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(57) Abstract

A computer system employs a globally addressable storage environment that allows a plurality of networked computers to access data
by addressing even when the data is stored on a persistent storage device such as a computer hard disk and other traditionally non-addressable
data storage devices. The computers can be located on a single computer network or on a plurality of interconnected computer networks
such as two local area networks (LANs) coupled by a wide area network (WAN). The globally addressable storage environment allows
data to be accessed and shared by and among the various computers on the plurality of networks.
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REMOTE ACCESS IN A GLOBALLY ADDRESSABLE STORAGE ENVIRONMENT

Cross-Reference to Related Applications

This application is a continuation-in-part of co-pending U.S. patent applications serial

number 08/754,481, filed November 22, 1996, and serial number 08/827.534, filed March 28,

1997 and bearing attorney docket number CLC-002. The entirety of both of these applications is

incorporated herein by reference.

Technical Field

The present invention relates in general to distributed computer workgroups and, more
specifically, to a globally addressable storage environment that accommodates remote access and

two or more interconnected computer networks.

Background Information

The conventional computer network includes a number of client computers connected
together and further connected to a server computer that stores the data and the programs that
client computers employ during network operation. This configuration is generally referred to as
a client-server network. Typically, each client is a conventional computer system that includes a
private main memory, typically a RAM memory, and a persistent storage, typically a hard disk.
The server is usually an expensive high end machine that includes a high speed processor unit
and a large memory, often having ten to one hundred times more storage than the individual
client computers. The clients and server cooperate to share data and services among the different
users, and thereby the individual computers appear as a unified distributed system. To this end,
the server acts as a central controller that provides through its large memory a central repository
of network data, and that distributes services to the individual client computers, generally on an
as-available basis. Typically, these services are provided by means of specialized software

running on a high speed processor on the server computer.
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The client-server computer networking model allows organizations of all sizes to utilize
group productivity products such as e-mail. Many business organizations have grown to rely
heavily on network services. Employees who travel typically need to access the same network
services and resources provided to them at work. Field offices also frequently need to access the
headquarters’ network services. The term “telecommuter” has been used to describe an
employee who stays at home and conducts business by accessing the network services provided
at the traditional worksite. These types of users are sometimes referred to as “remote” or
“remote clients” because they typically are located in a physically remote place from the
networks and because they do not connect to the networks locally or directly. Remote users
typically connect to the networks via telephone lines. The terms “remote access” and “remote
networking” are frequently used to identify the situation in which a remote user accesses a
computer network over analog or digital telephone lines. A remote user generally can utilize any
type of computer to access the network including, for example, a personal computer, a
Workstation, or a portable computer such as a laptop computer, a notebook computer, or a
palmtop computer. A remote user typically connects a modem (or other communications adapter
such as a digital adapter if the telephones lines are wholly digital) to a serial port of the
computer. The modem connected to the user's remote computer communicates over the
telephone lines with another modem that is coupled to a device coupled to the network. The
other modem and the device are located at the network that the remote client is attempting to
access. The device can be coupled directly to the network, or it can be coupled to the network
which the remote client is attempting to access via a communications link (e.g., a WAN link) to
that network. The device typically is referred to as a “remote access server” or a “remote access
device.” A typical remote access device provides a point of network access for one or more

remote clients.

Although computer networks based on the client-server model generally have been
successful at providing users with necessary computer services, as the user demands on computer
systems have increased, the weaknesses in the client-server network are beginning to place limits

on the services that can be provided.

An additional problem with client-server networks is that they provide a static operating

environment that is set for optimal performance at a certain level of network activity.
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Consequently, client-server networks fail to exploit available resources as network activity
changes and cannot improve system performance. In particular, as network activity rises above
or drops below the expected level, the static operating environment of a client-server network
lacks any ability to reconfigure dynamically the allocation of network resources to a

configuration providing better performance for the present level of activity.

Moreover, the client-server computer networking model requires that computer programs
written to operate in a client-server environment distribute themselves between clients and the
server. This requires that the application programs implement a set of functions that divide the
program between the clients and the server. This distribution of the application programs
requires that the client-server application programs be quite complex. For example, a client-
server computer application program that shares data between different machines must include
functionality that allows for the distribution of multiple copies of data files, the maintenance of

coherency for the distributed copies, and other such low-level management services.

Further troubling is that the client-server network stores all important applications and
data files in the memory of the server system. Consequently, the client-server network is subject

to complete system failure each time the server system crashes.

While the present client-server computer architecture is employed widely, it generally
fails to provide an adequate response to the increased demands of today’s networked computer
users. Remote access generally provides additional complications for and performance

degradation of the client-server networking model.
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Summary of the Invention

It is an object of the invention to provide improved networked computer systems.

A further object of the invention is to provide computer network systems that have
adaptable system configurations for dynamically exploiting distributed network resources and

thereby increasing network performance and productivity.

Another object of the invention is to provide computer network systems that have
improved fault tolerance and that are more readily scaleable to allow the addition of more

network nodes as well as to allow the interconnection of two or more networks.

It is yet a further object of the invention to provide a globally addressable storage system
that allows remote computers and computers on different, interconnected networks to

communicate and share data in a transparent and dynamic manner.

It is still another object of the invention to provide a globally addressable storage system
that employs data migration and replication across interconnected network boundaries and

among remote access computers.

The environment in which the invention operates includes systems that create and
manage a virtual storage space shared by each computer on a network. The virtual space spans
each storage device (e.g., RAM and hard disk) connected to the network. Accordingly, all data
stored on the network can be stored within the virtual space and the actual physical location of
the data can be in any of the storage devices connected to the network. More specifically, the
system can create or receive a global address signal that represents a portion (e.g., 4 kilobytes) of
the virtual space. The global address signal can be decoupled from (i.e., unrelated to) the
physical and virtual address spaces of the underlying computer hardware to provide support for a
memory space large enough to span each volatile (e.g., RAM, etc.) and persistent (e.g., hard disk,
tape drive, etc.) storage device connected to the network. For example, systems of the invention
can operate on 32-bit computers, but can employ global address signals that can be 128 bits
wide. Accordingly, the virtual memory space spans 2128 bytes, which is much larger than the 2%
address space supported by any one of the underlying computer hardware. Such a huge address

space is large enough to provide a separate address for every byte of data storage on the network
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including all RAM, disk, and tape storage. With such a huge virtual space, typically only a small
portion is storing data at any time. Accordingly, the system includes a directory manager that
tracks those portions of the virtual space that are in use. The system provides physical storage
for each portion of the virtual space in use by mapping (i.e., assigning) each such portion to a
physical device such as RAM or a hard disk. In general, the mapping provides a level of
indirection that facilitates data migration, fault-tolerant operation, and load balancing. By
allowing each computer to monitor and track which portions of the virtual space are in use, each
computer can share the space. This allows the networked computers to appear to have a single
memory, and therefore can allow application programs running on different computers to
communicate using techniques currently employed to communicate between applications

running on the same machine.

A computer system according to the invention employs a globally addressable storage
environment that allows a plurality of networked computers to access data by addressing even
when the data is stored on a persistent storage device such as a computer hard disk and other
traditionally non-addressable data storage devices. The computers can be located on a single
computer network or on a plurality of interconnected computer networks such as two local area
networks (LANSs) coupled by a wide area network (WAN). Also, the computers can include
remote computers that access the network(s) via a communications adapter (e.g., a modem) and
the telephone lines. The globally addressable storage environment allows data to be accessed

and shared by such remote computers and among the computers on the plurality of networks.

In one aspect, the invention involves a computer system comprising a computer network,
a persistent data storage device coupled to the network, a globally addressable data storage
system, and a plurality of computers coupled to the network and the globally addressable data
storage system. The globally addressable storage system provides addressable access to data
stored in the persistent data storage device. The plurality of computers access data stored in the
persistent data storage device by addressing via the globally addressable data storage system. At
least one of the computers can be located remote from the network and coupled thereto by, for
example, a communications adapter such as a modem. The globally addressable data storage
system preferably replicates and/or migrates data stored in the persistent data storage device

among two or more of the computers based on, for example, accesses by the computers of the
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globally addressable data storage system to obtain data stored in the persistent data storage

device.

In another aspect, the invention involves a computer system comprising a first computer
network coupled to a second, remote computer network. The first computer network includes a
first plurality of computers, a first persistent data storage device, and a first globally addressable
data storage system that maintains and allows access to data on the first network and that
provides addressable access to data stored in the first persistent data storage device. The second
computer network includes a second plurality of computers, a second persistent data storage
device, and a second globally addressable data storage system that maintains and allows access
to data on the second network and that provides addressable access to data stored in the second
persistent data storage device. The first and second globally addressable data storage systems
interoperate to allow the first computers to access data on the second network including data
stored in the second persistent data storage device and to allow the second computers to access
data on the first network including data stored in the first persistent data storage device. The first
and second globally addressable data storage systems preferably replicate and/or migrate data

among the various computers and persistent data storage devices.

Embodiments according to one or both of these aspects of the invention include, for

example, security mechanisms, disconnect/reconcile mechanisms, and proxy mechanisms.

As for security, the first computer network can have a first security domain and the
second computer network can have a second security domain that is separate from the first
security domain, and the first and second computer networks share data between the first and
second security domains. Furthermore, the first and second computers can set file-level or
record-level access control rights on both the first and second computer networks, and the first
and second globally addressable data storage systems can control access to data based on

passwords or security identifiers.

As for disconnect/reconcile mechanisms, the first and second computers can access, and
even modify, shared data after the first and second computer networks are disconnected. The

modified shared data is reconciled after the first and second computer networks are reconnected.
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As for proxy mechanisms, the first and second globally addressable data storage systems

can utilize a proxy mechanism to maintain consistency of shared data.

Additionally, the first and second globally addressable data storage systems can utilize a
global directory mechanism to track the location of the data on the first and second computer
networks. This global directory mechanism can include a first directory for tracking data stored
on the persistent data storage devices (e.g., hard disks) and a second directory for tracking data

stored on volatile storage devices (e.g., RAM) on the first and second computer networks.

The foregoing and other objects, aspects, features, and advantages of the invention will

become more apparent from the following description and from the claims.
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Brief Description of the Drawings

In the drawings, like reference characters generally refer to the same parts throughout the
different views. Also, the drawings are not necessarily to scale, emphasis instead generally being
placed upon illustrating the principles of the invention.

FIG. 1 is a conceptual block diagram of a distributed addressable shared memory
structured data storage system.

FIG. 2 is a diagram of one possible embodiment of the system of FIG. 1, namely a
distributed addressable shared memory file system providing storage for computer files such as
source code files, wordprocessing documents files, etc.

FIG. 3 is a graphical representation of the organization of directory entries and associated
file descriptors (also known as “Inodes”), suitable for use with the file system of FIG. 2.

FIG. 4 is a diagram of an Inode suitable for use with the file system of FIG. 2.

FIG. 5 illustrates a distributed shared memory computer network.

FIG. 6 is a functional block diagram that illustrates in more detail one distributed shared
memory computer network of the type shown in FIG. 5.

FIG. 7 illustrates in more detail a shared memory subsystem suitable for practice with the
network illustrated in FIG. 6.

FIG. 8 is a functional block diagram of one shared memory subsystem.

FIG. 9 illustrates a directory page that can be provided by a shared memory subsystem of
the type depicted in FIG. 8.

FIG. 10 illustrates a directory that can be distributed within a shared memory and formed
of directory pages of the type illustrated in FIG. 9.

FIG. 11 is a functional block diagram of a system that employs a directory according to
FIG. 10 for tracking portions of a distributed shared memory.

FIGS. 12A and 12B are diagrams showing two networks sharing files in accordance with
the invention.

FIG. 13 is a exemplary diagram of a globally addressable storage engine being used to
share a folder in a multi-network environment with a remote access computer dialed in via a

modem and the telephone lines, according to the invention.
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Description

Before describing the invention, the environment in which the invention operates and
other related details will be disclosed. More specifically, the first section of the following
description appears under the heading “Structured Data Storage Systems,” and it addresses
possible practical systems (e.g., file systems, databases, etc.) that utilize the globally addressable
storage system described in the second section appearing under the heading “Addressable Shared
Memory Space.” The third and final section of this description discloses the present invention,

and it appears under the heading “Distributed Workgroups.”

STRUCTURED DATA STORAGE SYSTEMS

In general, the structured data storage systems described under this heading are disclosed
in the commonly-owned, incorporated-by-reference U.S. patent application serial number

, filed March 28, 1997 and bearing attorney docket number CLC-002.

A network system 10 includes a plurality of network nodes that access a memory space
storing a structured store of data, such as a structured file system or a database. Each of the
nodes includes at least a data control program which accesses and manages the structured store
of data. The structured store of data may be stored in an addressable shared memory or the
structured store may be stored in a more traditional fashion. For example, each node may be
responsible for storing a particular element or elements of the structured store of data. In such an
embodiment, the data control program can access a desired portion of the structured store using a
globally unique identifier. The underlying system would translate the identifier into one or more
commands for accessing the desired data, including network transfer commands. In another
embodiment, the structured store of data is stored in an addressable shared memory space, which
allows the nodes to transparently access portions of the structured store using standard memory

access commands.

The system 10 can be a file system, a database system, a Web server, an object repository
system, or any other structured storage system that maintains an organized set of data. As used
herein, the term “Web server” means any processor which transmits data objects (such as

Active X objects), applications (such as JAVA applets), or files (such as HTML files), to a
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requester via Web protocols (e.g., http or ftp). In one disclosed embodiment, the system 10 is a
file system that maintains various computer files. However, this is just one embodiment that is
provided for illustrative purposes. Any one of a plurality of structured storage systems (e.g.,

database system, Web page system, Intranet, etc.) can be provided. This disclosure is not to be

limited to the file system or other particular embodiments described herein.

Referring to FIG. 1, a network system 10 includes a plurality of network nodes 12a-12d
and an addressable shared memory space 20 that has a portion 22 for storing a structured store of
data 28. Each of the nodes 12a-12d can include several sub-elements. For example, node 12a
includes a processor 30a, a data control program 32a, and a shared memory subsystem 34a. In
the disclosed embodiment, two of the nodes, 12a and 12¢, include monitors that provide displays
40 and 42 graphically depicting the structured store of data 28 within the addressable shared
memory space 20. The addressable shared memory space 20 interconnects each of the network
nodes 12a-12d and provides each node 12a-12d with access to the structured store of data 28

contained within the addressable shared memory space 20.

A system 10 can provide, among other things, each network node 12a-12d with shared
control over the structured store of data 28 and, therefore, the system 10 can distribute control of
the data store across the nodes of the network. To this end, each node of the system 10, such as
node 12a, includes a data control program 32a that interfaces to a shared memory subsystem 34a.
The data control program 32a can operate as a structured storage system, such as a file system,
that is adapted to maintain a structured store of data and to employ the shared memory system as
an addressable memory device that can store a structured store of data. At the direction of the
data control program 32a, the shared memory subsystem 34a can access and store data within the
addressable shared memory space 20. These cooperating elements provide a structured storage
system that has a distributed architecture and thereby achieves greater fault tolerance, reliability,
and flexibility than known structured storage systems that rely on centralized control and
centralized servers. Accordingly, what is described is computer networks with distributively
controlled and readily scaled file systems, database systems, Web page systems, object

repositories, data caching systems, or any other structured storage system.

Still referring to FIG. 1, the system 10 maintains within the addressable shared memory

space 20 a structured store of data 28. Each of the nodes 12a-12d can access the addressable
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shared memory space 20 through the shared memory subsystems 34a-34d. Each of the shared
memory subsystems 34a-34d provides its node with access to the addressable shared memory
space 20. The shared memory subsystems 34a-34d coordinate each of the respective node’s
memory access operations to provide access to the desired data and maintain data coherency
within the addressable shared memory space 20. This allows the interconnected nodes 12a-12d
to employ the addressable shared memory space 20 as a space for storing and retrieving data. At
least a portion of the addressable shared memory space 20 is supported by a physical memory
system that provides persistent storage of data. For example, a portion of the addressable shared
memory space 20 can be assigned or mapped to one or more hard disk drives that are on the
network or associated with one or more of the network nodes 12a-12d as local hard disk storage
for those particular nodes. Accordingly, FIG. 1 illustrates that shared memory subsystems
provide the network nodes with access to an addressable shared memory space, wherein at least a
portion of that space is assigned to at least a portion of one or more of the persistent storage
memory devices (e.g., hard disks) to allow the nodes addressably to store and retrieve data to and
from the one or more persistent storage memory devices. A preferred embodiment of such an
addressable shared memory space is described in the commonly-owned U.S. patent application

serial number 08/754,481 filed November 22, 1996, and incorporated by reference above.

Therefore, one realization is that each of the nodes 12a-12d can employ its respective

shared memory subsystem as a memory device that provides persistent data storage.

Each of the data control programs 32a-32d is a software module that couples to the
respective shared memory subsystem 34a-34d in a way that operates similarly to an interface
between a conventional data storage program and a local memory device. For example, the data
control program 32a can stream data to, and collect data from, the shared memory subsystem
34a. Because the shared memory subsystems coordinate the memory accesses to the addressable
shared memory space 20, each of the data control programs is relieved from having to manage
and coordinate its activities with the other data control programs on the network or from having
to manage and coordinate its activities with one or more central servers. Accordingly, each of
the data control programs 32a-32d can be a peer incarnation (i.e., an instance) residing on a
different one of the network nodes 12a-12d and can treat the respective shared memory

subsystem 34a-34d as a local memory device such as a local hard disk.
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One or more of the data control programs 32a-32d can provide a graphical user interface
42 that graphically depicts the structured store of data 28 contained within the addressable shared
memory space 20. The graphical user interface 42 allows a user at a node, for example at node
12a, to insert data objects graphically within the structured store of data 28. To this end, the data
control program 32a can generate a set of commands that will present a stream of data to the
shared memory subsystem 34a and the shared memory subsystem 34a will employ the data
stream to store an object within the structured store of data 28. Similarly, the other shared
memory subsystems 34b-34d can provide information to their respective nodes that is indicative
of this change to the structured store of data 28. Accordingly, as shown depicted in FIG. 1 for
node 12¢ only for simplicity, that node (which includes a graphical user interface 40) reflects the
change to the structured store of data 28 affected by the data control program 32a of the node
12a. In particular, the graphical user interface 40 of the node 12¢ can depict to a user that an
object is being placed within the structured store of data 28. For example, the addressable shared
memory space 20 also contains the data objects 50a-50c which can be placed within the
structured data store 28 to become part of that structured data store. As illustrated, a system user
at node 12a can direct object 50a to be inserted at a set location within the data store 28. The
data control program 32a then directs the shared memory subsystem 34a to place the object 50a
within the data store 28 at the proper location. Moreover, the shared memory subsystem 34c¢ on
node 12¢ detects the change within the data store 28 and reflects that change within the graphical

user interface 40.

Referring now to FIG. 2, a structured file system 60 employs the properties of the
addressable shared memory space 20 to implement what looks to all network nodes like a
coherent, single file system when in fact it spans all network nodes coupled to the addressable

shared memory space 20.

The file system 60 of FIG. 2 differs from known physical and distributed file systems in a
variety of ways. In contrast to known physical file systems which map a file organization onto
disk blocks, the file system 60 manages the mapping of a directory and file structure onto a
distributed addressable shared memory system 20 which has at least a portion of its addressable
space mapped or assigned to at least a portion of one or more persistent storage devices (e.g.,

hard disks) on the network. Unlike known distributed file systems, the file system 60 employs
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peer nodes, each of which have an incarnation or instance of the same data control program.
Also, unlike known file systems generally, the file system 60: maintains data coherence among
network nodes; automatically replicates data for redundancy and fault tolerance; automatically
and dynamically migrates data to account for varying network usage and traffic patterns; and
provides a variety of other advantages and advances, some of which are disclosed in the
commonly-owned U.S. patent application serial number 08/754,481 filed November 22, 1996,

and incorporated by reference above.

Still referring to FIG. 2, the file system 60 resides in part within the addressable shared
memory space 20, and includes a structured store of data 62, a super root 64, file sets 66-74,
directory entry 80, and file or document 82. Two network nodes 84 and 86 are shown accessing
the addressable shared memory space 20 (in the manner described previously with reference to
FIG. 1) via the logical drives 90 and 94. Application programs 92 and 96 executing on the nodes
interact with the data control programs (not shown in FIG. 2 but shown in FIG. 1 as 32a-32d)
and cause the data control programs in the nodes to access the logical drives 90 and 94. In the
disclosed embodiment, the logical drives are DOS devices that “connect to” the fileset directories

via Installable File System drivers associated with the file system 60.

The file system 60 supports one global file system per addressable shared memory space
20 shared by all of the network nodes. This global file system is organized into one or more
independent collections of files, depicted as the filesets 66-74. A fileset can be thought as
logically equivalent to a traditional file system partition. It is a collection of files organized
hierarchically as a directory tree structure rooted in a root directory. The non-leaf nodes in the
tree are the directories 80, and the leaves in the tree are regular files 82 or empty directories.

Sub-directory trees within a fileset can overlap by linking a file to multiple directories.

A benefit of breaking up the file system 60 into filesets 66-74 is that it provides more
flexible file system management for users of the system 60. As the file system 60 grows into
very large sizes (e.g., hundreds of nodes with thousands of gigabits of storage), it is desirable to
have the files organized into groups of management entities such that management actions can be

independently applied to individual groups without affecting the operation of the others.
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The filesets in the addressable shared memory space 20 are described and enumerated in
a common structure, the root 64 of which provides the starting point to locate the filesets in the
addressable shared memory space 20. The root 64 can be stored in a static and well-known
memory location in the addressable shared memory space 20, and it can be accessed via a
distributed shared memory system program interface. When a node is accessing a fileset for the
first time, it first looks up the root 64 to determine the identifier associated with the fileset, e.g.,
the shared memory address used to access the fileset. Once it has determined the identifier, the
node can access the root directory of the fileset. From the root directory, it then can traverse the
entire fileset directory tree to locate the desired file. Filesets used by the file system 60 are

described in greater detail below under the heading “Fileset.”

Referring to FIG. 3, in the disclosed embodiment of the file system 60, a directory 126
(such as the directory 80 of FIG. 2) is accessed by starting at a directory Inode or descriptor 128
containing an address that points to a directory entries stream descriptor 130. This descriptor
130 is a pointer to a block of data containing directory entries for files File 1 through File 3. The
directory entry for File 1 has a number of entries; one of the entries is a string containing the
name of the file and another entry is the address of the Inodes and stream descriptors 132. The
stream descriptors for File 1 are used to locate and retrieve the various 4 kilobyte pages in the
addressable shared memory space 20 that constitute File 1. Other files are retrieved and
constructed from the addressable shared memory space 20 in the same fashion. The directories

used by the file system 60 are described in greater detail below under the heading “Directory.”

In the embodiment of the file system 60 disclosed in FIG. 4, a file 98 (such as the file 82
of FIG. 2) is represented by one or more shared pages of data 100, 102, 104, 106, and 108 in the
addressable shared memory space 20. Each file 98 has a file Inode or descriptor 110 that
includes various file attributes 112. The file descriptor 110 contains an address that points to a
data stream descriptor 114, and the data stream itself includes one or more addresses 116, 118,
120, 122, and 124 that point to particular pages in the identifiable shared memory space 20. In
the disclosed embodiment, a page is the atomic unit in the addressable shared memory space 20,
and it contains up to 4 kilobytes of data. Even if the entire 4 kbytes is not needed, an entire page
is used. This is illustrated by the page 108 that only contains about 2 kbytes of data. The files

used by the file system 60 are described in greater detail below under the heading “Files.”
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Fileset

The filesets are the basic unit for the file system 60. Each fileset is identified with a name
having up to 255 characters. The file system 60 exports a set of fileset level operations that

allow an administrator to manage the filesets through the following type of actions.

Fileset Creation: This operation creates a new fileset. The fileset is initially created with
one file, the empty root directory. A default fileset is created automatically at the initialization of

the addressable shared memory space 20.

Fileset Deletion: This operation deletes a fileset. All files in the fileset are removed, and
all shared memory space allocated to the files in the fileset is discarded and the backing physical
storage freed for new storage. The file system 60 will only allow deletion of a fileset until there
are no open handles to file data stream in the fileset. In order to ready a fileset for deletion, the

fileset must be “shutdown” by putting it off-line.

Fileset Enumeration: This operation enumerates a specific fileset, or all the filesets, in

the addressable shared memory space 20.

Fileset Control: This operation performs fileset level control routines such as setting

fileset attributes.

Mount Export Control: Directory are attached to local devices, i.e. “mounted” using
parameters stored in the Windows NT registry, or some other similar central storage area for
such information. When first started up, the data control program 60 accesses the central storage
and determines which filesets should be mounted. The data control program creates a file object
representing each fileset identified by the entries in the central storage. In some embodiments an
API may be provided which allows the data control program 60 to dynamically mount and

unmount filesets by making appropriate API calls.

The users of the file system 60 are not aware of the shared memory “logical volume,” but
rather view each fileset as a volume (or partition in the sense of a traditional physical file
system). The Win32 GetVolumelnformation is used to get information on the fileset (more

precisely, on the logical device on which the fileset is attached to). Because all the filesets share
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the same pool of the storage in the addressable shared memory space 20, the total volume size
returned to the user for each fileset is the current aggregate storage capacity in the addressable
shared memory space 20. The same approach is taken for the total free space information, and

the aggregate value of the addressable shared memory space 20 is returned for each fileset.

Directory

Directory entry scanning is one of the most frequently performed operations by user
applications. It is also may be the most visible operation in terms of performance.
Consequently, much attention is directed to making the directory scan efficient and the
WindowsNT File System (NTFS) duplicates sufficient file Inode information in the directory
entry such that a read directory operation can be satisfied by scanning and reading the directory
entries without going out to read the information from the file Inodes. The problem with this
scheme is that the doubly stored file metadata, such as the file time stamps and file size, can be
updated quite frequently, making the metadata update more expensive. However, this overhead

is considered acceptable in face of the performance gained in directory scan operations.

The file system 60 adopts the same philosophy of providing efficient directory scanning
by duplicating file Inode information in directory entries. Each directory entry contains
sufficient information to satisfy the Win32 query file information requests. The file Inode is
stored with the file stream descriptors on a separate page. The Inode is located via a pointer in

the directory entry.

The file system’s directory entries are stored in the directory file’s directory entry daté
stream. To maximize space utilization, each directory entry is allocated on the first available free
space in a page that can hold the entire entry. The length of the entry varies depending on the
length of the file’s primary name. The following information is part of the directory entry:
creation time; change time; last write time; last accessed time; pointers to stream descriptor;
pointer to parent directory Inode; MS-DOS type file attributes; and MS-DOS style file name (8.3
naming convention). For average file name lengths, a page contains up to about 30 entries. All

the file information in the directory entry is also contained in the file Inode, except for the file
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primary name and MS-DOS file name. The file primary names and associated short names are

only stored in the directory entries. This makes the Inode size fixed.

When a file information is modified (except for file names), the Inode is updated in the
context of the update transaction and therefore always contains the most up-to-date information.
The associated directory entry change is lazily flushed to reduce the cost of double updating.
This means the Inode updates are either flushed or recoverable, but not the corresponding
directory entry updates. If the directory entry gets out of synch with the Inode (when the Inode
change is successfully flushed but not the directory change), the entry is updated the next time
the Inode is updated. In order to facilitate synchronization of directory updates, the directory
entries (Inodes) can not span multiple pages. FIG. 3 illustrates the organization of directory

entries and associated Inodes.

...j
—
(43
#7]

A file of the file system 60 comprises streams of data and the file system metadata to
describe the file. Files are described in the file system 60 by objects called Inodes. The Inode is

a data structure that stores the file metadata. It represents the file in the file system 60.

A data stream is a logically contiguous stream of bytes. It can be the data stored by
applications or the internal information stored by the file system 60. The data streams are
mapped onto pages allocated from the addressable shared memory space 20 for storage. The file
system 60 segments a data stream into a sequence of 4 kilobyte segments, each segment
corresponding to a page. The file system 60 maintains two pieces of size information per data
stream: the number of bytes in the data stream; and the allocation size in number of pages. The
byte-stream to segment/page mapping information is part of the file metadata and is stored in a

structure called data stream descriptor. See FIG. 4.

Users’ requests for data are specified in terms of range of bytes and the position of the
starting byte measured by its offset from the beginning of the data stream, byte position zero.
The file system 60 maps the offset into the page containing the starting byte and the intra-page
offset from the beginning of the page.
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Every file of the file system 60 has at least two data streams: the default data stream; and
the Access Control List (ACL) stream. Each file may optionally have other data streams. The
ACL stream is used to store the security Access Control Lists set on the file. Each data stream 1s
individually named so that the user can create or open access to a specific data stream. The name
of the default data stream is assumed to be the primary name of the file. To access a data stream,
the user of the file system 60 must first open a file handle to the desired data stream by name. If
the file name is used then the handle to the default data stream is opened. This open file handle

represents the data stream in all the file system services that operates on the data stream.

The file system 60 exports a set of services to operate at the file level. The input to the
services are the file object handle (Inode) or the data stream object handle, and the operation

specific parameters, including the desired portions of the data stream in byte positions.

Open files are represented by data stream objects (or just file objects). Users access files
using these file objects, identified to the users through file handles. A file handle is a 32-bit
entity representing an instance of an open file stream. For example, WindowsNT creates the file
object and returns a file handle to the users in response to the user request for file creation or file
open. The file system 60 initializes a pointer to a file control block. Multiple file objects point
to the same file control block and each file control block maintains separate stream objects for
each open context. Externally, the file handle is opaque to the users. Multiple opens can be
issued against the same file. When the user closes a file, the file object and the associated file

handle is removed.

The file system 60 maps file streams into sequences of segments which become
progressively larger; each segment corresponds to one or more pages. The file system 60
attempts to reserve contiguous pages for data streams but only allocates real backing storage on
an as needed basis, usually as a result of a file extension requested by writing beyond the data
stream allocation size. When a file extension request is received, the file system 60 rounds the
extension size in number of bytes up to a multiple of 4 kilobytes to make it an integer number of
pages, and requests pages for actual allocation. The number of 4 kilobyte pages allocated by the
file system depends on the number of file extension requests made. The file system 60 allocate
one 4 kilobyte page for the first extension request, two 4 kilobyte pages for the second request,

four 4 kilobyte pages for the third extension request, and so on. The newly allocated pages are
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zero filled. By reserving contiguous pages, the file system 60 can reduce the amount of
bookkeeping information on the byte offset to page mapping. The file system 60 reserves
(sometimes much) larger than requested memory space for a file, and substantiates the storage by

allocating backing storage page by page.

Four kilobyte allocation segments are chosen to reduce the unused storage space and yet
provide a reasonable allocation size for usual file extensions. Since allocation is an expensive
operation (most likely involving distributed operations), smaller allocation size is not efficient.
Larger allocation size would lead to inefficient space utilization, or additional complexity to
manage unused space. A 4 kilobyte segment also maps naturally to a page, simplifying the data
stream segment to page mapping. Although an analogy could be made with the NTFS’s
allocation policy of 4 kilobyte clusters (segment) size for large disks to speed up allocation and
reduce fragmentation, such analogy is not completely valid because the actual on-disk allocation

segment size depends greatly on the local disk size and the physical file systems.

Similar to the NTFS, which controls the allocation of each disk partition and therefore
can quickly determine the free volume space available for allocation, the file system 60 requests
the total available space information and uses this information to quickly determine whether to
proceed with the allocation processing. If the total available space is less than the required
allocation size, the request is denied immediately. Otherwise, the file system 60 will proceed to
allocate the pages to satisfy the request. The fact that the file system 60 can proceed with the
allocation does not guarantee that the allocation will succeed, because the actual total available

space may change constantly.

The file system 60 takes advantage of the page level replication capability of the
underlying distributed addressable shared memory system 20 disclosed in the U.S. patent
application incorporated by reference above. Page level replication allows the system to provide
file replication. The data streams of a replicated file are backed by pages, which are themselves
replicated. In this way, data streams are replicated automatically without intervention of the file
system 60. The extra space consumed by the multiple replicas is not reflected in the file (data
stream) sizes. The stream allocation size still reports the total allocation size in pages required

for one replica. The pages backing temporary files, however, are not replicated.
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File Access and Resource Sharing - Locking and Byte Range [ocking

The shared memory provides the distribution mechanism for resource sharing among peer
nodes running the file system 60 software. Each instance of the file system 60 on each network
node views the shared memory resources (i.c., pages) as being shared with other local or remote
threads. The file system 60 needs a way to implement high level, file system locks to provide
consistent resource sharing. Any concurrency control structure can be used to implement locks,
such as lock objects or semaphores. In database applications, locking may also be achieved by
implementing concurrency control structures associated with database indices or keys. In file
system applications access to files or directories may be controlled. Another example of file
system locks is Byte Range Locking, which provides the users the ability to coordinate shared
access to files. A byte range lock is a lock set on a range of bytes of a file. Coordinated shared
access to a file can be accomplished by taking locks on the desired byte ranges. In general, the
high level file system lock works in the following fashion: (a) a file system resource is to be
shared by each file system 60 instance, and the access to the resource is coordinated by a locking
protocol using a lock object data structure that represents the high level lock to coordinate the
shared resource, and it is the value of the data structure that represents the current state of the
lock; (b) to access the resource, the instance at each node must be able to look at the state (or
value) of the lock data structure, and if it is “free,” modify it so that it becomes “busy,” but if it is
“busy,” then it has to wait to become “free,” and there could be intermediate states between
“free” and “busy” (i.e., more than two lock states), but in any event, in this byte range locking
example, a lock is a description of a certain byte range being shared/exclusively locked by some
thread of the file system 60, and a conflicting new byte range lock request that falls in or
overlaps the already locked byte range will be denied or the requester may block (depending on
how the request was made); and (c) access to or modification of the lock data structure by each
node’s instance needs to be serialized so that it in turn can then be used to coordinate high level

resource sharing.

The locking features and capabilities of the shared memory engine described in the U.S.
patent application serial no. 08/754,481, incorporated by reference above, allow the file system

60 to coordinate access to pages. The engine can also be used to coordinate access to resources,
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but in the case of complex high level resource locking such as Byte Range Locking, using the
engine’s locking features and capabilities directly to provide locks may be too costly for the
following reasons: (a) each byte range lock would require a page representing the lock, and since
the number of byte range locks can be large, the cost in terms of page consumption may be too
high; and (b) the engine locks only provide two lock states (i.e., shared and exclusive), and high

level file system locks may require more lock states.

The file system 60 implements the file system locking using the engine locking as a
primitive to provide serialization to access and update the lock data structures. To read a lock
structure, the file system 60 takes a shared lock on the data structure’s page using the engine
locking features and capabilities before it reads the page to prevent the data structure being
modified. To modify the lock structure, it sets a exclusive lock on the page. The page lock is

taken and released as soon as the lock structure value is read or modified.

With the serialization provided by the page locking and the page invalidation notification,
the file system 60 implements the high level locks in the following wayf (a) to take a file system
lock (FS lock), the file system 60 sets a shared lock on the FS lock page and reads the page and
then examines the lock structure; (b) if the lock structure indicates the resource is unlocked or
locked in compatible lock mode, then the file system 60 requests to exclusively lock the page,
and this guarantees only one file system 60 node instance can modify the lock data structure, and
if the request succeeds then the file system 60 write maps the lock page and then changes the
lock structure to set the lock and unlocks the page and sets page access to none; and (c) if the
resource is locked in incompatible lock mode, the file system 60 unlocks the page but retains the
page read mapped, and it then puts itself (the current thread) in a queue and waits for a system
event notifying that the lock value has changed, and when the lock value does change then the
file system 60 thread gets notified and repeats the step (a) above. The file system 60 implements
the notification using a signal primitive. The file system 60 threads waiting for a lock are
blocked on a system event. When the page containing the lock changes, a signal is sent to each
blocked file system 60 thread. Each blocked file system 60 threads then wakes up and repeats

step (a). FS locks are stored in volatile pages.

Byte Range Locking is a file system locking service exported to the users through the
Win32 LockFile() and LockFileEx() APL. It allows simultaneous access to different non-
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overlapping regions of a file data stream by multiple users. To access the data stream, the user

locks the region (byte range) of the file to gain exclusive or shared read access to the region.

The file system 60 supports byte range locking for each individual data stream of the file.
The following Win32-style byte range locking behavior is supported: (a) locking a region of a
file is used to acquire shared or exclusive access to the specified region of the file, and the file
system 60 will track byte range locks by file handle, therefore file handles provide a way to
identify uniquely the owner of the lock; (b) locking a region that goes beyond the current end-of-
file position is not an error; (c) locking a portion of a file for exclusive access denies all other
processes both read and write access to the specified region of the file, and locking a portion of a
file for shared access denies all other processes write access to the specified region of the file but
allows other processes to read the locked region, and this means that the file system 60 must
check byte range locks set on the data stream not only for lock requests but for every read or
write access; (d) if an exclusive lock is requested for a region that is already locked either shared
or exclusively by other threads, the request blocks or fails immediately depending on the calling

option specified.; and (e) locks may not overlap an existing locked region of the file.

For each byte range lock, the file system 60 creates a byte range lock record to represent
the lock. The record contains the following information: (a) byte range; (b) lock mode (shared or

exclusive); (c) process identification; and (d) a Win32 lock key value.

The file system 60 regards the file byte ranges as resources with controlled access. For
each byte range lock record, the file system 60 creates a file system lock (as discussed above) to
coordinate the access to the byte range “resource.” A compatible byte range lock request (share
lock) translates into taking read lock on the file system lock associated with the byte range
record. An exclusive byte range lock request is mapped to taking write lock on the file system

lock.

Using the file system locking mechanism discussed above, lock requests waiting on the

page containing the desired byte range will be notified when the page content changes.

ADDRESSABLE SHARED MEMORY SPACE
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Having described structured data storage systems in some detail, a more detailed
description is now provided of the addressable shared memory space that is disclosed in the
commonly-owned U.S. patent application serial number 08/754,481 filed November 22, 1996,
and incorporated by reference above. In general, all of the information provided under this

heading is contained in that patent application.

The addressable shared memory system disclosed in the U.S. patent application
incorporated by reference is an “engine” that can create and manage a virtual memory space that
can be shared by each computer on a network and can span the storage space of each memory
device connected to the network. Accordingly, all data stored on the network can be stored
within the virtual memory space and the actual physical location of the data can be in any of the

memory devices connected to the network.

More specifically, the engine or system can create or receive, a global address signal that
represents a portion, for example 4k bytes, of the virtual memory space. The global address
signal can be decoupled from, i.e. unrelated to, the physical and identifier spaces of the
underlying computer hardware, to provide support for a memory space large enough to span each
volatile and persistent memory device connected to the system. For example, systems can
operate on 32-bit computers, but can employ global address signals that can be 128 bits wide.

128 bytes, which is much larger than the 2%

Accordingly, the virtual memory space spans 2
address space supported by the underlying computer hardware. Such an address space can be
large enough to provide a separate address for every byte of data storage on the network,

including all RAM, disk and tape storage.

For such a large virtual memory space, typically only a small portion is storing data at
any time. Accordingly, the system includes a directory manager that tracks those portions of the
virtual memory space that are in use. The system provides physical memory storage for each
portion of the virtual memory space in use by mapping each such portion to a physical memory
device, such as a RAM memory or a hard-drive. Optionally, the mapping includes a level of

indirection that facilitates data migration, fault-tolerant operation, and load balancing.

By allowing each computer to monitor and track which portions of the virtual memory

space are in use, each computer can share the memory space. This allows the networked
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computers to appear to have a single memory, and therefore can allow application programs
running on different computers to communicate using techniques currently employed to

communicate between applications running on the same machine.

In one aspect, the invention of the above-identified, incorporated-by-reference U.S. patent
application can be understood to include computer systems having a addressable shared memory
space. The systems can comprise a data network that carries data signals representative of
computer readable information a persistent memory device that couples to the data network and
that provides persistent data storage, and plural computers that each have an interface that
couples to the data network, for accessing the data network to exchange data signals therewith.
Moreover, each of the computers can include a shared memory subsystem for mapping a portion
of the addressable memory space to a portion of the persistent storage to provide addressable

persistent storage for data signals.

In a system that distributes the storage across the memory devices of the network, the
persistent memory device will be understood to include a plurality of local persistent memory
devices that each couple to a respective one of the plural computers. To this same end, the
system can also include a distributor for mapping portions of the addressable memory space
across the plurality of local persistent memory devices and a disk directory manager for tracking
the mapped portions of the addressable memory space to provide information representative of
the local persistent memory device that stores that portion of the addressable memory space

mapped thereon.

The systems can also include a cache system for operating one of the local persistent
memory devices as a cache memory for cache storing data signals associated with recently
accessed portions of the addressable memory space. Further the system can include a migration
controller for selectively moving portions of the addressable memory space between the local
persistent memory devices of the plural computers. The migration controlier can determine and
respond to data access patterns, resource demands or any other suitable criteria or heuristic.
Accordingly, the migration controller can balance the loads on the network, and move data to
nodes from which it is commonly accessed. The cache controller can be a software program
running on a host computer to provide a software managed RAM and disk cache. The RAM can

be any volatile memory including SRAM, DRAM or any other volatile memory. The disk can
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be any persistent memory including any disk, RAID, tape or other device that provides persistent

data storage.

The systems can also include a coherent replication controller for generating a copy, or
select number of copies, of a portion of the addressable memory space maintained in the local
persistent memory device of a first computer and for storing the copy in the local persistent
memory device of a second computer. The coherent replication controller can maintain the

coherency of the copies to provide coherent data replication.

The systems can also be understood to provide integrated control of data stored in volatile
memory and in persistent memory. In such systems a volatile memory device has volatile
storage for data signals, and the shared memory subsystem includes an element, typically a
software module, for mapping a portion of the addressable memory space to a portion of the
volatile storage. In these systems the volatile memory device can be comprised of a plurality of
local volatile memory devices each coupled to a respective one of the plural computers, and the
persistent memory device can be comprised of a plurality of local persistent memory devices

each coupled to a respective one of the plural computers.

In these systems, a directory manager can track the mapped portions of the addressable
memory space, and can include two sub-components; a disk directory manager for tracking
portions of the addressable memory space mapped to the local persistent memory devices, and a
RAM directory manager for tracking portions of the addressable memory space mapped to the
local volatile memory devices. Optionally, a RAM cache system can operate one of the local
volatile memory devices as a cache memory for cache storing data signals associated with

recently accessed portions of the addressable memory space.

The systems can include additional elements including a paging element for remapping a
portion of the addressable memory space between one of the local volatile memory devices and
one of the local persistent memory devices; a policy controlier for determining a resource
available signal representative of storage available on each of the plural computers and, a paging
element that remaps the portion of addressable memory space from a memory device of a first

computer to a memory device of a second computer, responsive to the resource available signal;
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and a migration controller for moving portions of addressable memory space between the local

volatile memory devices of the plural computers.

Optionally, the systems can include a hierarchy manager for organizing the plural
computers into a set of hierarchical groups wherein each group includes at least one of the plural
computers. Each group can include a group memory manager for migrating portions of

addressable memory space as a function of the hierarchical groups.

The system can maintain coherency between copied portions of the memory space by
including a coherent replication controller for generating a coherent copy of a portion of

addressable memory space.

The system can generate or receive global address signals. Accordingly the systems can
include an address generator for generating a global address signal representative of a portion of
addressable memory space. The address generator can include a spanning unit for generating
global address signals as a function of a storage capacity associated with the persistent memory
devices, to provide global address signals capable of logically addressing the storage capacity of

the persistent memory devices.

In distributed systems, the directory manager can be a distributed directory manager for
storing within the distributed memory space, a directory signal representative of a storage
location of a portion of the addressable memory space. The distributed directory manager can
include a directory page generator for allocating a portion of the addressable memory space and
for storing therein an entry signal representative of a portion of the directory signal. The
directory page generator optionally includes a range generator for generating a range signal
representative of a portion of the addressable memory space, and for generating the entry signal
responsive to the range signal, to provide an entry signal representative of a portion of the
directory signal that corresponds to the portion of the addressable memory space. Moreover, the
distributed directory manager can include a linking system for linking the directory pages to
form a hierarchical data structure of the linked directory pages as well as a range linking system
for linking the directory pages, as a function of the range signal, to form a hierarchical data

structure of linked directory pages.
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As the data stored by the system can be homeless, in that the data has no fixed physical
home, but can migrate, as resources and other factors dictate, between the memory devices of the
network, a computer system can include a directory page generator that has a node selector for
generating a responsible node signal representative of a select one of the plural computers having
location information for a portion of the shared address space. This provides a level of
indirection that decouples the directory from the physical storage location of the data.
Accordingly, the directory needs only to identify the node, or other device, that tracks the
physical location of the data. This way, each time data migrates between physical storage
locations, the directory does not have to be updated, since the node tracking the location of the

data has not changed and still provides the physical location information.

Accordingly, the system can include page generators that generate directory pages that
carry information representative of a location monitor, such as a responsible computer node, that
tracks a data storage location, to provide a directory structure for tracking homeless data.
Moreover, the directory itself can be stored as pages within the virtual memory space. Therefore,
the data storage location can store information representative of a directory page, to store the

directory structure as pages of homeless data.

In another aspect, the invention of the above-identified, incorporated-by-reference U.S.
patent application can be understood as methods for providing a computer system having a
addressable shared memory space. The method can include the steps of providing a network for
carrying data signals representative of computer readable information, providing a hard-disk,
coupled to the network, and having persistent storage for data signals, providing plural
computers, each having an interface, coupled to the data network, for exchanging data signals
between the plural computers, and assigning a portion of the addressable memory space to a
portion of the persistent storage of the hard disk to provide addressable persistent storage for data

signals.

Turning now to the drawings related to the addressable shared memory system or engine
of the above-identified, incorporated-by-reference U.S. patent application, FIG. 5 illustrates a
computer network 10 that provides a shared memory that spans the memory space of each node

of the depicted computer network 210.
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Specifically, FIG. 5 illustrates a computer network 210 that includes a plurality of nodes
212a-212c, each having a CPU 214, an operating system 216, an optional private memory device
218, and a shared memory subsystem 220. As further depicted in by FIG. 5, each node 212a-
212c connects via the shared memory subsystem 220 to a virtual shared memory 222. As will be
explained in greater detail hereinafter, by providing the shared memory subsystem 220 that
allows the node 212a-212¢ to access the virtual shared memory 222, the computer network 210
enables network nodes 212a-212¢ to communicate and share functionality using the same
techniques employed by applications when communicating between applications running on the
same machine. These techniques can employ object linking and embedding, dynamic link
libraries, class registering, and other such techniques. Accordingly, the nodes 212 can employ
the virtual shared memory 222 to exchange data and objects between application programs

running on the different nodes 212 of the network 210.

In the embodiment depicted in FIG. 5, each node 212 can be a conventional computer
system such as a commercially available IBM PC compatible computer system. The processor
214 can be any processor unit suitable for performing the data processing for that computer
system. The operating system 216 can be any commercially available or proprietary operating
system that includes, or can access, functions for accessing the local memory of the computer

system and networking.

The private memory device 218 can be any computer memory device suitable for storing
data signals representative of computer readable information. The private memory provides the
node with local storage that can be kept inaccessible to the other nodes on the network.
Typically the private memory device 218 includes a RAM, or a portion of a RAM memory, for
temporarily storing data and application programs and for providing the processor 214 with
memory storage for executing programs. The private memory device 18 can also include
persistent memory storage, typically a hard disk unit or a portion of a hard disk unit, for the

persistent storage of data.

The shared memory subsystem 220 depicted in FIG. 5 couples between the operating
system 216 and the virtual shared memory 222 and forms an interface between the operating
system 216 and the virtual shared memory to allow the operating system 216 to access the virtual

shared memory 222. The depicted shared memory subsystem 220 is a software module that
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operates as a stand-alone distributed shared memory engine. The depicted system is illustrative
and other systems of the invention can be realized as shared memory subsystems that can be
embedded into an application program, or be implemented as an embedded code of a hardware
device. Other such applications can be practiced without departing from the scope of the

invention.

The depicted virtual shared memory 222 illustrates a virtual shared memory that is
accessible by each of the nodes 212a-212c via the shared memory subsystem 220. The virtual
shared memory 222 can map to devices that provide physical storage for computer readable data,
depicted in FIG. 5 as a plurality of pages 224a-224d. In one embodiment, the pages form
portions of the shared memory space and divide the address space of the shared memory into
page addressable memory spaces. For example the address space can be paged into 4K byte
sections. In other embodiments alternative granularity can be employed to manage the shared
memory space. Each node 212a-212c through the shared memory subsystem 220 can access
each page 224a-224d stored in the virtual shared memory 222. Each page 224a-224d represents
a unique entry of computer data stored within the virtual shared memory 222. Each page 224a-
2244 is accessible to each one of the nodes 212a-212c, and alternatively, each node can store
additional pages of data within the virtual shared memory 222. Each newly stored page of data
can be accessible to each of the other nodes 212a-212¢. Accordingly, the virtual shared memory
222 provides a system for sharing and communicating data between each node 212 of the

computer network 210.

FIG. 6 illustrates in functional block diagram form a computer network 230 that has a
distributed shared memory. In this embodiment, each node 212a-212¢ has a memory subsystem
232 that connects between the operating system 216 and the two local memory devices, the
RAM 234 and the disk 236, and that further couples to a network 238 that couples to each of the
depicted nodes 212a, 212b and 212¢ and to a network memory device 226.

More particularly, FIG. 6 illustrates a distributed shared memory network 30 that
includes a plurality of nodes 212a-212c, each including a processing unit 214, an operating
system 216, a memory subsystem 232, a RAM 234, and a disk 236. FIG. 6 further depicts a
computer network system 38 that connects between the nodes 212a-212¢ and the network
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memory device 226. The network 238 provides a network communication system across these

elements.

The illustrated memory subsystems 232a-232c that connect between the operating system
216a-216c¢, the memory elements 234a-234c, 236a-236¢, and the network 238, encapsulate the
local memories of each of the nodes to provide an abstraction of a shared virtual memory system
that spans across each of the nodes 212a-212¢ on the network 238. The memory subsystems
232a-232c¢ can be software modules that act as distributors to map portions of the addressable
memory space across the depicted memory devices. The memory subsystems further track the
data stored in the local memory of each node 212 and further operate network connections with
network 238 for transferring data between the nodes 212a-212c¢. In this way, the memory
subsystems 232a-232¢ access and control each memory element on the network 238 to perform
memory access operations that are transparent to the operating system 216. Accordingly, the
operating system 216 interfaces with the memory subsystem 232 as an interface to a global

memory space that spans each node 212a-212c on the network 238.

FIG. 6 further depicts that the system 230 provides a distributed shared memory that
includes persistent storage for portions of the distributed memory. In particular, the depicted
embodiment includes a memory subsystem, such as subsystem 232a, that interfaces to a
persistent memory device, depicted as the disk 236a. The subsystem 232a can operate the
persistent memory device to provide persistent storage for portions of the distributed shared
memory space. As illustrated, each persistent memory device 236 depicted in FIG. 6 has a
portion of the addressable memory space mapped onto it. For example, device 236a has the
portions of the addressable memory space, C,, C4, C,, mapped onto it, and provides persistent

storage for data signals stored in those ranges of addresses.

Accordingly, the subsystem 232a can provide integrated control of persistent storage
devices and electronic memory to allow the distributed shared memory space to span across both
types of storage devices, and to allow portions of the distributed shared memory to move
between persistent and electronic memory depending on predetermined conditions, such as

recent usage.
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In one optional embodiment, the nodes of the network are organized into a hierarchy of
groups. In this embodiment, the memory subsystems 232a-232¢ can include a hierarchy
manager that provides hierarchical control for the distribution of data. This includes controlling
the migration controller, and policy controller, which are discussed in detail below, to perform
hierarchical data migration and load balancing, such that data migrates primarily between
computers of the same group, and passes to other groups in hierarchical order. Resource

distribution is similarly managed.

FIG. 7 illustrates in more detail one shared memory subsystem 240. FIG. 7 depicts a
shared memory subsystem 240, that includes an interface 242, a DSM directory manager 244, a
memory controller 246, a local disk cache controller 248, and a local RAM cache controller 250.
FIG. 7 further depicts the network 254, an optional consumer of the DSM system, depicted as the
service 258, the operating system 216, a disk driver 260, a disk element 262 and a RAM
element 264.

The shared memory subsystem 240 depicted in FIG. 7 can encapsulate the memory
management operations of the network node 212 to provide a virtual shared memory that can
span across each node that connects into the network 254. Accordingly, each local node 212

views the network as a set of nodes that are each connected to a large shared computer memory.

The depicted interface 242 provides an entry point for the local node to access the shared
memory space of the computer network. The interface 242 can couple directly to the operating
system 216, to a distributed service utility such as the depicted DSM file system 258, to a

distributed user-level service utility, or alternatively to any combination thereof.

The depicted interface 242 provides an API that is a memory oriented API. Thus, the
illustrated interface 242 can export a set of interfaces that provide low-level control of the
distributed memory. As illustrated in FIG. 7, the interface 242 exports the API to the operating
system 216 or to the optional DSM service 258. The operating system 216 or the service
employs the interface 242 to request standard memory management techniques, such as reading
and writing from portions of the memory space. These portions of the memory space can be the
pages as described above which can be 4K byte portions of the shared memory space, or other

units of memory, such as objects or segments. Each page can be located within the shared
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memory space which is designated by a global address signal for that page of memory. The
system can receive address signals from an application program or, optionally, can include a
global address generator that generates the address signals. The address generator can include a
spanning module that generates address signals for a memory space that spans the storage

capacity of the network.

Accordingly, in one embodiment, the interface 242 receives requests to manipulate pages
of the shared memory space. To this end, the interface 242 can comprise a software module that
includes a library of functions that can be called by services, the OS 216, or other caller, or
device. The function calls provide the OS 216 with an API of high level memory oriented
services, such as read data, write data, and allocate memory. The implementation of the functions
can include a set of calls to controls that operate the directory manager 244, and the local
memory controller 246. Accordingly, the interface 242 can be a set of high level memory

function calls to interface to the low-level functional elements of shared memory subsystem 240.

FIG. 7 further depicts a DSM directory manager 244 that couples to the interface 242.
The interface 242 passes request signals that represent requests to implement memory operations
such as allocating a portion of memory, locking a portion of memory, mapping a portion of
memory, or some other such memory function. The directory manager 244 manages a directory
that can include mappings than can span across each memory device connected to the network
238 depicted in FIG. 6, including each RAM and disk element accessible by the network. The
directory manager 244 stores a global directory structure that provides a map of the global
address space. In one embodiment as will be explained in greater detail hereinafter, the directory
manager 244 provides a global directory that maps between global address signals and
responsible nodes on the network. A responsible node stores information regarding the location
and attributes of data associated with a respective global address, and optionally stores a copy of
that page’s data. Consequently, the directory manager 244 tracks information for accessing any

address location within the identifier space.

The control of the distributed shared memory can be coordinated by the directory
manager 244 and the memory controller 246. The directory manager 244 maintains a directory
structure that can operate on a global address received from the interface 242 and identify, for

that address, a node on the network that is responsible for maintaining the page associated with
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that address of the shared memory space. Once the directory manager 244 identifies which node
is responsible for maintaining a particular address, the directory manager 244 can identify a node
that stores information for locating a copy of the page, and make the call to the memory
controller 246 of that node and pass to that node’s memory controller the memory request
provided by the memory interface 242. Accordingly, the depicted directory manager 244 is
responsible for managing a directory structure that identifies for each page of the shared memory
space a responsible node that tracks the physical location of the data stored in the respective
page. Thus, the directory, rather than directly providing the location of the page, can optionally
identify a responsible node, or other device, that tracks the location of the page. This indirection

facilitates maintenance of the directory as pages migrate between nodes.

The memory controller 246 performs the low level memory access functions that
physically store data within the memory elements connected to the network. In the depicted
embodiment, the directory manager 244 of a first node can pass a memory access request through
the interface 242, to the network module of the OS 216, and across the network 254 to a second
node that the directory manager 244 identifies as the responsible node for the given address. The
directory manager 244 can then query the responsible node to determine the attributes and the
current owner node of the memory page that is associated with the respective global address.

The owner of the respective page is the network node that has control over the memory storage
element on which the data of the associated page is stored. The memory controller 246 of the
owner can access, through the OS 216 of that node or through any interface, the memory of the

owner node to access the data of the page that is physically stored on that owner node.

In particular, as depicted in FIG. 7, the directory manager 244 couples to the network
module 252 which couples to the network 254. The directory manager can transmit to the
network module 252 a command and associated data that directs the network interface 252 to
pass a data signal to the owner node. The owner node receives the memory request across
network 254 and through network module 252 that passes the memory request to the interface
242 of that owner node. The interface 242 couples to the memory controller 246 and can pass
the memory request to the local memory controller of that owner node for operating the local
storage elements, such as the disk or RAM elements, to perform the requested memory

operation.
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Once the owner node has performed the requested memory operation, such as reading a
page of data, the memory subsystem 240 of the owner node can then transfer the page of data, or
a copy of the page of data, via the network 254 to the node that originally requested access to that
portion of the shared memory. The page of data is transferred via the network 254 to the
network module 252 of the requesting node and the shared memory subsystem 240 operates the
memory controlier 246 to store in the local memory of the requesting node a copy of the

accessed data.

Accordingly, in one embodiment, when a first node accesses a page of the shared
memory space which is not stored locally on that node, the directory manager 244 identifies a
node that has a copy of the data stored in that page and moves a copy of that data into the local
memory of the requesting node. The local memory storage, both volatile and persistent, of the
requesting node therefore becomes a cache for pages that have been requested by that local node.
This embodiment is depicted FIG. 7 which depicts a memory controller that has a local disk
cache controller 248 and a local RAM cache controller 250. Both of these local cache controllers
can provide to the operating system 216, or other consumer pages of the shared memory space
that are cache stored in the local memory of the node, including local persistent memory and

local volatile memory.

The shared memory subsystem can include a coherent replication controller that
maintains coherency between cached pages by employing a coherence through invalidation
process, a coherence through migration process, or other suitable coherence process. The
coherent replication controller can automatically generate a copy of the data stored in each page
and can store the copy in a memory device that is separate from the memory device of the
original copy. This provides for fault tolerant operation, as the failure of any one memory device
will not result in the loss of data. The coherent replication controller can be a software model
that monitors all copies of pages kept in volatile memory and made available for writing. The
controller can employ any of the coherency techniques named above, and can store tables of

location information that identifies the location information for all generated copies.

FIG. 8 illustrates in greater detail one embodiment of a shared memory subsystem. The
shared memory subsystem 270 depicted in FIG. 8 includes a remote operations element 274, a

local RAM cache 276, a RAM copyset 278, a global RAM directory 280, a disk copyset 282, a
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global disk directory 284, a configuration manager 288, a policy element 290, and a local disk
cache 94. FIG. 8 further depicts a network element 304, a physical memory 300, shared data
element 302, a physical file system 298, which is part of the operating system 216, a
configuration service 308, a diagnostic service 310, and a memory access request 312. The
depicted subsystem 270 can be a computer program that couples to the physical memory, file
system, and network system of the host node, or can be electrical circuit card assemblies that

interface to the host node, or can be a combination of programs and circuit card assemblies.

The flow scheduler 272 depicted in FIG. 8 can orchestrate the controls provided by an
API of the subsystem 270. In one embodiment, the flow scheduler 272 can be a state machine
that monitors and responds to the requests 312 and remote requests through network 304 which
can be instructions for memory operations and which can include signals representative of the
global addresses being operated on. These memory operation requests 312 can act as op-codes
for primitive operations on one or more global addresses. They can be read and write requests,
or other memory operations. Alternatively, the flow scheduler 272 can be a program, such as an
interpreter, that provides an execution environment and can map these op-codes into control flow
programs called applets. The applets can be independent executable programs that employ both
environment services, such as threading, synchronization, and buffer management, and the
elements depicted in FIG. 8. The API is capable of being called from both external clients, like a
distributed shared memory file system, as well as recursively by the applets and the other
elements 274-294 of the subsystem 270. Each element can provide a level of encapsulation to
the management of a particular resource or aspect of the system. To this end, each element can
export an API consisting of functions to be employed by the applets. This structure is illustrated
in FIG. 8. Accordingly, the flow scheduler 272 can provide an environment to load and execute
applets. The applets are dispatched by the flow scheduler 272 on a per op-code basis and can
perform the control flow for sequential or parallel execution of an element to implement the op-
code on the specified global address, such as a read or write operation. Optionally, the flow
scheduler 272 can include an element to change dynamically the applet at run time as well as

execute applets in parallel and in interpreted mode.

The depicted shared memory subsystem 270 includes a bifurcated directory manager that
includes the global RAM directory 280 and the global disk directory 284. The global RAM
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directory 280 is a directory manager that tracks information that can provide the location of
pages that are stored in the volatile memory, typically RAM, of the network nodes. The global
disk directory 284 is a global disk directory manager that manages a directory structure that
tracks information that can provide the location of pages that are stored on persistent memory
devices. Together, the global RAM directory 280 and the global disk directory 284 provide the
shared memory subsystem 270 with integrated directory management for pages that are stored in

persistent storage and volatile memory.

In one embodiment a paging element can operate the RAM and disk directory managers
to remap portions of the addressable memory space between one of the volatile memories and
one of the persistent memories. In the shared memory system, this allows the paging element to
remap pages from the volatile memory of one node to a disk memory of another node.
Accordingly, the RAM directory manager passes control of that page to the disk directory
manager which can then treat the page as any other page of data. This allows for improved load
balancing, by removing data from RAM memory, and storing it in the disk devices, under the

control of the disk directory manager.

The local memory controller of the subsystem 270 is provided by the local RAM cache
276 and the local disk cache 294. The local RAM cache 276 which couples to the physical
memory 300 of the local node can access, as described above, the virtual memory space of the
local node to access data that is physically stored within the RAM memory 300. Similarly, the
local disk cache 294 couples to the persistent storage device 298 and can access a physical

location that maintains in the local persistent storage data of the distributed shared memory.

FIG. 8 also depicts a remote operations element 274 that couples between the network
304 and the flow scheduler 272. The remote operations element 274 negotiates the transfer of
data across the network 304 for moving portions of the data stored in the shared memory space
between the nodes of the network. The remote operations element 274 can also request services

from remote peers, i.e. invalidate to help maintain coherency or for other reasons.

FIG. 8 also depicts a policy element 290 that can be a software module that acts as a
controller to determine the availability of resources, such as printer capabilities, hard-disk space,

available RAM and other such resources. The policy controller can employ any of the suitable
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heuristics to direct the elements, such as the paging controller, disk directory manager, and other

elements to dynamically distribute the available resources.

FIG. 8 further depicts a memory subsystem 270 that includes a RAM copyset 278 and a
disk copyset 282. These copysets can manage copies of pages that are cached at a single node.
The disk copyset 282 can maintain information on copies of pages that are stored in the local
disk cache, which can be the local persistent memory. Similarly, the RAM copyset 278 can
maintain information on copies of pages that are stored in the local RAM cache which can be the
local RAM. These copysets encapsulate indexing and storage of copyset data that can be
employed by applets or other executing code for purposes of maintaining the coherency of data
stored in the shared memory space. The copyset elements can maintain copyset data that
identifies the pages cached by the host node. Further, the copyset can identify the other nodes on
the network that maintain a copy of that page, and can further identify for each page which of
these nodes is the owner node, wherein the owner node can be a node which has write privileges
to the page being accessed. The copysets themselves can be stored in pages of the distributed

shared memory space.

The local RAM cache 276 provides storage for memory pages and their attributes. In one

.embodiment, the local RAM cache 276 provides a global address index for accessing the cached

pages of the distributed memory and the attributes based on that page. In this embodiment, the
local ram cache 276 provides the index by storing in memory a list of each global address cached
in the local RAM. With each listed global address, the index provides a pointer into a buffer
memory and to the location of the page data. Optionally, with each listed global address, the
index can further provide attribute information including a version tag representative of the
version of the data, a dirty bit representative of whether the RAM cached data is a copy of the
data held on disk, or whether the RAM cached data has been modified but not yet flushed to
disk, a volatile bit to indicate if the page is backed by backing store in persistent memory, and

other such attribute information useful for managing the coherency of the stored data.

In the embodiment depicted in FIG. 8, the memory subsystem 270 provides the node
access to the distributed memory space by the coordinated operation of the directory manager

that includes the global RAM directory 280 and the global disk directory 284, the cache
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controller that includes the local RAM cache and the local disk cache elements 276 and 294, and

the copyset elements which include the RAM copyset 278 and the disk copyset 282.

The directory manager provides a directory structure that indexes the shared address
space. Continuing with the example of a paged shared address space, the directory manager of
the subsystem 270 allows the host node to access, by global addresses, pages of the shared

memory space.

FIGS. 9 and 10 illustrate one example of a directory structure that provides access to the
shared memory space. FIG. 9 depicts a directory page 320 that includes a page header 322,
directory entries 324 and 326, wherein each directory entry includes a range field 330, a
responsible node field 332, and an address field 334. The directory pages can be generated by a
directory page generator that can be a software module controlled by the directory manager. It
will be understood that the directory manager can generate multiple directories, including one for
the Global disk and one for the Global RAM directories. The depicted directory page 320 can be
a page of the global address space, such as a 4K byte portion of the shared address space.
Therefore, the directory page can be stored in the distributed shared memory space just as the

other pages to which the directory pages provide access.

As further depicted in FIG. 9, each directory page 120 includes a page header 322 that
includes attribute information for that page header, which is typically metadata for the directory
page, and further includes directory entries such as the depicted directory entries, 324 and 326,
which provide an index into a portion of the shared address space wherein that portion can be
one or more pages, including all the pages of the distributed shared memory space. The depicted
directory page 320 includes directory entries that index a selected range of global addresses of
the shared memory space. To this end, the directory generator can include a range generator so
that each directory entry can include a range field 330 that describes the start of a range of

addresses that that entry locates.

Accordingly, each directory page 320 can include a plurality of directory entries, such as
entries 324 and 326, that can subdivide the address space into a subset of address ranges. For
example, the depicted directory page 320 includes two directory entries 324 and 326. The

directory entries 324 and 326 can, for example, subdivide the address space into two sub-
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portions. In this example, the start address range of the directory entry 324 could be the base
address of the address space, and the start address range of the directory entry 326 could be the
address for the upper half of the memory space. Accordingly, the directory entry 324 provides
an index for pages stored in the address space between the base address and up to the mid-point
of the memory space and, in complement thereto, the directory entry 326 provides an index to
pages stored in the address space that ranges from the mid-point of the address space to the

highest address.

FIG. 9 further depicts a directory page 320 that includes, in each directory entry, a
responsible node field 332 and the child page global address field 334. These fields 332, 334
provide further location information for the data stored in pages within the address range

identified in field 330.

FIG. 10 depicts a directory 340 formed from directory pages similar to those depicted in
FIG. 9. FIG. 10 depicts that the directory 340 includes directory pages 342, 350-354, and 360-
366. FIG. 10 further depicts that the directory 340 provides location information to the pages of
the distributed shared memory space depicted in FIG. 10 as pages 370-384.

The directory page 342 depicted in FIG. 10 acts like a root directory page and can be
located at a static address that is known to each node coupled to the distributed address space.
The root directory page 342 includes three directory entries 344, 346, and 348. Each directory
entry depicted in FIG. 10 has directory entries similar to those depicted in FIG. 9. For example,
directory entry 344 includes a variable Co which represents the address range field 330, a
variable Nj representative of the field 332, and a variable Cs representative of the field 334. The
depicted root directory page 342 subdivides the address space into three ranges illustrated as an
address range that extends between the address Co and Cd, a second address range that extends
between the address Cd and Cg, and a third address range that extends between Cg and the

highest memory location of the address space.

As further depicted in FIG. 10, each directory entry 344, 346, and 348 points to a
subordinate directory page, depicted as directory pages 350, 352, and 354, each of which further
subdivides the address range index by the associated directory entry of the root directory 342. In
FIG. 9, this subdivision process continues as each of the directory pages 350, 352, and 354 each
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again have directory entries that locate subordinate directory pages including the depicted

examples of directory pages 360, 362, 364, and 366.

The depicted example of directory pages 360, 362, 364, and 366 are each leaf entries.
The leaf entries contain directory entries such as the directory entries 356 and 358 of the leaf
entry 360, that store a range field 330 and the responsible node field 332. These leaf entries
identify an address and a responsible node for the page in the distributed memory space that is
being accessed, such as the depicted pages 370-384. For example, as depicted in FIG. 10, the
leaf entry 356 points to the page 370 that corresponds to the range field 330 of the leaf entry 356,
which for a leaf entry is the page being accessed. In this way, the directory structure 340

provides location information for pages stored in the distributed address space.

In the depicted embodiment of FIG. 10, a node selector can select a responsible node for
each page, as described above, so that the leaf entry 356 provides information of the address and
responsible node of the page being located. Accordingly, this directory tracks ownership and
responsibility for data, to provide a level of indirection between the directory and the physical
location of the data. During a memory access operation, the memory subsystem 270 passes to
the responsible node indicated in the leaf entry 356 the address of the page being accessed. The
shared memory subsystem of that node can identify a node that stores a copy of the page being
accessed, including the owner node. This identification of a node having a copy can be
performed by the RAM copyset or disk copyset of the responsible node. The node having a copy
stored in its local physical memory, such as the owner node, can employ its local cache elements,
including the local RAM cache and local disk cache to the identify from the global address signal
a physical location of the data stored in the page being accessed. The cache element can employ
the operating system of the owner node to access the memory device that maintains that physical
location in order that the data stored in the page can be accessed. For a read-memory operation,
or for other similar operations, the data read from the physical memory of the owner node can be
passed via the network to the memory subsystem of the node requesting the read and

subsequently stored into the virtual memory space of the requesting node for use by that node.

With reference again to FIG. 10, it can be seen that the depicted directory structure 340
comprises a hierarchical structure. To this end, the directory structure 340 provides a structure

that continually subdivides the memory space into smaller and smaller sections. Further, each
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section is represented by directory pages of the same structure, but indexes address spaces of
different sizes. As pages are created or deleted, a linker inserts or deletes the pages from the
directory. In one embodiment, the linker is a software module for linking data structures. The
linker can operate responsive to the address ranges to provide the depicted hierarchical structure.
Accordingly, the depicted directory 340 provides a scaleable directory for the shared address
space. Moreover, the directory pages are stored in the distributed address space and maintained
by the distributed shared memory system. A root for the directory can be stored in known
locations to allow for bootstrap of the system. Consequently, commonly used pages are copied
and distributed, and rarely used pages are shuffled off to disk. Similarly, directory pages will
migrate to those nodes that access them most, providing a degree of self-organization that

reduces network traffic.

FIG. 11 depicts the directory of FIG. 10 being employed by a system. In particular, FIG.
11 depicts a system 400 that includes two nodes, 406a and 406b, a directory structure 340, and a
pair of local memories having volatile memory devices 264a and 264b, and persistent memory
devices 262a and 262b. Depicted node 406a includes an address consumer 408a, a global
address 410a, and interface 242a, a directory manager 244a and a memory controller 246a. Node
406b has corresponding elements. The nodes are connected by the network 254. The directory
340 has a root page, directory pages A-F, and pages 1-5.

Each node 406a and 406b operates as discussed above. The depicted address consumers
408a and 408b can be an application program, file system, hardware device or any other such
element that requests access to the virtual memory. In operation, the address consumers 408a
and 408b request an address, or range of addresses, and the directory manager can include a
global address generator that provides the consumer with the requested address, or a pointer to
the requested address. As addresses get generated, the respective directory managers 244a and
244b generate directory pages and store the pages in the directory structure 340. As depicted, the
directory structure 340 tracks the portions of the address space being employed by the system

400, and physical storage for each page is provided within the local memories.

As shown in FIG. 11, the data associated with the directory pages are distributively stored
across the two local memories and duplicate copies can exist. As described above and now

illustrated in FIG. 11, the data can move between different local memories and also move, or
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page, between volatile and persistent storage. The data movement can be responsive to data
requests made by memory users like application programs, or by operation of the migration
controller described above. As also described above, the movement of data between different
memory locations can occur without requiring changes to the directory 340. This is achieved by
providing a directory 340 that is decoupled from the physical location of the data by employing a
pointer to a responsible node that tracks the data storage location. Accordingly, although the
data storage location can change, the responsible node can remain constant, thereby avoiding any

need to change the directory 340.

DISTRIBUTED WORKGROUPS

Having described in some detail structured data storage systems and the addressable
shared memory system employed by such systems, a description of the present invention is now

provided under this heading.

Overview

The invention provides a peer-to-peer network that spans WANs. The invention spans
multiple nodes, some of which may be separated from one another by relatively unstable, low
bandwidth links (e.g., modems or WANSs). In its simplest form, the invention might span a
collection of nodes on a LAN and a single remote access computer such as a portable computer
connected to the LAN via a modem. An alternative form might include nodes on two or more
LANS in different buildings sharing some set of files. For example, a folder could be shared
between a group of architects and an engineering consulting group cooperating on the design of a
building. Some differences between the invention and the base version of the technology
described hereinabove include the existence of slow communication links, a much higher
likelihood of network partitions, nodes in separately administered security domains, and nodes in
separate clouds. A “cloud” is a collection of networked computers interoperating to implement
the huge virtual space and global storage scheme described in detail hereinabove. In general, a
cloud includes nodes on the same network (e.g., LAN), and two clouds (e.g., two LANSs) can be

interconnected and interoperated according to this invention, although it is possible to think of
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two or more interconnected networks as defining a single cloud that spans all interconnected

networks.

The basic premise behind the invention can be summarized in the following two

paragraphs.

Data pages shared between multiple clouds (or a LAN cloud and a roaming or remote
access computer) have the same addresses on both sides of the link such that pages can freely

migrate between clouds or be replicated on multiple clouds as appropriate.

Metadata pages are not shared between clouds. Instead of using the shared address space
to maintain consistency of data structures between the clouds, each cloud maintains its own copy
of each data structure and uses proxy techniques to keep the different data structures consistent.
A protocol involves a “proxy” when a node in one cloud cannot directly manipulate all versions
of a “global” data structure, but must instead send a request to a node in a remote cloud, the
proxy node, and ask the proxy node to perform an operation on its behalf. For example, rather
than directly manipulate a remote cloud’s global disk directory, GDD, a node will send a request
to a member of that cloud and ask it to perform the desired operation. Proxy operations typically
will be performed via remote procedure calls (RPCs). Put another way, the metadata structures
are partitioned. The data structures affected include the global disk directory (GDD, FIG. 8),
global RAM directory (GRD, FIG. 8), and the RAM copyset structures (FIG. §). Although these
data structures are not shared between clouds, they are coordinated to maintain the same
consistency and fault tolerance guarantees present in the base version of the technology
described hereinabove. For example, although the GDD pages in each cloud are independent,
the leaf nodes in each GDD that store disk core copy set information can include “virtual” entries
that refer to core copies in remote clouds. The GRD and RAM copy set structures can include
similar “virtual” entries. The structure of these virtual entries and the proxy mechanisms used to

keep them consistent are described below.

For completeness and by way of definition, a core copy is a copy of a shared page stored
on a persistent storage device (e.g., local hard disk of one of the network nodes) that is updated

whenever the contents of that page are modified by any network node.
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The invention is designed for use with a structured data storage system such as the file
system described hereinabove. The invention, at the component level, is comprised of: (1) a set
of Policies that deal with controlling inter-cloud behavior; (2) Intercloud linkages that deal with
issues such as how the LAN mechanisms and structures can be made to span clouds and how
potential address allocation conflicts are handled; (3) a Communication Subsystem that deals
with how to establish WAN and dial-up (i.e., remote access) connectivity, how to adapt to
differing network performance (e.g., 28.8Kbps versus 100Mbps), and how to handle unexpected
link failures; (4) a File System that deals with how to ensure file coherence, how to provide a
seamless view, and how to manage updates; and (5) a set of Security Mechanisms that deal with
what is an acceptable security model and how to handle multi-domain security. These issues are

addressed below.

In general the desired behavioral differences between intra-cloud and inter-cloud

processing are encapsulated in a policy subsystem. The following are some policy concerns.

First, it may be desirable to address availability issues. It may be best not to replicate
remotely for availability. In other words, do not push pages remotely (to a remote cloud
connected via a WAN or modem) if it is possible to avoid doing so. Each cloud maintains its
own minimum set of core copies. Thus, if two clouds are each sharing a page and each side has
at least one core copy, both should replicate the page locally to create the minimum number of
core copies required for availability locally, without regard to the remote copy or copies.
Portable computers are essentially clouds with only one node, and thus their availability policy

simply requires there to be one core copy of each core page on the local disk of the computer.

Second, there is a strong bias against creating core copies across inter-cloud links. Do
not create local core copies except for “marked files” and “files in recently activated
folders/applications,” except maybe if the “remote cloud” is a portable that is LAN-connected for

a long time.

Third, there is a strong bias towards creating loose copies across intercloud links. A
“loose copy” of a page (in contrast to a core copy) is a copy stored on a persistent storage device
(e.g., a local hard disk of a network node) that is not updated whenever a node modifies the page.

To ensure consistency, when a loose copy of a page is activated on a node, its version number is
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checked against that of any core copy, and if they match, the contents of the loose copy are up-
to-date and thus can be served, otherwise the contents of the loose copy are discarded and a new
copy of the page’s data is loaded from a core copy. Loose copies have good read characteristics,
although it may be desirable to aggregate version number checks for biocks of related pages
across a slow link. Core copies require flushing on every update across a slow link. This is a
bad idea unless the local read rate justifies it. Rather than synchronously updating core copies
across slow links, it generally is better to update copies asynchronously in the background if

access is frequent enough to warrant doing so.

Fourth, it may be desirable to keep decisions local. Push all local core copies to a remote
cloud, thereby ditching all local copies, if the ratio of remote flushes to local accesses is high. If
a remote node pushes a core copy to us, only create extra local core copies if needed. In general,
do not track the number or location of copies on the remote side. Instead, let the proxy over

there worry about it.

Fifth, it is presently preferred always to treat portable (i.e., remote access) computers as a

remote cloud.

Inter-cloud Operation

In brief, various aspects of the invention include the ability to maintain unique global
addresses across all clouds and to perform all operations even when two or more clouds are
interconnected. The invention does not allow the same address to be allocated in more than one
cloud. Also, the invention tolerates the connection of one cloud or network to another (or to two
or more already-interconnected networks), the disconnection of a network, and/or the
reconnection of a network while maintaining and allowing normal operations by all nodes in the

cloud(s).

Addressing Between Disjoint Clouds

Addressing is an important issue for disjoint clouds. It must be possible for a node on a

“foreign” cloud to gain access to a file folder or other structured storage entity shared between
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clouds via the common shared memory system. At the file system level, files and folders are
collections of pages in which addresses are used to add structure. For example, inode pages
contain addresses pointing to the associated file data pages and file system directory pages
contain addresses pointing to inode pages. Because file system data structures contain addresses,
there is a issue of how to handle addresses that were allocated in a remote cloud if the file system

is going to be able to interpret folders created in that cloud.

It is required that DSM consumers (e.g., a shared file system, database, email repository,
web server, etc.) be able to use the same addresses to refer to the same data in all clouds that are
collaborating. That is, globally unique addresses are needed across all interconnected and
interoperating clouds. Thus, file system metadata contents can be interpreted normally whether
or not the inode refers to a purely local file or a file being shared between clouds. Several issues
arise when trying to ensure that addresses have the same meaning in all clouds sharing a file.
Since it cannot be guaranteed that collaborating clouds will be able to communicate when the
original pages are being allocated (e.g., because the file is created before the containing folder is
ever exported to a remote clouds), it must be the case that either (i) two clouds will never allocate
the same address or (ii) conflicting address regions are repaired whenever two clouds first
connect. The presently preferred solution is to provide a single universal address space across all
clouds by carefully segmenting the 128-bit addresses. It is proposed that addresses be segmented
into two pieces, a 40-bit node header and an 88-bit address. This specific division of 40 bits and
88 bits is somewhat arbitrary. It generally is important, however, for the node field to be large
enough to be unique for all node licenses and the address field to be large enough to not allow
any given node to run out of address space. The 40-bit header is a unique per-node value based
on the node’s license number. A node header was selected rather than a cloud header because it
solves the problems of mapping clouds to licenses and because it allows for multi-cloud nodes.
Bundling the header with the license allows the 40-bit field to be used as a densely packed
uniqueness identifier. Given this division, addresses can be guaranteed to be unique if each node

allocates addresses only with its node header.

Note that although the address space is segmented by node license, this segmentation
only refers to how addresses are allocated. A node with a 40-bit tag of 0XABC014011E would
be the only node that could allocate an address with those 40-bits in the tag portion of the
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address, but after allocation, the creating node plays no special role in maintaining the coherence
or availability of that page. Once allocated, all core copies of the page could migrate to remote

nodes or even remote clouds.

Performing Cross-cloud Operations Via a Proxy Mechanism

In the preceding section, a mechanism is described for ensuring that addresses are
globally unique across all clouds by restricting the address range from which a given node can
allocate pages. This design guarantees that a file system metadata page shared between two
clouds will point to the same pages in both clouds, or will be inaccessible in one cloud, and thus
force it to be acquired from the remote cloud as described below. As a result, at the file system
level, a file shared between two clouds is essentially identical to a file contained solely within a

single cloud.

The major difference between a file shared within a single LAN cloud and between two
or more clouds occurs at the global addressing memory engine level. The three most important
data structures at that level for managing the location and consistency of a shared page are the
Global RAM Directory (GRD), the local RAM copyset structures, and the Global Disk Directory
(GDD). The global directories can be managed by walking a tree from root to desired leaf node,
“paging” in the appropriate pages as you need them. One way to extend the GRD and GDD
semantics across clouds would be to simply integrate the clouds’ directories into unified
directories, and transfer the needed directory pages between the clouds on demand. However,
there are a number of serious problems associated with integrating two or more clouds in this
fashion including: (i) performance: paging data across a slow link is time consuming; (ii)
reliability: links (or pages) between clouds are expected to fail far more often than a single
segment LAN which would result in frequent and expensive directory rebuilds; and (iii) security:
a malicious or buggy engine in a remote cloud would be able to access any and all of a cloud’s
data if it could manipulate arbitrary engine directory entries. For these reasons, a proxy

mechanism for manipulating disjoint directory structures is used in one embodiment.

Introduced now is the notion of remote cloud identifiers (RCLids). An RCLid acts as a

virtual placeholder for one or more cloud identifiers (CLids) in a remote cloud. For example, if
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an RCLid is found in a core copy member list, this means that one or more core copies of the
page are present in the remote cloud. Similarly, an RCLid in a RAM copyset means that one or
more remote nodes are currently being served RAM pages from the local node. RCLids are
opaque such that a member of one cloud cannot tell how many nodes in the remote cloud are
represented by a given RCLid. It may be necessary for the RCLid associated with a particular
cloud to be unique and identical for all clouds that are sharing with that particular cloud. It needs

to be ensured that RCLid values never collide with CLid values.

Operations involving RCLids must be performed via the proxy mechanism. At its most
basic, the proxy mechanism involves contacting a node willing to act as a proxy for the nodes
represented by the RCLid. There are a number of ways to implement the proxy mechanism. The
proxy node could be a single special member of the remote cloud through which all operations to
that node must pass. The proxy node could be a single special member of the local cloud that
knows how to perform operations in the remote cloud. As another alternative, the proxy node
could be a single special member of the local cloud that knows how to talk to a special proxy
“server” node in the remote cloud to have it perform requested operations. Each of these options
has certain strengths and weaknesses. In one embodiment, the basic mechanism utilized is as
follows. A local node is designated to act as the proxy for an entire remote cloud, which it will
do by communicating with a peer in the remote cloud. Note that this does not mean that the
virtual node maps to a single physical node. This approach has some significant advantages.
First, it provides a single point to handle sporadic connectivity. Since a local node is acting as
the proxy, it will be available even if the communication link fails. It can enqueue operations
that must be applied when the link returns. It also can transparently “failover” to a different
remote node should its remote peer “server” fail. Second, it provides a local framework from

which to consider asynchronous lazy inter-cloud protocols.

Assuming a remote node is the proxy or is acting as the proxy server for a local proxy
node, consider what must be done to activate (or flush to, or...) a core copy represented by an
RCLid. The node that wants to perform the desired operation will specify the RClid as the
destination node for the desired engine operation, but the communications layer will redirect the
request to a CLid that is currently serving as a proxy node for that RCLid, marking the request as

being a proxy request. Upon receiving the request, the remote proxy server node will execute the
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request in the remote cloud on behalf of the original requester. Depending on the semantics of
the operation, the proxy server node may contact multiple nodes local to its cloud as part of
performing the operation. For example, a request such as “activate a core copy and send me the
page contents” can be handled by any core copyholder, while a request such as “invalidate all
copies of this page” would need to be sent to all copyholders in the remote cloud. The identity of
the nodes that need to be contacted can be determined by the proxy node from the remote cloud’s
metadata (e.g., the local core copy holders can be determined by walking the remote GDD).

More specific details of the proxy mechanism for various types of engine data structures are

disclosed below.

Example of Inter-cloud File Sharing

Referring to FIGS. 12A and 12B, in which a shared file system tree is depicted between
cloud A and cloud B wherein solid lines represent having copies of blocks composing an object
stored locally and dashed/dotted lines represent having no local data for those pages, both a
physical view (FIG. 12A) and a logical view (FIG. 12B) of the file system are shown. The
physical view of clouds A and B show what files are on what cloud, while the logical view
shows how all files are part of a single logical tree structure. In FIG. 12A, some directory files
are stored in both cloud A and cloud B such as files 100 and 110. Some directory files are
physically stored only in one cloud such as file 120 (on cloud B). The same is true for user files.
That is, user file 132 is common to both clouds, while user file 142 is not replicated on both
clouds and instead is on only cloud A. While we are looking at file 142, it should be noted that
directory trees do not need to be fully connected above a file for the tree to be cached locally.
File 142 in cloud A shows a tree that is not fully connected as shown by the location of file 142
in cloud A’s tree of FIG. 12A. However, when a directory tree is not fully connected, while an
unconnected file (like file 142) may be cached locally, that unconnected file will be unavailable

if the clouds disconnect at a point when the file is unconnected in the tree structure.

Consider the case illustrated in FIG. 13 where two clouds are shown sharing a folder and
where an example of how file sharing can be implemented is depicted. Suppose that somebody

in “cloud L” (i.e., the cloud on the LAN) has created a shared folder and has exported it to
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somebody in “cloud P” (i.e., the cloud with a portable, remote access computer). For simplicity,
only the disk metadata is shown in FIG. 13. The RAM metadata would look very similar. First,
some general observations: (1) the addresses that make up the file system directories, files, and
metadata are identical in cloud L and cloud P (e.g., the page at address 0xF0O represents the
same file system file data page in both clouds); (2) the GDDs in both clouds are independent
except that the leaf nodes representing the shared pages must be coordinated, and the pages that
hold GDD pages are at different addresses (e.g., the GDD page that contains the leaf entry for
page 0xF00 are mapped to pages P100 and 1.138 in clouds P and L respectively); (3) nodes in a
local cloud are represented by individual CLids and, in this case, each cloud has one core copy of
the page that is stored on nodes P1 and L3 in cloud P and cloud L, respectively; and (4) all nodes
in a remote cloud are represented by a single RCLid and, in this case, each cloud knows that the
remote cloud has at least one core copy of the page as represented by the RCLids in each GDD

entry.

The topic of establishing a connection for the first time is now addressed. Thereafter,

normal operation is disclosed.

Initiating an Inter-cloud Connection

Assuming that a convenient GUI mechanism (e.g., Explorer property sheets) exists to
allow users to designate folders for sharing and to specify a set of users who are allowed access,
the information that must be exchanged when two clouds first connect is as follows. When a
connection between two clouds is first established, the clouds exchange three pieces of

information.

First, address ranges from which nodes in each cloud allocate pages are exchanged.
Remember that a key issue in this invention is how to resolve “remote” addresses. This is
handled as follows. When a cloud connects to a remote cloud, it imports a list of client headers
for nodes in that cloud. This list implies a set of address ranges that can be allocated by
members of the remote cloud. The list is walked and a GDD entry is added for each list element
to represent the associated address range. For example, if the remote cloud has two nodes with

client tags 0XxABC014011E and 0x123f0f3afc, entries for address ranges
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0xABC014011E00...000 through 0xABC014011EFF...FFF and 0x123FOF3AFC00...000 through
0x123F0F3AFCFF...FFFF must be added to the local GDD with the RCLid for the remote cloud
as the sole core copy holder. This guarantees the ability to resolve any address found in a page
that is imported (e.g., the addresses that are found in the root of the imported folder can be
resolved). Referring to FIG. 10, this operation would correspond to adding a new address range
to the root directory page 342 for each client header received as part of the initialization process,

with the remote cloud’s RCLid as the responsible node field.

Second, the address of the root of the shared folder must be exchanged. As part of setting
up the virtual folder on the remote cloud, it needs to know the address of the root of the shared

folder from which it can bootstrap itself.

Third, information concerning how to contact a local proxy to resolve an RCLid must be
exchanged. Depending on the specific proxy mechanism used, each node will need to send one

or more IP addresses for local nodes that can act as proxy servers for remote requests.

Normal Inter-cloud Operation

Once two clouds have exchanged their initial information, normal operation can occur.
During normal operation, it is possible for nodes in either cloud to access, lock, modify
consistently, flush, etc. arbitrary data (file system) pages in the shared collaboration. Normal

operation is as follows.

First, when a node attempts to access a shared page for which it does not have a local
core copy, including pages that have never before been accessed in that cloud, it will find an
entry for a range of addresses spanning that page in its local GDD containing an RCLid pointing
at the page’s original home cloud. In this case, it sends a proxy RPC request to the remote cloud

to activate the page.

Second, when a node wants to modify a GDD entry that is shared (e.g., it wants to create
a core copy for data created remotely in the local cloud for the first time), it locks its local GDD
page for that entry (using the GDD traversal mechanisms) and then sends a proxy request to the

appropriate proxy node. When the proxy server has completed the operation (traversing its
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GDD, locking pages, adding an RCLid representing the node that is creating a new core copy to
its GDD entry, etc.), it responds back to the original requester, which completes the operation
locally and uniocks its local GDD page. In the case of near-simultaneous requests by both
clouds (e.g., a node in both clouds wants to manipulate a GDD entry on a particular GDD page
simultaneously), an exception mechanism is used to break the tie (e.g., the node in the lower

numbered cloud loses and unlocks the page).

Third, to handle sharing, the GRDs on each cloud must be synchronized. The approach
involves proxying the GRD mechanism similar to how the GDD operations are handled. For
example, a remote GRD lookup is invoked whenever an attempt is made to activate a page with
remote core copies prior to activating a local core copy, since a remote node might have the
associated file open in shared mode and changes must be consistent with any remote changes. In
the case where both a local and remote core copy exists, it might be preferable to activate a local
core copy and communicate with the remote GRD asynchronously to see if there is a sharing
collision and/or inform it that an active copy of the page exists. Note that, in an alternative
embodiment, the GRDs are treated the same as the GDDs. In this alternative embodiment, the

structure and functionality of the GRDs generally is the same as the GDDs.

Fourth, to handle cross-cloud migration, it is possible to follow RCLids across multiple
clouds, starting at the original “home” of a page until a core copy is found. Essentially, the
RCLids can be used as forwarding pointers. As an optimization, it is possible to start anywhere
having a copy of the page if the location of any copy can be determined without contacting its

original “home.”

Disconnected Operation

The invention supports modification of shared files across clouds both while connected
and while disconnected. While connected, the file system will simply operate as it does in the
environment provided by the base version of the technology that is described hereinabove,

perhaps with minor changes for performance reasons.
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To provide seamless directory views and file coherence, the invention requires that if a
cloud contains a core copy of any page(s) of a file, it must have a core copy of all pages in the
file. This axiom will be applied, on mobile systems, to all file system directory pages and to the
contents of data files that are targeted for disconnected access. Given this assumption,

disconnected operation and reconciliation will now be explored.

In the disconnected case (that is, when there is no communication channel between two
clouds because of either a voluntary or involuntary network disconnect), the file system must be
able to detect and resolve file update conflicts. This processing cannot be performed at just the

page level because of atomicity requirements at the file level.

The implementation mechanism for this solution exploits a synergistic file system/engine
relationship. The RCLid proxy mechanism will drive and control disconnected operation. This
isolates the unique connectivity requirements of mobile and WAN from the core components.
The file system is responsible for providing assistance with file level coherence. This assistance

will take the form of page type specific exception and reconciliation handlers.

The general model here is that when the RCLid proxy has declared a remote cloud
inaccessible, it will drive disconnected processing via an exception handling mechanism for
RCLid operations. This mechanism will be based on page type. Exceptions on loose copies are
handled as in the base engine design described hereinabove; that is, the pages are dropped and
the attempted access fails with an appropriate error code. Exceptions on core copies are handled
with a special symmetric logging facility, as described below. In particular, during a
communication outage, all clouds with core copies of a page must engage in file system-level
state logging when a shared file or directory is modified. Exceptions on tight copies, a
postulated new page type for mobile systems, use asymmetric logging. This means that logging
is performed on the mobile system, but not in the base cloud, if one of the clouds is a lone

portable remote-accessing computer.

Page update failures that occur to an RCLid are handled specially. When an update to a
page containing an RCLid fails, the proxy returns a remote update failure error code. For user
data pages, remote update failure means that the copyset entry associated with the RCLid should

be flagged as suspect, but no other error recovery is needed at this time. For file system
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metadata, the remote update failure needs to be reflected up to file system in addition to marking,
the copyset entry as suspect. In response to notification of the failure, file system will generate a
reconciliation log entry that identifies the file operation that failed. The file system hands this
log entry to the RCLid proxy. The log entry represents an operation to be performed by file

system during the proxy-driven reconciliation process.

Reconciliation

Reconciliation is the process whereby the contents of two clouds are synchronized when
the communication channel between two previously disconnected clouds is re-established. As
part of the reconciliation process file system directories and metadata will be made coherent. At
the time reconciliation begins, data files will be in one of three states: (1) the file has no changes
- following reconciliation, the file is unchanged; (2) the file has been changed on one system
(i.e., cloud) - following reconciliation, the new file is visible everywhere; or (3) the file has been
changed on both clouds - following reconciliation, there are two copies of the file and both are

visible and independently addressable everywhere.

Reconciliation is driven by the RCLid proxy mechanism, and is primarily a proxy to
proxy operation. When communication is reestablished after a failure, the proxy mechanism
determines that the remote cloud is again accessible, and both sides enter into a reconnecting
phase. For each reconciliation, one cloud is designated the reconciliation master. In the case of a
mobile node reconnecting to a base cloud, the master is always the base cloud. For cloud to
cloud WAN configurations, one side is arbitrarily picked as master. The master cloud spawns a
reconciliation process to perform reconciliation - this process can be a thread within file system
or a separate driver module. It may be that each consumer of the shared memory engine (e.g.,
the file system) will need to provide a reconciliation process tailored for its specific needs. In
this way, it is possible to continue to separate the functionality of the engine from that of its
consumers, placing the consumer-specific reconciliation logic in a consumer-specific

reconciliation process and the engine-specific reconciliation logic in the proxy mechanism.

To reconcile two clouds, the reconciliation process in the master cloud fetches the other

cloud’s reconciliation log, which contains the set of file updates that need to be applied.
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Reconciliation log entries contain the following information: (1) filename - the complete path of
the file on which the operation was performed; (2) operation - the operation that was performed
(e.g., create, delete, rename, append, ...); (3) inode - the address of the file’s inode - this could be
extracted from the directory file that of the directory in which the file resides, but for simplicity it
is replicated in the log entry; (4) previous timestamp (or version number) - information about the
state of the file when it was last reconciled, which can be used to detect concurrent updates on
both clouds; and (5) auxiliary information - certain operations will require additional
information, such as the destination file name in the case of a rename or the number of bytes and

their offset in an append.

The master cloud parses the reconciliation log, and for each reconciliation log entry it
performs a series of operations in its local cloud, interacting when appropriate with the remote

cloud.

The following example should illustrate the kinds of operations that the reconciliation
process will need to perform. Suppose that the two clouds in question are a portable and its base
LAN cloud, and that the file \tmp\foo was created on the portable when it was disconnected. In
this case, the LAN cloud is designated master and drives the reconciliation process. As a result
of the file creation, there will be a log entry on the portable of the form (\tmp\foo, create, <inode
address>, <null>). Assuming that \tmp already exists in the base LAN cloud (if not, the creation
of \tmp will appear before the creation of \tmp\foo in the reconciliation log and thus should
already have been created), this entry is reconciled as follows. The reconciliation process: (1)
locks the \tmp directory in the master cloud so that it can update its contents atomically; (2)
compares the previous timestamp of the file with the current timestamp in the base cloud - if they
differ, there was a write-write conflict and reconciliation on this file proceeds by creating a new
file containing the data from the portable, as described below; (3) locks the <inode address> page
using the normal engine mechanisms, which will involve the proxy mechanism locating the page
in the slave cloud, locking it, and forwarding its most recent contents to the master cloud; (4)
allocates an entry for foo in \tmp with the appropriate file information and inode address - if the
file is to be cached locally, which is always the case if the remote cloud is a portable, a local core
copy of the inode page is created and its contents are stored locally; and (5) unlocks the \tmp

directory to allow other clients to access its contents.
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After completing the basic metadata reconciliation, it is possible to begin loading the file
data asynchronously as the reconciliation process handles the next log entry. As an alternative,
the data transfer could be performed synchronously, and thereby guarantee that when a file
shows up in a directory that its contents are quickly accessible, at the expense of slowing the rate

at which metadata is reconciled and the user is notified about potential conflicts.

The base case described above is fairly straightforward. It gets tricky, however, when the
file has been modified on both sides of the link, or apparently self-contradictory operations are
performed while disconnected. If the file has been modified on both sides of the link, which can
be detected using the timestamp comparison mechanism described above, the reconciliation
process needs to create a new file, rather than replacing the contents of the old file. For now, a
simple user interface is used for this. If the reconciliation process determines that a file has been
created and/or modified on both sides of the link while disconnected, it will create a new file
with a . #” extension, where the value of # is one greater than the highest numbered . # file that
exists with the same file prefix in that directory (e.g., f0o.1, foo.2, f00.3). Any similar user
interface would be fine. There also are some apparently self-contradictory operations that can be
detected, e.g., if the file is modified on one side of the link and deleted on the other, and handle
specially. In the case where a file is deleted by one cloud and modified by another, it makes the
most sense to simply “undelete” the file in the cloud where it was deleted, filling it with the new

data.

Special needs of the reconciliation process are accommodated. For example, if a file is
modified in-place on both sides of the link, the reconciliation process needs to be able to access
the contents of the page(s) associated with the file from the remote cloud. Since these pages are
at the same addresses as the newly modified local file’s contents, it generally is not possible
simply to access the page normally, because this would invoke the engine page-level
reconciliation process and eliminate one of the versions of the page. Instead, it is desirable to
acquire the remote contents while a copy-on-write is performed of the remote version of the file
to a new file name with new addresses. Thus, it is necessary to have a way to request
“page<foo>" from the remote cloud. For example, the proxy mechanism can be extended to do

this without interacting with the local cloud metadata. In general, the base engine API may be
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extended for other reasons such as to get directly to the proxy mechanism (remote cloud) without

interacting with the local cloud’s metadata (e.g., “Invalidate your version of <address>").

At the conclusion of log processing, the master side is up to date. Once all the logs have
been processed on the master, the reconnecting phase ends and the non-master side judiciously
re-bootstraps itself. This is a controlled, optimized reactivation of pages, starting with the GDD
and continuing through a walk of the file system file directories. The ensuing page activations
pull updated pages from the now up to date master cloud. Recurse till done. When the second
cloud has finished bootstrapping itself, the two clouds are again in synch. Failures in the midst
of reconciliation do not impact file integrity, because the use of locks lets us guarantee that file

reconciliation is atomic at the file level.

Normal file system activity will continue (mostly) unhindered during the reconciliation
process to reduce the visible impact of reconciliation to users. This is important because
reconciliation is potentially a long process if there are a large number of changes that need to be
reflected over a slow link. This goal can be accomplished in a number of ways. In general, the
file-level locks that the reconciliation process and file system share can be used to avoid serving
the contents of a file or directory while the reconciliation process is in the process of reconciling
that file or directory. In other words, reconciliation is atomic with respect to normal file access
to the same file. If a user attempts to access a file that is not yet reconciled, the old local data is
served to the user. Changes to the slave filesystem will be appended to the end of the
reconciliation log and need to be handled until reconciliation is complete. As an optimization, it
is possible to introduce some form of communication between the file system and the
reconciliation process to cause that file or directory to be r.econciled synchronously at a high
priority so that the file system can serve the most up-to-date data (i.e., shift the lazy

reconciliation to a synchronous reconciliation for that file).

In reconnection processing and recovery, it generally is not acceptable to perform
metadata rebuilds based solely on a local cloud’s aggregate state. This is because proxy nodes
are never used by the “quorum” mechanism (which ensures that a quorum of the core copies of a
page are accessible before it can be accessed) and thus both sides would be able to access and
modify pages for which they have local core copies. Thus, if the rebuild operations simply

“forgot” about the remote cloud’s copies of pages, the result would be a failure to detect and
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reconcile changes that occur while disconnected. Still more complexity is added when file
coherence requirements are considered. The solution is two fold. First, the file systems are
reconciled. During this reconciliation phase, both sides continue to operate in a special,
disconnected manner called the reconnecting phase. Once this phase completes, the proxy can

re-engage intercloud engine operations.

The state of the system, following reconciliation, is simple. The file system directories
and metadata will be made coherent. Data files will be in one of three states, depending on what
changes were made to the file while communication was down between the clouds: (1) no
changes were made to the file in either cloud - following reconciliation, the file is unchanged
everywhere; (2) the file changed in one of the clouds - following reconciliation, the new file is
visible everywhere; or (3) the file changed in both clouds - following reconciliation, there are
two copies of the file (e.g., foo and foo.1), and both are visible and independently addressable

everywhere.

The reconnecting phase of reconciliation is driven by the RCLid proxy and is primarily a
proxy-to-proxy operation, as described above. When reconciliation has been completed in both
clouds, they both execute a restart-type mechanism (such as the mechanism described in attorney
docket no. CLC-005 filed on the same date) to reconcile their RAM subsystems and then

continue normal operation. This mechanism is described in the following paragraph.

Before describing the restart mechanism mentioned in the preceding paragraph, it may be
helpful to point out that pages with global RAM directory (GRD) information are a special case
of volatile pages. These pages are not backed up to redundant, reliable, persistent disk storage,
and they are frequently modified. GRD pages enable the location of other volatile pages to be
identified. When two clouds reconnect, both clouds stop processing normal requests until the
GRD has been reconciled, and all notions of copy hierarchies as well as the entire GRD are
discarded in both clouds. Each cloud’s GRD is then synchronously repopulated with the
contents of each node’s local RAM cache. More specifically, one of the nodes on each network
is designated as a master for the reconciliation, and this master then queries synchronously all of
the other nodes in the local cloud and the remote proxy node to determine the contents of the
local RAM cache of each of those other nodes (or the entire remote cloud in the case of the proxy

node). The master then uses the information it obtains from the local RAM caches to rebuild a
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GRD for the combined cloud. The clouds then resume operation, with the non-master nodes
obtaining a copy of their local cloud’s GRD during the course of normal operation. This
reconciliation GRD rebuild process is bounded and guaranteed to terminate with all surviving
GRD pages at the master node in a finite amount of time, barring failures during the
reconciliation process. Such during-reconciliation failures will result in starting the same

recovery process again, this time without the nodes that have failed.

Transitioning from Normal to Disconnected Operation

One difference between the invention and the above-described base version of the
globally addressable storage technology is the impact of communication outages. Unlike the
above-described technology that supports only single-segment LANSs, the invention can suffer
from network partitions where multiple nodes can become “unavailable” without crashing. A
common situation involving a partitioned network is expected to be a disconnected portable
operating in isolation. When communication between clouds fails, both sides will continue

normal operation to the extent possible.

There are broadly five states that a page can be in at any given time: (1) The page has no
RCLids in its disk core copyset, and thus all core copies reside in the local cloud. (2) The page
has only RCLids in its disk core copyset, and thus no core copies reside in the local cloud. (3)
The page has both local CLids and RCLids in its disk core copyset and is active in the local
RAM subsystem. This situation occurs when the page has been activated by one or more local
cloud members from a local core copy. In this case, the page can be located via the local cloud’s
GRD. (4) The page has one or more RCLids in its disk core copyset, is not active in the local
RAM subsystem, but is active in the local Disk subsystem. This situation occurs when a remote
cloud has activated the page from a core copy in the local cloud. (5) The page has both local

CLids and RCLids in its disk core copyset, but is inactive in the local cloud.

Communication failures (e.g., network partitions) or node failures can be handled fairly
easily in cases (1) and (2) by a simple extension to the existing access mechanisms. In case (1),
local access to the page should not be impacted since we have direct access to all core copies of

the page. In case (2), local access to the page should be aborted since we have direct access to
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none of the core copies of the page. The more interesting cases are numbers (3), (4), and (5)
when both the local cloud and a remote cloud have core copies of the page. In these cases, both
clouds are allowed to continue accessing (and even modifying) the pages when disconnected. In
cases (3) and (4), the engine metadata is rebuilt using a restart/recovery mechanism like the one
described previously to handle the fact that a page was being actively shared across clouds. In all
three cases, care should be taken regarding how subsequent page accesses are handled until

communication is re-established with the other core copy holder(s).

Given the above, network partitions can be handled via two separate mechanisms,

partition detection and metadata rebuild.

More specifically, proxy nodes (represented by RCLids) are treated as virtual nodes in the
local cloud for the purpose of connectivity checking. In other words, the remote cloud looks like
a single virtual node in the local cloud. As part of emulating a local cloud member, the proxy
mechanism includes an inter-cloud heartbeat mechanism. A remote cloud’s local proxy will
respond (or choose not to respond) to queries based on whether or not the remote cloud is
accessible. The inter-cloud heartbeat is independent of and hidden from the local cloud heartbeat
mechanism. Also, the inter-cloud heartbeat is only performed while there are pages actively

shared between clouds.

In summary, the invention makes it possible to detect connectivity loss between clouds,
maintain quorum independently in both clouds, and trigger exception-based processing when
RCLid page updates are requested during periods of lost inter-cloud connectivity. Once
connectivity is lost, the RAM subsystem is rebuilt. Subsequent page update failures that occur to

an RCLid are handled specially.

Security

The security design for the above-described base global addressing system addresses the
two fundamental network security issues of authentication and authorization. Authentication
involves, for example, how user accounts and passwords are managed and validated.

Authorization involves, for example, performing access checks on authenticated users to
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determine what such users are actually allowed to do on the network. With the invention, the
same fundamental questions and issues are addressed, but the solution is different because the

invention involves two or more interconnected and interoperating networks.

In general, existing network security mechanisms are relevant and meaningful only for
nodes on the network. Nodes on a first network typically will utilize a separate security
mechanism from the one utilized by nodes on another network. The security domains of
different networks generally do not inter-relate or work together to allow access by a node on a
remote network. The invention, however, involves two or more interoperating clouds (i.e., two
or more interconnected and intercommunicating networks such as two or more LANs), and thus
the invention must address, and does, the issue of extending the traditional single-network
security mechanisms to a multi-network, interoperation environment. With the invention, the
same fundamental questions and issues of authentication and authorization must be and are

addressed, but the invention involves spanning security environments (or domains).

The security model of the invention partitions responsibility for user authentication
between the file system, which performs user/file-level authentication, and the engine, which
performs cloud/page-level authentication. These two basic forms of authentication are described

in the following two subsections - file-level security and page-level security.

File-Level Security: Responsibility for file-level security is divided in a manner similar
to how management of engine metadata is partitioned. Each cloud retains its own independent
security domain, similar to the way in which each cloud maintains its own GDD and GRD, and
then a proxy mechanism is provided for performing intercloud security-related operations (both
for adding remote users to file ACLs and for validating users). In particular, it is not required
that accounts be created in all clouds for all users. For example, to extend cleanly the Windows
NT file sharing user interface to the invention, it must be known what users in the remote cloud
may share files that are in a shared fileset so that different levels of access can be given to

different users in a remote cloud (via the ACLs mechanism).

A “virtual account” is introduced to the local security database to represent all of the
accounts in a remote cloud, analogous to how an RCLid represents a set of nodes in a remote

cloud. This virtual account in the security database is called a Virtual Account (VA). When a
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user pulls down the security property sheet associated with a file, the file system will use a
simple proxy mechanism to translate any VAs that it finds in to the list of users in the associated
remote cloud (and an indication that they are remote users). A user with sufficient privilege on a
file can set up an ACL for a remote user by selecting that user from the property sheet and
specifying its access rights. This will cause a new ACL to be added to the file’s ACL stream.
The notion of Access Control Entries (ACEs) is extended to allow them to contain cloud-
qualified user names (e.g., Jones@Acme or Smith@ABC Corp.), so that ACEs of shared files
contain both the userid and domain/cloud identifier of the associated user. This allows
protections to be added to files and interpreted by either cloud. Virtual accounts are never
authenticated within the local cloud. They are present only for usage in property sheets. When a
user attempts to access a file, file system looks in the file’s ACL stream for an ACE matching the
requesting user and the local cloud. ACL checking on files is always a local function. All access
checking is local to the cloud where the associated user has an account. To ensure that all ACEs
in shared files are fully attributed (i.e., contain both a userid and cloudld/domain), it is required
that the act of exporting a file set to another cloud for the first time involves adding

cloudIld/domain information to the file set’s ACEs.

Page-Level Security: In addition to file system level security, it is necessary to control
unauthorized access to pages by untrusted (or not completely trusted) clouds. Each cloud isina
separate security domain, and only the identified filesets can be shared among the plurality of
security domains. Other information is not allowed to be shared among clouds. This issue is
addressed by having clouds authenticate each other as part of the proxy mechanism, and then
verifying for each page request that the authenticated remote cloud has access rights to that page.
The key to this level of security is the interface between file system and the engine by which file
system can specify to the engine which clouds have access to which pages (because they have

access to some fileset(s)).

Before fileset sharing can take place, both clouds must authenticate each other.
Intercloud page sharing must ensure that only the pages that contain file system metadata and
user data for a specific fileset are accessible between clouds. It must be ensured that a malicious,
highly privileged user in one cloud cannot circumvent another cloud’s security. Mechanisms for

enforcing this level of access control are discussed in this section.
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Exporting a fileset entails specifying what remote cloud(s) can access it. Before a remote
cloud is first allowed to access a fileset, both the exporting cloud and the importing cloud must
authenticate one another. This process is repeated each time two clouds connect to one another.
As part of the engine proxy setup phase, each cloud authenticates the other. This is not peer-to-
peer authentication. It is a pair of independent, client/server-style checks. Each cloud requests
access rights to the other cloud, which gives the requester the right to activate pages and request
RCLid’s to be created in the other cloud’s directory structure. This level of security allows each
cloud to protect the integrity of its directory structures and control what pages it exports. Note

that both authentication exchanges must be successful for the system to correctly operate.

The mechanism for performing authentication checks is to use distributed system security
authentication techniques such as, for example, the SSPI on Windows NT. When inter-cloud
sharing is initiated, each side exchanges (cloud name, password) pairs. The SSPI protocol
performs challenge/response style authentication, where both a password and a private DES key
are used to avoid various impersonation techniques. Strong security is provided here because of

the ability of the invention to run over physically insecure WANS such as the Internet.

Once the clouds have successfully authenticated each other, it still is necessary to verify
on each page activation that the page being activated is part of the fileset(s) to which the
requester has access. This access check is performed as part of the proxy mechanism by the
proxy server in the cloud exporting the page. The information that specifies what fileset a given
page is in must be translated, via some efficient mechanism, into a per address access right.
Some workable alternatives are: (1) Combination of page type and parent fileset indicator - use
the page type to distinguish file system data and meta-data pages and use an attribute to specify
the fileset (specified at page allocation). (2) Aggregate address ranges by page types and store an
ACL for the range in the directory b-tree.

Variations, modifications, and other implementations of what is described herein will
oceur to those of ordinary skill in the art without departing from the spirit and the scope of the
invention as claimed. Accordingly, the invention is to be defined not by the preceding

illustrative description but instead by the spirit and scope of the following claims.



wn

10

15

20

25

WO 98/22881 PCT/US97/21460

64

What is claimed is:
Claims

1. A computer system, comprising:

a first computer network including a first plurality of computers, a first persistent data
storage device, and a first globally addressable data storage system that maintains and allows
access to data on the first network and that provides addressable access to data stored in the first
persistent data storage device; and

a second computer network located remote from and coupled to the first network, the
second network including a second plurality of computers, a second persistent data storage
device, and a second globally addressable data storage system that maintains and allows access
to data on the second network and that provides addressable access to data stored in the second
persistent data storage device; wherein the first and second globally addressable data storage
systems interoperate to allow the first computers to access data on the second network including
data stored in the second persistent data storage device and to allow the second computers to

access data on the first network including data stored in the first persistent data storage device.

2. The computer system of claim 1 wherein the first and second globally addressable
data storage systems replicate data on the first and second networks among two or more of the

first and second computers.

3. The computer system of claim 1 wherein the first and second globally addressable
data storage systems replicate data on the first and second networks among two or more of the
first and second computers based on accesses by the first and second computers of the first and

second globally addressable data storage systems to obtain data on the first and second networks.

4. The computer system of claim 1 wherein the first and second globally addressable
data storage systems migrate data on the first and second networks among two or more of the

first and second computers.

5. The computer system of claim 1 wherein the first and second globally addressable

data storage systems migrate data on the first and second networks among two or more of the
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first and second computers based on accesses by the first and second computers of the first and

second globally addressable data storage systems to obtain data on the first and second networks.

6. The computer system of claim 1 wherein the first computer network has a first
security domain and the second computer network has a second security domain that is separate
from the first security domain, and wherein the first and second computer networks share data

between the first and second security domains.

7. The computer system of claim 6 wherein the first and second computers can set file-

level or record-level access control rights on both the first and second computer networks.

8. The computer system of claim 6 wherein the first and second globally addressable

data storage systems control access to data based on passwords or security identifiers.

9. The computer system of claim 1 wherein the first and second computers can access

shared data after the first and second computer networks are disconnected.

10. The computer system of claim 9 wherein the first and second computers can modify

shared data after the first and second computer networks are disconnected.

11. The computer system of claim 10 wherein the modified shared data is reconciled

after the first and second computer networks are reconnected.

12. The computer system of claim 1 wherein the first and second globally addressable

data storage systems utilize a proxy mechanism to maintain consistency of shared data.

13. The computer system of claim 1 wherein the first and second globally addressable
data storage systems utilize a global directory mechanism to track the location on the first and

second computer networks of the data.

14. The computer system of claim 13 wherein the first and second globally addressable
data storage systems utilize the global directory mechanism which includes a first directory for
tracking data stored on the persistent data storage devices and a second directory for tracking

data stored on volatile storage devices on the first and second computer networks.

15. A computer system, comprising:

a computer network;
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a persistent data storage device coupled to the network;

a globally addressable data storage system that provides addressable access to data stored
in the persistent data storage device; and a plurality of computers coupled to the network and the
globally addressable data storage system for accessing the data stored in the persistent data
storage device by addressing via the globally addressable data storage system, at least one of the
computers being located remote from the network and coupled thereto by a communications

adapter.

16. The computer system of claim 15 wherein the globally addressable data storage
system replicates data stored in the persistent data storage device among two or more of the

computers.

17. The computer system of claim 15 wherein the globally addressable data storage
system replicates data stored in the persistent data storage device among two or more of the
computers based on accesses by the computers of the globally addressable data storage system to

obtain data stored in the persistent data storage device.

18. The computer system of claim 15 wherein the globally addressable data storage
system migrates data stored in the persistent data storage device among two or more of the

computers.

19. The computer system of claim 15 wherein the globally addressable data storage
system migrates data stored in the persistent data storage device among two or more of the
computers based on accesses by the computers of the globally addressable data storage system to

obtain data stored in the persistent data storage device.

20. The computer system of claim 15 wherein the at least one of the computers that is

located remote from the network is coupled thereto by a modem.
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