A set of surgical instruments and a method for performing keratorefractive eye surgery is disclosed. The set of surgical instruments includes two or more knife blades (54) for making incisions (26) of a precise depth in the cornea (12), and two or more foot plates (56) assemblies holding each of the knife blades (54). The cutting portion (58) of each of the knife blades (54) extends from the foot plate assembly (56) by a precise fixed length corresponding to the precise depth of incision which can be made by that particular knife blade (54). Each foot plate assembly (56) includes a foot plate which moves on the surface of the cornea to precisely control the depth of the incision. Each foot plate assembly has markers for indicating the range, fixed length and style of the knife blade (54), along with a handle (65) for holding and manipulating each knife blade.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>RU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KERATOREFRACTIVE SYSTEM AND METHOD

BACKGROUND OF THE INVENTION

The current invention relates to surgical blades for use in Keratorefractive eye surgery or all forms of incisional Keratotomy and a novel method for performing same. More particularly, the invention is directed towards a system or sets of surgical instruments have fixed length knife blades that allow for safer and more precise corneal incisions.

Keratorefractive surgery or incisional keratotomy involves changing the refraction of the eye's cornea by making incisions in, but not through the eye's cornea. In this type of surgery, the goal is to change the shape of the cornea by making plurality of incisions in the cornea. The procedure is known as either incisional Keratotomy or Keratorefractive surgery. The use of the term Keratorefractive surgery herein shall include all procedures involving corneal incisions made in order to affect or change the eye's vision or the cornea's refractive characteristics.

The goal of Keratorefractive surgery is to result in emmetropia. In emmetropia, no optical defects exists, lights rays entering the eye focus clearly on the retina. Defects in visions are common and correctable to the point of defect free vision through Keratorefractive surgery. In hyperopia or farsightedness, the most common refractive error, the point of focus of the rays of light entering the
eye lies behind the retina because the eye's cornea curvature is too shallow. This refractive defect usually has been corrected by using a convex(plus) lens in glasses or contact lenses. In myopia or nearsightedness, this condition affects twenty-five percent of the adult population in the United States, the image entering the eye is focused in front of the retina because the eye's cornea is curved too steeply. This defect usually has been corrected by using a concave(minus) lens in glass or contact lenses. In astigmatism, the refraction is unequal in different meridians or quadrants of the eye. The cornea in this optical defect is shaped more like the surface a football, rather than like surface of a basketball when astigmatism is not found. This defect usually has been corrected through the use of cylindric corrective lens (a segment cut from a cylinder), that has no refractive power along one axis and is concave or convex along the other axis.

In 1972, Dr. Syvatoslav Fyodorov introduced and began to practice a new eye surgery procedure that involved incisions in, but not through the eye's cornea. The Keratorefractive surgical procedure practiced by Dr. Fyodorov, primarily involved patients affected with myopia or nearsightedness. As a result of specific corneal incisions, Dr. Fyodorov was able to reduce or eliminate the myopia in many patients. By 1980, many successful keratorefractive surgical procedures were performed by Dr. Fyodorov. The surgical procedure developed by Dr. Fyodorov for treating myopia evolved with the corneal incisions being radial from the limbus to just before the optical zone. This procedure has become generally
known as Radial Keratotomy (RK). Keratorefractive surgery has become very popular in the United States to correct vision problems. The RK, Astigmatic Keratotomy (AK) and the Hyperopia procedures are all growing in popularity as a way to correct defective vision. In some places and with some surgeons, the Hyperopia procedure has been designate as Hexagonal Keratotomy (HK) because in its initial practice the incisions in the cornea have been hexagonal. The Hyperopia procedure shall be referred herein through the use of HK, but it should not be read as being limited to hexagonal incisions because as Keratorefractive surgery develops the direction and the design or type of incisions will change. Therefore, HK shorthand herein will be for the general procedure or Hyperopic Keratotomy (HK).

A typical RK surgical procedure will illustrate the problems encountered with current system and procedure, and will help illustrate the benefits of the current invention. RK is selected by way of example, but the current invention is applicable to all Keratorefractive surgical procedures, including but not limited to AK and HK. The use of the current systems and problems, as well as the current invention is applicable to all procedures where correction of vision defects are being made through any and all type of cornea incisions. In RK, the myopic condition is minimized or eliminated as the result of a series of corneal incisions. The current practice is to make the incision radially along and in the cornea.

Exact incisions at a precise depth are critical to all the Keratorefractive
surgical procedure. In Keratorefractive surgery the depth of penetration of the cutting blade must be controlled because the incision must not go through the cornea and perforate it. In Keratorefractive surgery, including RK, the cutting blade must cut to a depth of at least eighty-five percent of the total thickness of the cornea for the best result. The optimum incisions are those that are as deep as possible without causing the cornea to rupture, i.e., deep as possible without cutting all the way through the cornea. For practical reasons involving current practice, however, the depth of the incisions has been set at, at least eighty-five percent for a general rule of thumb.

During the RK procedure at patient's eye is anesthetized with a local anaesthetic. The eye is then held open with a lid speculum. A microscope is then placed over the patient's eye and the surgeon marks the patient's optical zone with a optical zone marker utilizing a marking dye. The incisions in Keratorefractive surgery are usually made only outside of the optical zone of the cornea. Then the surgeon measures the center of the patient's corneal thickness using a pachymeter. That reading could typically be .540mm. The surgeon then marks the eye with a radial zone marker (that can any number of marking protrusions with the typical number has been four to eight) to mark the cornea with dye for the incisions. The knife has a micrometer screw control in its handle that will extend or retract the knife blade that will make the incisions. The typical knife has a blade together with a foot plate surroundably attached to the knife around and adjacent to the knife
blade. The footplate has a highly polished surface and rides along the surface of
the cornea as the knife blade extends beyond the footplate cutting the cornea to a
depth that will not result in perforations, sutures and the end of the operation.

The surgeon can take a number of measurement using a pachymeter in
different areas of the cornea. The cornea’s thickness changes from center to edge
or limbus; the cornea getting thicker as the measurements are made from center to
limbus. Also, the cornea changes thickness quadrant, i.e. the quadrants being the
areas defined by a simple x-y axis being superimposed over the cornea. The cornea
thickness also changes due to the time of day, the humidity, and the quality of the
air. Typically during the course of the day, the cornea will lose liquid or dehydrate
and become thinner or increase its density. During the course of a Keratorefractive
operation, the cornea can lose one percent of it thickness per minute. Therefore,
the surgeon does not have a lot of time between measurements to make incisions.

The length of the knife blade from the footplate to the tip is typical set with
the micrometer screw control. Because of the problems associated with screw
controls, the blade’s protruding length is often checked at least a second time by a
nurse or technicians and often a third time by the surgeon. These calibration
checks are often made using a second sterile microscope in the operating room.
This second sterile microscope has three sets of micrometer type adjustments in
order to measure the knife blade’s length. The first two being adjustment in the
microscope’s stage in the x and y plane. Then there is a micrometer scale in the
reticle of the eye piece. The time consuming nature of the set-up to measure and calibrate, often requires a nurse and a technician to set and check the length of the knife's blade. Then, the surgeon will also check the length right before making the incision.

The number of measurements and the micrometers used to measure all of a certain tolerance and variability. A stacking of tolerances due to device or person can result in incision that can be off as much as .100mm or more. This calibration problem is and has been a problem in all types of Keratorefractive surgery. While the goal in Keratorefractive surgery is measure and cut for each incision and for each location on the cornea, the problems with calibration and the time delays has resulted in minimal measurement and a single depth of current being made for all incisions because setting the length of the knife once is so time consuming. Further, even when the micrometer knife is set to a length, there has been problems with that measurement being off and the resulting incision being off because of the tolerance stacking noted above.

The incisions are made in quadrants of the cornea. The difficulty of calibration has resulted in a minimal number of measurements being made, in many cases only a single pachymeter measure being made at the cornea's center. The micrometer knife blade's length is attempted to be set at that particular pachymeter reading, then checked with the second microscope and by the surgeon, nurse and/or technician. Because the cornea's thickness increases from center to edge,
the center reading used as a approximate or gross eighty-five percent of thickness of the cornea. With the tolerance stacking, the corneas change in thickness due to time and quadrant, many times the incisions are inadequate resulting in under correction or too deep resulting in perforation, sutures and the end of the operation. The knife blade calibration problems related to RK in particular, and Keratorefractive surgery in general, has resulted in many patients having to under go a second operation because the initial surgery was resulted in under-corrected vision or sutures due to cornea perforation.

Some surgeons do not use a second microscope to check knife blade length, but use a physical block or coin gauge. This devices measure by using physical contact of the blade as a limitation. Unfortunately, these type of gauges because of their design and intended use, can damage the knife blade.

While measure and cut is the goal, the reality of time consuming calibration of the knife blade and the cornea's thickness changing during the operation due to dehydration, precludes numerous and multiple measurements during an operation under the currently available systems.

Further and in particular to RK, several RK procedures are popular in the United States. One is known as the American method, where the initial wound is formed by plunging initially in to the edge of the optical zone, so the possibility of impinging on the optical zone incision is minimized, and the incision is made in a direction radially away from the optical zone. Another method is known as the
Russian method, where the initial wound is made at the edge of the cornea and the direction of the incision is toward the optical zone. The Russian method results in less pressure during cutting and cleaner incisions, but has the danger of cutting into the optical zone. Both methods also use a different blade style, i.e. angle of blade, number of edges of the blade -the overall knife blade configuration would be a particular style. No matter the style, however, in both of these procedures, as well as others, the depth of incision has been a problem because of the current calibration problems noted above. It has not been unusual for the depth of cuts to be off anywhere from .050mm to .100mm or more. These calibration problems have been encountered in all types of Keratorefractive surgery, including AK, RK, HK and all incisional Keratotomy.

For example in AK surgery the cuts are usually arcuate or have T-cut designs and depth is very critical. In HK surgery, there have been hexagonal and octagonal incision designs in the cornea that should be to a specific and accurate depth. The problems with depth and under cutting and perforation have been encountered in all types of Keratorefractive surgery. As the techniques develop and the types of incisions change, as they will in order to affect the necessary change to a particular cornea's shape, the necessary precision will have to be present in the knives even more.

Many of the current knives used diamond knife blades, where the diamond knife blade is usually 6 to 7 mm in length. This size necessary to accomplish this
particular diamond size for the micrometer knife usually is manufactured from a
two karat diamond. The very same size diamond that is the most popular in the
world for its use in engagement rings and the like. The current invention will
address the problem and cost of using such popular diamonds.

The problem is calibration and despite efforts to check the cutting blades
length through the use of a optical reticle in the operating room, the X-Y plane
digital micrometer adjustments needed in that type of measurement often does not
reduced errors, but actually has compounded the tolerance or cut-depth problem
and increased the degree and extent of under correction and perforation.
Improving the accuracy of the depth of incision is critical to improving the not only
the efficiency of both the American and Russian method, but all cutting methods
used in Keratorefractive surgery. The present invention is directed to solving these
problems and other problems, while improving the result of Keratorefractive
surgery.

SUMMARY OF THE INVENTION

The invention is directed toward a novel system of surgical instruments for
use in forming the requisite incisions for Keratorefractive surgery. The surgical
system of the invention contains a set or series of sharp fixed length knife blades.
The system contains a plurality of knife blades and handles. Instead of a single
cutting blade being adjusted for incisions on different parts of the cornea and for
different corneas, i.e. one tool to do everything badly. The current invention is a
system having variable fixed length knife blades that are of a precise fixed length. Each fixed length knife blade being mounted on a handle, where the fixed length blade is fixed on the handle and in combination with the footplate, i.e. the footplate assembly, fixed on the handle of each instrument. The blade having a fixed length attachably connected to the footplate assembly. The knife blades of the current invention would be in a range having a minimum and a maximum length blade with various other length blades at fixed differential increments in between. A surgeon for example could have a set of knives in a range of .001mm to 1mm at .001 mm increments or a set of knives from .400 to .600mm.

The increments will be as small and a large as necessary to accomplish the precision needed for the Keratorefractive surgical procedure in question. For example, the range of instruments in a set could have the lengths of cutting blades in a particular set could be .200mm to .300mm at .010mm increments. Another series of instruments could be set of instruments having a range of from .400 to .500 at .20mm increments. Each set would have a range and each range of knives would vary in length by a predetermined increment. Therefore, the range and increments available to the surgeon would be sufficient to satisfy the various thicknesses and depth of incisions for any particular cornea.

This system’s preferred cutting blade will be made from diamond. Due to the hardness and the surface of diamond, the incisions are smoother and cleaner than other materials. New or other materials with the same or similar physical
characteristics to diamond in cutting could also be used in this system. However, the current preferred embodiment uses diamond cutting blades.

The system used by a surgeon can be a set having as many fixed length knife blades as necessary for a particular surgeon's needs. One surgeon may have a system of two knives and another surgeon may have a system of two thousand knives. The system envisions the use of multiple fixed length knife blades. Again, the needs of a particular surgeon will dictate the ranges, increments and number of sets.

Another embodiment of the invention can incorporate at the footplate assembly be a particular color that would signify a style of blade. A style being for example the angle of the cutting edge, the number of cutting edges, the resulting configuration of the incision or whatever qualities that a particular style of knife blade may have, the current invention can incorporate any style of knife. Alternative embodiments to signify style would be any variation in the footplate assemblies surface or design that would make visually discernable from another footplate assembly having a blade of a different style.

Another embodiment of this invention would have the handles for a particular range be a specific color and that color varying in the range in shading or intensity as the increment of the fixed length of the knife blade changes. For example and not as any limitation of this embodiment, the range of fixed length knives in the .400mm to .500mm could be blue and with each change increment
from the minimum length to the maximum length would be a different shade of blue or intensity of blue. The shade can go from lighter to darker or darker to lighter, or greater or lessen the intensity of the color as the increments change. This embodiment would have a particular color to a range and a particular shading or intensity of that color to a particular length blade.

Another embodiment would have the identity of the predetermined fixed length knife blade's length being etched by means of a laser or chemically. Also marking can be accomplished through stamping.

Another embodiment of this invention could incorporate just the color of the range and not incorporate the shading or intensity. Another variation could be a machining of the handles or a knurling pattern to distinguish range and/or increment. These variations of this embodiment encompass any discernable change in the visual appearance of the handle indicate of a different range and/or increment of a particular length fixed length knife blade.

Another embodiment of the system incorporates in the footplate assembly having a scale. The scale would be similar to a optical recticle scale to have the surgeon double check the length of the cutting blade selected under the operating room microscope. The scale could be partially clear, completely clear or opaque. This would further ensure the selection of the right length cutting blade, but also to ensure that the cutting blade is not misaligned. Further the scale could be the footplate itself or a scale in addition to the footplate and incorporated in to the
footplate assembly.

Another embodiment of the instant invention would incorporate a system for protecting the knife blade by having the knife blade retract into the footplate assembly or have the footplate assembly retract into the handle. These embodiments would facilitate the protection of the fixed length knife blade. Further, these embodiments would facilitate the locking of the retractable knife or footplate assembly in to a closed or open position.

Another embodiment, the handle could be disposable and the footplate assembly could be quickly releasable from a disposable handle or non-disposable handle. Handles of a particular angle or shape or contour could be incorporated with a attachable footplate assembly to satisfy the differences in one surgeon's hands to another surgeon's hands.

All of the embodiments of the above could also, incorporate a portable pachymeter that would be lightweight and incorporated in all and any embodiment of the invention.

The resulting Keratorefractive system would utilize any and all similar embodiments. The surgeon would select a set out of a range or series of sets of knives and use the fixed blade system to ensure exact and precise incisions. The knives would be pre-calibrated. The surgeon could make multiple cuts of varying depths along a single incision or multiple incisions of varying depths incorporating multiple measurements in a timely fashion because the calibration problems
associated with current used systems would not be encountered in the instant
invention and its embodiments. The instant invention provides for precise, quick
and accurate method for performing Keratorefractive surgery. The present
invention and its various embodiments can be utilized in all current RK surgical
techniques, including the American and Russian methods.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention can be obtained when the detailed
description of the exemplary embodiment set forth below is reviewed in
conjunction with the accompanying drawings in which:

FIG. 1 is a schematic in cross-section of the human eye, in particular, the cornea
and other elements defining the anterior chamber;

FIG. 2 is a front, schematic view of a human eye illustrating for example, certain
types of typical incisions made during a Radial Keratotomy (RK) procedure.

FIG. 3 is a front, schematic view of a human eye illustrating for example, certain
types of typical incisions made during a Astigmatic Keratotomy (AK) procedure.

FIG. 4 is a front, schematic view of a human eye illustrating for example, certain
types of typical incisions made during a Hyperopic Keratotomy (HK) procedure.

FIG. 5 is a perspective side-view of a typical current keratorefractive knife.

FIG. 6 is a partial side view of the embodiment of an instrument of the current
invention;

FIG. 7 is a partial front end view of the embodiment of FIG. 6;

FIG. 8 is a partial top view of the embodiment of FIG. 6;

FIG. 9 is a partial front view of the embodiment of FIG. 6;

FIG. 10 is a side view of another embodiment of an instrument of the current invention;

FIG. 11 is another side view of the embodiment of FIG. 10;

FIG. 12 is another side view of the embodiment of FIG. 10;

FIG. 13 is a partial side view of another embodiment of the current invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Fig. 1 illustrates in brief the anatomy of the human eye. The eye is designated by reference number 10. The outer surface of the eye formed by the cornea 12 which terminates at the corneal margin or limbus 14 in the vicinity of adjacent the sclera spur 16. The ciliary muscle 18 joins an iris 20 and is connected to the crystalline lens 22. The lens 22 is flexed by the ciliary muscle 18 in order to focus a subject.

Fig. 2 is a front view of eye 10, wherein iris 20 generally defines an optical zone, illustrated by dotted lines 24 within which light passes through the lens 22 onto the retina (not shown) for transmission of an image to the optic nerve and the brain.

A person that is myopic or nearsighted, the cornea tends to have a curvature
greater than is necessary. This excessive curvature of the cornea causes the focal point of images entering the eye to be offset from the retina. It has been found that myopia can be surgically corrected by making a number of incisions in the cornea, similar to those designated reference number 26 of Fig. 2 in a region outside the optical zone. Figs. 3 and 4 illustrate certain typical types of incisions made during AK and HK. As the techniques for Keratorefractive surgery develop and evolve, the direction, size and configuration of any and all incisions will change or modify for a particular type of procedure. For example in Fig. 3, "T-type" and "Arcuate-type" are illustrative as too the typical types of incisions which may be used for AK. Both or one or some variation may be utilized. These types of incisions are shown by way of example and not by way of limitation as to the type, design, and/or configuration of the incisions utilized in Keratorefractive surgery or the those made by the instant invention herein.

For purposes of example and not of limitation, the embodiment discussed will be referenced in regards to RK for ease and simplicity. The present invention is applicable to any type of Keratorefractive or incisional keratotomy. RK is practiced through varying methods for making incisions 26 of Fig. 3. These methods include the American method where the knife is plunged initially at the edge of the optical zone (which is marked by the surgeon with dotted lines similar to those referenced by 24 in Fig. 2) and moved toward the limbus 14, and the Russian method where the incision is formed by moving the knife from the limbus toward the optical zone.
The present invention is not limited to any specified method, but these methods being the most popular at the instant moment, are used for example.

The incisions of either method require precise control in the depth of incision.

The present invention is an improvement over the current typical keratorefractive knife used in RK procedures, and shown generally in Fig. 5, where a blade 28 is formed of a sharp hard material, in this example diamond and is mounted in a footplate assembly 30. The footplate assembly has footplates 29 that straddle the blade 28 and are designed to slide along the outer surface of the cornea 12 during procedures for all types of Keratorefractive surgery. For controlling the depth of cut the depth of cut the length of the blade 28 projects beyond the footplates 29 being controlled by a micrometer setting of a known design and shown at 27. The calibration and measurement problems and the resulting incision error has been detailed above with use of this current system.

The present invention prevents the incision errors associated with the typical knife system of Fig. 5. Fig. 6 is a partial side view of a knife 40, that is exemplary of the current of the current invention. Fig. 6 illustrates a side view of the footplate assembly 50 having blade 52, being attachably connected by mounting piece 54 and pair of footplates 56 straddle the blade 52. The length of the blade 52 that protrudes from beyond the footplates to the tip is a predetermined length 58. The predetermined length 58 is established for each knife in the system of knives that is incorporated in the current invention. The predetermined length
would be set in manufacturing the footplate assembly and attached to a handle 42. The footplate assembly can be permanently attached to a handle 42 or detachable from handle 42 for the purposes of being disposable. Further, handle 42 can be customized for a particular surgeon hand or configured a specific design, angel or whatever configuration is desired. The handle can also incorporate a quick disconnect type connection between the handle 42 and the footplate assembly 50, so that a surgeon can change handles or footplate assemblies in a quick an easy manner.

The predetermined length 58 will change from knife to knife in the system of knives of the current invention. The system can be as few as two knives to almost an infinite number of knives, depending on the incremental change between the predetermined length from knife to knife. The system can be utilized in system of knives having a particular range and that particular range having a fixed increment from knife to knife. For example, the system of the present invention could be a set of knives in a range having a minimum predetermined length of .300mm to a maximum predetermined length of .500mm at .010mm increment length variation from knife to knife. As a result, these series of knives would be in a system of 21 knives having 21 different predetermined fixed length blades. The predetermined length in this illustration would vary from 58a to 58u. Furthermore, the total available knives in a set could vary in number anywhere from two to however many knives are required by a particular surgeon.
An embodiment could include a series of knives 40 have a knife blade of a predetermined length starting at a minimum of .001mm to a maximum predetermined length of 2mm at .001mm increments or a series of 200 knives within the system of the current invention. Obviously, the variation of the number of knives in a system can vary further by the different styles of blades.

For the purpose of example, the footplate assembly 50 could be varied by angle of the knife blade 52's edge, the number of knife blade edges that knife blade 52 may have, the thickness of knife blade and the configurations of knife blade 52 can be varied to meet any particular need. The current invention is suitable for any configuration for knife blade 52 because the present invention is directed towards that knife blade having a fixed predetermined length, so that the incision made in the cornea is at the depth of the predetermined length 58. Further the footplate assembly 50 can be constructed to have a single footplate straddling blade 52. The system of the current invention is flexible to meet the knife configuration requirements for any particular Keratorefractive procedure.

An alternative embodiment of the current invention is illustrated by Figs 10, 11, and 12. Fig. 10 illustrates a knife 60 of the current invention wherein the footplate assembly 70 can retract into handle 65 and be locked in a closed position as illustrated by Fig. 10. Fig. 10 shows the knife 60 where the footplate assembly 70 is retracted in the handle 65 and the footplate assembly is locked in place inside the handle by the locking configuration 80. The locking configuration
incorporates a pin 82 and a channel 84 wherein the retractable cover piece 66 can be slidably moved in to the closed position of Fig. 10.

The footplate assembly 70 can be extended and exposed for use by turning piece 66 and slidably retracting piece 66 along channel 84 into an open position as illustrated by Fig. 11. The pin 82 would lock in place at the other end of channel 82 to fixably hold piece 66 in the open position for use during Keratorefractive surgery.

In another embodiment of the invention, the range of the knives within a series of the system can be identified by a discernable visual differences on the surface of the knives handles. This embodiment can be illustrated at Fig. 13, wherein Fig. 12 shows knife 100 having a surface finish 120. Surface finish 120 could be a particular color for a specific range. The increment change in the range can be signified by varying the shading or intensity of the particular color for a range. For example, the range for the series of knives in the range .400mm to .500mm may be blue and the handle at 120 could go from a lighter blue to a darker blue as the predetermined fixed length blade 115 of footplate assembly 110, goes from a minimum of .400mm to .500mm at whatever increment that is desired. The color at 120 would signify the particular range of a blade and the size of the predetermined length 115. Further, the knife 100 could have laser or mechanically stamped or similar means of identification the actual length of the predetermined fixed length blade at 125 and at end 126. 125 and/or 126 would
be marked with the identifying length, i.e. .450mm. The visual identification of predetermined length of blade from knife to knife could be by color or etching or knurling or any manner where one knife can be visually discernable from another knife to signify the particular predetermined length.

Another embodiment could have the foot plate assembly identify the style of the predetermined fixed length blades incorporated in those assemblies. The identification would be any visually discernable way to distinguish one foot plate assembly from another in order to identify a different style of knife as to angle of blade, design of footplate assembly, or any configuration as to the relationship of the incision and the instrument. The visual discernable difference could be accomplished through the use of color or etched pattern or knurling or any physically discernable identification that would illustrate a difference and signify one style from another.

Fig. 13 illustrates a scale 200 incorporated on the perpendicular axis of the footplate 210 relative to the predetermined fixed length knife blade 225 of a footplate assembly 230. The scale can also be incorporated on the parallel axis at 202 of the footplate 210. Further, the footplate could be partially or completely clear so that the predetermined fixed length knife blades could be read right through the clear scale with the use of the reflection of light off the predetermined fixed length knife blade.

All of the knife blades are preferably to be manufactured from diamonds at
this time, but the invention is suitable for use with predetermined fixed length knife blades manufactured from any and all surgical knife materials, including stainless steel; high alloy steel; other precious stones such as, but not limited to ruby, sapphire, and emerald; and any material which will result in an incision of the type that will affect the eye’s cornea in order to improve vision defects in the eye. It has been determined that diamonds and similar materials are currently utilized because their use results in clean and precise incisions. It could develop that Keratorefractive surgery will require less precise wounds, but still at a precise depth and the current invention would be suitable for those instances.

A benefit, however, of the current invention is that each knife will use significantly smaller diamond than the knife 40 of Fig 3. The knives of the type of Fig. 3 are often manufacture from 2 karat diamonds, the most popular diamonds in the world because they are used for engagement rings and the like. The current invention can utilize diamond chips, re-processed diamonds or re-cut diamonds because of the use of the predetermined fixed length knife blade. As a result, the current invention broadens the available supply of usable diamonds for knife blades.

It should be understood that there can be improvements and modifications made to the embodiments of the invention described in detail above without departure from the spirit or scope of the invention, as set forth in the accompanying claims.
Claims

1. A system of surgical instruments for Keratorefractive surgery comprising:
 (a) a plurality of surgical instruments;
 (b) each instrument having a fixed length knife blade of a predetermined length at one end;
 (c) where the predetermined length of the fixed length knife blade of each instrument having a different predetermined length from another instrument.

2. The invention of claim 1, wherein the plurality of instruments having said predetermined fixed length knife blades of different predetermined lengths are within a range of predetermined fixed length knife blades having at least a minimum length predetermined fixed length knife blade and a maximum length predetermined fixed length knife blade.

3. The invention of claim 1, wherein the range of the set is identified on each instrument in a manner that is visually discernable from one range to another range.

4. The invention of claim 1, where the length of said predetermined length is identified on each instrument.

5. The invention of claim 1, wherein the length of each predetermined fixed length knife blade is visually discernable instrument to instrument of differing lengths.

6. The invention of claim 1, wherein the predetermined fixed length knife blade
is releasably attached to a handle.

7. The invention of claim wherein the predetermined fixed length knife blade is releasably attached to a handle;

the handle being contoured to a surgeon's hand.

8. The invention of claim 1, wherein the predetermined fixed length knife blade handle is releasably attached to a handle;

the handle is disposable.

9. The invention of claim 1, wherein the predetermined fixed length knife blade.

10. The invention of claim 1, further comprises the predetermined fixed length knife blade mountably attached to a footplate assembly;

wherein the footplate assembly has a footplate that straddles said predetermined fixed length knife blade.

11. The invention of Claim 1, wherein the footplate assembly has a visual discernable marking that identifies a style of predetermined fixed length cutting blade.

12. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;

the footplate have a scale thereon.

13. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;

the footplate have a scale thereon that is generally perpendicular to said
predetermined fixed length knife blade.

14. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade; the footplate having a scale thereon that is generally parallel to said predetermined fixed length knife blade.

15. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade; the footplate is optically clear having a scale thereon.

16. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade; the footplate is optically clear having a scale thereon, that is generally perpendicular to said predetermined fixed length knife blade.

17. The invention of claim 1, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade; the footplate is optically clear having a scale thereon, that is generally parallel to said predetermined fixed length knife blade.

18. The invention of claim 1, wherein each of said instruments has a scale for measuring said predetermined length of said sharp cutting fixed blade.

19. A plurality of surgical instruments for Keratorefractive surgery comprising:

(a) each surgical instrument having a handle with first and second ends;

(b) the first end having a predetermined fixed length knife blade of a
predetermined length at one end;

(c) the predetermined length of the predetermined fixed length knife blade having a different predetermined length from each other;

(d) the predetermined fixed length knife blade being mounted in a footplate assembly.

20. The invention of claim 19, wherein the footplate assembly is attachably releasable from said handle.

21. The invention of claim 19, wherein said handle is contoured to a surgeon’s hand.

22. The invention of claim 19, wherein said handle is disposable.

23. The invention of claim 19, wherein the plurality of surgical instruments are combined in a range where the range has a predetermined fixed length knife blade having a minimum predetermined fixed length knife blade and a predetermined fixed length knife blade having a maximum predetermined fixed length knife blade.

24. The invention of claim 19, wherein the handle has a visually discernable identification defining the range.

25. The invention of claim 19, wherein the color on the handle’s second end indicates a specific range.

26. The invention of claim 19, wherein the surface of the handles of each of the plurality of surgical instruments in a range are of the same color with each surgical instrument in the set having different shade of said same color.
27. The invention of claim 19, wherein the footplate having a visually discerning identification identifying differing styles of predetermined fixed length knife blade.

28. The invention of claim 19, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;
 the footplate have a scale thereon.

29. The invention of claim 19, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;
 the footplate have a scale thereon that is generally perpendicular to said predetermined fixed length knife blade.

30. The invention of claim 19, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;
 the footplate have a scale thereon that is generally parallel to said predetermined fixed length knife blade.

31. The invention of claim 19, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;
 the footplate is optically clear having a scale thereon.

32. The invention of claim 19, wherein each instrument has a footplate attachably adjacent to said predetermined fixed length knife blade;
 the footplate is optically clear having a scale thereon, that is generally perpendicular to predetermined fixed length knife blade.

33. The invention of claim 19, wherein each instrument has a footplate
attachably adjacent to said predetermined fixed length knife blade;

the footplate is optically clear having a scale thereon that is generally parallel
to predetermined fixed length knife blade.

34. The invention of claim 19, wherein the different shade of said color indicates
a specific predetermined length of said predetermined fixed length knife blade.

35. The invention of claim 19, wherein the predetermined fixed length knife
blades are made from diamond.

36. The invention of claim 19, wherein each of said instruments has a scale for
measuring said predetermined length of said sharp cutting fixed blade.

37. A method of performing keratototomy surgery, comprising the steps of:

(a) cutting an incision at said controlled depth in the cornea of the eye;

(b) controlling the depth of the incision by using the set of surgical
instruments of claim 1.

38. The method of claim 37, wherein step (a) is performed by making the
incision in a area between the optical zone and the limbus.

39. The method of claim 37, wherein step(a) is performed by making the incision
in a direction from the optical zone toward the limbus.

40. The method of claim 37, wherein step(a) is performed by making the incision
in a direction from the limbus toward the optical zone.

41. The method of claim 37, wherein using said instruments of claim 1 to make
a plurality of incisions in the area defined between the optical zone and the limbus.
41. A method of performing keratorefractive surgery, comprising the steps of:

(a) cutting an incision at said controlled depth in the cornea of the eye;
(b) controlling the depth of the incision by using the set of surgical instruments of claim 19.

42. The method of claim 41, wherein step (a) is performed by making the incision in a area between the optical zone and the limbus.

43. The method of claim 41, wherein step (a) is performed by making the incision in a direction from the optical zone toward the limbus.

44. The method of claim 41, wherein step (a) is performed by making the incision in a direction from the limbus toward the optical zone.

45. The method of claim 41, wherein using said instruments of claim 1 to make a plurality of incisions in the area defined between the optical zone and the limbus.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) : A61B 17/32
 US CL : 606/167
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 30/2, 77, 79, 151, 162, 282, 294: 606/166, 167
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 NONE
 Electronic database consulted during the international search (name of database and, where practicable, search terms used)
 NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

Date of the actual completion of the international search: 27 NOVEMBER 1994
Date of mailing of the international search report: 06 FEB 1995

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer: WILLIAM LEWIS
Telephone No. (703) 308-0060

Form PCT/ISA/210 (second sheet) (July 1992)*