALL	STOP

1588264 COMPLETE SPECIFICATION

47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*

Sheet 19

F I G.12-5

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
101		CALL	T1
102		IN	RL
103		SUI	*02
104		JP	MM2
105		CALL	STOP
106		MVI	B, *02
107		IN	MODE
108		CMP	B
109		JZ	MM 1
110	MM 3	JMP	INITI 3
111	• INDENT WO RD SAMPLING.	CALL	PMOST
112	IWS	CALL	T12SET
113		MVI	D, 4
114		IN	RL
115	IWS 1	CPI	*07
116		JNZ	IWSB
117		CALL	START
118	IWS 2	IN	PHASE
119	K2	CPI	34
120		JNZ	K2
121		CALL	STOP
122		CALL	T1
123		DCR	D
124		JNZ	IWS 2
125			

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 20

F I G.12-6

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
126		CALL	T2
127		MVI	D, 4
128		IN	RL
129		SUI	#02
130		JP	IWS 2
131		CALL	STOP
132		MVI	B, #03
133		IN	MODE
134		CMP	B
135		JZ	IWS 1
136	IWS 4	JMP	INITI 4
137	•WORK SAMPLING.	CALL	PMOST
138	WS	CALL	T12SET
139		IN	RL
140	WS 1	CPI	#07
141		JNZ	WSB
142		CALL	START
143	WS 2	CALL	T1
144		IN	PHASE
145	K8	CPI	34
146		JNZ	K8
147		CALL	STOP
148		CALL	T2
149		IN	RL
150			

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 21

FIG.12-7

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
1 5 1		S U I	* 0 2
1 5 2		J P	W S 2
1 5 3		C A L L	S T O P
1 5 4		M V I	B, * 0 4
1 5 5		I N	M O D E
1 5 6		C M P	B
1 5 7		J Z	W S 1
1 5 8	W S 3	J M P	I N I T I 5
1 5 9	• S E L F T I M E R .	C A L L	P M O S T
1 6 0	S T	C A L L	T 1 2 S E T
1 6 1		C A L L	T 1 2 S E T
1 6 2	S T 1	I N	R L
1 6 3		C P I	* 0 7
1 6 4		J N Z	S T B
1 6 5		C A L L	T 1
1 6 6		C A L L	S T A R T
1 6 7		C A L L	T 2
1 6 8	K 4	I N	P H A S E
1 6 9		C P I	3 4
1 7 0		J N Z	K 4
1 7 1		C A L L	S T O P
1 7 2		M V I	B, * 0 5
1 7 3		I N	M O D E
1 7 4		C M P	B
1 7 5		J Z	S T 1

F I G.12-8

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
176	ST 2	JMP	INITI 6
177	• TIME EXPOSURE1•		
178	TE 1	CALL	PMOST
179		CALL	T12SET
180	TE 11	IN	RL
181		CPI	#07
182		JNZ	TE1B
183	TE 13	CALL	START
184	TE 12	IN	PHASE
185		CPI	16
186		JNZ	TE 12
187		CALL	STOP
188		CALL	T1
189		CALL	START
190	K5	IN	PHASE
191		CPI	34
192		JNZ	K5
193		CALL	STOP
194		CALL	T2
195		IN	RL
196		SUI	#02
197		JP	TE 13
198		CALL	STOP
199		MVI	B, #06
200		IN	MODE

FIG.12-9

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
201		CMP	B
202		JZ	TE 11
203	TE 14	JMP	INITI 7
204	• TIME EXPOSURE 2 •		
205	TE 2	CALL	PMOST
206	TE 21	IN	RL
207		CPI	*07
208		JNZ	TE2B
209		IN	LEVEL
210		MOV	E, A
211	TE 24	CALL	START
212	TE 22	IN	PHASE
213		CPI	16
214		JNZ	TE 22
215		CALL	STOP
216	TE 28	IN	ICC ICC=+22
217		SUB	E
218		JNZ	TE 23
219		CALL	START
220	K6	IN	PHASE
221		CPI	34
222		JNZ	K6
223		CALL	STOP
224		IN	RL
225		SUI	*02

F I G.12-10

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
226		JP	TE 24
227		MVI	B, #07
228		IN	MODE
229		CMP	B
230		JZ	TE 21
231	TE 25	JMP	INITI 8
232	.FADE IN.		
233	FI	CALL	PMOST
234		CALL	D12SET
235	FI 1	IN	RL
236		CPI	#07
237		JNZ	FIB
238		LDA	DEG1M
239		MOV	E, A
240		CALL	START
241	FI 5	MVI	D, 6
242	FI 2	CALL	SHUTTER
243		DCR	D
244		JNZ	FI 2
245		DCR	E
246		CALL	DISPLAY 1
247		LDA	DEG2M
248		SUB	E
249		JNZ	F15
250	FI 8	CALL	SHUTTER

F I G.12-11

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
251		IN	RL
252		SUI	*02
253		JP	FI 3
254	K7	IN	PHASE
255		CPI	34
256		JNZ	K7
257		CALL	STOP
258		MVI	B, *08
259		IN	MODE
260		CMP	B
261		JZ	F11
262	FI 4	JMP	INITI 9
263	• FADE OUT.		
264	FO	CALL	PMOST
265		CALL	D12SET
266	FO 1	IN	RL
267		CPI	*07
268		JNZ	FOB
269		LDA	DEG1M
270		MOV	E, A
271		CALL	START
272	FO 5	MVI	D, 6
273	FO 2	CALL	SHUTTER
274		DCR	D
275		JNZ	FO 2

1588264 COMPLETE SPECIFICATION

47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*

Sheet 26

FIG.12-12

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
276		INR	E
277		CALL	DISPLAY 1
278		LDA	DEG2M
279		SUB	E
280		JNZ	FO5
281	FO 3	CALL	SHUTTER
282		IN	*RL
283		SUI	*02
284		JP	FO8
285	K8	IN	PHASE
286		CIP	34
287		JNZ	K8
288		CALL	STOP
289		MVI	B, *09
290		IN	MODE
291		CMP	B
292		JZ	FO1
293	FO 4	JMP	INITI 10
294	•OVER LAP•		
295	OL	CALL	PMOST
296		CALL	D12SET
297	OL 1	IN	RL
298		CPI	*07
299		JNZ	OLB
300		LDA	DEG1M

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale
Sheet 27*

FIG.12-13

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
301		MOV	E, A
302		CALL	START
303	OL 5	MVI	D, 6
304	OL 2	CALL	SHUTTER
305		DCR	D
306		JNZ	OL 2
307		INR	E
308		CALL	DISPLAY 1
309		LDA	DEG2M
310		SUB	E
311		JNZ	OL 5
312	K9	IN	PHASE
313		CPI	34
314		JNZ	K9
315		CALL	STOP
316	OL 3	IN	RL
317		SUI	*02
318		JP	OL 3
319		LDA	DEG1M
320		MOV	E, A
321		CALL	PMCST
322		CALL	REV
323	K12	MVI	D, 6
324	OL 4	IN	PHASE
325		CPI	*00

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 28

F I G.12-14

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
326		JNZ	OL 4
327	K11	IN	PHASE
328		CPI	*00
329		JZ	K 11
330		DCR	D
331		JNZ	OL 4
332		INR	E
333		LDA	DEG2M
334		SUB	E
335		JNZ	K 12
336	K13	IN	PHASE
337		CPI	34
338		JNZ	K 13
339		CALL	STOP
340	OL 41	IN	RL
341		CPI	*07
342		JNZ	OL 41
343		CALL	PMOST
344		LDA	DEG2M
345		MOV	E, A
346		CALL	START
347	OL 10	MVI	D, 6
348	OL 5	CALL	SHUTTER
349		DCR	D
350		JNZ	OL 5

FIG.12-15

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
351		DCR	E
352		CALL	DISPLAY 1
353		LDA	DEG1M
354		SUB	E
355		JNZ	OL 10
356	OL 6	CALL	SHUTTER
357		IN	RL
358		SUI	*02
359		JP	OL 6
360	K 14	IN	PHASE
361		CPI	34
362		JNZ	K 14
363		CALL	STOP
364		MVI	B, *0A
365		IN	MODE
366		CMP	B
367		JZ	OL 1
368	OL 7	JMP	INITI 11
369	WIPE IN.		
370	WI	CALL	PMCST
371		CALL	T1SET
372	WI 1	IN	RL
373		CPI	*07
374		JNZ	WIB
375		CALL	START

FIG.12-16

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
376		MVI	D, 2
377	WI 2	CALL	PMO
378		CALL	MS 5
379		CALL	PMSTOP
380		CALL	T 1
381		DCR	D
382		JNZ	WI 2
383	WI 3	IN	RL
384		SUI	*02
385		JP	WI 3
386	K 15	IN	PHASE
387		CPI	34
388		JNZ	K 15
389		CALL	STOP
390		MVI	B, *0B
391		IN	MODE
392		CMP	B
393		JZ	WI 1
394	WI 4	JMP	INITI 12
395	•WIPE OUT•		
396	WO	CALL	PMOST
397		CALL	T1SET
398	WO 1	IN	RL
399		CPI	*07
400		JNZ	WOB

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 31

F I G.12-17

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
4 0 1		CALL	START
4 0 2		MV I	D, 2
4 0 3	WO 2	CALL	PMC
4 0 4		CALL	MS 5
4 0 5		CALL	PMSTOP
4 0 6		CALL	T 1
4 0 7		DCR	D
4 0 8		JNZ	WO 2
4 0 9	K 16	IN	PHASE
4 1 0		CPI	3 4
4 1 1		JNZ	K 16
4 1 2		CALL	STOP
4 1 3		MV I	B, +0C
4 1 4		IN	MODE
4 1 5		CMP	B
4 1 6		JZ	WO 1
4 1 7	WO 3	JMP	INITI 13
4 1 8	•WIPE LAP•		
4 1 9	WL	CALL	PMOST
4 2 0		CALL	T1SET
4 2 1	WL 1	IN	RL
4 2 2		CPI	+07
4 2 3		JNZ	WLB
4 2 4		CALL	START
4 2 5		CALL	T 1

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 32

FIG.12-18

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
426		MVI	D, 2
427	WL 2	CALL	PMC
428		CALL	MS 5
429		CALL	PMSTOP
430		CALL	T 1
431		DCR	D
432		JNZ	WL 2
433	K 17	IN	PHASE
434		CPI	34
435		JNZ	K 17
436		CALL	STOP
437	WL 3	IN	RL
438		SUI	*02
439		JP	WL 3
440		MVI	D, 3
441		CALL	REV
442	WL 4	CALL	T 1
443		DCR	D
444		JNZ	WL 4
445	K 18	IN	PHASE
446		CPI	34
447		JNZ	K 18
448		CALL	STOP
449	WL 5	IN	RL
450		CPI	*03

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 33

F I G.12-19

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
451		JNZ	WL 5
452		CALL	START
453		CALL	T 1
454		MVI	D. 2
455	WL 6	CALL	PMC
456		CALL	MS 5
457		CALL	PMSTOP
458		CALL	T 1
459		DCR	D
460		JNZ	WL 6
461	K 19	IN	PHASE
462		CPI	34
463		JNZ	K 19
464		CALL	STOP
464-1		CALL	PMO
464-2		CALL	MS 5
464-3		CALL	PMSTOP
465		CALL	PMOST
466		MVI	B, +0D
467		IN	MODE
468		CMP	B
469		JZ	WL 1
470	WL 7	JMP	INITI 14
471	..SHUTTER..		
472	SHUTTER	IN	PHASE
473		CPI	*00
474		JNZ	SHUTTER
475		MVI	B, 2

F I G.12-20

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
476	STR 1	IN	PHASE
477		ANI	*01
478		JZ	STR 1
479		CALL	PMC
480	STR 2	IN	PHASE
481		ANI	*01
482		JNZ	STR 2
483		CALL	PMSTOP
484		DCR	B
485		JNZ	STR 1
486	STR 3	IN	PHASE
487		SUB	E
488		JNZ	STR 3
489		MVI	B, 2
490	STR 4	IN	PHASE
491		ANI	*01
492		JNZ	STR 4
493		CALL	PMO
494	STR 5	IN	PHASE
495		ANI	*01
496		JZ	STR 5
497		CALL	PMSTOP
498		DCR	S
499		JNZ	STR 4
500		RET	

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 35

F I G.12-21

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
501	.. START ..		
502	START	MVI	A, #06
503		OUT	CONT 1
504		RET	
505	.. STOP ..		
506	STOP	MVI	A, #08
507		OUT	CONT 1
508		CALL	MS 5
509		MVI	A, #02
510		OUT	CONT 1
511		RET	
512	.. REV ..		
513	REV	MVI	A, #0
514		OUT	CONT 1
515		RET	
516	.. PMO ..		
517	PMO	MVI	A#10
518		OUT	CONT 2
519		RET	
520	.. PMC ..		
521	PMC	MVI	A#20
522		OUT	CONT 2
523		RET	
524	.. PMSTOP ..		
525	PMSTOP	MVI	A, #0

1588264 COMPLETE SPECIFICATION

47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 36

F I G.12-22

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
5 2 6		OUT	CONT 2
5 2 7		RET	
5 2 8	.. PMOST ..		
5 2 9	PMOST	MVI	B, 3
5 3 0	PMOST 1	MVI	A, #10
5 3 1		OUT	CONT 2
5 3 2		CALL	MS 05
5 3 3		CALL	PMSTOP
5 3 4		CALL	MS 5
5 3 5		DCR	B
5 3 6		JNZ	PMOST 1
5 3 7		RET	
5 3 8	.. PMCST ..		
5 3 9	PMCST	MVI	B, 3
5 4 0	PMCST 1	MVI	A, #20
5 4 1		OUT	CONT 2
5 4 2		CALL	MS 05
5 4 3		CALL	PMSTOP
5 4 4		CALL	MS 5
5 4 5		DCR	B
5 4 6		JNZ	PMCST 1
5 4 7		RET	
5 4 8	.. DISPLAY1 ..		
5 4 9	DIAPLAY 1	MOV	A, E
5 5 0		OUT	DISP 1

F I G.12-23

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
5 5 1		RET	
5 5 2	.. T 1 ..		MOV B, H
5 5 3	T 1	CALL	MS 125
5 5 4		DCR	B
5 5 5		JNZ	T 1
5 5 6		RET	
5 5 7	.. T 2 ..		MOV B, L
5 5 8	T 2	CALL	MS 125
5 5 9		DCR	B
5 6 0		JNZ	T 2
5 6 1		RET	
5 6 2	.. TSET ..		
5 6 3	TSET	MVI	A, #40
5 6 4		OUT	DISP 2
5 6 5		CALL	MS 500
5 6 6		MVI	A, #00
5 6 7		OUT	DISP 2
5 6 8		CALL	MS 500
5 6 9		IN	DATASET
5 7 0		CP1	#01
5 7 1		JNZ	TSET
5 7 2		RET	
5 7 3	DEGSET	MVI	MVIA, #80
5 7 4		OUT	DISP 2
5 7 5		CALL	MS 500

FIG.12-24

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
576		MVI	A, #00
577		OUT	DISP 2
578		CALL	MS 500
579		IN	DATASET
580		CPI	#02
581		JNZ	DEGSET
582		RET	
583	..T12SET..		
584	T12SET	CALL	TSET
585		IN	TIME
586		DCR	A
587		MOV	B, A
588		MVI	A, #01
589	T12SET1	RLC	
590		DCR	B
591		JNZ	T12SET
592		MOV	H, A
593		CALL	TSET
594		IN	TIME
595		DCR	A
596		MOV	B, A
597		MVI	A, #01
598	T12SET2	RLC	
599		DCR	B
600		JNZ	T12SET2

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
Sheet 39

F I G.12-25

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
6 0 1		MOV	L, A
6 0 2		RET	
6 0 3	..T1SET..		
6 0 4	T1SET	CALL	TSET
6 0 5		IN	TIME
6 0 6		DCR	A
6 0 7		MOV	B, A
6 0 8		MVI	A, #01
6 0 9	T1SET 1	RLC	
6 1 0		DCR	B
6 1 1		JNZ	T1SET 1
6 1 2		MOV	H, A
6 1 3		RET	
6 1 4	..D12SET..		
6 1 5	D12SET	CALL	D1SET
6 1 6		CALL	DEGSET
6 1 7		IN	DEG
6 1 8		CALL	DEGA
6 1 9		STA	DEG2M
6 2 0	D12SET 1	RET	
6 2 1	..D1SET..		
6 2 2	D1SET	CALL	DEGSET
6 2 3		IN	DEG
6 2 4		CPI	#00
6 2 5		JZ	AA

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 40

F I G.12-26

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
626		CALL	DEGA
627	D1SET 1	STA	DEG1M
628		RET	
629	..DEGA..		
630	DEGA	CPI	#01
631		JZ	A5
632		CPI	#02
633		JZ	A7
634		CPI	#03
635		JZ	A9
636		CPI	#04
637		JZ	A11
638		CPI	#05
639		JZ	A13
640		CPI	#06
641		JZ	A15
642		CPI	#07
643		JZ	A17
644		CPI	#08
645		JZ	A19
646		CPI	#09
647		JZ	A21
648		CPI	#0A
649		JZ	A23
650		CPI	#0B

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 41

F I G.12-27

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
651		J Z	A, 25
652		MVI	A, 27
653	DEGA 1	RET	
654		..DEGREE DECORD SECTION..	
655	A5	MVI	A, 5
656		JMP	DEGA 1
657	A7	MVI	A, 7
658		JMP	DEGA 1
659	A9	MVI	A, 9
660		JMP	DEGA 1
661	A11	MVI	A, 11
662		JMP	DEGA 1
663	A13	MVI	A, 13
664		JMP	DEGA 1
665	A15	MVI	A, 15
666		JMP	DEGA 1
667	A17	MVI	A, 17
668		JMP	CEGA 1
669	A19	MVI	A, 19
670		JMP	DEGA 1
671	A21	MVI	A, 21
672		JMP	DEGA 1
673	A23	MVI	A, 23
674		JMP	DEGA 1
675	A25	MVI	A, 25

FIG.12-28

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
676		JMP	DEGA1
677	..TIME INTERVAL SUBROUTINE..		
678	MS 05	MVI	C, #40
679	MS 05A	DCR	C
680		JNZ	MS 05A
681		RET	
682	MS 5	MVI	C, #0A
683	MS 5A	MVI	D, #40
684	MS 5B	DCR	D
685		JNZ	MS 5B
686		DCR	C
687		JNZ	MS 5A
688		RET	
689	MS 125	MVI	C, #80
690	MS 125A	MVI	D, #7F
691	MS 125B	DCR	D
692		JNZ	MS 125B
693		DCR	C
694		JNZ	MS 125A
695		RET	
696	MS 500	MVI	C, #FF
697	MS 500A	MVI	D, #7F
698	MS 500B	DCR	D
699		JNZ	MS 500B
700		DCR	C

F I G.12-29

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
701		JNZ	MS 500A
702		RET	
703	DE	NOP	
704		RET	
705	..AA..		
706	AA	MVI	A, 5
707		STA	DEG1M
708		MVI	A, 27
709		STA	DEG2M
710		JMP	D12SET1
711	..MODE SELECT BRANCHES..		
712	NRM	MVI	B, #00
713		IN	MODE
714		CMP	B
715		JZ	MORM1
716		JMP	NORM3
717	SBRI	MVI	B, #01
718		IN	MODE
719		CMP	B
720		JZ	DIAPHRAGM 1
721		JMP	DIAPHRAGM 4
722	MMB	MVI	B, #02
723		IN	MODE
724		CMP	B
725		JZ	MM 1

1588264 COMPLETE SPECIFICATION
 47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 44

F I G.12-30

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
726		JMP	MM 3
727	IWSB	MVI	B, #03
728		IN	MODE
729		CMP	B
730		JZ	IWS 1
731		JMP	IWS 4
732	WSB	MVI	B, #04
733		IN	MODE
734		CMP	B
735		JZ	WS 1
736		JMP	WS 3
737	STB	MVI	B, #05
738		IN	MODE
739		CMP	B
740		JZ	ST 1
741		JMP	ST 2
742	TE1B	MVI	B, #06
743		IN	MODE
744		CMP	B
745		JZ	TE 11
746		JMP	TE 14
747	TE2B	MVI	B, #07
748		IN	MODE
749		CMP	B
750		JZ	TE 21

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
 the Original on a reduced scale*
 Sheet 45

F I G.12-31

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
751		JMP	TE 25
752	F1B	MV1	B, #08
753		IN	MODE
754		CMP	B
755		JZ	FI 1
756		JMP	FI 4
757	FOB	MV1	B, #09
758		IN	MODE
759		CMP	B
760		JZ	FO 1
761		JMP	FO 4
762	OLB	MV1	B, #0A
763		IN	MODE
764		CMP	B
765		JZ	OL 1
766		JMP	OL 7
767	W1B	MV1	B, #0B
768		IN	MODE
769		CMP	B
770		JZ	W1 1
771		JMP	W1 4
772	WOB	MV1	B, #0C
773		IN	MODE
774		CMP	B
775		JZ	WO 1

1588264 COMPLETE SPECIFICATION
47 SHEETS *This drawing is a reproduction of
the Original on a reduced scale*
 Sheet 46

F I G.12-32

STATEMENT NO.	NAME OF BRANCH	INSTRUCTION	OPERAND
776		JMP	WO 3
777	WLB	MV I	B, *OD
778		IN	MODE
779		CMP	B
780		JZ	WL 1
781		JMP	WL 7
782		END	

1588264

COMPLETE SPECIFICATION

47 SHEETS

This drawing is a reproduction of
the Original on a reduced scale

Sheet 47

FIG. 13A

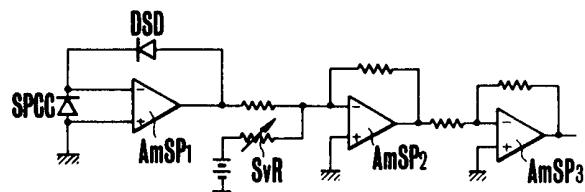


FIG. 13B

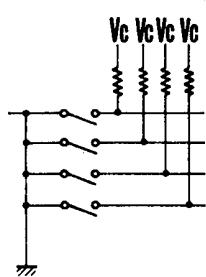


FIG. 13C

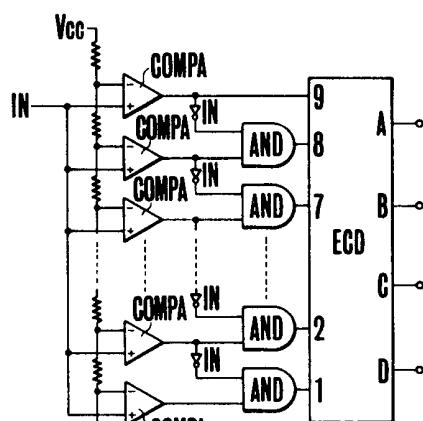
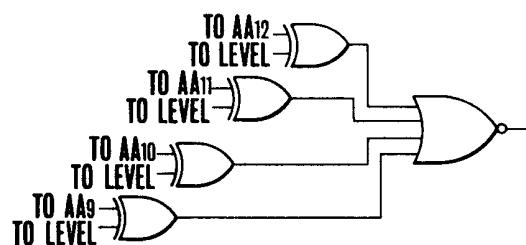



FIG. 13D

