(12) (19) (CA) Dem ande-Application

‘::“ .::.".:\-:gi;s;;;gii::; " :\ S W y C O
OFFICE DE LA PROPRIETE AN S ORI CANADIAN INTELLECTUAL
INTELLECTUELLE DU CANADA } PrROPERTY OFFICE 2 299 663
\ (21) (Al) 4o °

22) 2000/02/22

(72) PIETRE, ARMEL, FR 43) 2000/08/25

(72) BANCTEL, FABRICE, FR
(72) FERAY, ALEXANDRE, FR
(71) ALCATEL, FR

51) Int.C1.” HO4L 12/00

(30) 1999/02/25 (99 02 358) FR

34 PROCEDE DE COMMUNICATION ENTRE OBJETS DISTANTS

34) PROCESS FOR COMMUNICATION BETWEEN REMOTE
OBJECTS

(PObjA,pGsERY;) L

_Lc ——
Obj A k=< Stub (A) Yam
((pObjB,pGSEIWl)
Obj B j—q——— Stub (B) |~ "
a(x.y,...)
b(z....) a(pObjA.x.y,...)

R mel pObjA stv--
pObjB | 2....

PGSERVy | pObjF | w,...

(57) Un procede de communication base€ sur un gestionnaire d objets distribues ORB, consiste a modifier les premiers
¢léments representants Proxy(A) de paires d’¢léments representants Proxy/Stub associ€s a des objets d un premier
processus pour qu’ils transmettent les messages relatifs a un service donne SX et envoyes par des objets ObjC du
premier processus GCLIENT, vers des objets ObjA d autres processus Ppoppyq- @ Un gestionnaire appelant

GCLIENT, correspondant de ce service et prevu dans le premier processus, ce gestionnaire appelant geérant les
messages ainsi regus et transmettant certains de ces messages sur un gestionnaire de recepteur correspondant GSERV,

prevu dans chacun des processus destinataires. Les messages et les resultats éventuels peuvent avantageusement tre
transmis par paquets entre les gestionnaires appelant et récepteur. Le gestionnaire client peut modifier tous les
messages qui transitent par lui.

I*I Industrie Canada Industry Canada

10

15

Rl

CA 02299663 2000-02-22

ABREGE

Un procédé de communication basé sur un gestionnaire d'objets
distribués ORB, consiste & modifier les premiers éléments représentants
Proxy(A) de paires d’éléments représentants Proxy/Stub associés & des objets
d’un premier processus pour qu'ils transmettent les messages relatifs & un
service donné SX et envoyés par des objets ObjC du premier processus
GCLIENT] vers des objets ObjA d'autres processus Prosgryl, @ un
gestionnaire appelant GCLIENT] correspondant de ce service et prévu dans le
premier processus, ce gestionnaire appelant gérant les messages ainsi recus
et transmettant certains de ces messages sur un gestionnaire de récepteur
correspondant GSERV] prévu dans chacun des processus destinataires. Les
messages et les résultats éventuels peuvent avantageusement étre transmis

par paquets entre les gestionnaires appelant et récepteur. Le gestionnﬁire

client peut modifier tous les messages qui transitent par lui.

10

15

20

25

il

CA 02299663 2000-02-22

PROCEDE DE COMMUNICATION ENTRE OBJETS DISTANTS.

La présente invention concerne un procédé de communication entre
objets distants, basé sur un gestionnaire d'objets distribués ORB, acronyme

anglo-saxon pour Object Request Broker.

On peut citer comme ORB particuliéerement connus et utilisés, CORBA

acronyme anglais pour Common Object Request Broker Architecture et DCOM

pour Distributed Component Object Model.

Nombre d'applications utilisent un tel environnement. On peut citer & titre
d'exemple les applications de supervision en télécommunication ou transpon,

les applications constituant un réseau intelligent...

Dans un environnement d'objets distribués, une application peut utiliser
différents serveurs, pour fournir des services & des clients. On appelle processus
client, un programme qui utilise des services, et processus serveur, un
programme qui offre des services & des clients. Un objet du processus client
peut solliciter un service du serveur en lui envoyant un message correspondant.
Un objet correspondant du serveur exécute le service et renvoie le cas échéant
une réponse au demandeur. La communication entre ces deux objets distants

se fait en pratique selon un protocole objet-obijet.

Selon ce protocole dont le principe de fonctionnement est représenté sur
la figure 1, lorsqu'un objet ObjC d'un processus client PROCLIENT sollicite un
service quelconque sur un objet serveur donné d'un processus serveur, le
message correspondant passe par une paire d'éléments représentants de cet
objet. C’est cette paire qui va gérer les appels inter processus correspondants,

de maniére transparente pour les deux objets distants que sont 'objet client et

l'objet serveur.

10

15

20

25

30

At
CA 02299663 2000-02-22

Par exemple, s'agissdm‘ d'un objet ObjA du processus serveur, un élément
représentant Proxy(A) de cet objet ObjA est créé dans le processus client et un
élément représentant correspondant Stub(A) est créé dans le processus serveur.
Tous les messages de l'objet ObjC du processus client & destination de I'objet
ObjA du processus serveur et les réponses éventuelles (résultats) & ces

messages, passent par cette interface Proxy/Stub du protocole objet-obiet.

Ainsi, on a un couple d'éléments représentants Proxy/Stub pour chaque
objet d'un processus serveur avec lequel un objet client veut communiquer.
Cette terminologie Proxy/Stub correspond & celle de I'environnement DCOM.
Elle correspond & la terminologie Stub/Skeleton de l'environnement CORBA.
Dans la suite, on garde la terminologie DCOM, mais 'homme du métier saura

étendre tout ce qui suit & tout ORB connu.

Sur la figure 1, on a ainsi représenté deux paires d'éléments
représentants Proxy(A)/Stub(A), et Proxy(B)/Stub(B), pour l'accés respectif par un
objet client ObjC & différents services fournis par des objets ObjA et ObjB du

processus serveur.

Ce protocole objet-objet s’'applique aussi bien & des messages transmis
par des objets serveurs vers des objets clients. Un service de notification
supporté par 'ORB permet en effet & un objet client d'un processus client de
s'inscrire pour recevoir des notifications de processus serveurs. Un exemple
typique d’utilisation d’un tel service de notification concerne les applications de
supervision, dans lesquelles les clients veulent étre informés de changements de
propriétés d'objefs. Suivant le protocole objet-objet, et comme représenté
schématiquement sur la figure 2, quand un objet client s’est enregistré pour &tre
un obijet collecteur SinkC de notifications d'un objet ObjA d'un processus
serveur PROSERV, les notifications émises par cet objet serveur vers cet objet
client “sont transmises via une paire d'éléments représentants de l'objet

collecteur. Cette paire comprend un élément représentant Proxy(C) du client

10

16

20

25

30

| Hll
CA 02299663 2000-02-22

collecteur SinkC dans le processus serveur PROSERV et un élément représentant

Stub(C) correspondant dans le processus client PROCLIENT.

Un message de notification n(xa, ...) de I'objet serveur ObjA vers le client
collecteur SinkC est transmis & I'élément représentant Proxy(C) qui les envoie sur
l'élément représentant Stub(C) correspondant du client collecteur SinkC qui
recoit ainsi le message de notification n(xa, ...) qui lui est desting, sans que les

objets ObjA et SinkC aient & connaftre leur localisation respective.

L'avantage d'un tel protocole objet-objet est que les objets n'ont pas &
savoir ou se localisent les objets avec lesquels ils échangent des messages. Avec
ce protocole, 'ORB cache en quelque sorte la localisation des obijets, ce qui
simplifie considérablement les accés aux objets oU quiils se trouvent. On ne
détaillera pas plus avant ces paires d’éléments représentants bien connues de

I’homme du métier.

Dans certaines applications, les messages échangés suivant ce protocole

dans un sens ou l'autre peuvent étre trés nombreux.

On peut prendre plusieurs exemples. Si on considére le service dit « life

cycle service » dans la liftérature anglo-saxonne, qui permet & un obijet client de
savoir si un objet serveur est toujours accessible, c’est & dire n’a pas été détruit,
ou si le réseau n'est pas en panne, des messages sont envoyés cycliquement
par tous les obijets clients intéressés sur tous les objets serveurs pour lesquels ils
veulent avoir cette information. Or, si le processus serveur est inaccessible, tous

les objets serveurs de son processus le sont également.

Si on prend un service dit d'identité par lequel un objet client peut
demander & un objet serveur de lui retourner le nom du processus dans lequel
il se trouve, tous les objets clients peuvent demander ce service & des obijets

serveurs qui peuvent étre sur un méme processus.

10

15

20

25

30

)
REL

CA 02299663 2000-02-22

Dans un autre exemple, qui concerne le service de nofification utilisé
notamment en supervision, les messages de notification peuvent étre tres

nombreux concernant des propriétés (activité, état) de divers équipements d'un

systeme.

Un autre exemple est celui des messages d’inscription & un service
executé par un processus serveur, par exemple un canal de nofification.
Typiquement, lorsqu’un processus client est créé, il enregistre tout ou partie des

objets qu’il contient auprés d’un (ou plusieurs) processus serveur. On comprend

alors que le nombre de messages d'inscription peut &tre trés nombreux.

Dans ces exemples, on voit que le nombre d’appels inter processus n’est

pas optimisé. Il serait intéressant de réduire le nombre d’appels.

Il est donc intéressant de grouper les messages entre deux processus

pour les envoyer en groupe, de maniére & réduire les appels infer processus qui

sont colteux et optimiser la communication.

Pour ces raisons, on a prévu pour certains services de centraliser les
messages. Ces services de centralisation recoivent alors tous les messages des
processus abonnés au service correspondant et traite ces messages. Par
exemple, un service de centralisation peut modifier les messages, les filtrer, les

envoyer périodiquement aux processus destinataires,

Un tel procédé de communication pour un service de nofification est
repreésenté schématiquement sur la figure 3. Avec un tel procédé, un objet ObjB
d'un processus serveur, doit passer son message de nofification avec un
parametre d'identification de l'objet collecteur SinkD destinataire, typiquement
un pointeur pSinkD. L'objet ObjB envoie donc un message de type n{pSinkD,
xb,...) et l'objet collecteur SinkD recoit un fnessage de type n(xb,...). On voit

qu‘avec un tel service, on perd la transparence du protocole objet-objet : I'objet

émetteur doit fournir un pointeur sur I’objet destinataire.

10

15

20

25

30

il

CA 02299663 2000-02-22

Ce service centralisé est donc un intermédiaire de plus dans le protocole
de communication avec lequel on perd lavantage de la transparence du

protocole objet-objet.

Un objet de la présente invention est un procédé de communication entre

objets distants qui ne présente pas les inconvénients précités.

Selon l'invention, on utilise les mécanismes du protocole objet-objet de
'ORB, c'est a dire sans rentrer dans les mécanismes internes de 'ORB, pour

réaliser un protocole de communication permettant la centralisation des

messages, tout en gardant la transparence offerte par le protocole objet-obiet

En restant au-dessus de I'ORB, on a un procédé de communication

avantageusement portable, c'est & dire applicable & tout ORB.

Dans un environnement ORB, il est en effet possible de modifier les

’

él

’

ements représentants de type Proxy/Stub du protocole objet-objet, selon des

meécanismes connus, fonction de I’ORB. Selon linvention, on utilise cefte
propriété pour transmetire les messages par des gestionnaires de service

centralisé prévus dans chacun des processus.

Selon linvention, on crée donc un objet gestionnaire dans chacun des
processus, pour centraliser les messages relatifs & un service donné.

Pour ce service, on crée un gestionnaire appelant dans le processus
appelant, et un gestionnaire récepteur dans le processus destinataire.

Les paires d'éléments représentants sont modifiées pour permettre la
transmission des messages relatifs au service considéré recus par les éléments

de type Proxy d'un processus appelant vers le gestionnaire appelant

correspondant a ce service, prévu dans ce processus.

Ce gestionnaire appelant peut traiter les messages selon les besoins du

service. Par exemple, il peut les filtrer, modifier des parameétres, les trier et les

10

15

20

25

30

CA 02299663 2000-02-22

grouper pour les transmettre & des gestionnaires récepteurs correspondants
prévus dans les processus destinataires. ...

Chacun de ces gestionnaires récepteurs des processus destinataires peut
ensuite distribuer les messages ainsi recus aux objets destinataires, ou rendre
lui-méme le service correspondant. L'invention a donc pour objet un procédé de
communication basé sur un gestionnaire d'objets distribués ORB, Ia
transmission de messages d'objets d'un premier processus vers des objets d'un
autre processus étant effectuée au travers de paires d'éléments représentants,
avec dans chaque paire un premier élément représentant dans le processus
appelant et un deuxiéme élément représentant dans l'autre processus. Ce
procédé se caractérise en ce qu'il consiste & modifier les premiers éléments
représentants du premier processus pour qulils transmettent les messages
relatifs & un service donné et envoyés par des objets du premier processus vers
des objets d'autres processus, & un gestionnaire appelant correspondant au dit
service et prévu dans le premier processus, ce gés’rionnoire appelant gérant les
messages ainsi requs et transmettant certains de ces messages sur un
gestionnaire de récepteur correspondant prévu dans chacun des processus

destinataires.

Ce procédé de communication s'applique aussi bien & des services pour
lesquels des objets clients passent des messages vers des objets serveurs ou des
services pour lesquels des objets serveurs envoient des messages de notification

vers des objets clients.

Un autre but de l'invention est de réduire le nombre de messages
d’enregistrement émis par les objets d‘un processus client & I'adresse d'un
processus serveur. Pour cela, 'invention a pour objet un procédé d’inscription
d’un processus client auprés d’un processus serveur, tout ou partie des objets
de ce processus client émettant chacun un message d’inscription. Le procédé se
caractérise en ce que les messages d'inscription sont communiqués au

processus serveur conformément au procédé de communication précédemment

décrit.

-0 2|

CA 02299663 2000-02-22

D'autres caractéristiques et avantages de l'invention sont décrits dans la
description suivante, faite & titre indicatif et nullement limitatif et en référence
aux dessins annexés dans lesquels :

5 - la figure 1 déja décrite est un schéma général de la mise en ceuvre d'un
protocole objet-objet pour la transmission des messages d'un processus client
Vers Un processus serveur;

- la figure 2 déja décrite est un schéma général de la mise en ceuvre d'un
protocole objet-objet pour la transmission des messages de notification d'un

10 processus serveur vers un processus client:

- la figure 3 déja décrite représente schématiquement la gestion des
messages entre un processus client et un processus serveur et réciproquement
par un service de notification centralisé selon I'état de la technique;

- la figure 4 représente schématiquement la gestion des messages selon

15 le procédé de communication de l'invention entre un processus client et un

processus serveur;

- la tigure 5 représente la gestion des messages selon le procédé de
communication de linvention appliqué & un service de notification: et
- la figure 6 représente schématiquement un mécanisme de modification

20 d'un parameétre des messages.

La figure 4 correspond & un premier mode de réalisation de l'invention
appliqué a un service donné que l'on note SX, pour la transmission des
messages correspondants & ce service d'un objet client ObjC d'un processus

25 client PROCLIENT| vers des objets serveurs ObjA et ObjB d'un processus serveur
PROSERV1.

Le processus client peut comprendre différents objets clients. A chacun de

ces différents objets clients, peuvent correspondre des éléments représentants

30 de type Proxy/Stub, qui ont été créés lorsque ces objets clients se sont abonnés

a différents services sur ces objets.

10

15

20

25

30

bl

CA 02299663 2000-02-22

Dans l'exemple simplifié représenté sur la figure 4, un seul objet client

ObjC a été représenté, pour lequel deux paires d'éléments représentants

Proxy/Stub ont été créées, Proxy(A)/Stub(A) et Proxy(B)/Stub(B), permettant
lacceés a différents services fournis par des objets serveurs ObjA et ObjB qui

dans |'exemple appartiennent au méme processus serveur PROSERV1.

Le processus client PROCLIENT] comprend en outre un gestionnaire
appelant GCLENT] pour le service SX. Ce gestionnaire appelant recoit des
messages relatifs & ce service SX, transmis par les éléments représentants de type
Proxy du processus client. Si le message n’est pas relatif au service SX, le premier
élément représentant Proxy pourra avoir le comportement standard, qui consiste

Ay

a diriger ces messages sur le deuxieme élément représentant Stub

correspondant, ou bien le comportement particulier, spécialisé, selon I'invention,
qui consiste a rerouter ces messages vers le gestionnaire appelant d’un service
correspondant. Le processus serveur PROSERV] comprend un gestionnaire
recepteur GSERV] du service SX qui regoit des messages de gestionnaires
appelants correspondants (c’est & dire du méme service SX), de différents

processus appelants et les distribue sur les objets serveurs destinataires.

Les éléments représentants standards Proxy/Stub du protocole objet-obijet,
créés lorsque les objets clients s'abonnent & des services sur des objets serveurs,
sont modifiés pour permetire la mise en relation des gestionnaires appelants et
serveurs du service SX selon linvention. En effet, pour chaque message qu'il
regoit, le gestionnaire appelant d’un service dans un processus client a besoin de

connaitre non seulement le paramétre d'identification de 'objet serveur distant

destinataire mais aussi du gestionnaire récepteur correspondant.

Or l'objet client qui envoie le message ne connait pas la localisation de
'objet serveur qu'il appelle. Par contre, chaque élément représentant connait ou
peut connaitre, par l'objet auquel il est associé, les adresses des objets présents
dans le processus ou il se trouve. Ainsi, les parametres d‘identification de I"objet

serveur destinataire et du gestionnaire récepteur correspondant sont connus

10

15

20

25

30

it

CA 02299663 2000-02-22

{ou peuvent I'étre) par I'élément représentant Stub situé dans le processus

concerne, ou par l'objet serveur correspondant.

Dans un exemple de mise en ceuvre pratique de I'invention, ces éléments
représentants Stub des processus serveurs sont donc modifiés pour que chacun
passe ces informations a l'élément représentant Proxy associé. Ainsi, comme
repreésenté par une fléche en pointillé sur la figure 4, I'élément Stub(A) de la
paire Proxy(A)/Stub(A) passe & I'élément Proxy(A) les parameétres d'identification
PODJA et pGservy de l'objet serveur ObjA et du gestionnaire récepteur GSERV
du processus serveur considéré. Ce passage d‘informations peut se faire & la

création de la paire d’éléments représentants ou apres.

Dans cet exemple de mise en ceuvre du procédé selon I'invention, on se
sert donc de la passerelle Proxy/Stub pour rapatrier au niveau des &léments
Proxy les informations nécessaires pour permettre la mise en relation des
gestionnaires appelants et récepteurs. On notera que d’autres mécanismes
peuvent étre mis en ceuvre par I’homme du métier. Ainsi, un autre mécanisme
peut consister & utiliser directement I'objet serveur destinataire pour fournir ces

informations aux éléments Proxy, par exemple, en utilisant des ressources

partagées.

Selon I'invention, les éléments représentants Proxy des processus clients
sont donc modifiés pour transmettre les messages relatifs au service SX non
plus & leur élément représentant Stub correspondant, mais au gestionnaire
appelant de ce service prévu dans leurs processus, en passant dans chacun de
ces messages les parameétres d'identification de 'objet destinataire et du

gestionnaire récepteur correspondant.

Ainsi, si l'objet client ObjC veut envoyer un message du type a(x,y,...)

relatif au service SX, & l'objet ObjA du processus serveur PROSERVY, I'élément
representant Proxy(A) correspondant transmet un message du type a(pObjA,

PGSERVY x,y,...) au gestionnaire appelant GCLENT] de ce service SX, prévu

‘e ¥

10

15

20

25

30

il

CA 02299663 2000-02-22

10

dans le processus client, au lieu d'envoyer directement le messa e & l'élément
4 g

représentant Stub(A).

Le gestionnaire appelant dans le processus client recoit ainsi tous les
messages relatifs au service SX en provenance des objets clients du processus
client et destinés & n'importe quel objet serveur de n'importe quel processus

Serveur.

Selon le service SX considérg, il peut traiter les messages selon les

besoins du service. Par exemple, il peut filtrer, trier et grouper ces messages par
processus serveur, pour envoyer a chacun des processus serveurs un groupe de
messages regus correspondant, selon des politiques de groupement et d’envo;

des messages prédéfinis.

Il peut ainsi envoyer les messages par paquets, de facon asynchrone :
quand le gestionnaire récepteur & recu le paquet de messages, il libére le
gestionnaire appelant qui peut s'occuper de la gestion d’autres messages.
Lorsque le gestionnaire appelant envoie les messages par paquets, cet envoi
peut-étre cyclique.

Si I'envoi est cyclique, le cycle peUf-é’fre un cycle défini par chaque

gestionnaire appelant, ou par le gestionnaire réceptevur.

A un envoi cyclique peut s’ajouter un envoi déclenché par un événement

Il peut aussi filtrer ces messages pour n’en transmetire que certains,

selon des critéres prédéfinis, comme on le verra par la suite, dans un exemple

d’application & un service d’identification.

SH|
CA 02299663 2000-02-22

11

I peut aussi envoyer un message vers un gestionnaire récepteur

correspondant et attendre un résuliat en retour, selon un procédé de

transmission synchrone.

5 De nombreuses variantes de mise en ceuvre pratique existent donc, qui

dépendent essentiellement des services auxquels on applique l'invention.

Sur la figure 4 on a ainsi représenté une application de Vinvention & un

service SX quelconque pour lequel des objets clients envoient des messages sur

10 des objets serveurs. Selon le service considéré, il peut y avoir un résuliat &

retourner & |'objet client, ou pas.

Dans le cas oU, pour le service SX considéré, il y a un résultat &

retourner, les résultats suivent normalement le chemin inverse de transmission,
15 jusqu'a l'objet appelant : ObiA—>GSERV1—->GCLIENT]—>Proxy(A)—>ObiC. lis sont
alors sensiblement traités comme les messages, par les gestionnaires récepteur
et appelant, selon le processus inverse : le gestionnaire récepteur recoit les
résultats directement des objets serveurs; il peut les relier aux messages
auxquels ils correspondent, les trier et les grouper. Il peut les envoyer par
20 paq‘ue'r aux gestionnaires appelants correspondants, qui vont & leur tour
distribuer ces résultats aux objets clients correspondants. L’envoi peut-étre
cyclique, déclenché par un événement particulier, ... Tout ce qui a été dit

précédemment pour la gestion des messages par les gestionnaires s’applique

aussi bien a la gestion des résultats correspondants.

25
Pour assurer cefte gestion des messages selon l'invention, et le cas
échéant des résultats, on prévoit que les gestionnaires utilisent des structures de
données adaptées (tables, piles, ...).
30 Sur la figure 4, on a ainsi représenté une structure de données TAB1, sous

forme d’une table, gérée par le gestionnaire appelant GCLENTY. Cefte structure

de données contient, & un moment donné, la liste des messages regus, par

10

19

20

25

30

il

CA 02299663 2000-02-22

12

objet destinataire pour chaque gestionnaire récepteur concerné. Dans
'exemple, le gestionnaire appelant GCLIENT} contient deux messages pour un
gestionnaire récepteur identifié par le pointeur PGSERV] et un message pour un

autre gestionnaire récepteur identifié par un pointeur pGserv.

Le gestionnaire récepteur GSERV] du processus serveur peut |lui-méme
avoir a gérer une structure de données, comme la structure de données TAB?2
représentée sur la figure 4, dans laquelle il va mémoriser les messages regus.
Cela lui permet notamment de trier les messages qu'il recoit par objets serveur
destinataires et les envoyer & ces objets serveurs. Cela lui permet aussi de gérer
les résultats correspondants qu’il pourra recevoir en retour, pour les retourner

aux gestionnaires appelants correspondants.

Ainsi chaque gestionnaire gére une structure de données (ou plusieurs)
selon ses besoins. Il peut y mémoriser les messages, les résultats et des
informations liées & sa gestion propre, comme par exemple un indicateur de

transmission du message, un indicateur d’attente de résultat, ...

Par ailleurs, les gestionnaires appelants et récepteurs peuvent appliquer
des transformations du type filtrage, compression ou encore de modifier
certains parametres des messages et ou de résultats correspondants, et cela &
chaque étape de transmission de ces messages et/ou de ces résultats. Cette
possibilité sera plus particuliérement expliquée ci-aprés dans un exemple
d'application de l'invention au service de notifications. Mais elle peut-étre
utilisée pour tous les services auxquels on applique I'invention, pour les besoins

du service en général et pour optimiser les appels inter processus.

Dans la mise en ceuvre d'un procédé de communication selon l'invention,
on peut prévoir que le gestionnaire récepteur du processus serveur rend |ui-
méme le service correspondant. A la centralisation de la transmission des

messages (et le cas échéant des résultats), on ajoute alors la centralisation du

service lui-méme.

10

15

20

29

30

Ril

CA 02299663 2000-02-22

13

Cette variante d’application de I'invention s’adresse typiguement & des
services comme le service d’identification des processus serveurs, qu’un objet

client utilise pour savoir sur quel processus se trouve I'objet serveur auquel il

s'adresse, ou le service de détection de faute, qu’un objet client utilise pour

savoir si l'objet serveur auquel il s’adresse est toujours accessible (c’est a dire, si

il n'a pas disparu ou si le réseau n’est pas en panne).

En effet, si on prend l'exemple du service d'identification, un objet
centralisé peut trés bien rendre le service & la place de chaque objet serveur.
Dans l'invention, on prévoit donc, dans cette variante, que le service est rendu
par le gestionnaire récepteur lui-méme. Ainsi, pour ce service, le code
programme correspondant n'a a étre implémenté que dans ce gestionnaire et

non plus dans chacun des objets serveurs. C'est donc trés avantageux. En

- outre, cela se fait de maniére transparente pour les obijets clients. -

Dans cet exemple d'application au service d’identification, on peut aussi
centraliser une partie du service sur le gestionnaire appelant, de maniére &
réduire de fagon significative les appels inter processus. En effet, le gestionnaire
appelant peut mémoriser dans sa structure de données, I'identité des processus
serveurs au fur et @ mesure qu’il les connatft. Ainsi, si il a déja I'identité d’un
processus pour lequel il regoit un message de demande d’identité, il retourne
lui-méme le résultat attendu & l'objet client. Ainsi, pour chaque processus
serveur pour lequel il est sollicité, le gestionnaire appelant ne transmettra une
demande d‘identité correspondante au gestionnaire récepteur qu’une seule

fois, & la premiére demande qu'il recoit.

Dans cet exemple d’application, on notera que I'on ne transmet pas
nécessairement de paquets de messages entre les gestionnaires ; le procédé de
communication peut alors &tre synchrone, chaque élément intervenant émetteur

d’'un message restant en attente du résultat en retour : I'objet client qui émet le

10

15

20

25

30

| idl!

p CA 02299663 2000-02-22

14

message, le gestionnaire appelant qui le recoit ef qui le transmet au

gestionnaire récepteur dans le cas ou il ne connait pas le résultat.

Sur la figure 5, on a représenté une application de I'invention & un autre
exemple de service, le service de notifications. Dans ce cas, les gestionnaires
appelants sont dans les processus serveurs et les gestionnaires réecepteurs dans
les processus clients. Chaque processus serveur, respectivement client, contient
un unique gestionnaire appelant, respectivement recepteur, pour ce service de
notification selon l'invention. Chaque processus serveur peut envoyer des
notifications & différents processus clients par son gestionnaire appelant.
Chaque processus client peut recevoir des notifications de différents processus

serveur par son gestionnaire récepteur correspondant.

Dans I'exemple représenté sur la figure 5, on a ainsi, pour ce service de
notifications, un gestionnaire appelant GNservy dans le processus serveur

PROSERV1 et un gestionnaire récepteur GNCLIENT] dans le processus client.

Le gestionnaire appelant regoit tous les messages de notifications de tous
les objets serveurs de ce processus qui émettent ces messages. Le gestionnaire
réce.p’reur peut recevoir des noftifications de gestionnaires appelants de
différents processus. Il distribue les notifications recues aux objets collecteurs
désfinotaires. Plus généralement, on obtient cette indépendance entre les deux
processus, dés lors que les messages (ou les résultats en retour) sont envoyés
par paquets au moins entre les deux gestionnaires. Selon le type de service
concerné, |’asynchronisme peut n’étre introduit qu’au niveau des gestionnaires,
ou bien & tous les niveaux de la chaine de transmission. Pour introduire cet

asynchronisme, I'homme de I'art pourra utiliser les techniques classiques

(processus légers (threads dans la littérature anglo-saxonne), interruptions...).

Le gestionnaire appelant doit trier les différents messages de notification

qu'il regoit des objets serveurs de son processus serveur, selon le processus

client destinataire et pour chaque processus destinataire, selon l'objet collecteur

10

18

20

25

30

il

CA 02299663 2000-02-22

15

destinataire, pour les envoyer aux gestionnaires appelants destinataires, par

exemple par paquets, en leur appliquant ou non une transformation préalable.
Il utilise pour cela une structure de données adaptées, notée TAB3 sur la figure
S. Cette structure de données contient dans 'exemple 3 messages ; deux
messages ml et mZ pour le processus client PROCLIENT], l'un, m1, en
provenance de l'objet serveur ObjA pour un objet collecteur SinkC, l'autre, m2,
en provenance d'un objet serveur ObjB, pour un objet collecteur SinkD ; et un

dernier message, m3, en provenance de l'objet serveur ObjA pour un objet

collecteur SinKO d’un autre processus client PROCLIENT9 non représenté..

De prétérence, le gestionnaire appelant du processus serveur regroupe
les messages destinés au gestionnaire recepteur correspondant d'un méme
processus client pour les envoyer par paquet, en une seule invocation. A cette
occasion, on a vu qu'il peut aussi appliquer des transformations, comme par
exemple des mécanismes de filtrage ou de compression sur le paquet de

messages qu’il envoie. Il peut aussi modifier certains paramétres.

Par exemple, il peut filtrer les messages en ne transmettant que ceux qui
correspondent aux derniéres modifications de certaines propriétés. Dans ce cas,
il supprime les messages antérieurs. Il peut alors modifier un parameétre du
message de type indicateur, qui signale selon son état si un filtrage o été

appliqué ou pas.

Comme représenté sur la figure 5, le gestionnaire récepteur d'un
processus client peut lui aussi gérer une structure de données TAB4 pour stocker
les couples message de notitication/objet collecteur qu’il recoit de gestionnaires
appelants. Il peut lui aussi effectuer des traitements sur les messages et/ou
moditier certains paramétres de ces messages avant de les distribuer qux objets

concerneés.

On a vu plus haut que le gestionnaire appelant ou récepteur d'un

processus a la possibilité de modifier des parametres des messages ou de

bt}

CA 02299663 2000-02-22

16

résultats correspondants, pour faciliter sa gestion et pour les besoins du service
en général. Un exemple d’un tel parameétre qui peut étre modifié par un

gestionnaire est le parameétre indicateur pour le filtrage vu précédemment.

5 Un autre exemple, concerne les parametres de type clés. En effet, un
élément qui envoie de nombreux messages divers, utilise habituellement un
mecanisme d’attribution de clés. Une clé est un identifiant attribué par le client

au moment de la connexion. Cette clé est transmise dans la notification et

permet au client d'identifier & quelle connexion correspond la notification.
10

Dans I'invention, la transmission des messages étant centralisée par des
gestionnaires, ces gestionnaires recoivent des messages émis par des éléments
différents qui chacun applique son propre mécanisme d’attribution de clés.

Chaque gestionnaire peut ainsi se retrouver avec des messages utilisant |a

15 méme clé.

Selon l'invention, on prévoit alors que chaque gestionnaire appelant ou
récepteur utilise son propre mécanisme d’aftribution de clés des messages
requs. Dans |'exemple représenté sur la figure 6, un gestionnaire récepteur

20 regoit ainsi un message d'un gestionnaire appelant GCLENT] d’un processus
client pour un objet serveur ObjA. Ce message est de type a(pODbjA, XY clél,...)

ou clél est la clé correspondante, atiribuée par le gestionnaire appelant

GCLIENTT.

25 Le gestionnaire récepteur recoit un autre message d'un gestionnaire
appelant GCLIENT7 d’un autre processus client, pour le méme objet serveur

ObjA. Ce message est de type a(pObiA,X,Y,clé],...) ou clél est la clé attribuée
par le gestionnaire appelant GCLIENT).

30 Le gestionnaire récepteur, quand il recoit ses messages, peut aftribuer

une nouvelle clé selon son propre mécanisme d’attribution (par exemple, selon

'ordre d’arrivée des messages). Dans chague message, il remplace donc la clé

10

15

20

25

30

 H

CA 02299663 2000-02-22

17

recue par une nouvelle clé attribuée par lui. Il peut garder la correspondance
entre cette nouvelle clé et la clé reque a 'origine, dans la structure de données
TABG pour pouvoir retourner un résultat éventuel correspondant au gestionnaire
appelant avec la clé d’origine. Dans l'exemple représenté sur la figure 5, la
nouvelle clé du premier message est ainsi clés7 tandis que celle du deuxieme
message est clésg. Ainsi, d'une maniére générale, un gestionnaire appelant ou
récepteur peut moditier des paramétres des messages ou de résultats

correspondants.

On notera que dans certains cas, le procédé de communication selon
'invention permet de rendre indépendant les deux processus appelant et
destinataire. Dans I'exemple du service de notifications, si on regarde Ia chaine
de transmission correspondante représentée sur la figure 5, lorsqu’un objet
envole un message de notification, c’est le gestionnaire appelant correspondant
dans le processus serveur qui le recoit, et ce dernier libére alors I objet serveur
qui peut faire d’autres choses. Lorsque le gestionnaire appelant dec:de
d’envoyer un paquet de messages de notification & un gestionnaire récepteur,
ce dernier réceptionne le paquet, et libére aussitét le gestionnaire appelant, qui
peut s‘occuper d’autres paquets, d’autres gestionnaire appelants... Enfin
lorsque le gestionnaire récepteur distribue des messages vers un obijet client, ce

dernier libére le gestionnaire récepteur dés réception.

Avec un procédé de communication selon linvention, dont différents
exemples d’application et de nombreuses variantes viennent d’étre décrites &
titre purement illustratif, un objet appelant ne sait pas qu’il passe par un

gestionnaire appelant et, le cas échéant, un objet destinataire ne sait pas qu’il

est appelé par un gestionnaire récepteur.

On notera que l'on peut & tout moment revenir & la communication
normale par paire Proxy/Stub standard, par exemple, pour permettre un test
unitaire d'un objet serveur. Il suffit dans le processus appelant de remodifier

'élément proxy pour qu'il transmette & nouveau les messages & ['élément

5

10

15

20

25

30

il
CA 02299663 2000-02-22

18

représentant Stub correspondant. Le procédé de communication selon

'invention est donc réversible.

On notera que la communication entre un gestionnaire appelant et un
gestionnaire récepteur peut suivre le schéma standard par paire Proxy/Stub du
protocole objet-objet. Elle peut aussi passer par des ressources partagées R
prévues sur I'ORB ou dans le systétme d’exploitation, comme représenté sur les
figures 4 et 5. Ces ressources partagées peuvent &tre une mémoire, une

connexion réseau,...

Enfin, le procédé de communication selon linvention n'utilise aucun

meécanisme interne de I'ORB, ce qui le rend portable, c'est & dire utilisable avec

n'importe quel ORB.

Il permet de réduire le nombre d'appels inter processus pour chaque
service auquel il est appliqué, grdce au mécanisme d’envoi par paquets des
messages avec ou sans transformation (filtrage, compression), et le cas

échéant, grGce & la centralisation du service lui-méme, tout en gardant la

transparence du protocole objet-obijet.

Dans certains cas, comme par exemple dans le cas du service de
notifications, il permet avantageusement de rendre indépendant le processus

appelant et le processus destinataire, puisque dans ce cas, il introduit un

asynchronisme entre ces processus.

En pratique, le procédé de communication selon I'invention laisse une
grande liberté de mise en ceuvre, qui permet de s’adapter aux diverses

applications qui peuvent se présenter.

Il est notamment possible d’utiliser le procédé selon Vinvention afin de
permettre |'‘enregistrement des objets d’un processus client auprés d’un

processus serveur. Cette étape d’enregistrement permet ensuite au processus

10

i
CA 02299663 2000-02-22

19

serveur de transmettre aqux objets s’étant enregistrés des messages de
notification ainsi qu’évoqué précédemment. Typiquement, le nombre d’objets
désirant s'enregistrer auprés d’un méme processus serveur peut étre trés élevé
au sein d'un processus client. Il convient donc de réduire les messages

d’enregistrement afin de ne pas surcharger les moyens de communication

sous-jacents (notamment le réseau informatique).

Pour cela, il est possible d'utiliser le procédé de I'invention : chaque
message d'enregistrement est alors transmis & un gestionnaire appelant par un
élément représentant (Proxy(A)) associé. Ce gestionnaire appelant peut alors

transmettre I’ensemble des données relatives aux demandes d’enregistrement

en un seul message d’enregistrement auprés du processus serveur.

10

15

20

25

M B

CA 02299663 2000-02-22

20

REVENDICATIONS

1. Procédé de communication basé sur un gestionnaire d'objets
distribués ORB, la transmission de messages d'objets d'un premier processus
vers des objets d'un autre processus étant effectuée au travers de paires
d'éléments représentants, avec dans chaque paire un premier élément
représentant dans le processus appelant et un deuxiéme élément

représentant dans l'autre processus, caractérisé en ce qu'il consiste &

 modifier les premiers éléments représentants (Proxy(A)) du premier processus

pour qu'ils transmettent les messages relatifs & un service donné (SX) et
envoyés par des objets {ObjC) du premier processus (GCLIENT1) vers des
objets (ObjA) d'autres processus (Proserv1), @ un gestionnaire appelant
(GCLIENTY) correspondant au dit service et prévu dans le premier processus,
ce gestionnaire appelant gérant les messages ainsi regus et transmettant

certains de ces messages sur un gestionnaire de récepteur correspondant

(GSERV1) prévu dans chacun des processus destinataires.

2. Procédé de communication selon la revendication 1, caractérisé en

ce que chacun des premiers éléments représentants modifiés (Proxy(A))
transmet les messages relatifs au dit service au gestionnaire appelant
(GCLIENT]) correspondant avec un parameétre d'identification (pGSERVY) du
gestionnaire récepteur (GSERV]) correspondant dans le processus
destinataire (PROSERV1) et un parameétre d'identification (pObjA) de l'objet
destinataire (ObjA). ‘

3. Procédé de communication selon la revendication 2, caractérisé en

ce que lesdits parameétres sont fournis au premier élément représentant

(Proxy(A)) par le deuxieme élément représentant associé (Stub(A)) ou I'objet
destinataire(ObjA).

10

15

20

25

30

SN B

CA 02299663 2000-02-22

21

4. Procédé de communication selon |‘'une des revendications 1 & 3,
caractérisé en ce que le gestionnaire récepteur d'un processus destinataire
(PROSERV1]) transmet les messages regus de gestionnaires appelants aux

objets concernés de ce processus.

5. Procédé de communication selon la revendication 4, caractérisé en
ce que le gestionnaire récepteur recoit des résultats en retour des messages,

qu’il retransmet aux gestionnaires appelants concernés.

6. Procédé selon l|'une quelconque des revendications 1 & 3,
caractérisé en ce que le gestionnaire récepteur (GSERV]) d’un message rend
lui-méme le service correspondant, en retournant le cas échéant un résultat

correspondant au gestionnaire appelant concerné.

7.Procédé de communication selon l'une quelconque des
revendications 1 & 6, caractérisé en ce que la transmission des messages
et/ou des résultats correspondants entre un gestionnaire appelant et un
gestionnaire récepteur s'effectue au moyen d'une paire d'éléments

représentants.

8. Procédé de communication selon [une quelconque des
revendications 1 & 6, caractérisé en ce que la transmission des messages
entre un gestionnaire appelant et un gestionnaire récepteur s'effectue au

moyen de ressources partagées (R).

9. Procédé de communication selon lune quelconque des
revendications précédentes, caractérisé en ce qu’un gestionnaire appelant
ou récepteur modifie des parameétres des messages et/ou de résultats

correspondants.

10

15

20

25

30

L §

CA 02299663 2000-02-22

22

10. Procédé de communication selon [‘une quelconque des

revendications précédentes, caractérisé en ce que les messages et/ou des
résultats correspondants sont transmis par paquets entre les gestionnaires
appelants et récepteurs, avec ou sans application d‘une transformation

préalable.

11. Procédé de communication selon la revendication 10, caractérisé
en ce que la transmission des paquets est cyclique, selon un cycle défini par

le gestionnaire récepteur ou appelant.

12. Procédé de communication selon la revendication 11, caractérisé

en ce que la transmission des paquets est en outre déclenchée par

I’occurrence d’un événement déterminé.

13. Procédé de communication selon |'‘une quelconque des
revendications précédentes, caractérisé en ce qu’il est appliqué & au moins
un service selon lequel les processus appelants sont des processus clients et

les processus destinataires sont des processus serveurs.

14. Procédé de communication selon |‘une quelconque des
revendications 1 a 12, caractérisé en ce qu’il est appliqué & au moins un

service selon lequel les processus appelants sont des processus serveurs et

les processus destinataires sont des processus clients.

15. Procédé de communication selon l|une quelconque des

revendications précédentes, caractérisé en ce que l'environnement ORB est

un environnement CORBA.

16. Procédé de communication selon |une quelconque des
revendications 1 a 14, caractérisé en ce que l'environnement ORB est un

environnement DCOM.

MHE

CA 02299663 2000-02-22

23

17. Procédé d’inscription d’un processus client auprés d’un processus
serveur, ledit processus client contenant un ensemble d’objets, chacun
desdits objets émettant un message d’inscription, caractérisé en ce que

lesdits messages d’inscription sont communiqués audit processus serveur

conformément & |'une des revendications précédentes.

CA 02299663 2000-02-22

CA 02299663 2000-02-22

SERVICE DE
CENTRALISATION

DES NOTIFICATIONS - m

n(xa,pSinkD,...) n(xa,...

am(pObjA,x,y,clé,)
. GCLIENTo

%*{004,
o
;,{:)

lO/ |

Y
 Toem

Tab5

FiG.6

LIl

02299663 2000-02-22

CA

....h.

X

$

Tagasnd'yliqod)e

(*ayasnd‘ylqod)

ARLL

02299663 2000-02-22

CA

.o ..cn Uxammﬂ

(uorjeoyTjou
ap 901AIag) -
5,‘
: (@) ams

. ©) ams

Yqe],

(uoryedyTIoU
3p 901Alag)
TANISND

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

