特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 3:
C10G 31/08

(11) 国際公開番号
WO 80/01388

(10) 国際公開日
1980年7月10日 (10. 07. 80)

(21) 国際出願番号
PCT/JP79/00317

(22) 国際出願日
1979年12月14日 (14. 12. 79)

(31) 優先権主張番号
特願53一159846

(32) 優先日
1978年12月27日 (27. 12. 78)

(43) 国際公開日

(74) 代理人
斎田繁幸 (USUDA, Toshiyuki)
〒100 東京都千代田区丸の内1丁目5番1号
株式会社 日立製作所 担当部署 東京, (JP)

(81) 指定国
CH, GB, SE, US.

添付公開書類
国際検査報告書

発明者

(72) 発明者 / 出願人：(米国についてのみ)
藤原英吉 (FUJIWARA, Kiyoshi) [JP/JP]
〒744 山口県下松市大学町武下978番地1
Yamaguchi, (JP)

(75) 発明者 / 出願人：(米国についてのみ)
長谷川幸 (NAGATOMO, Katsuaki) [JP/JP]
〒744 山口県下松市松浦町1丁目1番地
Yamaguchi, (JP)

(76) 発明者 / 出願人：(米国についてのみ)
野田勉 (SHIBATA, Tomio) [JP/JP]
〒744 山口県下松市松浦町2丁目1番地
Yamaguchi, (JP)

(77) 発明者 / 出願人：(米国についてのみ)
野村信治 (NOMURA, Shoji) [JP/JP]
〒744 山口県下松市松浦町1598番地2
Yamaguchi, (JP)

(78) 発明者 / 出願人：(米国についてのみ)
吉永正二 (TOSHIKAZU, Shoji) [JP/JP]
〒744 山口県下松市松浦町4丁目32-8番地
Yamaguchi, (JP)

(54) Title: FUEL OIL DESALTING PROCESS

(54) 発明の名称
燃料油の脱塩方法

(57) Abstract

Process for desalting fuel oil by mixing the fuel oil with clean water to thereby separate and remove sodium and potassium salts contained in the fuel oil, comprising the steps of separating and removing the heavy content and salt-containing water from the fuel oil, separating the heavy content and salt-containing water into water content and heavy sludge by an evaporator and reusing the water content as clean water, burning the heavy sludge and utilizing the generated heat as the evaporator heat source, and simultaneously solidifying the sludge by reducing its volume, thereby to facilitate sludge handling.

(57) 要約

本発明は、燃料油を鈉水と混合して燃料油中に含まれるNa塩、K塩を分離除去する燃料油の脱塩方法に係るもので、燃料油より分離除去した重質分、および鈉水を蒸発器にて水分と重質スラッジとに分離して水分を鈉水として再使用すると共に、重質スラッジを燃焼させてその発生熱を蒸発器の熱源として利用すると同時に、スラッジを簡易固化してその取り扱いを容易にしたものである。
情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード。

<table>
<thead>
<tr>
<th>国名</th>
<th>順序</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>オーストリア</td>
</tr>
<tr>
<td>BR</td>
<td>ブラジル</td>
</tr>
<tr>
<td>CF</td>
<td>中央アフリカ共和国</td>
</tr>
<tr>
<td>CG</td>
<td>コンゴ</td>
</tr>
<tr>
<td>CH</td>
<td>スイス</td>
</tr>
<tr>
<td>CM</td>
<td>カメルーン</td>
</tr>
<tr>
<td>DE</td>
<td>西ドイツ</td>
</tr>
<tr>
<td>DK</td>
<td>デンマーク</td>
</tr>
<tr>
<td>FR</td>
<td>フランス</td>
</tr>
<tr>
<td>GA</td>
<td>ガボン</td>
</tr>
<tr>
<td>GB</td>
<td>イギリス</td>
</tr>
<tr>
<td>JP</td>
<td>日本</td>
</tr>
<tr>
<td>LU</td>
<td>ルクセンブルグ</td>
</tr>
<tr>
<td>MC</td>
<td>モナコ</td>
</tr>
<tr>
<td>MG</td>
<td>マダガスカル</td>
</tr>
<tr>
<td>MW</td>
<td>マラウィ</td>
</tr>
<tr>
<td>NL</td>
<td>オランダ</td>
</tr>
<tr>
<td>NO</td>
<td>ノルウェー</td>
</tr>
<tr>
<td>RO</td>
<td>ルーマニア</td>
</tr>
<tr>
<td>SE</td>
<td>スウェーデン</td>
</tr>
<tr>
<td>SN</td>
<td>セネガル</td>
</tr>
<tr>
<td>SU</td>
<td>ソビエト連邦</td>
</tr>
<tr>
<td>TD</td>
<td>チャド</td>
</tr>
<tr>
<td>TG</td>
<td>トーゴ</td>
</tr>
<tr>
<td>US</td>
<td>米国</td>
</tr>
</tbody>
</table>
(1)

明細書

燃料油の脱塩方法

技術分野

本発明は、燃料油中に含まれているNa塩、K塩を除去する燃料油の脱塩方法に関するものである。

背景技術

燃料油の脱塩方法としては、遠心力や静電気を利用する方法で、水分、スラッジを油分より分離する方法は、特殊な方法を除いては一般的であり、公知であるが、油分より分離された含塩水分とスラッジの混合物については廃棄されており、更に水分、塩分および重質油スラッジ等よりなるスラッジについては処理装置の適当なものはない。

脱塩装置を運転するためには、燃料油に対して約1％の洗浄用清水が必要であり、これは一般に再使用されていない。したがって水の入手しにくい地方、例えば砂漠地帯などに、この種のプラントを建設することは不可能であった。

また、分離された含塩含水の重質スラッジ分については、適当な処理設備がなく、その効果的な処理方法は確立されていない。

脱塩の主な目的は、燃料油中に存在しているNa塩、K塩の除去であり、これらは主としてCℓと化合し、NaCℓ、KCℓの形で、燃料油中にわずかに存在している水中に
溶解したり、また、微少な固体となって燃料油中に存在している。Na塩、K塩の除去は、これらが水に溶解するため、水で洗浄して水の方へNa塩、K塩を移動させ、水を燃料油から分離させることにより達成できることは公知である。

第1図により従来技術による脱塩装置について説明すると、燃料油タンク 3 に貯められた燃料油 5 は、燃料油ポンプ 4 によりスラッジ分離器 1 へ送られ、ここで燃料油中にわずかに存在している水分とスラッジは、重質分 6 として脱スラッジ油 7 と分離されて取り出され、廃水処理場へ送られる。重質分 6 を除去された脱スラッジ油 7 には、エマルジョンプレーカータンク 8 よりポンプ 9 を介してエマルジョンプレーカー 1 0 が注入された後、あらたに脱イオンされた清浄水 1 3 が清浄水タンク 1 1 よりポンプ 1 2 を介して混入され、混合器 1 4 にて十分な混合が行なわれ、脱スラッジ油 7 中の塩分は水に溶解される。この混合液は脱塩器 2 へ送られ、重質分として含塩水 1 5 が油より分離され、この含塩水 1 5 は廃水処理場へ送られる。含塩水 1 5 が除去された油中には、もはやごく微量の塩類しか存在せず、脱塩燃料油 1 6 として取扱うことができる。しかしながら、この方法では、あらたに脱イオンされた清浄水が必要であり、かつまた、分離された重質分の処理については未解決である。

発明の開示
(3)

本発明は、燃料油中に含まれるNa塩、K塩を含む水と、新たに洗浄のために加えられ、Na塩、K塩を含んだ水を、分離器により油分と分離した後、蒸発により精製することによって回収し、これを浄水水として繰り返し使用できるようにしたものである。

本発明は更に、燃料油から分離された含塩含油の重質スラッシュを燃焼させることにより、その発生熱量を水の蒸発装置にて回収するとともに、取扱いの困難なスラッシュを減容固化して取扱いを容易にしたものである。

燃料油中には、一般的に約1000 ppmの水分が含まれており、この水中にはNa塩、K塩が溶解している。したがって、沈降法により軽質分と重質分を分離すれば、重質分として含塩水分、スラッシュ油分より分離される。燃料油としての塩の除去は更に、新たに水を加えて油分を洗浄した後、沈降法により軽質分と重質分に分離し、わずかに存在するNa塩、K塩の除去が行なわれる。一般的には、この段階で加える水は、油に対して約1％位とされている。したがって、先に述べた油中に含まれていた水分と新たに加えて洗浄後分離された水分の量は、燃料油に対して1.1％にも達することになる。故に、これらの分離された廃液から水分を約91％以上回収し、回収水分中のNa塩、K塩を1000 ppm以下に精製すれば、その水は洗浄用として再使用が可能であり、脱塩装置として、系外からの水供給を必要とせず、水としては閉回路の脱
塩装置を確立することができる。蒸発法による水分の精製では、Na塩、K塩を1.000 ppm以下に抑えることは容易であり、更に回収率を91％以上得ることも、蒸発装置の選定により容易に達成できる値であり、本発明の特徴とするところは、蒸発法による分離水の精製方法と脱塩装置を組合せたことにある。更に、蒸発法による分離水の精製方法とその蒸発残渣を焼却することにより、蒸発装置の熱量を回収するとともに、分離されたスラッシを焼却残渣として取り出し、減容固化と取扱いを容易にしたことにある。

図面の簡単な説明

第1図は従来技術による燃料油の脱塩装置の系統図、第2図は本発明方法を実施した脱塩装置の一例を示す系統図である。

発明を実施するための最良の形態

以下、本発明を実施した装置の一例を第2図によって説明する。第2図において、第1図と同一部分は同一符号で示す。スラッシ分離器1より分離された重質分6は、油分離器2・3にて油分を回収油24として回収された後、脱塩器2より分離された含塩水15と混合されて蒸発器17に供給される。蒸発器17では熱媒18により加熱され、ここで蒸発した水蒸気20は熱交換器21にて燃料油5と熱交換させることにより熱回収を行なうと同時に凝縮させ、凝縮水22として清浄水タンク11に貯え
(5)
された後、清浄水ポンプ12にて清浄水13として脱スラッジ油7へ混入される。一方、蒸発器17で水分を除去された残渣19は、残渣ポンプ26により焼却炉27へ送られ、ここで可燃分を燃焼させることにより熱媒循環ポンプ25にて循環される熱媒18を加熱し、燃焼残渣28は減容されて焼却炉27下部より取り出される。
なお、上述の実施例は、燃料油よりスラッジを分離除去した後、清浄水と混合して脱塩処置を行う場合について説明したが、燃料油が清浄水を混合した後、スラッジと含塩水を分離除去する場合にも、本発明を適用することは、上述の説明より自明である。
実施例
燃料油としてタンクに貯蔵された未処理原油アラビアナイトを本発明の方法により脱塩処理を行ない、つぎの結果を得た。
(1) 燃料油中の不純物含有量
Na分：5ppm
K分：0.4ppm
水分：1200ppm
(2) スラッジ分離器出口の燃料油中の不純物含有量
Na分：0.9ppm
K分：0.07ppm
水分：100ppm
(3) スラッジ分離器におけるスラッジ分取量
(4) 脱塩器送入前に添加した助剤

清水 : 10 kg
エマルジョンブレーカー : 0.02 kg

(5) 脱塩器出口の燃料油の不純物含有量

Na分 : 0.4 ppm
K分 : 0.01 ppm
水分 : 90 ppm

(6) 脱塩器におけるスラッジ分取出量

: 50 kg

(7) 熱交換器で回収された凝縮水量

: 11 kg

以上の結果より、本発明の脱塩方法においては、水は初期添加のみでよく、最終的には余剰水が得られることが確認された。

本発明は以上述べたように、燃料油の脱塩装置と蒸発法による分離水の回収精製とを組合せた脱塩方法としたものであるから、くてよりあらたに水を注入することなく、燃料油中に含まれるわずかの水分を回収することができ、その水分は閉回路により脱塩に再使用することが可能であり、水を得ることが困難な地方にも、燃料油の脱塩装置の建設を可能ならしめるとともに、脱塩装置により排出されるスラッジも、焼却により熱回収をおこなうことができ、なおかつ燃焼残渣として減容固化すること
ができて、その取扱いが容易になる。
請求の範囲

1. 燃料油を清浄水と混合して脱塩処理し、燃料油より分離除去された重質分および含塩水を蒸発器に導入して水分と残渣とに分離し、蒸発回収した水分を清浄水として再使用するようにしたことを特徴とする燃料油の脱塩方法。

2. 前記残渣を焼却炉で燃焼させて蒸発器の熱源として利用するようにしたことを特徴とする特許請求の範囲第1項記載の燃料油の脱塩方法。
引用符号の説明

1 …スラッシ分離器
2 …脱塩器
3 …燃料油タンク
4 …燃料油ポンプ
5 …燃料油
6 …重質分
7 …脱スラッシ油
8 …エマルジョンブレーカータンク
9 …エマルジョンブレーカーポンプ
10 …エマルジョンブレーカー
11 …清浄水タンク
12 …清浄水ポンプ
13 …清浄水
14 …混合器
15 …含塩水
16 …脱塩燃料油
17 …蒸発器
18 …熱媒
19 …残渣
20 …水蒸気
21 …熱交換器
22 …凝縮水
23 …油分離器
24…回収油
25…熱媒循環ポンプ
26…残渣ポンプ
27…焼却炉
28…燃焼残渣
I. 発明の属する分野の分類
国際特許分類 (IPC)

010G 31/08

II. 国際調査を行った分野
調査を行った最小限資料

<table>
<thead>
<tr>
<th>分類体系</th>
<th>分類記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>010G 31/08</td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行ったもの

III. 関連する技術に関する文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
</table>

IV. 認証

<table>
<thead>
<tr>
<th>国際調査を完了した日</th>
<th>国際調査報告の発送日</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.02.80</td>
<td>12.02.80</td>
</tr>
</tbody>
</table>

国際調査機関

日本国特許庁 (ISA/JP)

特許庁審査官 和田靖也

（様式PCT/ISA/210（第2ページ）（1977年10月））
I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C10G 31/08</td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C10G 31/08</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
</table>

IV. CERTIFICATION

- Date of the Actual Completion of the International Search: February 4, 1980 (04.02.80)
- Date of Mailing of this International Search Report: February 12, 1980 (12.02.80)

International Searching Authority: Japanese Patent Office

Signature of Authorized Officer: