
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0132439 A1

Misra et al.

US 2013 0132439A1

(43) Pub. Date: May 23, 2013

(54)

(71)

(72)

(73)

(21)

(22)

(62)

(60)

ORGANIZING VERSIONING ACCORDING
TO PERMISSIONS

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Ronnie G. Misra, San Jose, CA (US);
Eric Olaf Carlson, Mountain View, CA
(US)

Assignee: Apple Inc., Cupertino, CA (US)

Appl. No.: 13/721,702

Filed: Dec. 20, 2012

Related U.S. Application Data
Division of application No. 13/250,807, filed on Sep.
30, 2011.

Provisional application No. 61/433,157, filed on Jan.
14, 2011.

to

4.08

Publication Classification

(51) Int. Cl.
G06F2L/62 (2006.01)

(52) U.S. Cl.
CPC G06F 21/6218 (2013.01)
USPC .. T07/784

(57) ABSTRACT

Methods, systems, and apparatus, including computer pro
grams encoded on a computer storage medium, for storing
data according to permissions. In general, one aspect of the
subject matter described in this specification can be embodied
in methods that include the actions of identifying a version of
a data item to be stored; determining permissions associated
with the version of the data item; and storing the version of the
data itemata storage location that is based on the determined
permissions.

Receive a request
from a user for One Or
more versions of a

data item

Identify the one or
more versions of the

data item

Determine the
permissions

aSSOCiated with each
Version of the One Or
more versions of the

data item

Present only those
versions of the One or
more versions of the
data item to which the
user has permission

Patent Application Publication May 23, 2013 Sheet 1 of 5 US 2013/O132439 A1

to

Fred Read- Fred and Bob Group Read
Write 104 Read 106 108

Data Item 1.1 Data Item 3.1 Data Item 1.3
Data term 1.2 Data Item 3.2 Data Item 2.2
Data Item 2.1 Data Item 3.3 Data Item 4.1
Data Item 3.4 Data Item 3.5 Data Item 5.1

FIG. 1

Patent Application Publication

o

May 23, 2013 Sheet 2 of 5

202

204

206

ldentify a version of a
data item to be Stored

Determine
permissions

aSSOCiated With the
Version of the data

item

Store the Version Of
the data item Within a

permissions tree
based On the
determined
permissions

FIG. 2

US 2013/O132439 A1

May 23, 2013 Sheet 3 of 5 US 2013/O132439 A1 Patent Application Publication

J?ST)

Patent Application Publication May 23, 2013 Sheet 4 of 5 US 2013/O132439 A1

to
Receive a request

from a user for One Or
more Versions Of a

402 data item

ldentify the one or
more Versions Of the

404 data item

Determine the
permissions

aSSOCiated with each
Version Of the One Or
more Versions Of the

data item

406

Present only those
Versions Of the One Or
more Versions Of the

408 data item to Which the
user has permission

FIG. 4

May 23, 2013 Sheet 5 of 5 US 2013/O132439 A1 Patent Application Publication

ZOG (s)uoss30oud w_oos

US 2013/O 132439 A1

ORGANIZING VERSIONING ACCORDING
TO PERMISSIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional application of U.S.
patent application Ser. No. 13/250,807, filed Sep. 30, 2011,
which claims the benefit under 35 U.S.C. S 119(e) of the filing
date of U.S. Patent Application No. 61/433,157, for Organiz
ing Versioning According to Permissions, which was filed on
Jan. 14, 2011, and which is incorporated hereby reference.

BACKGROUND

0002 This specification relates to storing data.
0003 Typical systems allow for the storage of multiple
versions of a data item (e.g., versions of a file stored in a
backup). In some conventional systems, these versions are
stored according to the location of the data item in a hierar
chical file system, for example, within the file system hierar
chy of a local device or in a backup that mimics the file system
hierarchy. Thus, storing a version typically requires storing
the entire file system directory path. Conventionally, all ver
sions of the data item have the same permissions as the
permissions of the current data item.

SUMMARY

0004. This specification describes technologies relating to
Storing data according to permissions.
0005. In general, one aspect of the subject matter
described in this specification can be embodied in methods
that include the actions of identifying a version of a data item
to be stored; determining permissions associated with the
version of the data item; and storing the version of the data
item at a storage location that is based on the determined
permissions. Other embodiments of this aspect include cor
responding Systems, apparatus, and computer programs
recorded on computer storage devices, each configured to
perform the operations of the methods.
0006. These and other embodiments can each optionally
include one or more of the following features. Storing the
version of the data item comprises storing the version of the
data item withina node of a permissions tree corresponding to
the determined permissions. Storing the version further com
prises: determining whether there is an existing branch of the
permissions tree associated with the determined permission;
and if not, generating a new branch of the permissions tree
associated with the determined permission. The permissions
tree includes one or more nodes, each node associated with
specific permissions. The version is stored without regard to
the location of the data item with respect to a file system
hierarchy. Access to the version of the data item by a user is
controlled by the permissions associated with the storage
location in which the version of the data item is stored. The
version of the data item has a different permissions than a
second version of the data item, wherein the second version of
the data item is stored at a second storage location that is
based on the permissions of the second version of the data
item.
0007. In general, one aspect of the subject matter
described in this specification can be embodied in methods
that include the actions of receiving a request from a user for
one or more versions of a data item; identifying the one or
more versions of the data item; determining the permissions

May 23, 2013

associated with each version of the one or more versions of
the data item; and providing access only to those versions of
the one or more versions of the data item to which the user has
permission. Other embodiments of this aspect include corre
sponding Systems, apparatus, and computer programs
recorded on computer storage devices, each configured to
perform the operations of the methods.
0008. These and other embodiments can each optionally
include one or more of the following features. determining
the permissions includes searching a database for the one or
more versions of the data item, the database including an
ordering of versions for each of a plurality of data items and
a location within a permissions tree of each version. The
location of each version of the data item is based on the
assigned permissions for each respective version of the data
item. All identified versions of the one or more versions of the
data item are presented, but only those to which the user has
permissions are accessible. Only those versions of the one or
more versions of the data item to which the user has permis
sion are presented.
0009 Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages. A permis
sions based versioning system allows versions of data items
to be stored more compactly in a permissions tree. Thus, there
is no need to store an entire file hierarchy associated with the
stored versions of the data items. The permissions tree only
adds additional nodes when new permissions are generated.
Permissions for particular versions can remain fixed over
time so that access to versions can be different based on the
permissions at the time respective versions are generated.
0010. The details of one or more embodiments of the
subject matter described in this specification are set forth in
the accompanying drawings and the description below. Other
features, aspects, and advantages of the Subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is an example representation of a permissions
based data store.

0012 FIG. 2 is a flow diagram of an example process for
storing a data item version according to permissions.
0013 FIG.3 is a block diagram of an example permissions
based versioning system.
0014 FIG. 4 is a flow diagram of an example process for
retrieving a data item.
0015 FIG. 5 illustrates an example architecture of a sys
tem.

0016. Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

0017. A system can store one or more versions of a data
item (e.g., a file) for later retrieval. A data item can be a file
(e.g., a document, media file (movie, image, audio)) or other
data. Versions of data items are stored according to their
permissions at the time of storage. As a result, the original
location within the file system is not used. Instead, versions of
data items are stored and indexed according to the permis
sions assigned to that version of the data item at the time of

US 2013/O 132439 A1

storage. Each version of the data item is stored according to
the permissions of that version without changing previously
stored versions.

0018 For example, if a first version has permissions
allowing User A to read the file, the first version is stored
according to the permission “User A Read’. If a second
version has different permissions, e.g., User Ballowed to read
and User A no longer having permissions, the second version
is stored according to the permission “User B Read’. User A
will not have access to the second version since User A does
not have permission for that version of the data item. How
ever, User A will retain access to the first version. In some
implementations, when a user requests one or more versions
of a data item, the permissions associated with that data item
are identified and only those data items to which the user has
permissions are presented.
0019. A useful analogy is to a set of permissions buckets
where each bucket has particular permissions (e.g., User A
Read). Versions of data items are placed in the corresponding
buckets that have matching permissions. A new bucket is
generated if the permissions of the version to be stored do not
have a corresponding bucket. In some implementations, once
a version of a data item is placed in a bucket, it is never
removed, thus the permissions are fixed for the version of the
data item after being placed in a particular bucket.
0020 FIG. 1 is an example representation of a permissions
based data store 100. In particular, the permissions based data
store 100 illustrates that the versions of data items are not
stored according to their file system location, but instead
according to their respective permissions. A permissions tree
is generated in which each node is associated with particular
permissions. Different types of permissions are possible
including read access, write access, and read-write access.
Other types of permissions can be assigned, for example, an
execute permission that grants the ability to execute a file
(e.g., a script or other executable file type). Permissions can
be assigned to specific users (or user accounts) or groups of
users. Additionally, a data item can be associated with more
than one type of permission and the permissions can be
assigned to more than one distinct user. In some implemen
tations, permissions are Subtractive such that full permissions
are granted to all data items until limited by more restrictive
permissions.
0021 Specifically, permissions based data store 100
shows a root node 102 and three permissions nodes 104,106,
and 108 branching from root node 102. Node 104 is associ
ated with the permission “Fred Read-Write'. Node 106 is
associated with the permission “Fred and Bob Read’. Node
108 is associated with the permission “Group Read’ where a
Group could be all users or Some specified group of users.
0022 Versions of data items are stored according to the
assigned permissions. Thus, for example, Data Item 1.1 refers
to version 1 of data item 1. As shown in FIG. 1, Data Item 1
includes versions 1 and 2 as having permission "Fred Read
Write'. However, Data Item 1.3 (version three of data item 1)
has permissions “Group Read’. Thus, while Fred alone has
access to versions 1 and 2, version3 is accessible by all users
of the group. As another example, Fred alone has access to
version 4 of data item 3 (Data Item 3.4) while Fred and Bob
have read access to versions 1,2,3, and 5 of data item3. Thus,
Bob cannot access version 4 of data item 3, but can access the
other versions. While the versions of the data items are shown

May 23, 2013

for clarity as ordered (e.g. by version number or by data item),
the versions of the data items may or may not be stored in an
ordered form.
0023 FIG. 2 is a flow diagram of an example process 200
for storing a data item version according to permissions
assigned to that data item. The process 200 can be performed,
for example, by one or more computing devices (e.g., a com
puter, mobile device, tablet device, personal data assistant,
server, or other device).
0024. A version of a data item to be stored is identified
(step 202). A version of a data item can be identified in a
number of ways. For example, a version can be generated
based on a user editing of the data item. In another example,
saving a modified data item can result in a new version being
stored. In some implementations, versions are generated and
stored prior to writing new modifications or saving a new
current data item. For example, a current data item can be
modified. The unmodified version is stored as a past version
while the modification is applied to the current data item. For
example, in Some implementations, modifications to a data
item are intercepted prior to execution and a version is gen
erated prior to the modification taking place.
0025. In some implementations, the current data item is a
version that is also stored with the earlier versions of the data
item (if any). The current data items and earlier versions may
or may not be stored in an ordered form. In some other
implementations, the current data item resides only in the file
system hierarchy and is not stored with the prior versions
(e.g., in the permissions based data store).
0026. A determination is made of the permissions associ
ated with the version of the data item to be stored (step 204).
In some implementations, the data item is inspected to deter
mine all assigned permissions. The permissions can include
different permissions types for one or more users. Thus, the
type of permissions for each assigned user is determined.
Permissions can be stored as part of the data item, attributes of
the data item, or as part of an access control list for the data
item or for a group of data items.
0027. The version of the data item is stored within a per
missions tree based on the determined permissions (step 206).
For example, the version of the data item can be associated
with a particular node of a permission tree. If the particular
permissions of the data item already exist in the permissions
tree, then the data item version is stored in a location associ
ated with the corresponding permissions. Additionally, in
Some implementations, permissions are subtractive such that
unless specified otherwise all users have permission. Thus, a
compact permissions tree can beformed in which a full group
node allows full access to all users. All versions can be stored
with this node unless otherwise specified with more limiting
permissions (e.g., permissions to a single user).
0028. A new node in the permissions tree can be generated
when the determined permissions do not appear already in the
permissions tree. For example, if a version of the data item to
be stored has permissions “Fred Read' this means only user
Fred can read the data item. If the permissions tree only has a
node for “full group access a new node in the permissions
tree is generated for “Fred Read’. The version of the data item
is then added to the newly generated branch of the permis
sions tree.
0029. In some implementations, adding a new version to
the permissions tree also includes updating a versions data
base that includes an ordered list of versions for each data
item and a respective location in the permissions tree.

US 2013/O 132439 A1

0030 FIG.3 is a block diagram of an example permissions
based versioning system 300. The permissions based version
ing system includes a versions database 302 and a permis
sions store 304. Particular versions can be requested by and/
or presented to a user 306 through a particular user interface
308. For example, a user interface 308 can be a user interface
to the file system (e.g., a search utility or application, backup
application, or specific versioning interface).
0031. The permissions store 304 includes the versions
stored according to assigned permissions in the permissions
tree. The versions database 302 can include an ordering of
versions of each data item and their respective locations
within the permissions store 304 (e.g., a particular permis
sions node in the permissions tree). Alternatively, in some
implementations, the versions database 302 includes the ver
sion of each data item in a different or unordered form that
maintains an identification of their respective locations within
the permissions store 304. Thus, when a request for versions
of a particular data item is received, the versions database 302
can be searched to identify all versions of that data item and
their respective locations in the permissions store 304. Addi
tionally, since the permissions store is organized by permis
sions, the locations in the database also identify the permis
sions of each version.

0032. In some implementations, the versions database 302
includes metadata associated within each version. The meta
data for a particular version can include information on how
the particular version was generated, user explanatory text,
contextual information, conflict resolution information, and
other annotations.

0033 FIG. 4 is a flow diagram of an example process 400
for retrieving a data item. The process 400 can be performed,
for example, by one or more computing devices as described
above with respect to FIG. 3.
0034. A request is received from a user for one or more
versions of a data item (step 402). The request can be
received, for example, as part of a search performed in a user
interface to the file system. For example, a user working in the
current data item can request prior versions of that data item
in order to identify particular changes or recover particular
content found in an earlier version. In some implementations,
the user can input search parameters into a search interface to
include one or more versions of data items in the search rather
than just the current data items in the file system.
0035. One or more versions of the data item are identified
(step 404). In some implementations, a database of versions is
searched to identify stored versions of the data item. The
versions can be indexed in the database by data item in order
to identify all versions of the data item. In some implemen
tations, an identifier for the data item is used to identify
versions of the data item within the database. For example,
each data item can have a unique identifier. Additionally, each
version stored can be associated with that unique identifier.
Thus, the unique identifier can be used to identify each ver
sion of the data item.

0036. The permissions associated with each version of the
one or more versions of the data item are determined (step
406). Different versions of the same data item can have dif
ferent permissions. In some implementations, determining
permissions for a version includes examining the permissions
associated with parent orancestor items in a hierarchical file
system. Each version has an identified location in a permis
sions store where the version of the data item is stored. Thus,

May 23, 2013

the location also identifies the permissions for each respective
version. Different versions of data items can be associated
with different permissions.
0037 For example, a first user can grant permission to a
second user to read and write to forward versions of the data
item. Thus, if versions 1-5 of the data item already exist at the
time the second user was granted permission, the second user
would still not have access to versions 1-5. However, the
second user would have access to versions 6 and on. If after
the tenth version, the first user rescinds the permission of the
second user, the second user would still maintain access to
versions 6-10, but would no longer have access for later
versions (versions 11 and on). This is because the versions are
stored in the versions store according to permissions and they
are not moved when permissions change for later versions.
The associated permissions can be shown, for example, as:
Data item versions 1-5: No permissions to the second user.
Data item versions 6-10: Read and Write permission for sec
ond user.

Data item versions 11 and on: No permissions to the second
USC.

However, in some other implementations, versions can be
moved as permissions change so that all versions of a data
item maintain consistent permissions.
0038. Those versions of the one or more versions of the
data item to which the user has permission are presented (step
408). For example, the versions can be presented in a list or
other visual representation of versions. In some implementa
tions, a list of versions is generated with associated links (e.g.,
uniform resource locator links) to the corresponding versions
of the data item. Alternatively, the versions can be presented
as items identifying a path to the location of the respective
versions in the permissions tree. The list can include all ver
sions or can include only those versions to which the request
ing user has permission. For example, when presenting a list
of all of the versions, the links to those in which the user does
not have access will not be active. For those that the user does
have permission, the user can select the version from the list
using the link, which causes the selected version of the data
item to be accessed (e.g., a file can be opened by the associ
ated application).
0039. In some implementations, the permissions of the
current data item is identified. If the requesting user does not
have permission to the current version of the data item, than
no versions of the data item are presented to the user. Thus,
access to any versions of a data item can be predicated on
access to the current data item.

0040 FIG. 5 illustrates an example architecture of a sys
tem 500. The system architecture 500 is capable of perform
ing operations for storing versions of data items based on
permissions. The architecture 500 includes one or more pro
cessors 502(e.g., IBM PowerPC, Intel Pentium 4, etc.), one or
more display devices 804 (e.g., CRT, LCD), graphics pro
cessing units 506 (e.g., NVIDIA GeForce, etc.), a network
interface 508 (e.g., Ethernet, FireWire, USB, etc.), input
devices 510 (e.g., keyboard, mouse, etc.), and one or more
computer-readable mediums 512. These components
exchange communications and data using one or more buses
514 (e.g., EISA, PCI, PCI Express, etc.).
0041. The term “computer-readable medium” refers to
any medium that participates in providing instructions to a
processor 502 for execution. The computer-readable medium
512 further includes an operating system 516 (e.g., Mac OSR),

US 2013/O 132439 A1

WindowSR, Linux, etc.), a network communication module
518, a permissions versioning manager 520, and other appli
cations 524.
0042. The operating system 516 can be multi-user, multi
processing, multitasking, multithreading, real-time and the
like. The operating system 516 performs basic tasks, includ
ing but not limited to: recognizing input from input devices
510; sending output to display devices 504; keeping track of
files and directories on computer-readable mediums 512
(e.g., memory or a storage device); controlling peripheral
devices (e.g., disk drives, printers, etc.); and managing traffic
on the one or more buses 514. The network communications
module 518 includes various components for establishing
and maintaining network connections (e.g., Software for
implementing communication protocols, such as TCP/IP.
HTTP, Ethernet, etc.).
0043. The permissions versioning manager 520 provides
various Software components for performing the various
functions for storing versions of data items based on permis
sions, as described with respect to FIGS. 1-4.
0044) Embodiments of the subject matter and the opera
tions described in this specification can be implemented in
digital electronic circuitry, or in computer Software, firm
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer programs, i.e., one or more modules of
computer program instructions, encoded on computer storage
medium for execution by, or to control the operation of data
processing apparatus. Alternatively or in addition, the pro
gram instructions can be encoded on an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti
cal, or electromagnetic signal, that is generated to encode
information for transmission to Suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read
able storage device, a computer-readable storage Substrate, a
random or serial access memory array or device, or a combi
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal, a computer stor
age medium can be a source or destination of computer pro
gram instructions encoded in an artificially-generated propa
gated signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).
0045. The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources.
0046. The term “data processing apparatus' encompasses

all kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces
Sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field program
mable gate array) or an ASIC (application-specific integrated
circuit). The apparatus can also include, in addition to hard
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, a cross-platform runtime envi
ronment, a virtual machine, or a combination of one or more
of them. The apparatus and execution environment can real

May 23, 2013

ize various different computing model infrastructures. Such
as web services, distributed computing and grid computing
infrastructures.
0047 A computer program (also known as a program,
Software, Software application, Script, or code) can be written
in any form of programming language, including compiled or
interpreted languages, declarative or procedural languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, Subroutine, object, or
other unit Suitable for use in a computing environment. A
computer program may, but need not, correspond to a file in a
file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, Sub-programs, or por
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.
0048. The processes and logic flows described in this
specification can be performed by one or more programmable
processors executing one or more computer programs to per
form actions by operating on input data and generating out
put. The processes and logic flows can also be performed by,
and apparatus can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application-specific integrated circuit).
0049. Processors suitable for the execution of a computer
program include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi
tioning System (GPS) receiver, or a portable storage device
(e.g., a universal serial bus (USB) flash drive), to name just a
few. Devices Suitable for storing computer program instruc
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory
can be Supplemented by, or incorporated in, special purpose
logic circuitry.
0050. To provide for interaction with a user, embodiments
of the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) moni
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of

US 2013/O 132439 A1

sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi
tion, a computer can interact with a user by sending docu
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user's client device in response to requests
received from the web browser.

0051 Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the Subject matter described in this specification, or any com
bination of one or more suchback-end, middleware, or front
end components. The components of the system can be inter
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN'), an inter-network
(e.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).
0052. The computing system can include clients and serv

ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter
action) can be received from the client device at the server.
0053 While this specification contains many specific
implementation details, these should not be construed as limi
tations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain fea
tures that are described in this specification in the context of
separate embodiments can also be implemented in combina
tion in a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as Such, one or more features from a claimed
combination can in Some cases be excised from the combi
nation, and the claimed combination may be directed to a
Subcombination or variation of a Subcombination.
0054 Similarly, while operations are depicted in the draw
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft
ware products.

May 23, 2013

0055 Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the scope
of the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted
in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desir
able results. In certain implementations, multitasking and
parallel processing may be advantageous.
What is claimed is:

1-7. (canceled)
8. A method performed by a data processing apparatus, the

method comprising:
receiving a request from a user for one or more versions of

a data item, at least Some of the versions of the data item
having been generated based on modifications to the
data item;

identifying the one or more versions of the data item;
determining the permissions associated with each version

of the one or more versions of the data item; and
providing access only to those versions of the one or more

versions of the data item to which the user has permis
sion.

9. The method of claim 8, where determining the permis
sions includes searching a database for the one or more ver
sions of the data item, the database including an ordering of
versions for each of a plurality of data items and a location
within a permissions tree of each version.

10. The method of claim 8, where the location of each
version of the data item is based on the assigned permissions
for each respective version of the data item.

11. The method of claim8, where all identified versions of
the one or more versions of the data item are presented, but
only those to which the user has permissions are accessible.

12. The method of claim8, where only those versions of the
one or more versions of the data item to which the user has
permission are presented.

13-19. (canceled)
20. A system comprising:
one or more computing devices operable to perform opera

tions comprising:
receiving a request from a user for one or more versions

of a data item, at least some of the versions of the data
item having been generated based on modifications to
the data item;

identifying the one or more versions of the data item;
determining the permissions associated with each ver

sion of the one or more versions of the data item; and
providing access only to those versions of the one or

more versions of the data item to which the user has
permission.

21. The system of claim 20, where determining the permis
sions includes searching a database for the one or more ver
sions of the data item, the database including an ordering of
versions for each of a plurality of data items and a location
within a permissions tree of each version.

22. The system of claim 20, where the location of each
version of the data item is based on the assigned permissions
for each respective version of the data item.

23. The system of claim 20, where all identified versions of
the one or more versions of the data item are presented, but
only those to which the user has permissions are accessible.

US 2013/O 132439 A1

24. The system of claim 20, where only those versions of
the one or more versions of the data item to which the user has
permission are presented.

25. (canceled)
26. A computer storage medium encoded with a computer

program, the program comprising instructions that when
executed by data processing apparatus cause the data process
ing apparatus to perform operations comprising:

receiving a request from a user for one or more versions of
a data item, at least Some of the versions of the data item
having been generated based on modifications to the
data item;

identifying the one or more versions of the data item;
determining the permissions associated with each version

of the one or more versions of the data item; and
providing access only to those versions of the one or more

versions of the data item to which the user has permis
S1O.

May 23, 2013

27. The computer storage medium of claim 26, where
determining the permissions includes searching a database
for the one or more versions of the data item, the database
including an ordering of versions for each of a plurality of
data items and a location within a permissions tree of each
version.

28. The computer storage medium of claim 26, where the
location of each version of the data item is based on the
assigned permissions for each respective version of the data
item.

29. The computer storage medium of claim 26, where all
identified versions of the one or more versions of the data item
are presented, but only those to which the user has permis
sions are accessible.

30. The computer storage medium of claim 26, where only
those versions of the one or more versions of the data item to
which the user has permission are presented.

k k k k k

