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(57)【特許請求の範囲】
【請求項１】
　１以上の変数を入力として１以上の値を出力する関数から成る機能モジュールによって
構成された学習制御装置において、
　入力となる変数の組み合わせを複数生成し、生成した複数の組み合わせのうち、それを
参照してある変数を予測した時の予測誤差が最小となる組み合わせを選択し、選択した前
記組み合わせを用いて、前記ある変数の未来の値を予測するためには他のどの変数を参照
することが必要であるかの因果関係を示す変数間因果関係情報を生成する因果関係推定手
段と、
　前記変数間因果関係情報に基づき、前記機能モジュールへの入力変数となる制御対象変
数を決定し、前記機能モジュールからの出力変数となる行動変数を決定する入出力変数決
定手段と、
　第１の機能モジュールと、前記第１の機能モジュールの制御対象変数と同じ変数を行動
変数とする、前記第１の機能モジュールとは異なる第２の機能モジュールとをつなぎ合わ
せることで前記第１および第２の機能モジュールを階層化する階層化手段と
　を含む学習制御装置。
【請求項２】
　前記入出力変数決定手段は、前記変数間因果関係情報に基づき、相互に前記因果関係が
ある２以上の変数の集合を変数グループとし、前記変数グループ毎に、前記変数グループ
に含まれる２以上の変数を前記機能モジュールの制御対象変数に決定する
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　請求項１の学習制御装置。
【請求項３】
　前記入出力変数決定手段は、前記変数間因果関係情報に基づき、前記機能モジュールへ
の入力変数となる制御対象変数を決定し、前記機能モジュールからの出力変数となる行動
変数を決定し、決定した前記行動変数のうち、前記制御対象変数から直接介入可能なもの
以外を状態変数に決定する
　請求項１に記載の学習制御装置。
【請求項４】
　１以上の変数を入力として１以上の値を出力する関数から成る機能モジュールによって
構成された学習制御装置の学習制御方法において、
　前記学習制御装置による、
　　入力となる変数の組み合わせを複数生成し、生成した複数の組み合わせのうち、それ
を参照してある変数を予測した時の予測誤差が最小となる組み合わせを選択し、選択した
前記組み合わせを用いて、前記ある変数の未来の値を予測するためには他のどの変数を参
照することが必要であるかの因果関係を示す変数間因果関係情報を生成する因果関係推定
ステップと、
　　前記変数間因果関係情報に基づき、前記機能モジュールへの入力変数となる制御対象
変数を決定し、前記機能モジュールからの出力変数となる行動変数を決定する入出力変数
決定ステップと、
　　第１の機能モジュールと、前記第１の機能モジュールの制御対象変数と同じ変数を行
動変数とする、前記第１の機能モジュールとは異なる第２の機能モジュールとをつなぎ合
わせることで前記第１および第２の機能モジュールを階層化する階層化ステップと
　を含む学習制御方法。
【請求項５】
　１以上の変数を入力として１以上の値を出力する関数から成る機能モジュールによって
構成された学習制御装置の制御用のプログラムであって、
　入力となる変数の組み合わせを複数生成し、生成した複数の組み合わせのうち、それを
参照してある変数を予測した時の予測誤差が最小となる組み合わせを選択し、選択した前
記組み合わせを用いて、前記ある変数の未来の値を予測するためには他のどの変数を参照
することが必要であるかの因果関係を示す変数間因果関係情報を生成する因果関係推定ス
テップと、
　前記変数間因果関係情報に基づき、前記機能モジュールへの入力変数となる制御対象変
数を決定し、前記機能モジュールからの出力変数となる行動変数を決定する入出力変数決
定ステップと、
　第１の機能モジュールと、前記第１の機能モジュールの制御対象変数と同じ変数を行動
変数とする、前記第１の機能モジュールとは異なる第２の機能モジュールとをつなぎ合わ
せることで前記第１および第２の機能モジュールを階層化する階層化ステップと
　を含む処理を学習制御装置のコンピュータに実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、学習制御装置、学習制御方法、およびプログラムに関し、特に、多次元の変
数（センサ入力、内部状態、およびモータ出力等）からなる自律学習エージェントにおい
て、予測器の学習を元に変数間の因果関係を推定し、推定した因果関係に基づき、制御器
の数・機能・入出力変数を自動的に決定し、制御器のモジュール化・階層化の設計を自動
化するようにした学習制御装置、学習制御方法、およびプログラムに関する。
【背景技術】
【０００２】
　（Ａ）　非特許文献１に記載されている強化学習型の自律エージェント構成手法や非特
許文献２に記載されている経験強化型の自律エージェント構成手法においては、学習器の
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入出力変数が、解くべきタスクや期待する動作を考慮した人間によって選択されていた。
【０００３】
　一方、多自由度の自律エージェントを考えると、設計時にタスクを決定して入出力変数
を決めることは、自律エージェントの学習可能な能力を設計時に限定することになってし
まう。このことから、従来手法はOpen-endedな自律エージェントの構築において決定的な
問題をはらんでいるといえる。
【０００４】
　（Ｂ）　（Ａ）の問題点を解消するために、考えられる全てのセンサ・モータ変数を入
出力として用いると、個々の特定のタスクや期待する動作の性能に影響を与えてしまうと
いう問題が生じる。これは、機械学習の世界では次元の呪いとして広く知られている問題
である（例えば、非特許文献３参照）。
【０００５】
　（Ｃ）　（Ｂ）の問題点を解決する為に、自立エージェントを複数の機能モジュールに
分割して学習することを考える。この場合、単体の機能モジュールとして学習していたと
きには存在しなかった新たな２つの問題が発生する。
【０００６】
　１つは、各機能モジュールの個数と各機能モジュールの自由度（１つのモジュールがど
こまで複雑な構造を持ちうるかを決定する量）をどのように決定するか、という問題であ
る。もう１つは、各機能モジュール間の結合をどのように決定するか、という問題である
。
【０００７】
　（Ｄ）　特許文献１に記載されているMOSAICは、機能のモジュール化という点で興味深
いアプローチであるが、各モジュールは与えられた全ての変数を入出力として扱うことに
なり、結局は（Ｃ）で提示された問題に対しての解決策になっていない。解決するために
は、各機能モジュール間の個々の機能と結合関係を事前に人間が設計する必要が生じる。
この点に関して言えばMOSAICは従来型の自律エージェントに対しする設計アプローチと同
じである。
【０００８】
【特許文献１】特開２０００－３５８０４号公報
【非特許文献１】Richard S.Sutton,Andrew G.Barto,“Reinforcement Learning：An Int
roduction,”MIT Press,1998
【非特許文献２】Jun Tani：“Learning to generate articulated behavior through th
e bottom-up and the top-down interaction processes”,Neural Networks,Vol.16,No.1
,pp.11-23,2003.
【非特許文献３】Bellman, R.E.“Dynamic Programming.”Princeton University Press,
Princeton.6：679-684.
【非特許文献４】多賀源太郎著、「脳と身体の動的デザイン　運動・知覚の非線形力学と
発達」金子書房、2002
【発明の開示】
【発明が解決しようとする課題】
【０００９】
　（Ｄ）の問題を計決する為に、機能モジュールの機能と、その結合関係を自動的に学習
することを考える。この場合、モジュールの数や個々のモジュールの複雑度を決める方法
が自明ではなく、未だ人間の設計する余地が残っている。また、実際にこの手法を用いて
複数のタスクや複数の期待する動作が非破壊的に追加学習されている事例は皆無である、
という課題があった。
【００１０】
　また、脳科学・神経科学・心理学では、ヒトは機能のモジュール性(局在性)を有してい
ると言われている。同様に、人工的な自律エージェントの学習にも何らかのモジュール性
・階層性を導入すると良い、という議論は多くされているが、実際にそれらモジュールや
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階層間の結合・統合を行なう決定的な手法は確立されていない（非特許文献４参照）、と
いう課題があった。
【００１１】
　本発明はこのような状況に鑑みてなされたものであり、多次元の変数（センサ入力、内
部状態、およびモータ出力等）からなる自律学習エージェントにおいて、予測器の学習を
元に変数間の因果関係を推定し、推定した因果関係に基づき、制御器の数・機能・入出力
変数を自動的に決定し、制御器のモジュール化・階層化の設計を自動化できるようにする
ものである。
【課題を解決するための手段】
【００１２】
　本発明の一側面である学習制御装置は、１以上の変数を入力として１以上の値を出力す
る関数から成る機能モジュールによって構成された学習制御装置において、入力となる変
数の組み合わせを複数生成し、生成した複数の組み合わせのうち、それを参照してある変
数を予測した時の予測誤差が最小となる組み合わせを選択し、選択した前記組み合わせを
用いて、前記ある変数の未来の値を予測するためには他のどの変数を参照することが必要
であるかの因果関係を示す変数間因果関係情報を生成する因果関係推定手段と、前記変数
間因果関係情報に基づき、前記機能モジュールへの入力変数となる制御対象変数を決定し
、前記機能モジュールからの出力変数となる行動変数を決定する入出力変数決定手段と、
第１の機能モジュールと、前記第１の機能モジュールの制御対象変数と同じ変数を行動変
数とする、前記第１の機能モジュールとは異なる第２の機能モジュールとをつなぎ合わせ
ることで前記第１および第２の機能モジュールを階層化する階層化手段とを含む。
【００１３】
　前記入出力変数決定手段は、前記変数間因果関係情報に基づき、相互に前記因果関係が
ある２以上の変数の集合を変数グループとし、前記変数グループ毎に、前記変数グループ
に含まれる２以上の変数を前記機能モジュールの制御対象変数に決定することができる。
　前記入出力変数決定手段は、前記変数間因果関係情報に基づき、前記機能モジュールへ
の入力変数となる制御対象変数を決定し、前記機能モジュールからの出力変数となる行動
変数を決定し、決定した前記行動変数のうち、前記制御対象変数から直接介入可能なもの
以外を状態変数に決定することができる。
【００１４】
　本発明の一側面である学習制御方法は、１以上の変数を入力として１以上の値を出力す
る関数から成る機能モジュールによって構成された学習制御装置の学習制御方法において
、前記学習制御装置による、入力となる変数の組み合わせを複数生成し、生成した複数の
組み合わせのうち、それを参照してある変数を予測した時の予測誤差が最小となる組み合
わせを選択し、選択した前記組み合わせを用いて、前記ある変数の未来の値を予測するた
めには他のどの変数を参照することが必要であるかの因果関係を示す変数間因果関係情報
を生成する因果関係推定ステップと、前記変数間因果関係情報に基づき、前記機能モジュ
ールへの入力変数となる制御対象変数を決定し、前記機能モジュールからの出力変数とな
る行動変数を決定する入出力変数決定ステップと、第１の機能モジュールと、前記第１の
機能モジュールの制御対象変数と同じ変数を行動変数とする、前記第１の機能モジュール
とは異なる第２の機能モジュールとをつなぎ合わせることで前記第１および第２の機能モ
ジュールを階層化する階層化ステップとを含む。
【００１５】
　本発明の一側面であるプログラムは、１以上の変数を入力として１以上の値を出力する
関数から成る機能モジュールによって構成された学習制御装置の制御用のプログラムであ
って、入力となる変数の組み合わせを複数生成し、生成した複数の組み合わせのうち、そ
れを参照してある変数を予測した時の予測誤差が最小となる組み合わせを選択し、選択し
た前記組み合わせを用いて、前記ある変数の未来の値を予測するためには他のどの変数を
参照することが必要であるかの因果関係を示す変数間因果関係情報を生成する因果関係推
定ステップと、前記変数間因果関係情報に基づき、前記機能モジュールへの入力変数とな
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る制御対象変数を決定し、前記機能モジュールからの出力変数となる行動変数を決定する
入出力変数決定ステップと、第１の機能モジュールと、前記第１の機能モジュールの制御
対象変数と同じ変数を行動変数とする、前記第１の機能モジュールとは異なる第２の機能
モジュールとをつなぎ合わせることで前記第１および第２の機能モジュールを階層化する
階層化ステップとを含む処理を学習制御装置のコンピュータに実行させる。
【００１６】
　本発明の一側面においては、入力となる変数の組み合わせが複数生成され、生成された
複数の組み合わせのうち、それを参照してある変数を予測した時の予測誤差が最小となる
組み合わせが選択され、選択された組み合わせを用いて、ある変数の未来の値を予測する
ためには他のどの変数を参照することが必要であるかの因果関係を示す変数間因果関係情
報が生成され、変数間因果関係情報に基づき、機能モジュールへの入力変数となる制御対
象変数が決定され、機能モジュールからの出力変数となる行動変数が決定される。また、
第１の機能モジュールと、第１の機能モジュールの制御対象変数と同じ変数を行動変数と
する、第１の機能モジュールとは異なる第２の機能モジュールとをつなぎ合わせることで
第１および第２の機能モジュールが階層化される。
【発明の効果】
【００１７】
　本発明によれば、多次元の変数（センサ入力、内部状態、およびモータ出力等）からな
る自律学習エージェントにおいて、予測器の学習を元に変数間の因果関係を推定し、推定
した因果関係に基づき、制御器の数・機能・入出力変数を自動的に決定し、制御器のモジ
ュール化・階層化の設計を自動化することが可能となる。
【発明を実施するための最良の形態】
【００２４】
　以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明
する。
【００２５】
　図１は、本発明を適用した自律エージェントの構成例を示している。この自律エージェ
ント１は、１つの関節を有し、当該関節にトルクτを掛けることで回転するリンク１１か
ら成る単純なロボットである。この自律エージェント１は、リンク１１の角度θおよび角
速度ωを検出して入力とし、関節に与えるトルクτを出力する。自律エージェント１が存
在する環境には重力（θ＝０となる方向）も存在し、発生可能なトルクτは重力に比べて
小さいので、仮に一定方向に最大トルクτmaxを発生させても自律エージェント１自身が
持ち上げられたり、移動されたりすることはない。
【００２６】
　さらに、自律エージェント１は、図２に示すように、内部状態を示す変数としてエネル
ギＥおよび乳酸Ｌを有している。エネルギＥは、発生したトルクτに比例して消費（減少
）する。そして、自律エージェント１の餌２１が想定された所定の位置θEにリンク１１
が到達すると、エネルギＥが所定の値だけ増加する。乳酸Ｌは、消費されたエネルギＥに
比例して増加し、定常的に僅かずつ分解されて減少する。自律エージェント１は、エネル
ギＥが無くなる、または乳酸Ｌが最大値ＬMAXに達すると、トルクτを発生することがで
きなくなる。
【００２７】
　図３は、自律エージェント１の内部の構成例を示している。
【００２８】
　トルク発生部３１はモータ等から成り、トルクτを発生してリンク１１を移動させる。
また、発生したトルクτを自律制御部３６に通知する。角度検出部３２はリンク１１が垂
線と成す角度θを検出して自律制御部３６に通知する。角速度検出部３３はリンク１１の
角速度ωを検出して自律制御部３６に通知する。エネルギ設定部３４は、トルク発生部３
１が発生したトルクτに基づいてエネルギＥを減少させ、角度検出部３２によって検出さ
れる角度θに基づいてエネルギＥを増加させる。乳酸設定部３５は、トルク発生部３１が
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発生したトルクτに対応して消費（減少）されたエネルギＥに基づいて乳酸Ｌを増加させ
、所定の周期で乳酸Ｌを減少させる。また現在のエネルギＥを自律制御部３６に通知する
。
【００２９】
　自律制御部３６の予測器学習部４１は、変数（θ，ω，Ｅ，Ｌ，τ）のそれぞれについ
て学習により、後述する微分方程式（１）を取得して変数グループ生成部４２、行動変数
決定部４３、および状態変数決定部４４に出力する。変数グループ生成部４２は、予測器
学習部４１によって取得された微分方程式（１）に基づき、変数（θ，ω，Ｅ，Ｌ，τ）
のうちで相互に原因となっている変数をグループ化して、変数グループを行動変数決定部
４３および状態変数決定部４４に出力する。行動変数決定部４３は、予測器学習部４１に
よって取得された微分方程式（１）、および変数グループ生成部４２から入力される変数
グループに基づき、各変数グループに対する行動変数を決定して状態変数決定部４４に出
力する。状態変数決定部４４は、予測器学習部４１によって取得された微分方程式（１）
、変数グループ生成部４２から入力される変数グループ、および行動変数決定部４３によ
って決定された行動変数に基づき、各変数グループに対する状態変数を決定して、行動変
数とともに階層化部４５に出力する。階層化部４５は、変数グループの行動変数および状
態変数に基づき、変数グループと行動変数の組み合わせに対応する制御器を生成し、生成
した制御器を階層化する。
【００３０】
　次に、自律エージェント１の力学モデルに適用される微分方程式（１）を示す。ただし
、各関数ｆの具体的な中身についてはここで問題としない。

【数１】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（１）
【００３１】
　また、自律エージェント１の力学モデルは、現在時刻ｔ、および微小時間Δｔを用いた
次式（２）に示す差分方程式によっても表すことができる。
【数２】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（２）
【００３２】
　図４は、自律エージェント１の力学モデルを因果ダイアグラムで表したものである。
【００３３】
　なお、式（１）に示された微分方程式よりも式（２）に示された差分方程式による定式
化の方がコンピュータを適用した実装を考えると実用的であるが、簡便性を考慮して、以
下、微分方程式（１）を用いて説明する。もちろん、微分方程式（１）を差分方程式（２
）に置き換えることも可能である。また、以下、微分方程式（１）に含まれる関数ｆを適
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宜「予測器」と称する。
【００３４】
　因果関係の推定と予測器の学習
　予測器学習部４１においては、上記力学モデルの差分方程式（２）や図４に示された因
果ダイアグラムは未知のものとして、上記差分方程式を近似的に復元する。この処理は、
変数間の定性的な因果関係を発見する第１の処理（因果ダイアグラムの復元）と、その後
に定量的な関係を近似的に学習する第２の処理（上記関数ｆの構造を復元）からなる。こ
のときに手がかりとして与えられる情報は、全ての変数（θ，ω，Ｅ，Ｌ，τ）の時系列
値である。
【００３５】
　当該第１の処理は、人間がある対象の変動を予測しようとしたときに、その対象が何を
原因に変動しているのかを突き止めようとすることに相当する。実際に人間の場合、無限
に考えられる世界の構成要素の中からいくつかの事象を取り上げ、予測対象の原因として
理解（発見）することができる。このとき用いることができる情報は、環境を観察するこ
とで得られる事象（変数）の時系列情報である。
【００３６】
　ところで、従来の機械学習では因果関係に関する情報を明に用いていなかったため、次
式（３）に示されるように、全ての変数を予測器の入力として取り扱うような方法が用い
られてきた。
【数３】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（３）
【００３７】
　上述した従来の方法を採用すると、変数の数が増えるにしたがって学習に必要な訓練サ
ンプル（変数の時系列値）の数が増大し、実質的に学習が困難か不可能な状態（いわゆる
「次元の呪い」と称される状態）に陥ってしまう。
【００３８】
　そこで予測器学習部４１においては、関数ｆの入力になる変数を取捨選択するようにな
されている。このための１つの方法として、入力となる変数の組み合わせを仮説として複
数生成し、その中から最も予測誤差の少ない仮説を選択する方法を考える。例えば、角度
θを予測する仮説の関数ｆθとして、次式（４）に示す関数ｆθが考えられる。
【数４】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（４）
【００３９】
　式（４）は考えられる仮説の関数ｆθの一部である。
【００４０】
　入力変数を１つも取らない関数ｆθ（・）から全ての変数を入力とする関数ｆθ（θ，
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ω，Ｅ，Ｌ，τ）ものまで、全ての組み合わせを数え上げると、いまの場合、変数の数が
５であるため、１２１（＝５×４×３×２＋１）通りの組み合わせが考えられる。このま
までは、変数の数が増えるに従って組み合わせの数が爆発的に増加してしまうため、組み
合わせ数の上限を決めたりするなどの工夫が必要となる。
【００４１】
　当該第２の処理においては、仮説の関数ｆを決定した後、これら仮説の関数ｆに対して
同一の訓練サンプル（環境を観察することで得られる事象（変数）の時系列情報）を与え
て関数近似を行う。
【００４２】
　関数近似の方法にはどのような方法を使ってもかまわない。例えば、Support Vector R
egression（以下、SVRと略記する）を用いて学習を行う。SVRは、常に大域解が得られる
ことが保障されており、一般的によく用いられている誤差逆伝播法に基づいたニューラル
ネットワークよりも安心して利用できる点が強みである。
【００４３】
　SVRを利用した学習によって、各仮説ごとに関数ｆの構造が求められる。次に、各仮説
がどれだけ良い予測結果を出力できるかを検証するために、訓練サンプルとは異なる評価
サンプルを用いて評価する。この手法は学習器の予測性能に対応する凡化誤差を求める手
法であり、cross validationと称される。ここでは他のどのような評価基準を用いてもよ
いが、訓練誤差ではなく凡化誤差を求める種類の手法でなければならない。最も評価の高
い仮説が選択されると、学習が成功している場合、式（１）を得ることができる。
【００４４】
　以上に説明した処理を用いて、力学モデルの近似学習を行うことが可能である。以下で
は、各変数がどの変数を原因変数とすることで予測可能であるか、という情報（因果関係
）が重要となる。
【００４５】
　直接介入・間接介入と制御器
　ある変数の値を任意の値に変化させたいとする。しかしながら、その変数を直接変化さ
せることができないならば、当該変数以外の変数を変化させることによって、間接的に当
該変数を変化させることを考える。例えば、人間は念じるだけでは物（例えば椅子など）
の位置を変化させることはできないが、例えば自分の筋肉を収縮させて自分の体を操り、
最終的に物の位置を変化させることと同様である。
【００４６】
　上述した自律エージェント１に当てはめて考える。自律エージェント１はエネルギＥが
減少してしまったとしても、直接的にエネルギを増加させることはできない。これに対し
て、トルクτは直接操作可能な変数である。よって、トルクτを変化させることにより間
接的にエネルギＥの値を増加させることが可能である。このような変数間の因果関係を利
用して動作を行う機能モジュールのことを、以後「制御器」と称する。
【００４７】
　制御器の構成
　制御器は、予測器と同様に関数で表される。制御対象の変数をｘ、状態変数をｓ、介入
に用いる変数（行動変数）をａとした場合、制御器（関数）ｇxは次式（５）に示される
とおりとなる。
　ａ＝ｇx（ｘ，ｓ）　　　　　　　　　　　　　　　　　　　　　　　　　　…（５）
【００４８】
　放棄
　なお、式（５）では、ｘ，ｓ，ａを変数として表記したが、実際には変数の集合であっ
てベクトルであると解釈すればよい。すなわち、ｘは１以上、ｓは０以上、ａは１以上の
要素を持つベクトルである。要素の数が０のときは変数を取らず、１のときは単一変数（
スカラー）である。
【００４９】
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　また、ある変数を制御する制御器を作る場合、各ｘ，ｓ，ａにどの変数を対応付ければ
よいのかを決めなければならないが、何も考慮せずに全ての変数を対応させると上述した
「次元の呪い」の問題に再び陥ってしまうので配慮が必要である。
【００５０】
　変数のグループ化と制御対象変数
　複数の変数が、相互に変化の原因となっている場合（すなわち、相互に原因変数となっ
ている場合）、それらの変数は本質的に１つの事象を複数の変数で表現していると捉える
ことができる。この場合、その中でどれか１つの変数を変化させようとしてもうまく行か
ず、相互に原因変数となっている変数群をまとめて制御対象とすることが必要になる。以
下、このような相互に原因変数となっている変数の集合を変数グループと称する。変数グ
ループｘn（ｎ＝１，２，…，Ｎ）は、図５に示すアルゴリズムを用いて生成される。な
お、相互に変化の原因となっていない変数も、その変数１つだけで構成される変数グルー
プとみなすことにする。
【００５１】
　上述した自律エージェント１においては、角度θと角速度ωが相互に原因変数となって
いる。そのため、角度θだけ、もしくは角速度ωだけを制御しようとしても、うまく制御
できる制御器は学習できない。角度θと角速度ωを単一の変数グループとして、それぞれ
を同時に制御するθω制御器を考える必要がある。
【００５２】
　変数のグループ化により、上述した変数ｘ，ｓ，ａのうちの制御対象の変数ｘが決定さ
れる。自律エージェント１においては、次式（６）に示される３つの制御対象変数グルー
プｘ1，ｘ2，ｘ3が決定される。
　ｘ1＝｛θ，ω｝
　ｘ2＝｛Ｅ｝
　ｘ3＝｛Ｌ｝
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（６）
【００５３】
　図６は変数をグループ化した後の因果ダイアグラムである。
【００５４】
　行動変数
　上述したように制御対象の変数グループを決定した後、各変数グループに対して制御器
を構成する。そこで、それら制御器ｇxの出力となる行動変数を考える。行動変数となり
得る変数は、制御が可能な変数のみである。制御が可能な変数は２種類あり、１つは直接
介入による制御が可能な生まれつきの行動変数、もう１つは制御器の学習によって間接介
入による制御が可能になった変数である。
【００５５】
　それら候補となる行動変数からどの組み合わせを選択するかについての自由度が残って
いる。ここでは、全ての変数の組み合わせを仮説として同時に生成する。それら全てを学
習し、実際の行動時にはそのうちどれかを自由に選択して利用できるようにする。これは
一見冗長で不要な自由度に思えるが、例えばプランニングアルゴリズムＡ*における行動
選択を、この制御器の仮説の選択としてとらえることで、有用な自由度としてとらえ直す
ことができる。
【００５６】
　具体的には、各変数グループに属する制御対象変数の原因変数を、学習された予測器か
ら取得して原因変数集合を生成する。次に原因変数集合から制御対象変数が除外され、原
因変数集合に残ったものが行動変数とされる。ただし、行動変数が変数グループに属して
いる場合、当該変数グループに属する全ての変数が行動変数とされる。
【００５７】
　例えば、変数グループ｛θ，ω｝に対しては、変数グループに属する制御対象変数θの
原因変数｛θ，ω，τ｝と、制御対象変数ωの原因変数｛θ，ω，τ｝が取得され、原因
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変数集合｛θ，ω，τ｝が生成される。そして、原因変数集合｛θ，ω，τ｝から制御対
象変数θ，ωが除外されて、残った変数τが行動変数とされる。
【００５８】
　また例えば、変数グループ｛Ｅ｝に対しては、変数グループに属する制御対象変数Ｅの
原因変数｛θ，τ｝が取得されて原因変数集合｛θ，τ｝が生成される。そして、原因変
数集合｛θ，τ｝から制御対象変数Ｅが除外されて（実際、原因変数集合｛θ，τ｝に制
御対象変数Ｅは含まれていないが）、残った変数θ，τが行動変数とされる。ただし、変
数θは変数グループ｛θ，ω｝に属しているので、変数グループ｛θ，ω｝が行動変数と
される。
【００５９】
　さらに例えば、変数グループ｛Ｌ｝に対しては、変数グループに属する制御対象変数Ｌ
の原因変数τが取得されて原因変数集合｛τ｝が生成される。そして、原因変数集合｛τ
｝から制御対象変数Ｌが除外されて（実際、原因変数集合｛τ｝に制御対象変数Ｌは含ま
れていないが）、残った変数τが行動変数とされる。
【００６０】
　上述した自律エージェント１の行動変数を図７に示す。
【００６１】
　状態変数
　制御対象の変数グループに対する行動変数を決定した後、それらに対応する状態変数を
決定する。具体的には、原因変数グループから直接介入可能な行動変数を除外したものを
状態変数とする。ただし、状態変数が変数グループに属している場合、当該変数グループ
に属する全ての変数が状態変数とされる。
【００６２】
　自律エージェント１の状態変数を図８に示す。
【００６３】
　制御器の階層化
　トルクτを行動変数としたθω制御器をｇθω,τ、角度θと角速度ωを行動変数にし
たＥ制御器をｇE,θωのように、制御器の関数ｇの添え字に制御対象変数と行動変数をカ
ンマで区切って示す表記法を用いると、それらは次式（７）のようになる。ここで、添え
字にｄが付いている変数は、観測値を表す変数ではなく、その変数の目標値を表す変数で
ある。間接介入による制御であるため、その値はあくまでも目標値である。ただし、τd

は直接介入可能な行動変数であるため、τに読み替えることが可能である。
【数５】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（７）
【００６４】
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　式（７）の左辺は行動変数であるが、これは階層化を考慮すると下位の階層の目標値に
他ならない。この考えを用いて制御器の入出力変数を整理すると、図９に示されるように
、複数の制御器ｇの制御対象変数と行動変数とが連結され、全体として制御器ｇの階層化
が実現される。すなわち、上位の階層の行動変数が下位の階層の制御対象変数となってい
る。
【００６５】
　以上説明した自律制御部３６による処理を図１０のフローチャートを参照して整理する
。すなわち、ステップＳ１において、予測器学習部４１は、変数（θ，ω，Ｅ，Ｌ，τ）
のそれぞれについて学習によって微分方程式（１）を取得して変数グループ生成部４２、
行動変数決定部４３、および状態変数決定部４４に出力する。ステップＳ２において、変
数グループ生成部４２は、予測器学習部４１によって取得された微分方程式（１）に基づ
き、変数（θ，ω，Ｅ，Ｌ，τ）のうちで相互に原因となっている変数をグループ化して
、変数グループを行動変数決定部４３および状態変数決定部４４に出力する。ステップＳ
３において、行動変数決定部４３は、予測器学習部４１によって取得された微分方程式（
１）、および変数グループ生成部４２によって決定された各変数グループにそれぞれ対応
する行動変数を決定して状態変数決定部４４に出力する。
【００６６】
　ステップＳ３の処理について、図１１を参照して詳述する。行動変数決定部４３は、ス
テップＳ１１において、各変数グループに属する制御対象変数の原因変数を、学習された
予測器から取得して原因変数集合を生成し、ステップＳ２において、原因変数集合から制
御対象変数を除外する。そしてステップＳ３において、原因変数集合に残ったものを行動
変数に決定する。ただし、行動変数が変数グループに属している場合、当該変数グループ
に属する全ての変数を行動変数に決定する。
【００６７】
　図１０に戻る。ステップＳ４において状態変数決定部４４は、予測器学習部４１によっ
て取得された微分方程式（１）、変数グループ生成部４２によって決定された変数グルー
プ、および行動変数決定部４３によって決定された行動変数に基づき、各変数グループに
それぞれ対応する状態変数を決定して、行動変数とともに階層化部４５に出力する。ステ
ップＳ５において階層化部４５は、変数グループの行動変数および状態変数に基づき、変
数グループと行動変数の組み合わせに対応する制御器を生成し、生成した制御器を階層化
する。以上、自律制御部３６による処理の説明を終了する。
【００６８】
　本発明の手法を用いない場合
　本発明の手法を用いない場合、制御器は次式（８）に示されるとおりであり、これを図
示すると図１２に示すとおりとなる。
【数６】

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　…（８）
【００６９】
　各制御器の行動変数は直接介入可能なトルクτに限定され、状態変数も、どの変数が必
要であり、どの変数が不要であるかを判断できないため、全ての変数を利用することにな
る。この例では、制御対象変数を｛θ，ω｝とＥとＬの３つに変数グループにグループ化
しているが、これは設計者が制御しようとする変数を作りこんでいると仮定している。
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【００７０】
　式（７）と式（８）を比べると、式（７）は１つの関数に対する入力変数の数が式（８
）式に比べて少ないことがわかる。今回の例では顕著な差ではないように見えるが、自律
エージェント１を複雑化且つ高機能化すると変数の数が増大するため、そのとき、式（８
）の関数は「次元の呪い」の問題により学習が困難になることが予想される。
【００７１】
　これに対して本発明を用いれば、予測器が推定する因果関係が疎である限り、制御器の
入力は増大することがない。通常はそういった問題を避けるために、それらの関係性を人
間が判断して制御器の入出力を作りこむことで解決している。
【００７２】
　以上に説明した本発明のポイントと整理すれば以下のとおりとなる。
【００７３】
　複数の機能モジュールからなる自律エージェントが、センサや内部状態やモータなどの
変数間の因果関係を自動的に推定する。ここでいう因果関係とは、ある変数の未来の値（
結果）を予測するためには、他のどの値を参照することが必要（原因）であるか、を示し
た情報である。結果と原因は、１対ｎ（ｎは０以上の整数）のマップで表現される。
【００７４】
　自律学習エージェントが、自動的に推定された因果関係の情報を用いて、機能モジュー
ルの数と、それらの担当する機能との間の統合方法を自動的に決定する。
【００７５】
　各機能モジュールは制御器と称され、センサや内部状態などの変数の値を、指示された
目的の値（もしくは目的の時系列値）になるように変化させる機能を持っている。制御器
は、多入力多出力の関数である。
【００７６】
　仮に複数の変数が相互に原因変数になりあっている場合、それら複数の変数を、組み合
わさった１つの分離不能な状態を表している変数群（ベクトル）と捉える。これを変数グ
ループとする。さらにこれを一般化し、1個以上の変数を含むグループという意味で、グ
ループ化された変数グループと、他のどの変数ともグループ化されなかった単体の変数を
、まとめて変数グループと称する。
【００７７】
　制御器の数と機能を自動的に決定する。具体的には、変数グループの数の制御器を生成
し、各制御器の機能は、それら変数グループの変数値を、指示された値に変化させること
とする。
【００７８】
　制御器の出力（制御対象の変数を制御するために変化させる他の変数）を自動的に決定
する。具体的には、変数間の因果関係において、制御対象変数の原因となっている変数を
、制御器の出力とする。
【００７９】
　制御器の入力（制御対象の変数を制御するために参照する必要がある他の変数）を自動
的に決定する。具体的には、変数間の因果関係において、制御対象変数の原因となってい
る変数と、制御対象変数の目標値を表す変数を、制御器の入力とする。
【００８０】
　ある変数（結果変数）の未来の値がどの変数（０個以上）を用いて予測可能であるかを
発見するために、複数の入力変数（原因変数）の組み合わせを仮定し、それらを学習させ
る。最も予測誤差の小さくなった仮説をもって、結果変数に対する原因変数を特定したと
する。
【００８１】
　各予測器は、変数毎に存在する。１つの予測器は、複数の入力変数を現在状態の変数と
して受け取り、１つの変数値を未来状態として予測する。
【００８２】
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　以上説明したように、本発明によれば、従来に機械学習においては、設計者である人間
が機械に学習させたい問題に応じて、機械内部の機能モジュール間の関連性を設計してい
た。この作業がなくては現実的に機械が問題を解くことは困難であったが、本発明の適用
により、この人間の設計作業を除くことができる。つまり、Open-endedな自律ロボットに
必要不可欠な機能である、問題設定の自動化を実現できる。
【００８３】
　また本発明によれば、各制御器は変数グループの意味に応じた機能を分担することにな
り、各制御器毎の学習が相互に独立して可能である。よって、機能毎の追加学習が他の機
能を破壊することなく可能となる。人間の設計を排除し、かつ、過去に獲得された行動の
破壊を伴わないで、新しい行動を獲得することができる。
【００８４】
　また、これまで「脳のバインディング問題」として未解決の問題とされていた、機能モ
ジュール間の結線ルールに関する問題に対して、１つの明確な答えを出すことができる。
【００８５】
　さらに、さまざまな分野で大きな問題となっていた「次元の呪い」を自動的に解決する
方法として、単純ではあるが重要な基本的検討となり得る。
【００８６】
　ところで、上述した自律制御部３６の処理は、ハードウェアにより実行させることもで
きるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより
実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに
組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、
各種の機能を実行することが可能な、例えば図１３に示すように構成される汎用のパーソ
ナルコンピュータなどに、記録媒体からインストールされる。
【００８７】
　このパーソナルコンピュータ６０は、CPU(Central Processing Unit)６１を内蔵してい
る。CPU６１にはバス６４を介して、入出力インタフェース６５が接続されている。バス
６４には、ROM(Read Only Memory)６２およびRAM(Random Access Memory)６３が接続され
ている。
【００８８】
　入出力インタフェース６５には、ユーザが操作コマンドを入力するキーボード、マウス
等の入力デバイスよりなる入力部６６、映像信号を表示するCRT(Cathode Ray Tube)また
はLCD(Liquid Crystal Display)等のディスプレイよりなる出力部６７、プログラムや各
種データを格納するハードディスクドライブなどよりなる記憶部６８、およびモデム、LA
N（Local Area Network）アダプタなどよりなり、インタネットに代表されるネットワー
クを介した通信処理を実行する通信部６９が接続されている。また、磁気ディスク（フレ
キシブルディスクを含む）、光ディスク（CD-ROM(Compact Disc-Read Only Memory)、DVD
(Digital Versatile Disc)を含む）、光磁気ディスク（ＭＤ(Mini Disc)を含む）、もし
くは半導体メモリなどの記録媒体７１に対してデータを読み書きするドライブ７０が接続
されている。
【００８９】
　このパーソナルコンピュータ６０に上述した一連の処理を実行させるプログラムは、記
録媒体７１に格納された状態でパーソナルコンピュータ６０に供給され、ドライブ７０に
よって読み出されて記憶部６８に内蔵されるハードディスクドライブにインストールされ
ている。記憶部６８にインストールされているプログラムは、入力部６６に入力されるユ
ーザからのコマンドに対応するCPU６１の指令によって、記憶部６８からRAM６３にロード
されて実行される。
【００９０】
　なお、本明細書において、プログラムに基づいて実行されるステップは、記載された順
序に従って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、
並列的あるいは個別に実行される処理をも含むものである。
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【図面の簡単な説明】
【００９１】
【図１】自律エージェントの構成例を示す図である。
【図２】自律エージェントの内部状態の一例を示す図である。
【図３】自律エージェントの内部の構成例を示すブロック図である。
【図４】自律エージェントにおける因果ダイアグラムを示す図である。
【図５】変数グループを生成するためのアルゴリズムを示す図である。
【図６】変数をグループ化した後の因果ダイアグラムを示す図である。
【図７】制御対象変数（変数グループ）に対応する行動変数を示す図である。
【図８】制御対象変数（変数グループ）に対応する状態変数を示す図である。
【図９】自律制御部によりモジュール化・階層化された制御器の構成例を示す図である。
【図１０】自律制御部による処理を説明するフローチャートである。
【図１１】図１０のステップＳ３の処理を説明するフローチャートである。
【図１２】従来の制御器の構成例を示す図である。
【図１３】汎用パーソナルコンピュータの構成例を示すブロック図である。
【符号の説明】
【００９２】
　１　自律エージェント，　１１　リンク，　２１　餌，　３１　トルク発生部,　３２
　角度検出部，　３３　角速度検出部，　３４　エネルギ設定部，　３５　乳酸設定部，
　３６　自律制御部，　４１　予測器学習部，　４２　変数グループ生成部，　４３　行
動変数決定部，　４４　状態変数決定部，　４５階層化部

【図１】

【図２】

【図３】
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