Title: SWITCH APPARATUS FOR ENCLOSURES HAVING ENVIRONMENTAL PROTECTION

Abstract: Switch apparatus for enclosures having environmental protection are disclosed. An example apparatus includes a hand-operated switch actuator 122 spaced apart from a first side of a wall 118 of an enclosure 502 having environmental protection. The apparatus also includes a magnet 426 attached to the switch actuator 122 and a magnetically-responsive switch 510 disposed adjacent a second side of the wall 118. Movement of the switch actuator 122 is to change a position of the magnet 426 to operate the magnetically-responsive switch 510.
SWITCH APPARATUS FOR ENCLOSURES HAVING ENVIRONMENTAL PROTECTION

FIELD OF THE DISCLOSURE

[0001] This patent relates generally to switch apparatus and, more particularly, to switch apparatus for enclosures having environmental protection.

BACKGROUND

[0002] Hand-operated switches are commonly used in process control systems to enable a user to control operation of various equipment implemented within a process control system. Hand-operated switches are often coupled to an enclosure having electrical components and/or circuitry that controls operation of nearby equipment.

[0003] Equipment of process control systems may be installed in an industrial environment. In some instances, an enclosure must be compliant with environmental protection safety standards (e.g., explosion-proof rated, dust-proof rated) to be installed in the environment near the corresponding equipment. In such instances, hand-operated switches coupled to the enclosure must be compliant with the environmental protection safety standards.

SUMMARY

[0004] In one example, an apparatus includes a hand-operated switch actuator spaced apart from a first side of a wall of an enclosure having environmental protection. The apparatus also includes a magnet attached to the switch actuator and a magnetically-responsive switch disposed adjacent a second side of the wall. Movement of the switch actuator is to change a position of the magnet to operate the magnetically-responsive switch.

[0005] In another example, an apparatus includes an enclosure having environmental protection and defining a cavity, a panel coupled to an exterior protrusion of the enclosure and spaced apart from a wall of the enclosure, and a hand-operated switch actuator coupled to the panel and spaced apart from the wall. The switch actuator has a magnet. The apparatus also includes a magnetically-responsive switch disposed within the cavity of the enclosure opposite the switch actuator. The magnet is to operate the magnetically-responsive switch through the wall when the switch actuator is in a first position.

[0006] In another example, an apparatus includes means for switching disposed adjacent a first side of a wall of an enclosure having environmental protection, means for actuating the means for switching spaced apart from a second side of the wall, and magnetic means for
operating the means for switching coupled to the means for actuating. The magnetic means for operating is to operate the means for switching upon a change of position of the means for actuating.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 illustrates an example enclosure assembly in accordance with the teachings herein.
[0008] FIG. 2 illustrates an enclosure of the enclosure assembly of FIG. 1.
[0009] FIG. 3 illustrates the enclosure assembly of FIG. 1 including safety locks.
[0010] FIG. 4A is a cross-sectional view of an example hand-operated switch in a deactivated position in accordance with the teachings herein.
[0011] FIG. 4B is a cross-sectional view of the hand-operated switch of FIG. 4A in an activated position.
[0012] FIG. 5A is a partial cross-sectional view of the enclosure assembly of FIG. 1 including the hand-operated switch of FIGS. 4A and 4B in the deactivated position.
[0013] FIG. 5B is a partial cross-sectional view of the enclosure assembly of FIG. 1 including the hand-operated switch of FIGS. 4A and 4B in the activated position.
[0014] FIG. 6 is another partial cross-sectional view of the enclosure assembly of FIG. 1.
[0015] The figures are not to scale. Instead, to clarify multiple layers and regions, the thicknesses of the layers may be enlarged in the drawings. Wherever possible, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts.

DETAILED DESCRIPTION

[0016] Many known enclosures house electrical components and/or circuitry that control operation of equipment within a process control system. Many enclosures include hand-operated switches (e.g., pushbuttons, rotary devices) and/or indicator lights to enable a user (e.g., an operator, an engineer) to control operation of the corresponding equipment. In some instances, the enclosure is installed near the equipment of the process control system. In such instances, the hand-operated switches enable the user to locally initiate operation of the equipment and the indicator lights provide the user with on-site indication of an operation status of the equipment. To enable the enclosure to be installed near the corresponding equipment, many known enclosures are installed in the environment in which the enclosure is installed. For example, because some equipment is installed in hazardous locations, many known enclosures are also installed in hazardous locations.
Many third party agencies (e.g., the National Fire Protection Agency (NFPA), FM Global, Canadian Standards Association (CSA), ATEX, and International Electrotechnical Commission (IEC)) have created environmental protection categories and have set forth standards (e.g., the National Electric Code (NEC) of the NFPA, the International Protection (IP) Code of the IEC, and the Canadian Electrical Code (CEC) of the CSA) for equipment and/or enclosures that are to be installed in hazardous locations. For example, under these standards, hazardous locations are often areas in which flammable materials that have the potential to form an explosive environment are handled. Some types of hazardous locations require enclosures to be intrinsically safe, non-incendive and/or explosion-proof. For example, explosion-proof enclosures must be able to withstand an explosion from within and prevent any spark, flash, ignition, or flame from propagating outside the enclosure in the hazardous environment. An IP66 rating of the IP Code is another environmental protection standard that requires enclosures to prevent any dust, oil, water and/or other hazardous material from entering an interior of the enclosure, for example.

Many known enclosures define an opening and/or hole that is manufactured, cut and/or punched through a wall of the enclosure to receive a hand-operated switch that is operatively coupled to control components disposed within a cavity of the enclosure. In such instances, the hand-operated switch penetrates the surface of the enclosure to couple to the control components disposed within the cavity of the enclosure. To prevent dust, oil, water and/or other hazardous material from entering the cavity via the hole to maintain the environmental protection rating of the enclosure, many known enclosures include a seal (e.g., a gasket, an o-ring) positioned between the hand-operated switch and the wall adjacent the opening in the wall of the enclosure. Because some known hand-operated switches are provided with a gasket and/or o-ring, such known hand-operated switches are rated for environmental protection. In some instances, the seal fails to prevent harmful materials from entering the cavity of the enclosure as a result of the seal (e.g., a seal composed of an elastomeric material) being exposed to incompatible vapors and/or the environment for an extended period of time (e.g., years).

The example hand-operated switches described herein are coupled to a panel of an enclosure assembly without penetrating a wall of an enclosure containing electrical or electronic components. An example hand-operated switch includes a hand-operated switch actuator that is spaced apart from an exterior wall of an enclosure and a magnet that is attached to the hand-operated switch actuator. A magnetically-responsive switch is disposed
adjacent an interior surface of the wall opposite the hand-operated switch actuator. To operate the magnetically-responsive switch, the switch actuator moves to change a position of the magnet relative to the magnetically-responsive switch. For example, the magnetically-responsive switch detects the magnet when the hand-operated switch actuator is in a first position (e.g., an activated position) and does not detect the magnet when the hand-operated switch actuator is in a second position (e.g., a deactivated position) different than the first position.

[0020] In some examples, the hand-operated switch actuator is coupled to a mounting plate or panel. The panel is coupled to an exterior protrusion or protruding wall of the enclosure and is spaced apart from the wall of the enclosure. For example, the hand-operated switch actuator is received by an aperture defined by the panel and does not penetrate the wall of the enclosure. The hand-operated switch actuator does not penetrate the wall of the enclosure to maintain an environmental protection safety rating (e.g., a hazardous location rating, an explosion-proof rating, an IP66 rating, a dust-proof rating, an ingress-protected rating) of the enclosure.

[0021] In some examples, the enclosure assembly includes a second hand-operated switch of which a second hand-operated switch actuator is coupled to the panel and a second magnetically-responsive switch is disposed within the cavity of the enclosure. For example, the second magnetically-responsive switch is magnetically isolated from the hand-operated switch actuator and the magnetically-responsive switch is magnetically isolated from a second magnet attached to the second hand-operated switch actuator.

[0022] FIG. 1 illustrates an example enclosure assembly 100 in accordance with the teachings herein. The enclosure assembly 100 includes an enclosure or housing 102 and a mounting plate or panel 104 coupled to the enclosure 102. For example, the enclosure assembly 100 satisfies safety standards of an environmental protection rating (e.g., a hazardous location rating, an explosion-proof rating, an IP66 rating of the IP Code, an ingress-protected rating) and, thus, can be installed in the corresponding environment. In some examples, the enclosure assembly 100 is composed of corrosion-resistant material (e.g., stainless steel) to satisfy safety requirements of a corrosive environment.

[0023] As illustrated in FIG. 1, a first portion 106 of the enclosure 102 is coupled to a second portion 108 of the enclosure 102 via fasteners 110 (e.g., threaded fasteners). To satisfy the safety requirements, the coupling of the first and second portions 106, 108 prevents materials (e.g., hazardous materials, dust, oil, water, etc.) from entering the
enclosure 102 between the first and second portions 106, 108. Further, the enclosure assembly 100 of the illustrated example includes sealed conduits or openings 112 to receive wiring that operatively couples electrical components and/or circuitry of the enclosure assembly 100 with other components of a process control system. For example, the sealed conduits or openings 112 form a seal around received wiring to prevent material from entering the enclosure assembly 100.

[0024] As illustrated in FIG. 1, a protruding wall or exterior protrusion 114 protrudes from an exterior surface 116 (e.g., a first side) of a wall 118 of the second portion 108 of the enclosure 102. The panel 104 is coupled to the protruding wall 114 via fasteners 120 (e.g., threaded fasteners). In some examples, a seal is formed between the panel 104 and the protruding wall 114 to prevent materials from traversing between the panel 104 and the enclosure 102. In the illustrated example, hand-operated switches (e.g., pushbuttons, rotary devices) 122, 124, 126 are coupled to the panel 104 of the enclosure assembly 100 that enable a user (e.g., an operator, an engineer) to control equipment of the process control system. For example, each of the hand-operated switches 122, 124, 126 is received by a corresponding opening of the panel 104.

[0025] In some examples, indicator lights 128, 130, 132, 134 mounted to the panel 104 indicate the status of equipment operatively coupled to the hand-operated switches 122, 124, 126. As illustrated in FIG. 1, each of the indicator lights 128, 130, 132, 134 is received by a corresponding opening of the panel 104 to enable the indicator light 128, 130, 132, 134 to be operatively coupled to electrical components and/or circuitry disposed within the enclosure assembly 100. An o-ring, seal and/or gasket may be positioned between each indicator light 128, 130, 132, 134 and the corresponding opening to prevent materials from entering the enclosure assembly 100 via the openings. In other examples, the enclosure assembly 100 does not include indicator lights (e.g., the indicator lights 128, 130, 132, 134) coupled to the panel 104.

[0026] FIG. 2 illustrates the enclosure 102 of the enclosure assembly 100 decoupled from the panel 104 (FIG. 1). In the illustrated example, the wall 118 and the protruding wall 114 of the enclosure 102 define a first cavity 202 of the enclosure assembly 100. The panel 104 is to be coupled to the protruding wall 114 via the fasteners 120 (FIG. 1) to form the first cavity 202 between the enclosure 102 and the panel 104. As illustrated in FIG. 2, the fasteners 120 (FIG. 1) are to be received by bores 204 defined by the protruding wall 114 to couple the panel 104 to the enclosure 102. In some examples, the bores 204 are threaded to
receive threaded fasteners. The bores 204 of the illustrated example are blind holes that do not extend to an inner surface (e.g., an interior surface 512 of FIG. 5B) of the enclosure 102. As a result, materials (e.g., hazardous materials, dust, oil, water, etc.) are prevented from traversing into a cavity (e.g., the first cavity 202, a second cavity 502 of FIG. 5A) of the enclosure assembly 100 via the bores 204. In the illustrated example, a dividing wall 206 protrudes from the exterior surface 116 of the wall 118 and divides the first cavity 202 into an indicator housing 208 and a switch housing 210. For example, when the panel 104 is coupled to the protruding wall 114 of the enclosure 102, the panel 104 sealingly engages the dividing wall 206. As a result, the switch housing 210 is isolated from the indicator housing 208 to prevent materials from traversing between the switch housing 210 and the indicator housing 208. In some examples in which the enclosure assembly 100 does not include indicator lights (e.g., the indicator lights 128, 130, 132, 134 of FIG. 1), the enclosure 102 does not include the dividing wall 206 to divide the first cavity 206 into the indicator housing 208 and the switch housing 210.

[0027] As illustrated in FIG. 2, a first segment 212 of the exterior surface 116 of the wall 118 defines the switch housing 210 and forms a solid surface. For example, no holes, apertures and/or cut-outs are formed by the first segment 212 of the wall 118. As a result, the switch housing 210 is isolated from a cavity (e.g., the second cavity 502 of FIG. 5A) formed within the enclosure 102 between the first and second portions 106, 108 to prevent materials from entering the cavity through the switch housing 210.

[0028] In the illustrated example, bosses 214 protrude from a second segment 216 of the exterior surface 116 of the wall 118 that defines the indicator housing 208. Electrical components and/or circuitry operatively coupled to the indicator lights 128, 130, 132, 134 (FIG. 1) are to be coupled to the bosses 214 in the indicator housing 208. For example, the bosses 214 are to receive a board (e.g., a circuit board) on which the electrical components and/or circuitry are located. The bosses 214 define bores 218 to receive fasteners that fasten the board, electrical components and/or circuitry to the bosses 214. In some examples, the bores 218 are threaded to receive threaded fasteners. In the illustrated example, the bores 218 are blind holes that do not extend to an inner surface (e.g., the interior surface 512 of FIG. 5B) of the enclosure 102. As a result, materials are prevented from entering the cavity formed within the enclosure 102 via the bores 218.

[0029] As illustrated in FIG. 2, a sealed conduit 220 extends from the exterior surface 116 of the second segment 216 of the wall 118 within the indicator housing 208. The sealed
conduit 220 of the illustrated example is integrally formed with the protruding wall 114. The sealed conduit 220 is to receive wiring that operatively couples the electrical components and/or circuitry of the indicator lights 128, 130, 132, 134 with other electrical components and/or circuitry of the enclosure assembly 100. For example, the sealed conduit 220 includes a gasket or a flame-proof seal to form a seal around the received wiring to prevent hazardous materials (e.g., dust, oil, water, etc.) from entering the cavity (e.g., the second cavity 502 of FIG. 5) formed between the first and second portions 106, 108 of the enclosure 102.

[0030] FIG. 3 illustrates the enclosure assembly 100 having a safety lock 300 for each of the hand-operated switches 122, 124, 126. Each safety lock 300 is positioned adjacent one of the hand-operated switches 122, 124, 126 such that the safety lock 300 covers the corresponding hand-operated switch 122, 124, 126 when the safety lock is closed. Each safety lock 300 of the illustrated example incudes a cover 302, a hinge 304, and a slot 306. For example, the cover 302 of the safety lock 300 rotates about the hinge 304 to open and/or close the safety lock 300. For example, when the safety lock 300 is closed, the cover 302 limits and/or prohibits access to the hand-operated switch 122 and, thus, prevents the hand-operated switch 122 from being actuated. The slot 306 is to receive a lock (e.g., a padlock) when the safety lock 300 is closed to prevent the cover 302 from being rotated open. To couple each safety lock 300 to the panel 104 without penetrating the panel 104, each safety lock 300 is clamped between the corresponding hand-operated switch 122, 124, 126 and the panel 104. As a result, the safety locks 300 are mounted to the panel 104 without compromising the seal formed between the panel 104 and the enclosure 102.

[0031] FIGS. 4A and 4B illustrate a partial cross-sectional view of the hand-operated switch 122 coupled to the panel 104 of the enclosure assembly 100. In the illustrated example, the hand-operated switch 122 is a pushbutton. In other examples, the hand-operated switch 122 may be a rotary device or switch. The hand-operated switch 122 of the illustrated example is received by an aperture 402 formed by the panel 104. The hand-operated switch 122 includes an outer housing 404 that extends through the aperture 402 and is positioned adjacent an edge 406 of the panel 104 defining the aperture 402.

[0032] As illustrated in FIGS. 4A and 4B, the hand-operated switch 122 includes a head 408 disposed within an opening 410 formed by the outer housing 404. An inner surface 412 of the head 408 is coupled to a first end 414 of a stem 416. The stem 416 is composed of, for example, a magnetic material such as steel. In the illustrated example, the first end 414 of the stem 416 is received by a recess 418 defined by the inner surface 412 of the head 408, and a
second end 420 of the stem 416 opposite the first end 414 extends through an aperture 422 formed by a plate 424 of the hand-operated switch 122. The plate 424 is disposed within the first cavity 202 (FIG. 2) between the enclosure 102 (FIG. 1) and the panel 104. As illustrated in FIGS. 4A and 4B, a magnet 426 is coupled to the second end 420 of the stem 416. For example, when the stem 416 is composed of a magnetic material, the magnet 426 is coupled to the stem 416 via a magnetic force. In the illustrated example, a protective cover 428 is coupled to the second end 420 of the stem 416 and covers the magnet 426 to protect the magnet 426 from being exposed to harmful environments and/or from being dislodged from the stem 416.

[0033] In the illustrated example, a diaphragm 430 is partially disposed in the opening 410 formed by the outer housing 404 of the hand-operated switch 122. For example, a first end 432 of the diaphragm 430 engages the inner surface 412 of the head 408 adjacent the first end 414 of the stem 416. A second end 434 of the diaphragm 430 opposite the first end 432 is positioned between the outer housing 404 and the plate 424 of the hand-operated switch 122. For example, the second end 434 of the diaphragm 430 is disposed, captured or clamped between an outer section 436 of the plate 424 and a flange 438 of the outer housing 404.

[0034] As illustrated in FIGS. 4A and 4B, a lock ring 440 engages the outer housing 404 and an outer surface 442 of the panel 104 to couple, fasten and/or mount the hand-operated switch 122 to the panel 104 of the enclosure assembly 100. In some examples, the lock ring 440 is threadably coupled to the outer housing 404 of the hand-operated switch 122. In the illustrated example, an o-ring, seal and/or gasket 444 is positioned between the flange 438 of the outer housing 404 and an inner surface 446 of the panel 104. The gasket 444 is composed of, for example, an elastomeric material such as rubber. The gasket 444 forms a seal between the hand-operated switch 122 and the panel 104 to reduce and/or prevent materials (e.g., hazardous materials, dust, oil, water, etc.) from entering the first cavity 202 (FIG. 2) of the enclosure assembly 100 via the aperture 402.

[0035] FIG. 4A illustrates the hand-operated switch 122 in a deactivated position (e.g., a first position). The diaphragm 430 is in a decompressed or relaxed state when the hand-operated switch 122 is in the deactivated position. As illustrated in FIG. 4A, an outer surface 448 of the head 408 is flush and/or forms a substantially flat surface with the outer housing 404 and the locking ring 440. The second end 420 of the stem 416 engages a groove 450 defined by the plate 424 of the hand-operated switch 122, for example.

[0036] FIG. 4B illustrates the hand-operated switch 122 in an activated position (e.g. a
second position different than the first position). To transition the hand-operated switch 122 from the deactivated position to the activated position, the head 408 of the hand-operated switch 122 is engaged, pushed and/or urged along a rectilinear path toward the plate 424 of the hand-operated switch 122. Because the stem 416 of the illustrated example is coupled to the head 408, the stem 416 moves along the rectilinear path. As a result, the second end 420 of the stem 416 and, thus, the magnet 426 coupled to the second end 420 disengages and/or moves away from the groove 450 of the plate 424 as the hand-operated switch 122 transitions to the activated position.

[0037] As illustrated in FIG. 4B, the diaphragm 430 is deformed and/compressed when the hand-operated switch 122 is in the activated position. The diaphragm 430 provides resilient resistance as the hand-operated switch 122 transitions to the activated position. For example, the diaphragm 430 includes convolutions or ridges 452 that maintain the structure of the diaphragm 430 and/or provide resistance as the diaphragm 430 compresses. In the illustrated example, when the diaphragm 430 is compressed, the diaphragm 430 urges and/or biases the head 408 and, thus, the hand-operated switch 122 to return to the deactivated position. In some examples, the hand-operated switch 122 is a momentary contact switch that enables the diaphragm 430 to return the hand-operated switch 122 to the deactivated position once the applied force is removed. In some examples, the hand-operated switch 122 is a maintained contact switch that enables the hand-operated switch 122 to be maintained in the activated position after the applied force is removed. In such examples, the hand-operated switch 122 returns to the deactivated position after a subsequent force is applied to the head 408.

[0038] FIGS. 5A and 5B depict a partial cross-sectional view of the enclosure assembly 100. The wall 118 of the illustrated example separates the first cavity 202 and the second cavity 502. As illustrated in FIGS. 5A and 5B, the first cavity 202 is defined by the panel 104 and the exterior surface 116 of the wall 118, and the second cavity 502 is defined by the first portion 106 (FIG. 1) and the second portion 108 of the enclosure 102. In some examples, the enclosure 102 and, thus, the wall 118 are composed of a non-magnetic material such as stainless steel. In some examples, the enclosure 102 is composed of a corrosion-resistant material that satisfies safety requirements of environments (e.g., hazardous locations) in which the enclosure assembly 100 is to be installed. As illustrated in FIGS. 5A and 5B, the wall 118 defines no openings, holes and/or apertures between the first cavity 202 and the second cavity 502. As a result, any material (e.g., hazardous material, dust, oil,
water, etc.) that has entered the first cavity 202 is prevented from entering the second cavity 502.

[0039] A circuit board holder 504 (e.g., a potting cup) of the illustrated example is disposed in the second cavity 502 and is coupled to an inner surface 506 of the enclosure 102. A printed circuit board 508 is mounted to and/or in the circuit board holder 504 and a magnetically-responsive switch 510 (e.g., a reed switch, a hall-effect sensor) is coupled to the printed circuit board 508. In some examples, the magnetically-responsive switch 510 is positioned in the second cavity 502 adjacent the interior surface 512 (e.g., a second side opposite the first side) of the wall 118 such that the magnet 426 and the magnetically-responsive switch 510 align along a longitudinal axis 514 of the stem 416 of the hand-operated switch 122.

[0040] In the illustrated example, the panel 104 is coupled to the protruding wall 114 of the enclosure 102 such that the panel 104 is spaced apart from the exterior surface 116 (e.g., the first side) of the wall 118 by a distance 516. For example, the distance 516 between the panel 104 and the wall 118 enables the hand-operated switch 122 to be spaced apart from the wall 118 of the enclosure 102 when the hand-operated switch 122 is coupled to the panel 104. As illustrated in FIGS. 5A and 5B, the hand-operated switch 122 is spaced apart from the exterior surface 116 of the wall 118 when the hand-operated switch 122 is in the deactivated position and the activated position, respectively. In other words, no portion of the hand-operated switch 122 (e.g., the stem 416, the plate 424, the magnet 426, the protective cover 428, etc.) engages and/or penetrates the wall 118 of the enclosure 102 in the deactivated position, the activated position and/or any other position.

[0041] As illustrated in FIG. 5A, the magnetically-responsive switch 510 and the magnet 426 are separated by a distance 518 in the deactivated position. The distance 518 prevents the magnetically-responsive switch 510 from detecting the magnetic field of the magnet 426 when the hand-operated switch 122 is in the deactivated position (e.g., the first position). The magnet 426 moves along a rectilinear path along the longitudinal axis 514 toward the magnetically-responsive switch 510 as the hand-operated switch 122 transitions from the deactivated position to the activated position.

[0042] When the hand-operated switch 122 is in the activated position (e.g., the second position different than the first position), as is illustrated in FIG. 5B, the magnetically-responsive switch 510 and the magnet 426 are separated by a distance 520 that is less than the distance 518. The magnetically-responsive switch 510 detects the magnetic field of the
magnet 426 when the magnetically-responsive switch 510 and the magnet 426 are separated by the distance 520. In some examples, because the wall 118 positioned between the magnet 426 and the magnetically-responsive switch 510 is composed of non-magnetic material (e.g., stainless steel), the magnetically-responsive switch 510 detects the magnet 426 through the wall 118 when the hand-operated switch 122 is in the activated position.

The magnet 426 and the magnetically-responsive switch 510 enable the hand-operated switch 122 to be coupled to the enclosure assembly 100 without penetrating the wall 118 of the enclosure 102. Because no opening, hole and/or aperture is formed in the enclosure 102 between the first and second cavities 202, 502, materials (e.g., hazardous materials, dust, oil, water, etc.) are prevented from entering the second cavity 502 in which electrical components and/or circuitry are disposed. Thus, the hand-operated switch 122 and the magnetically-responsive switch 510 enable the enclosure 102 to isolate the electrical components and/or circuitry from external materials. As a result, the enclosure assembly 100 maintains an environmental protection rating (e.g., a hazardous-location rating, an explosion-proof rating, an IP66 rating of the IP Code, an ingress-protected rating) even if the gasket 444 of the hand-operated switch 122 is absent.

In some examples, the magnetically-responsive switch 510 is a normally-open switch that provides a signal to a process control system when the hand-operated switch 122 is in the activated position and does not provide a signal when the hand-operated switch 122 is in the deactivated position. In some examples, the magnetically-responsive switch 510 is a normally-closed switch that does not provide a signal when the hand-operated switch 122 is in the activated position and provides a signal when the hand-operated switch 122 is in the deactivated position.

In some examples, the magnetically-responsive switch 510 is a reed switch that includes a flexible reed to actuate in response to a magnetic field. When the magnet 426 moves relative to the reed switch, the magnetic field of the magnet 426 causes the flexible reed to move relative to the other reed. The reeds contact each other and complete an electrical circuit when the magnet 426 is within a predetermined distance of the reed switch. For example, the reed switch of the magnetically-responsive switch 510 actuates as the hand-operated switch 122 transitions between the deactivated position and the activated position. Because the reeds contact each other when the hand-operated switch 122 is in the activated position, the reed switch of the magnetically-responsive switch 510 enables the circuit to be completed without electrical power being supplied to the pushbutton and/or the magnetically-
responsive switch 510. As a result, no electrical components and/or circuits are disposed in the first cavity 202 to couple to the magnetically-responsive switch 510.

In some examples, the magnetically-responsive switch 510 is a hall-effect sensor. For example, a hall-effect sensor is a transducer that varies output voltage in response to a magnetic field and includes circuitry that enables the hall-effect sensor to act as a switch. Because the magnetic field detected by the hall-effect sensor of the magnetically-responsive switch 510 varies as the magnet 426 of the hand-operated switch 122 moves relative to the magnetically-responsive switch 510, the output voltage of the hall-effect sensor varies as the hand-operated switch 122 actuates between the activated and deactivated positions. In some examples, the magnetically-responsive switch 510 includes electrical components and/or circuitry to enable the hall-effect sensor of the magnetically-responsive switch 510 to provide a signal to the process control system.

FIG. 6 illustrates another cross-sectional view of the enclosure assembly 100. In the illustrated example, the hand-operated switches 122, 124 are pushbuttons. For example, the hand-operated switch 124 includes components that are substantially similar or identical to the components of the hand-operated switch 122 described above. In other examples, the hand-operated switch 122 and/or the hand-operated switch 124 may be a rotary device or switch.

As illustrated in FIG. 6, the hand-operated switches 122, 124 are coupled to the panel 104 of the enclosure assembly 100. In the illustrated example, the hand-operated switch 122 is in the deactivated position and the hand-operated switch 124 is in an activated position. Because the panel 104 is spaced apart from the exterior surface 116 of the wall 118, neither the hand-operated switch 122 nor the hand-operated switch 124 engages and/or penetrates the wall 118 of the enclosure 102 in the activated position, the deactivated position and/or any other position. In the illustrated example, a magnet 602 is coupled to a stem 604 of the hand-operated switch 124, and a magnetically-responsive switch 606 that is to detect a field of the magnet 602 is disposed in the second cavity 502. For example, the magnetically-responsive switch 606 is positioned on the printed circuit board 508 such that the magnetically-responsive switch 606 and the magnet 602 align along a longitudinal axis 608 of the stem 604 of the hand-operated switch 124.

As illustrated in FIG. 6, the longitudinal axis 514 of the hand-operated switch 122 is separated from the longitudinal axis 608 of the hand-operated switch 124 by a distance 610. For example, the distance 610 between the hand-operated switch 122 and the hand-
operated switch 124 prevents the magnetically-responsive switch 510 from detecting the magnet 602 of the hand-operated switch 124 in the activated position, the deactivated position and/or any other position. Further, the distance 610 between the hand-operated switch 122 and the hand-operated switch 124 prevents the magnetically-responsive switch 606 from detecting the magnet 426 of the hand-operated switch 122 in the activated position, the deactivated position and/or any other position. Thus, the distance 610 between the hand-operated switch 122 and the hand-operated switch 124 prevents the hand-operated switch 122 from interfering with operation of the magnetically responsive switch 606 and prevents the hand-operated switch 124 from interfering with operation of the magnetically-responsive switch 510.

[0050] Further, the magnetically-responsive switches 510, 606 of the illustrated example are spaced apart from other sources (e.g., a motor). For example, the magnetically-responsive switches 510, 606 are positioned to prevent the magnetically-responsive switches 510, 606 from detecting magnetic and/or electromagnetic signals of the other sources (e.g., signals not of the corresponding magnets 426, 602). In other words, the magnetically-responsive switch 510 is positioned such that the magnetically-responsive switch 510 can only detect the magnetic field of the magnet 426, and the magnetically-responsive switch 606 is positioned such that the magnetically-responsive switch 606 can only detect the magnetic field of the magnet 602.

[0051] Although certain example apparatus have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the amended claims either literally or under doctrine of equivalents.
What is claimed is:

1. An apparatus comprising:
 a hand-operated switch actuator spaced apart from a first side of a wall of an enclosure having environmental protection;
 a magnet attached to the switch actuator; and
 a magnetically-responsive switch disposed adjacent a second side of the wall, wherein movement of the switch actuator is to change a position of the magnet to operate the magnetically-responsive switch.

2. The apparatus of claim 1, wherein the switch actuator and the magnet do not penetrate the wall of the enclosure.

3. The apparatus of any of the preceding claims, wherein the enclosure is at least one of an explosion-proof enclosure, a dust-proof enclosure, or an ingress-protected enclosure.

4. The apparatus of any of the preceding claims, wherein the switch actuator is a pushbutton or a rotary device.

5. The apparatus of any of the preceding claims, wherein the magnetically-responsive switch is a reed switch or a hall-effect sensor.

6. The apparatus of any of the preceding claims, wherein the magnetically-responsive switch detects the magnet when the switch actuator is in a first position and does not detect the magnet when the switch actuator is in a second position different than the first position.

7. The apparatus of any of the preceding claims, wherein the magnet is attached to the switch actuator via a magnetic force.

8. The apparatus of any of the preceding claims, wherein the magnetically-responsive switch is positioned such that the magnetically-responsive switch can detect only a magnetic field of the magnet.
9. An apparatus comprising:
 an enclosure having environmental protection and defining a cavity;
 a panel coupled to an exterior protrusion of the enclosure and spaced apart from a
 wall of the enclosure;
 a hand-operated switch actuator coupled to the panel and spaced apart from the wall,
 the switch actuator having a magnet; and
 a magnetically-responsive switch disposed within the cavity of the enclosure opposite
 the switch actuator, the magnet to operate the magnetically-responsive switch through the
 wall when the switch actuator is in a first position.
10. The apparatus of claim 9, wherein the magnet does not operate the magnetically-
 responsive switch when the switch actuator is actuated to a second position different than the
 first position.
11. The apparatus of any of the preceding claims, wherein, to maintain at least one of an
 explosion-proof rating, a dust-proof rating, or an ingress-protected rating of the enclosure, the
 switch actuator does not penetrate the wall of the enclosure.
12. The apparatus of any of the preceding claims, wherein the enclosure is composed of a
 non-magnetic material.
13. The apparatus of any of the preceding claims, wherein the exterior protrusion
 protrudes from an exterior surface of the wall of the enclosure.
14. The apparatus of any of the preceding claims, wherein the switch actuator is received
 by an aperture defined by the panel.
15. The apparatus of any of the preceding claims, further comprising a safety lock
 coupled to the enclosure to limit access to the switch actuator.
16. The apparatus of any of the preceding claims, further comprising a second switch
 actuator coupled to the panel and a second magnetically-responsive switch disposed within
 the cavity to detect the second switch actuator.
17. The apparatus of any of the preceding claims, wherein the second magnetically-
 responsive switch is magnetically isolated from the switch actuator and the magnetically-
 responsive switch is magnetically isolated from a second magnet of the second switch
 actuator.
18. An apparatus comprising:
 means for switching disposed adjacent a first side of a wall of an enclosure having environmental protection;
 means for actuating the means for switching spaced apart from a second side of the wall; and
 magnetic means for operating the means for switching coupled to the means for actuating, wherein the magnetic means for operating is to operate the means for switching upon a change of position of the means for actuating.

19. The apparatus of claim 18, wherein the magnetic means for operating operates the means for switching when the means for actuating is in a first position and does not operate the means for switching when the means for actuating is in a second position different than the first position.

20. The apparatus of any of the preceding claims, wherein the means for actuating and the magnetic means for operating do not penetrate the wall of the explosion-proof enclosure, the enclosure being at least one of an explosion-proof enclosure, a dust-proof enclosure, or an ingress-protected enclosure.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- INV. H01H9/04
- H01H36/00
- H03K17/97
- H01H13/06
- H01H19/06
- H01H9/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

- Minimum documentation searched (classification system followed by classification symbols)
 - H01H
 - H03K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 - EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 366 463 A (BARKER STEPHEN F) 28 December 1982 (1982-12-28) col umn 3, lines 18-64 col umn 5, lines 3-19 figures 1-3</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 834 891 A2 (SQUIBB BRISTOL MYERS CO [US]) 8 April 1 1998 (1998-04-08) col umn 3, line 34 - col umn 4, line 10 col umn 5, lines 36-44 figures 1-3,6</td>
<td>1-20</td>
</tr>
</tbody>
</table>

*Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which establishes the publication date of another citation or other special reason (as specified)
- **D** or document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

22 January 2016

Date of mailing of the international search report

02/02/2016

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentboulevard 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, 340-3016
Fax: (+31-70) 340-3016

Authorized officer

Gl aman, C

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 28 04 952 A1 (SIEMENS AG) 9 August 1979 (1979-08-09) page 5, line 28 - page 6, line 26 page 7, lines 10-22 figures 1,4</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4366463 A</td>
<td>28-12-1982</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3931497 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2216727 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0834891 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H10154431 A</td>
</tr>
<tr>
<td>DE 102005063070 A1</td>
<td>12-07-2007</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 2804952 A1</td>
<td>09-08-1979</td>
<td>NONE</td>
</tr>
</tbody>
</table>