发明名称
一种经过表面整理的柔软纸

摘要
本发明涉及一种经过表面整理的柔软纸，该柔软纸的上下表层涂敷有相当于原纸基重1%-20%的柔软剂乳液组合物，并延及至纸纤维层内。其特征在于：经过表面整理后每平方米柔软纸表面 a) 均匀分布有 0.10g-0.40g 的二有机基聚氨弹性膜；b) 含有相当于羟基质量数为 0.15-0.50g 的单羟基或多羟基醇类；c) 含有 0.02-0.10g 含聚氧乙烯链段和醚基的亲水渗透水。本发明工艺简单，柔软剂以及助剂的用量少；制得的纸制品成本低，强度较高，柔软度、蓬松度俱佳，纸张的亲水速度快，吸收性能好，且成品不易分层。
1. 一种经过表面整理的柔软纸，该柔软纸的上下表层涂敷有相当于原纸基重的1%～20%的柔软剂乳液组合物，并延及至纸纤维层内，其特征在于：
 A) 每平方米柔软纸表面均匀分布有0.10～0.40g的二有机基聚硅氧烷柔软剂；
 B) 每平方米的柔软纸表面含有相当于羟基质量为0.15～0.50g的单羟基或多羟基醇类；
 C) 每平方米的柔软纸表面含有0.02～0.10g的亲水渗透剂；
 其中所述柔软剂乳液组合物包含有：
 A) 二有机基聚硅氧烷；
 B) 含有醚键和聚氧乙烯链段的亲水渗透剂；
 C) 含单羟基或多羟基醇类保湿剂；
 D) 增稠剂；
 E) 水。

2. 如权利要求1所述的柔软纸，其特征在于经过表面整理后，每平方米柔软纸表面所含的二有机基聚硅氧烷柔软剂的量为0.18g～0.25g。

3. 如权利要求1所述的柔软纸，其特征在于经过表面整理后每平方米柔软纸表面所含的单羟基或多羟基醇的羟基质量为0.25～0.42g。

4. 如权利要求1所述的柔软纸，其特征在于经过表面整理后，每平方米柔软纸表面所含亲水渗透剂的量为0.04～0.08g。

5. 如权利要求1所述的柔软纸，其特征在于表层涂敷的柔软剂乳液组合物的量相当于原纸基重的5%～10%。

6. 如权利要求1所述的柔软纸，其特征在于所述柔软剂乳液组合物包含：
 A) 1%～20%重量份的二有机基聚硅氧烷；
 B) 0.1%～10%重量份的亲水渗透剂；
 C) 30%～60%重量份的含单羟基或多羟基保湿剂；
 D) 0.1%～2%重量份的增稠剂；
 E) 10%～40%重量份的水。

7. 利用根据任一上述权利要求所述的柔软纸制造的与皮肤直接接触的纸制品。
一种经过表面整理的柔软纸

技术领域
[0001] 本发明涉及一种纸，特别是涉及一种具有舒适蓬松感且柔软性和吸收性好，适合用于制造与皮肤直接接触的纸制品的柔软纸。纸制品例如餐巾纸、手帕纸、盒抽纸等。

背景技术
[0002] 在现代社会生活中，一次性生活用纸制品如纸手帕、餐巾纸、美容纸等的使用十分普遍。由于这些纸制品与皮肤直接接触，纸制品的柔软、清爽、蓬松感以及吸水性直接影响着消费者的使用感受。随着生活水平的提高，人们对于纸制品的这些特性的需求度也越来越高。研究和开发兼具有舒适的蓬松感以及优良的吸水性能的柔软纸制品具有很重要的意义。

[0003] 如CN1083919C公开了一种包含可生物降解的植物油基化学柔软组合物的纸制品。该发明采用浆内添加柔软剂的方法，使得纸张内含有相当于造纸纤维重量的0.005％～5.0％的可生物降解且无毒的、具有植物油基的酯酸软化化合物。其优点在于：1) 由于植物油基的单酯和酯二酸酯酸软化剂良好的流动性(低熔点)，在很少或者不用稀释时，可实现良好的分散；2) 与由动物油基的单酯和酯二酸酯酸软化剂制得的薄页纸相比，显示出良好的柔软度和吸水性且具有改善的气味。

[0004] 对于纸张柔软度的改善，可以在浆内添加柔软剂，也可以通过表面涂敷整理。前一种方法柔软剂的添加量大，使用效率不高；后一种方法具有使用效率高，成本低的优点。

[0005] 从现有技术中总结出，通过表面整理改善纸(即纸制品)柔软度的技术中，柔软剂的施加方式有喷洒法和涂布法，适宜于对柔软纸进行表面整理的柔软剂主要有：含脂肪基的季铵盐柔软剂和有机硅乳液(主要含二有机硅基聚硅氧烷)柔软剂。采用前者进行表面整理的柔软纸，其柔软效果不及后者，而且在较低温度下柔软剂容易成膜，使得纸张变得硬挺；采用后者进行表面整理的柔软纸，柔软剂的用量小，柔软纸的柔软效果较好。

[0006] 有机硅乳液柔软剂改善纸柔软度的机理可以解释为纤维吸附柔软剂后，聚硅氧烷主链的Si-O键与纤维表面的羟基形成氢键，使得纤维表面张力降低，纸张层与层之间的相互作用力减小，结果使纸变得蓬松丰满。此外，构成聚硅氧烷主链的Si-O-Si键的键角较大，原子和原子之间的距离较长，具有较大的自由度，使得其分子的平滑性较好，因此聚硅氧烷柔软剂能够降低纤维的摩擦系数，使纸张具有平滑性。

[0007] 但是，现有的通过采用有机硅乳液柔软剂进行表面整理而制备柔软纸的技术中又遇到了许多问题，如：1) 由于有机硅乳液柔软剂被纸张纤维吸附后，Si-O键与纤维表面的羟基形成氢键，减少了纤维表面羟基的数量，这就减低了纸的强度；2) 有机硅乳液柔软剂降低了纤维表面张力，这就使得水在纸张的表面不易铺展，纸的亲水性降低，同样，减小了纸张层与层之间的相互作用力，纸张就变得易分层。3) 有机硅乳液柔软剂的活性基团在较高的温度下容易产生部分的表面交联，这就使得纤维的表面张力进一步降低，纸的亲水性及吸水性在很大程度上都受到了影响。如果能够解决以上问题，那么采用有机硅乳液柔软剂不仅能够减小柔软剂的用量，而且还能够取得更好的柔软效果，这将使得纸制品的
成本更低，柔软效果更佳。

发明内容
[0008] 本发明的主要目的在于克服现有技术的缺点，提供一种具有舒适蓬松感且柔软性强和吸收性好，适合用于制造与皮肤直接接触的纸制品的柔软纸。该柔软纸还具有良好的亲水性能及抗高温、便于仓库储存的优点，即使在45℃仓库中存储3个月，依然具有很快（小于两秒）的亲水速度。
[0009] 为了实现以上目的，本发明采用以下技术方案：
[0010] 1、将二有机基聚硅氧烷、含聚氧乙烯链段的醚基的亲水渗透剂、含单羟基或多羟基的醇类保湿剂、增稠剂、水按照一定的比例配制成柔软剂乳液组合物。
[0011] 具体地，本发明所涉及的乳液组合物包含：
[0012] A) 1％~20％重量份的二有机基聚硅氧烷；
[0013] B) 0.1％~10％重量份的亲水渗透剂；
[0014] C) 30％~60％重量份的含单羟基或多羟基保湿剂；
[0015] D) 0.1％~2％重量份的增稠剂；
[0016] E) 10％~40％重量份的水。
[0017] 2、采用常规的表面涂布整理的工艺，将上述乳液组合物按照1％~20％的上液率（即该柔软纸的上液层涂布有相当于原纸基重1％~20％的柔软剂乳液组合物），并将该涂布与原纸的贴合率进行涂敷于普通原纸的上液层，经由普通原纸形成的柔软纸的表面具有以下特点：
[0018] a) 每平方米柔软纸表面均匀分布有0.10g~0.40g的二有机基聚硅氧烷，优选是0.18g~0.25g；
[0019] b) 每平方米的柔软纸表面含有相当于羟基的质量为0.15~0.50g的单羟基或多羟基醇类，优选是羟基的质量数为0.25~0.42g的多羟基醇；
[0020] c) 每平方米的柔软纸表面含有0.02~0.10g的含有聚氧乙烯链段的醚基的亲水渗透剂，优选是0.04~0.08g的亲水渗透剂，亲水渗透剂的EO链段（即聚氧乙烯链段）以12~18个为佳。
[0021] 3、将对普通原纸进行表面处理后形成的柔软纸进行分切，收卷，置于温度25±2℃，湿度65±5％RH的环境中处理24h，让纸张内部的水分与空气中的水分达到平衡。
[0022] 本发明工艺简单，柔软剂以及其他各种助剂的用量少，制得的纸制品成本低，强度较高，柔软度、蓬松度俱佳，纸张的亲水速度快，吸水性能好，且成品不易分层。

具体实施方式
[0023] 本发明是通过以下方式来实现上述效果的：
[0024] 1、纸的强度高
[0025] 通过常规的表面涂布整理的方式实现柔软剂在纸上的施加，相比于在抄纸过程中添加柔软剂，效率有了很大的提高，因此柔软剂的用量少。该柔软剂的主要成分是二有机基聚硅氧烷，二有机基聚硅氧烷中包含了氨基、羟基、聚氧乙烯基中的一种或者一种以上的官能团。
说明书

[0026] 通过表面涂布整理后，使得由普通原纸制成的每平方米柔软纸表面均匀分布有0.10g-0.40g的二有机基聚硅氧烷，尤其是0.18g-0.25g。二有机基聚硅氧烷的含量对于纸的柔软度和强度的影响极其重要。通过一系列的实验研究发现，聚硅氧烷的含量大于0.40g/m²时，纸的横向抗张指数将小于1.2N・m/g，纸张在使用过程中很容易破裂；当聚硅氧烷的含量小于0.10g/m²时，纸的柔软度将大于56mN，纸张显得硬挺和粗糙。因此，选择每平方米柔软纸中二有机基聚硅氧烷的添加量在0.10g-0.40g之间。当纸张的聚硅氧烷的含量在0.18-0.25g/m²时，纸的柔软度将大于40mN且横向抗张指数大于等于1.5N・m/g，符合GB/T 20808-2006 纸巾纸（含湿巾）中优等品超柔型的标准，是个更优的选择。

[0027] 表1. 二有机基聚硅氧烷的添加量对柔软纸物理性能的影响

<table>
<thead>
<tr>
<th>聚硅氧烷/g/m²</th>
<th>0.10</th>
<th>0.15</th>
<th>0.18</th>
<th>0.25</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>横向抗张指数/</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>N・m/g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柔软度mN</td>
<td>56</td>
<td>47</td>
<td>40</td>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>

[0028] 2. 具有舒适的蓬松感且易于分层

[0029] 为了达到既具有舒适的蓬松感又易于分层的效果，控制经过表面整理后的每平方米柔软纸含有相当于羟基的质量数为0.15-0.50g的单羟基或多羟基醇类，尤其是羟基的质量数为0.25-0.42g的多羟基醇。该类多元醇的例子有：乙二醇、丙二醇、丙三醇、二甘醇以及类似的含有1个到6个羟基的醇类化合物。

[0030] 经过有机硅乳液柔软剂表面处理过的柔软纸表面的羟基数量较少，使得各层纸之间的吸附力降低，纸容易分层。多元醇不仅和水具有极好的相容性，而且具有吸水性，能够充当保湿剂。多元醇的保湿机理是通过吸收周围环境中的水分，并将其保留在纸的表面，使纸张具有湿湿感，柔软性也因此得到了提升。此外，纸表面的羟基数日增加了，各层纸之间的结合力也得到了提高。

[0031] 但是，纸张表面羟基的数目对纸张性能的影响也是至关重要的。当羟基的质量太小时（少于0.15g），纸张不仅吸湿性差、柔润性不佳，且容易分层的缺点不能得到明显的改善（每20抽纸的分层抽数超过了50%）；当纸张表面的羟基的质量过多时（多于0.50g），各层纸之间吸附力上升而紧密地吸附在一起，使得纸张失去了原有的蓬松感。本发明经过多次试验发现，当柔软纸表面每平方米含有的羟基的质量数为0.15-0.50g之间，特别是0.25-0.42g之间时，纸张不仅具有舒适的蓬松感和良好的吸湿性，且分层现象有了明显的改善。

[0032] 表2. 多元醇的添加量对柔软纸物理性能的影响

<table>
<thead>
<tr>
<th>羟基的质量数/g</th>
<th>0.00</th>
<th>0.15</th>
<th>0.25</th>
<th>0.42</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>柔软度mN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0033]
说 明 书

| 蕾松比/% | 22.0 | 19.2 | 17.8 | 14.3 | 12.9 | 12.1 |
| 分层比/% | 90 | 55 | 35 | 25 | 20 | 20 |

【0035】 3、亲水速度快，吸收性能好

【0036】 有机硅乳液柔软剂降低了纤维表面张力，使得水在纸张的表面不易铺展，纸的亲水性降低。为了解决这个问题，本发明在聚硅氧烷乳液组合物中添加了含有醚键和聚氨乙烯链段的亲水渗透剂。该类亲水渗透剂的例子有：聚氯乙烯共聚物膜、聚氯乙烯丙烯酸酯、聚氯乙烯丙烯酸酯等含有醚键和聚氨乙烯链段的化合物。

【0037】 经过表面处理后的柔软纸每平方米表面含有 0.02-0.10g 的该类亲水渗透剂，尤其是 0.04-0.08g 的亲水渗透剂。亲水渗透剂的 E0 链段（即聚氯乙烯链段）以 12-18 个为佳。该类亲水渗透剂含有醚键和聚氨乙烯链段。当亲水渗透剂被吸附到纸张纤维表面以后，醚键上的氧原子与纤维表面的羟基结合形成氢键，聚氯乙烯链段朝外。由于 E0 链段具有亲水性，能够很快地和水分子结合形成氢键，而水分子和 E0 链段形成氢键的作用力小于纤维表面的羟基与水分子作用形成的氢键，当 E0 链段吸水后又很快地把水分传递给纤维，因此具有很好的亲水性和渗透性。

【0038】 亲水渗透剂的用量也应该控制在一定的范围之内。每平方米柔软纸表面的适宜含量在 0.02-0.10g 之间，尤其是每平方米纸表面的含量在 0.04-0.08g 之间。当含量小于 0.02g/m²，纸的亲水性能不能得到很好的改善；当大于 0.10g/m²，亲水速度已无明显的改善空间。

【0039】 表 3. 亲水剂的添加量对柔软纸物理性能的影响

<table>
<thead>
<tr>
<th>亲水剂的量 /g</th>
<th>0</th>
<th>0.02</th>
<th>0.04</th>
<th>0.08</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸收速度 /s</td>
<td>5±0.2</td>
<td>3±0.2</td>
<td>2±0.2</td>
<td><2</td>
<td><2</td>
</tr>
</tbody>
</table>

【0040】 4、增稠剂用量少

【0042】 乳液组合物的粘度对于上液量具有较大的影响：粘度太小，乳液组合物不利于粘附在涂布棍表面；粘度太大，乳液组合物的流动性太差，涂布均匀性就会变差。根据正常的涂布工艺，组合物的粘度在 50-200mPa • s 对涂布是最有利的。为了达到这样的一个粘度范围，需在乳液组合物中加入增稠剂。不同的增稠剂对该乳液组合物体系粘度的影响差异很大，本发明经过多次试验，对比了丙烯酸类、纤维素类、海藻酸盐、瓜尔胶的增稠效果，发现纤维素类增稠剂的增稠效果较好，添加量较小。

【0043】 表 4. 增稠剂的添加量对乳液组合物粘度的影响

【0044】
增稠剂的量/%

<table>
<thead>
<tr>
<th>增稠剂种类</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚丙烯酸类</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>纤维素类</td>
<td>6</td>
<td>10</td>
<td>21</td>
<td>35</td>
<td>86</td>
</tr>
<tr>
<td>海藻酸盐</td>
<td>6</td>
<td>11</td>
<td>15</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>瓜尔胶</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>18</td>
<td>35</td>
</tr>
</tbody>
</table>

[0045] 备注:以上粘度的单位为 mPa·s, 1000mPa·s = 1Pa·s。

[0047] 现有的技术中，不论是使用长链烷基类的柔软剂，还是使用有机硅乳液柔软剂，处理过的柔软纸的吸水性能都会受到一定的影响，特别是久置水分挥发或者是在夏季较高温度的仓库存储过程中，纸的亲水速度和纸纤维毛细管吸水作用都会明显的降低。在本发明中，为了加入了一定比例的亲水渗透剂，纸张的水分蒸发掉了，也依然具有很好的吸水速度（小于两秒），纸张中的纤维也依然保持很好的毛细管吸水作用。因此，即使在较高的温度的仓库（如夏季白天 40~45℃）中存储 3 个月后，依然保持良好的亲水性和吸湿性。

[0048] 实施例

[0049] 参照实施例更详细地描述本发明，但本发明的设计构思并不局限于此。

[0050] A) 将二有机基聚硅氧烷、聚氧乙烯醚亲水渗透剂、甘油、纤维素增稠剂、水按照以下比例配制成乳液组合物：

表 5. 工作实施例

<table>
<thead>
<tr>
<th>配方（%）</th>
<th>例 1</th>
<th>例 2</th>
<th>例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>二有机基硅氧烷</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>亲水渗透剂</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>甘油</td>
<td>60</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>乳酸钠</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>丙二醇</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>纤维素增稠剂</td>
<td>0.25</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>纯水</td>
<td>26.75</td>
<td>22.80</td>
<td>30.82</td>
</tr>
</tbody>
</table>

[0053] B) 将上述乳液组合物按照 10±2%的上液率涂敷于原纸的上下表层。

[0054] C) 将表面整理后的柔软纸进行分切、收卷，置于温度 25±2℃，湿度 65±5% RH 的环境中处理 24h，让纸张内部的水分与空气中的水分达到平衡。

[0055] D) 将恒温恒湿后的柔软纸进行后加工，分别制得成品纸 (1)、成品纸 (2)、成品纸
(3)。

[0056] 做为参考，下表列出几种纸制品的测试结果。该表中成品纸(1)、成品纸(2)、成品纸(3)分别为本发明乳液组合物(例1，例2，例3)处理过的上述纸制品；参考样(1)为市售的柔软纸产品；对比样(1)为末用任何乳液处理过的原纸。

[0057] 表6 成品纸性能对比

<table>
<thead>
<tr>
<th>测试样品</th>
<th>成品纸</th>
<th>成品纸</th>
<th>成品纸</th>
<th>参考样</th>
<th>对比样</th>
</tr>
</thead>
<tbody>
<tr>
<td>测试项目</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>抗张指数</td>
<td>2.01</td>
<td>1.84</td>
<td>1.62</td>
<td>1.48</td>
<td>2.69</td>
</tr>
<tr>
<td>柔软度</td>
<td>45</td>
<td>41</td>
<td>38</td>
<td>46</td>
<td>70</td>
</tr>
</tbody>
</table>

[0059]

<table>
<thead>
<tr>
<th></th>
<th>13.1</th>
<th>15.3</th>
<th>19.4</th>
<th>11.9</th>
<th>9.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>蓬松比/%</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>亲水速度/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100s吸液高度</td>
<td>40</td>
<td>45</td>
<td>43</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>动摩擦系数</td>
<td>0.54</td>
<td>0.42</td>
<td>0.37</td>
<td>0.59</td>
<td>0.89</td>
</tr>
<tr>
<td>分层比/%</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>45</td>
<td>—</td>
</tr>
</tbody>
</table>

[0060] 物理性能的测试方法:

[0061] 抗张指数、柔软度、100秒吸液高度均是按照 GB/T 20808-2006 的方法测试。普通的原纸在经过乳液组合物整理后，其抗张指数均会有所下降，柔软度得到了改善。从表6中可以看出，本发明的柔软纸在抗张指数均大于参考样(1)；柔软度优于参考样(1)，且比未经整理的对比样(1)有了很大的改善；100秒吸液高度也较参考样(1)和对比样(1)有了一定的提高。

[0062] 蓬松比的测试采用YG141D型数字式织物厚度仪，在2500mm²的压脚上加25cN的砝码（压强为0.1kpa）。取15层待测样品纸测量，待加载10s后读数，记录为D1；然后将压脚上砝码更改为125cN（压强为0.5kpa），再次测量同一样品的厚度，记录为D2。蓬松比＝（D1－D2）/D1×100％，蓬松比越大说明纸的蓬松感越好。从表6中可以看出，本发明的柔软纸蓬松感优于参考样(1)和对比样(1)。

[0063] 亲水速度主要是考量成品纸在经历高温老化后的亲水性。亲水速度的测试方法是将纸放置于70℃的恒温干燥箱中4个小时后，将一滴体积为0.04ml的水从移液枪中滴入样品纸的表面，同时记录水滴被纸张完全吸收所用的时间。
[0064] 动摩擦系数的测试采用 MXD-02 摩擦系数仪，动摩擦系数越小说明纸的表面越平滑。

[0065] 分层比的测试是随机抽取 20 抽的样品，检验其中出现分层现象的抽数。分层比 = 分层的抽数 / 20 × 100%，分层比越小说明纸越不容易分层。

[0066] 上述仅为本发明的一个具体实施方式，但本发明的设计构思并不局限于此，凡利用此构思对本发明进行非实质性的改动，均应属于侵犯本发明保护范围的行为。

[0067] 本领域内公知，纸张：即纸的总称（一般克重在 200g/m²以下，厚度在 500 μm 以下），因纸以张计，故称纸张，二者可以替换。原纸：是指需要经过加工处理的纸，用以进一步加工成各种纸制品。纸制品（也称加工纸，柔软纸）：是由原纸经过相应的加工制成的具有相应性能的可以满足多种用途需要的产品。

[0068] 本发明工艺简单，柔软剂以及其他各种助剂的用量少；制得的纸制品成本低，强度较高，柔软度、蓬松度俱佳，纸张的亲水速度快，吸收性能好，且成品不易分层。