The invention provides a biological dressing for treatment of a dermatological disease comprised of one or more resins or other film-forming agents, a topically acceptable volatile solvent, and a pharmacologically active agent. The combined one or more resins are present in a suitable amount such that the composition, when the solvent evaporates, will dry to form a solid coating that sticks to the skin, nail or mucosal membrane to which the composition is applied, and maintain the pharmacologically active agent over a sustained period of time in contact with sites on the skin or mucosal membranes exhibiting symptoms of the disease. Methods are provided for treating symptoms of dermatological diseases with such a pharmacological composition.
Toe Nail Fungus
In Vitro – Franz Cell Trial Initial Results
Stayzon® Penetration Profile Through Skin

Flux (ug/cm²/hr)

Mid-Time (hr)

Fig. 1

- 8% Ciclopirox-Stayzon
- Pen-Lac

Penlac:
- Sole FDA Approved Topical
- Market Leader
FILM-FORMING RESINS AS A CARRIER FOR TOPICAL APPLICATION OF PHARMACOLOGICALLY ACTIVE AGENTS

BACKGROUND OF THE INVENTION

[0001] Field of the Invention

[0002] The invention relates to resin or other film-forming agent based biological dressings that adhere to the skin and contain one or more pharmacologically active agents for the treatment of symptoms relating to dermatological diseases and those affecting mucous membranes. The invention is exemplified by biological dressings comprising tincture of benzoin and clotrimazole for the treatment of athlete’s foot and by biological dressings comprising mastic and ciclopirox for onychomycosis.

[0003] 2. Background Information

[0004] For many forms of dermatological conditions, the powders, sprays, solutions, lotions and creams available over-the-counter lack effectiveness. The reason for this varies, from poor delivery of the medication to the source or cause of the condition, to loss of the medication through abrasion from normal activity of the patient, to absorption of medications applied to the skin by the patient’s socks or clothes. For these various reasons, currently available commercial medications are prone to come off easily once applied to the affected area, and consequently much of the medication is wasted, either through over application in an attempt to anticipate the problem, or in medicine quickly being dispersed away from the site. The medications for these conditions typically require at least 2 to 4 weeks of continuous treatment, and thus often fail due to this poor delivery.

[0005] A further problem with the use of existent medications is the lack of compliance by patients. Due to the mess and difficulty of use, patients will often use these over the counter medications only until their symptoms abate and then they will stop the medication, before the recommended course of treatment is completed, and hence often before the infection has truly cleared. Though momentarily abated, the infection then begins to take hold again, and in a matter of days or weeks a full blown infection occurs again. In many cases the patient will repeat using the over the counter medication until the symptoms clear, and again stop the medication with the first sign of abatement, with the whole cycle repeating.

[0006] Hence, there is a need for a clean and inexpensive vehicle/carrier of topically applied medications that increases the convenience and effectiveness of the treatment and decreases the necessary time for the treatment. It is preferably associated with less waste and lower cost, and ultimately leads to improved treatment of patient symptoms and increased patient satisfaction.

[0007] In medicine, tincture of benzoin and mastic gum (Mastisol) have been employed to form a sticky coating on skin prior to the placement of adhesive preparations. Tincture of benzoin has also been used to form a biologic dressing over superficial cutaneous wounds as well as aphthous ulcers (canker sores). However, the general use of resins, such as mastic and benzoin gum, as semi-permanently applied carriers for increasing the efficacy and usefulness of topological pharmacological agents has not been disclosed.

[0008] A tincture of benzoin has been used with podophyllin resin (10-25%) in the treatment of genital warts. It is considered by many to be cumbersome and inconvenient (see U.S. Pat. Nos. 5,063,065 and 5,187,649). Unfortunately, podophyllin resin is toxic, and even when applied in a tincture of benzoin, this agent must be removed by rigorous washing 1 to 6 hours post-application. Due to the problems associated with using podophyllin resin in tincture of benzoin, other carriers have been sought. As an example, in the treatment of genital warts, Goh, et al. (Singapore Med J (1998) 39:17-19) reports that podophyllin prepared in 0.25% ethanol can be self-applied and is as efficacious as podophyllin prepared in tincture of benzoin and applied in the clinic. Use of tincture of benzoin as a biological bandage with compounds that it is desirable to have in long contact with the skin has not been reported.

SUMMARY OF THE INVENTION

[0009] Compositions and methods are provided for increasing the effectiveness of treatment of dermatological disorders on the skin or a mucous membrane of a mammal by using a resin or other film-forming agent as a carrier for a pharmacologically active agent. The pharmacological compositions are comprised of one or more resins or other film-forming agents, at least one topically acceptable pharmacologically active agent for treatment of a dermatological disorder other than the resins or other film-forming agents, wherein the active agent is non-toxic to the mammal being treated when left in contact with the lesion of interest for greater than four hours, and a topically acceptable volatile solvent. The compositions optionally can include a penetration enhancer. The methods of treating symptoms of a dermatological disorder include the steps of contacting affected sites on the skin or nails of a patient in need thereof with the pharmacological composition comprised of one or more resins or other film-forming agents, a pharmacological agent or agents, and an evaporative solvent, and allowing it to dry to form a resin-based biological dressing. The biological dressing comprises a sticky film of the one or more resins or other agents which form a film on the skin and a pharmacologically active agent; the latter remains on the skin, nail or mucous membrane after the volatile solvent has evaporated from the one or more resins or other film-forming composition. The dressing forms a hydrophobic, protective film that provides sustained release of the pharmacologically active agent at the site of application. The invention finds use in the treatment of dermatological disorders such as infection, inflammation, and hyperproliferation of epidermal cells.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a graphical representation showing data from a skin penetration study of a composition of the invention.

[0011] FIG. 2 is a graphical representation showing in vitro franz cell penetration results.

DETAILED DESCRIPTION OF THE INVENTION

[0012] Compositions and methods are provided for the convenient and effective treatment of at least one symptom of a dermatological disorders in a mammal, particularly a human, in need thereof, with a biological dressing. By “biological dressing” or “biologic dressing” or “biologic bandage” is intended a non-occlusive but adherent pharmacological composition that is formed by drying on the skin a pharmacologic composition comprised of one or more resins, such as benzoin, mastic or other compositions that can form a barrier film on the skin, such as compositions that are used as
skin wound sealing agents, one or more pharmacologically active agents and a topically acceptable volatile solvent, such as ethanol. The resin-based biologic dressing forms a protective coating at the site(s) on the skin, nails or mucosal membrane exhibiting symptoms of the disorder and also acts as a reservoir for the pharmacologically active agent(s) to provide sustained delivery of an appropriate medication or combination of medications to the site.

[0016] The resin-based biological dressings are prepared by drying on the skin, a pharmacological composition comprising an agent that can be used to ameliorate the symptoms of a dermatological disease and one or more resins dissolved in a volatile solvent. Generally, the pharmacological composition is prepared as a sticky slurry or solution of the combined one or more resins or film-forming agents and the pharmacologically active agent that can be applied to a site on the skin or a mucosal membrane. The consistency of the pharmacological composition can be varied by adjusting the ratio of solvent to the combined one or more resins in the composition to achieve the desired consistency for application to a particular site. For areas where evaporation of solvent may be slower, for example, application to lesions on a mucosal membrane such as the gums, it may be desirable to prepare the composition as a paste and to use a more volatile solvent, whereas for application to hard to reach areas, such as between the toes, it may be desirable to prepare a less viscous composition that can be applied thinly to the affected areas. However, for treatment of more severe lesions in non-visible areas, due to an athlete’s foot infection for example, application of a more viscous preparation may be preferred. It should be understood that some wound sealing agents develop into a dry adhesive layer or film once in contact with tissue, and therefore do not generally require use of a solvent other than what may be necessary to properly blend in the pharmacologically active agent.

[0013] The skin disorder symptoms to be treated include, but are not limited to, skin, nail and mucosal membrane lesions, inflammation, itching, scaling and pain. The disorders include viral, fungal and bacterial infections, inflammatory conditions, and hyperproliferative disorders. The pharmacological agent(s) can include topically active agents that can be used to ameliorate skin disorder symptoms, including antimicrobial and antiviral agents, anti-inflammatory agents, analgesics and anesthetics. As desired, the effectiveness of the pharmacological agent(s) optionally can be increased by including a skin or nail penetration enhancer in the pharmacologic composition.

[0014] The biological bandage is easily removed using a solvent such as ethanol. Since the coating that contains the medication stays in place until such deliberate removal, the effectiveness of the treatment is increased since the skin is exposed to the active ingredient for a longer period of time. This also allows for a decreased treatment time, and, ultimately, improved treatment of symptoms and increased patient satisfaction. Thus, compositions of the invention can be used to improve delivery of medications that are solubilized in organic solvents such as alcohols that are typically applied topically for the treatment dermatologic disorders. The advantages of the subject invention include a more specifically directed application of medications to sites affected by a skin disorder, and extended retention on the skin of the medication because the film is resistant to water and abrasion by clothing. Additionally, the vehicle is relatively inexpensive, is pleasant smelling, and the bandage can be conveniently and easily removed, for example with alcohol, when desired. Many dermatological conditions are exacerbated by moisture so the water repellent qualities of the dressing also protect the skin from further damage. The resin-based biological dressings of the invention are designed to be directly applied to a lesion needing treatment, and left in place for an extended period of time, without requiring conventional adhesive bandages. It is intended that the dressing need only be washed from the lesion for purposes of convenience and cleanliness. The biological dressings of the subject invention are clearer and easier to apply than conventional dressings and existing medications, have less waste and are more economical, allowing for more efficient, efficacious and paintable relief of symptoms or recovery from the skin disorder being treated. Overall treatment success is increased by decreasing the time required for therapy, for example for athlete’s foot, from about four weeks to seven to ten days while decreasing the total amount of medication needed and improving patient compliance.

[0015] Further advantages of the subject invention include that various of the resins that find use, including benzoin and mastisol, and wound sealing agents are already approved for human use and have been tested and found to be safe for topical application on non-human mammals; the wound sealing agents have the advantage of being able to deliver alcohol insoluble medications while reducing pain during application to an open wound.
other film-forming agents. The resins that are useful in the methods and compositions of the invention include, but are not limited to, naturally occurring resins and gums, such as those that are harvested from trees, although gum resins also may be prepared by synthetic means (see, for example, U.S. Pat. Nos. 5,644,049, 5,429,590 and 4,307,717). Exemplary resins include benzoin resinous exudate harvested from Syracaceae trees, including Benzoin Siang from Styrox Tonkinensis and Benzoin Sumatra from Styrox Benzoïn. Tincture of benzoin and benzoin compound tincture is readily available through numerous commercial sources, including many drug stores and suppliers of surgical goods. Another resinous tree exudate that is preferred and is commonly used in the medical arts for enhancing the adherence of surgical bandages, is mastic, a hard resin that is harvested from Pistacia lentiscus. A tincture of mastic gum (Mastisol) is produced by Ferndale Laboratories in Ferndale, Mich. and is also available through suppliers of surgical goods. Other resins that can be used include the gum resin exudates from Burseraceae trees, including Boswellia serrata (also known as Boswellin), Boswellia dalzielii, Boswellia carteri (olibanum gum) and the oleoresin Canarium luzonicum or Canarium commune (Elemi gum or resin). Oleoresins useful in the compositions of the invention include balsam resins. Additional resinous exudates contemplated from other tree species include Eucalyptus species (Eucalyptus globulus) and Myrtaceae “Tea-tree” species (Melaleuca alternifolia, Leptospermum scoparium, and Kandzea erticoidea). Many naturally occurring resins themselves have pharmacological properties, and their topical application may cause irritation in certain patients or exacerbate certain conditions. Prudent choice of the resins to be used in preparing a particular biological dressing takes into consideration the disorder to be treated and the sensitivities of a particular patient’s skin.

[0020] In addition to the resins discussed herein, biologic dressings can be made from several classes of adhesive polymers including acrylic polymers (e.g., cyanoacrylates), polyisobutylene and silicones. Examples of the acrylic polymers include acrylate-vinylacrylate, dimethylaminomethylmethacrylate, methacrylic esters, N-2-butylacrylamidocarlylate, 2-copolymer, polyacrylic acid, polyaminomethylmethacrylate and polyvinylmethacrylate. Polyisobutylene (a sub-type of polyolefin) are pressure sensitive adhesive made by blending multiple molecular weights to achieve desired adhesive and drug-carrier properties. Silicones are available in the form of gels, liquids, or elastomers, depending on the nature of side groups and the interchain cross-linking. Other potential adhesive vehicles include hydrogel polymers such as poly (oxypropylene-co-oxethene) glycol, cellulose oxidase solutions as hydroxypropylmethyl-cellulose, synthetic latexes such as polyvinyl acetate and ethylene vinyl-acetate, mucosal adhesives such as polyoxyethylene, pyroxylin solutions, and the iodophors. Commercial sources of film-forming agents that can be combined directly with a pharmacologically active agent include Dermabond (Ethicon) which is a formulation of 2-acylaminocarlylate; Liquif Band Aid (Johnson and Johnson) which is also a formulation of 2-acylaminocarlylate; Liquiderm, Soothe-N-Seal, Nexa Band (all from Closure Medical Co), all formulations of cyanoacrylate; “New-Skin” (New Skin) containing pyroxylin; and hydrogels containing poly (oxypropylene-co-oxethene) glycol (Medlogic).

[0021] A desirable feature of the subject compositions is that they form an adherent and protective film or biological bandage over a dermatologic lesion. To effect this attribute, the pharmacological composition is prepared with a volatile solvent that evaporates to leave a hydrophobic coating comprised of the one or more resins or other film-forming agents and the pharmacological agent on the skin or nail. Volatile solvents for use in the subject compositions include ethyl acetate, n-propyl acetate, alcohols such as methanol, ethanol, propanol, and isopropanol, ketones, such as acetone, and ethers such as dimethyl ether. Other evaporative compounds may also find use, so long as they are compatible with other components of the pharmacological composition and topically acceptable to the majority of patients. The resins of choice are diluted in the volatile solvent such that the concentration of solvent comprises about 40% to 98% (v/v or v/w), more commonly at least about 50% to 95%, 65% to 90%, 70% to 85%, preferably about 90% to 95% of the total composition. An exemplary composition contains a tincture of benzoin, which is comprised of benzoin in about 75% to 83% ethanol.

[0022] The pharmacological agent(s) or agents included in the pharmacological compositions will depend upon the dermatological disorder being treated. To allow for extended contact of the biological dressing with the lesion under treatment, pharmacological agents chosen should be efficacious without being locally or systemically toxic or caustic to the mammal to which the medicated dressing is administered. A biological dressing of the subject invention is intended to remain at the site of application for greater than four hours, more often as long as 8, 10 or 12 hours, sometimes as long as 16, 18 or 20 hours, and for certain treatments, as long as 24, 36 or 72 hours or even longer prior to removal. The time of treatment desired is based at least in part upon the nature of the condition to be treated and the pharmacological agent(s) that are being used. In general, the pharmacological compositions are formulated so that the concentration of the pharmacological agent(s) that is in the biological bandage approximates the concentration of agent that is used in existing topical formulations. However, because the adherent properties of a film-forming resin-based biological dressing allow for extended and continuous exposure of a skin lesion to drug, reduced concentration formulations are possible and in some cases preferred. The amount to be used can therefore be adjusted as appropriate. Generally, the amount used will be within the range of ±25% of the indicated concentration, preferably within ±10% of the indicated concentrations. In the following paragraphs, the percentages appearing in parenthesis after the name of a particular agent represent the concentration(s) of agent that is (are) used in existing topical formulations.

[0023] The subject biological dressings find particular use in treating numerous dermatological disorders, including superficial infections (fungal, bacterial, viral and parasitic), and inflammatory skin disorders. As used herein, the term “skin” refers to the membranous tissue forming the external covering or integument of an animal and consisting in vertebrates of the epidermis and dermis. As used herein, the term “nail” refers to a substructure, composed mainly of the protein keratin, of the outer layer of the skin. As such, “nail” includes both “fingernails” and “toenails” of an animal. The “nail bed” is the skin on the top of which the nail grows. Additional uses include sustained delivery of pharmacological agents for hair growth stimulation and hair growth retardation, skin pigmentation and pigmentation removal agents, sunscreens, insect repellents, anti-anginal, anti-perspirant and anti-nausea agents.
Superficial fungal infections treatable by the subject compositions include those caused by mold-like fungi (dermatophytes or tinea) or yeast-like fungi (Candida) that are confined to the stratum corneum or squamous mucosa. Particularly considered is the treatment of tinea infections including onychomycosis (tinea unguium), athlete’s foot (tinea pedis), ringworm (tinea capitis), jock itch (tinea cruris), tinea corporis, tinea manuum and tinea versicolor. Other dermatological fungal infections treatable with the described biological dressings include Candida, Epidermophyton, Microsporum, Trichophyton and pityrosporum infections.

Compositions for the treatment of superficial fungal infections will include at least one anti-fungal pharmaceutical agent. Anti-fungal agents for use in a biological dressing composition include those well-known in the art, such as clotrimazole (0.5% to 2.0%), ketoconazole (0.5% to 2%), econazole (1%), miconazole (2%), terconazole (0.4%), butoconazole (2%), oxiconazole (1%), sulconazole (1%), ciclopirox olamine (1% to 8%), haloprogin (1%), tolnaftate (1%), amphotericin B (3%), butenafine (1.0%), terbinafine (0.5% to 2.0%), naftifine (0.5% to 10%), nystatin and griseofulvin. References that can be consulted to aid in the selection of an appropriate pharmacological agent include Goodman and Gilman’s “The Pharmacological Basis of Therapeutics”, 9th Edition, 1996, Pergamon Press, New York, and the latest edition of the Physician’s Desk Reference published by Medical Economics Company, Montvale, N.J.).

Bacterial infections that may arise can be treated simultaneously or prophylactically by additionally including a topically compatible antibiotic pharmaceutical agent in the biological dressing. Antibiotic medications known in the art that will find use in preparation of the subject compositions include clindamycin (1%), erythromycin (1.0% to 2.0%), tetracycline (1% to 3%), minocycline (2.0%), gentamicin (0.1%), metronidazole (0.75%, 1%), bacitracin (250 to 600 units/cc), neomycin (3.5 mg/cc) and polyoxymyxin B (8,000 to 12,000 units/cc). A composition with a combination of antibiotics against different strains of bacteria will be preferred for certain treatments. A steroidal pharmacological agent, such as betamethasone (0.025% to 0.1%), in a biological dressing intended to treat a fungal infection can additionally be included to enhance the retraction of the lesion. Biological dressings having an antibiotic medication as the primary pharmacological agent can be prepared to treat other skin disorders for which such medications are traditionally used, including as impetigo contagious, acne vulgaris, other superficial skin infections of unknown etiology, and post-operative superficial skin infections (e.g., infections that occur around the insertion of a catheter). Wound healing can be aided and colonization of wounds (i.e. isolated areas with first-degree burns) can be inhibited by application of a biological dressing comprising silver sulfadiazine (1%). The particular antibiotic selected to be included in the biologic dressing will of course depend on the agents to which the strain of bacteria causing the infection is sensitive, and the specific needs of the patient.

A biologic dressing can also be prepared for the treatment of superficial parasitic infections, such as scabies, nits and lice (including head lice and crab lice). For treating such infections, pharmaceutical compositions comprising miticides or pesticulocides such as crotamiton (10%) or permethrin (5%), lindane (1%), malathion (0.003% to 0.5%), benzyl benzoate (20% to 50%), thalidomide and pyrethrins.

For treating pain associated with arthritis, joint inflammation and muscle pain a composition of the invention can be prepared comprising one or more resins or other film-forming agents and one or more active ingredients such as menthol (10%), methyl salicylate (10%) and capsaicin (0.01%-10%) or a corticosteroid (see below for appropriate compounds and dosages). The compositions of the invention also find use in the treatment of dermatological inflammatory disorders, wherein the primary pharmacological agent included is a corticosteroid. Particularly contemplated is the treatment of corticosteroid-responsive inflammatory conditions, such as atopic dermatitis or eczema, seborrheic dermatitis, some forms of psoriasis, aphthous ulcers (canker sores), superficial skin lesions due to contact with poisonous plants such as poison oak or poison ivy, insect bites, and other skin rashes of unknown etiology. Steroidal agents of all different grades (1-7) that are known in the art can be included in a biological dressing preparation, such as betamethasone (0.025% to 0.1%), clobetasol (0.05%), dithranol (0.05%), amicinolone (0.1%), desoximetasone (0.05% to 0.25%), fluocinonide (0.05%), halcinonide (0.1%), triamcinolone (0.025% to 0.5%), hydrocortisone (0.1% to 2.5%), fluoridone (0.05%), alclometasone (0.05%), fluocinolone (0.01% to 0.2%), desonide (0.05%), desamethasone (0.1%) and methylprednisolone (1.0%), cloctortone (0.1%), butacason (0.005% to 0.05%), mometasone (0.1%), prednicarbate (0.1%), amicinolone (0.1%), and halobetasol (0.05%). The particular corticosteroidal agent selected will depend on the patient and the particular disorder being treated.

For the treatment of certain skin disorders, non-steroidal drugs may be appropriate. As an example, a composition comprising one or more resins or other film-forming agents and salicylic acid (0.5% to 60%) and/or retinoic acid (Retin-A) (0.025% to 0.05%) would be suitable for the treatment of acne, psoriasis, warts, and other hyperkeratotic disorders. Cantharidin (0.7%) and iniquimod (5%) are other examples of pharmacological agents for use in a biological dressing prepared for the treatment of warts, including genital warts. Other pharmacological agents suitable for the treatment of acne include tretinoin (0.025% to 0.2%), isotretinoin, adapalene (0.1%), azelaic acid (20%), clindamycin, erythromycin, tetracycline, benzoyl peroxide (2.5% to 10%), and sulfinactamide (10%). A composition comprising one or more resins or other film-forming agents and metronidazole (0.75%) finds use in the treatment of rosacea.

Biological dressings comprising anthralin (0.1% to 0.5%), calcipotriene (0.005%) and/or tazarotene find use in the treatment of psoriasis.

For certain inflammatory dermatological conditions, it may be desirable to include one or more anti-histamine compounds with a steroidal compound in the biological dressing compositions to aid in relieving itching that is often associated with inflammatory lesions. Histamine H1 and H2 receptor blockers known in the art are of use in the preparation of biologic dressings for treating certain inflammatory skin conditions include the H1 blockers astemizole and terfenadine, and the H2 blocker cimetidine.

Dermatological conditions which can be treated with pharmacological compositions in which an anti-histamine is the primary agent include urticaria, and itching associated with lymphoproliferative diseases such as poly-lymphoma rubra vera and Hodgkin’s disease. Oftentimes best results are achieved when using both an H1 and an H2 blocker. Additionally, a medicated biologic dressing compris-
ing the anti-pruritic doxepin (5%) finds use in relieving the itching in patients with certain types of eczema. Topical doxepin appears to work by preventing the effects of histamine.

A biologic dressing of the invention also finds use in the treatment of superficial dermatological viral infections, whenever topical anti-viral medications would be indicated. Particularly considered is the administration of acyclovir (5%) for the treatment of viral infections caused by herpes (type 1 and type 2) simplex viruses, but a biologic dressing can also be applied to superficial skin infections caused by papillomavirus (for example, common and genital warts). Other examples of anti-viral agents for use in a biological dressing include gancyclovir, penciclovir (1%), vidarabine (3%), idoxuridine (0.5%) and trifluridine.

A resin-based biological dressing also finds use in providing relief from pain associated with the lesions caused by some dermatological disorders. Particularly considered is treatment of the dermal pain that can be associated with varicella-zoster virus (shingles, chicken pox) with a topically compatible local anesthetic. A preferred pharmaceutical agent for use in a resin-based dressing prepared for treating pain associated with dermatological disorders is lidocaine (0.5% to 25%, see U.S. Pat. Nos. 5,709,869, 5,601,838, 5,589,180 and 5,411,738, incorporated herein by reference). Other local anesthetics chemically and/or pharmacologically related to lidocaine, or lidocaine hydrochloride, include bupivacaine hydrochloride (0.25% to 1.5%), etidocaine hydrochloride (1.0% to 3.0%), mepivacaine hydrochloride (1.0% to 5.0%), prilocaine hydrochloride (4.0% to 8.0%), and tetracaine hydrochloride (0.5% to 2.0%). Other preferred local anesthetics are those with low solubility in water, and which are particularly suited for sustained local anesthetic action when topically applied. Examples of local anesthetics with low solubility in water include benzocaine and the hydroiodide salt of tetracaine. Additional local anesthetics used in treating mucous membranes and the skin include dibucaine, dyclonine hydrochloride (0.5% to 1.0%), and pramoxine hydrochloride (1.0%). Another example of a pharmacological agent used topically to relieve dermatological pain includes capsaicin (0.025%).

A composition comprising one or more resins or other film-forming agents additionally finds use in surgical preparations for sustained release of antiseptics. Examples of active agents suitable for use in a resin-based biological dressing for surgical preparations include, but are not limited to biguanides such as chlorhexidine gluconate and alendrine, povicose iodine, iodine, halogen releasing agents such as iodophor, diamidines, anilides such as tinocarban, phenols, halophenols and bis-phenols such as triclosan, peroxogenes such as hydrogen peroxide, silver compounds such as silver nitrate and quarternary ammonium compounds.

Compositions comprising one or more resins or other film-forming agents and containing synthetic hormones find use in the treatment of indications associated with abnormal hormone production as well as contraception. For example, a biologic dressing containing transdermal testosterone, generally about 2.5-5.0 mg per application, or equivalent other androgenic compound(s) in an appropriate amount can be used to treat young males with congenital or acquired primary hypogonadism, or congenital or acquired hypogonadotropic hypogonadism and other similar disorders. In women, a biologic dressing containing estradiol (an active form of estrogen) or other equivalent estrogenic compound(s) in an appropriate amount, can be used to treat the indications and symptoms associated with atrophic vaginitis, atrophic dystrophy of the vulva, menopausal symptoms, female hypogonadism, ovariectomy, primary ovarian failure, non-steroid dependent inoperable breast cancer and vasomotor symptoms associated with menopause and prevention of post-menopausal osteoporosis. A biologic dressing containing an estrogenic compound, such as for example estradiol in an amount sufficient for the treatment of such indications is used.

A composition comprising one or more resins or other film-forming agents and containing norethindrone (progestin) can be used to prevent pregnancy by inhibiting ovulation and thickening the mucosa of the cervix. In addition, a film-forming resin or other film-forming agent composition containing a progestin compound such as norethindrone (0.14-0.25 mg per application) can be used for treating abnormal menstrual disorders such as amenorrhea, abnormal uterine bleeding and endometriosis, applications generally will be to the skin. The site of application of the film-forming resin or other film-forming agent composition will vary depending upon the intended use. Generally the site of application will be to the skin at a location that will provide for absorption into the blood stream. Particularly in the case of treatments relating to the female genitalia, application can be intravaginally.

Film-forming resin or other film-forming agent compositions are also suitable for sustained delivery of pharmaceutical agents use for hair growth retardation and stimulation. For treatments intending to stimulate hair growth, compositions comprising minoxidil (1% to 5%) are prepared. For other topical formulations that can be used with the one or more resins or other film-forming agents, see U.S. Pat. No. 6,184,249. For treatment intending to retard hair growth compositions comprising etifonothine hydrochloride (13.9%) are prepared.

A composition comprising one or more resins or other film-forming agents additionally finds use in preparing protective compositions comprising one or more sun protecting, ultraviolet absorbative agents. Sunscreens for use in a film-forming resin or other film-forming agent-based dressing include aminoazobenzene agents, such as p-aminoazobenzene acid (PABA), ethyl 4-[[bis(hydroxypropyl)]aminobenzene, ocyt dimethyl PABA, PABA propoxylate, glycerol PABA, modifications, 2-ethylhexyl PABA and phenyl PABA; cinnamate agents, such as cinoxate, diethylamline-methoxy cinnamate, 2-ethylhexyl-c-methoxyxcinnamate and ocyt methoxy-xcinnamate; benzones, such as oxybenzone, dioxybenzone, sulisobenzene; salicylates, such as 2-ethylhexyl salicylate, triethanolamine salicylate, and ocyt salicylate; and other sunscreen agents, such as meradiinate (7.5%), octinoxate (7.5%), homosalate (10%), sulisobenzene (10%), titanium dioxide and zinc oxide. For use as a sunscreen, generally a thin combination of one or more resins or other film-forming agents/ultraviolet absorbative agents is applied to areas of the skin that will be exposed to the sun. For some situations, protection of exposed skin from the sun will be best accomplished by applying a thicker formulation of the one or more resins or other film forming agents. For example, application of sunscreen to protect the skin of the nose at high altitudes. Advantageously, a formulation comprising one or more resins or other film-forming agents and sunscreen compound is particularly effective at providing long-lasting sun protection to exposed skin through resisting removal by abrasion or moisture.
Compositions comprising one or more resins or other film-forming agents may be prepared with pharmacological agents used for pigmenting or de-pigmenting the skin, for instance, for use in treating patients with vitiligo. For treatments intending to de-pigment or lighten isolated dermal areas, a pharmacologic composition comprising hydroquinone (2% to 4%) is prepared. For treatments intending to pigment desired areas of skin, a composition comprising a psoralen agent, such as methoxalen (1%), for combined use with UV light, is prepared.

A medicated resin-based dressing will also find use in the sustained delivery of antiperspirants, anti-anginal, anti-nausea agents and anti-cancer agents. Particularly contemplated are compositions comprising aluminum chloride (20%), for the inhibition of perspiration of isolated dermal areas, for instance to aid in carrying out surgical procedures. A composition comprising one or more resins or other film forming agents and nitroglycerin (0.5% to 2.0%) will find use in the sustained transdermal delivery of this anti-anginal agent which can provide relief from chest pains. Relief from nausea, due to motion sickness for example, can be provided using a biological dressing comprising scopolamine. For anti-nausea purposes, a composition comprising one or more resins or other film-forming agents and scopolamine would be applied, behind the ear for example, before the onset of activity that potentially would induce nausea. Additionally, a resin or other film-forming agent dressing can be prepared for the sustained delivery of pharmacological agents useful in the treatment of superficial cancerous and pre-cancerous lesions. Particularly contemplated is the treatment of isolated actinic keratosis lesions with a biological dressing comprising 5-fluorouracil (5-FU; 5% to 10%).

A composition comprising one or more resins or other film-forming agents may also be prepared with an insect repellent as the pharmacologic agent. Examples of insect repellent compounds suitable for inclusion in a resin-based biological dressing include terpenoids, such as citronella, geraniol, terpine, pennyroyal, eucalyptus and wintergreen; benzoquinones; aromatics, such as cresols, benzaldehyde, cinnamic aldehyde, benzoic acids; and synthetic insect repelling agents, such as N,N-diethyl-m-toluamide (DEET), ethyl hexanol, dimethyl phthalate, dimethyl ethyl hexanediol, carbate, butopyronoxyl, di-n-propyl isocinchomerulate, N-octyl bicyclohexene, dicarboximide, and 2,3,4,5-bis(2-hydroxyetra-hydro-2-furanydelehyde. For use as an insect repellent, a resin or other film-forming agent preparation is preferably applied as a thin coat to areas of the skin most likely to be attacked by an insect. Preferably, the insect repellent compound used repels insects without irritating the skin. Advantageously, as with the sunscreen preparations described above, a composition comprising one or more resins or other film-forming agents and insect repellent is particularly effective at providing long-lasting insect repellency on the skin through resisting removal by abrasion or moisture.

The compositions of the invention also find use in the treatment of drug addiction. Compositions comprising one or more resins or other film-forming agents may be prepared with nicotine, generally about in an amount sufficient to decrease nicotine addition, 14-22 mg per application, or other amounts as appropriate, for use in the reduction and/or cessation of cigarette smoking, chewing tobacco or other nicotine containing compounds. The compositions are applied to the skin in a location that provides sufficient absorption of the nicotine, typically the upper arm. As the need for nicotine decreases the dosage of nicotine in the composition can be adjusted downward.

Optionally, the biologic dressings of the invention may include a penetration enhancer, i.e., a chemical compound that, when included in a formulation, temporarily increases the permeability of the skin to a drug allowing more of the drug to be absorbed in a shorter period of time. Examples of penetration enhancers that can be used include dimethylsulfoxide (DMSO), N-decyl methyl sulfoxide, N,N-dimethylacetamide, N,N-methyl-2-pyrrolidone and octylphenylpolyethylene glycols.

The biologic dressings of the invention may also include one or more other pharmaceutically acceptable carriers as needed that do not adversely affect the effectiveness of the drug, or the reservoir delivery vehicle and do not damage the skin to which it is applied. Suitable pharmaceutical carriers include sterile water; saline, dextrose; dextrose in water or saline; condensation products of castor oil and ethylene oxide combining about 30 to about 35 moles of ethylene oxide per mole of castor oil; liquid acid; lower alkanols; oils such as corn oil; olive oil, peanut oil, sesame oil, wintergreen oil, lanolin oil and the like; emulsifiers such as mono- or di-glyceride of a fatty acid, or a phosphatide, e.g., lecithin, and the like; glycols; polyalkylene glycols; aqueous media in the presence of a suspending agent, for example, sodium carboxymethyl-cellulose; sodium alginates; poly(vinyl pyrrolidone); and the like, alone, or with suitable dispensing agents such as lecithin; polyoxyethylene stearate; and the like. The carrier may also contain adjuvants such as preserving, stabilizing, wetting, emulsifying agents and the like.

The compounds of this invention can be administered in conjunction with a transdermal patch that can include the pharmacologic agent in a suitable solvent system with the one or more film-forming agents and a polyester patch. The compounds of the present invention also can be delivered through mucosal membranes. Transmucosal (i.e., sublingual, buccal, and vaginal) drug delivery provides for an efficient entry of active substances to the systemic circulation and reduces immediate metabolism by the liver and intestinal wall flora. Transmucosal drug dosage forms are held in contact with the mucosal membrane where they disintegrate and/or dissolve rapidly to allow immediate systemic absorption. The method of manufacture of these formulations is known in the art.

For aerosol administration, the pharmaceutical compositions are preferably supplied in finely divided form together with a surfactant and propellant as pharmaceutically acceptable carriers. The surfactant is nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, oleic and other acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides, can be employed.

In practicing a method of treating the symptoms of a dermatological disease in a patient, the pharmacological composition in its original prepared form, is applied directly and specifically on the lesions or other damaged areas of skin requiring treatment. The biological dressing composition may initially be prepared in any form suitable for topical application, such as a paste, a liquid, a semi-solid, a gel, a suspension, an emulsion or the like, provided that the formulation allows the one or more resins or other film-forming
agents and the one or more pharmacologically active agent to effectively adhere together to the skin surface to which they are applied and to form a protective barrier over the skin once the volatile solvent has evaporated. To minimize waste, application is generally carried out by painting or swabbing the composition at the affected site or sites, but certain preparations can also be applied by spraying on the formulation, and allowing it to dry.

[0049] The biologic dressing composition can be applied wherever the patient has superficial skin lesions or infections, such as on cutaneous areas, fingernails, toenails, mucous membranes, and mucocutaneous junctions (i.e., perianal, intertriginous and vulvovaginal areas). After application, the volatile solvent evaporates to leave a protective solidified, adherent and hydrophobic film or coating on the skin or to which it has been applied. The solidified film residue comprises the one or more resins or other film-forming agents, and the one or more pharmacologically active agents. By forming a barrier holding the pharmacologically active agent or agents to the surface, the combined film-forming resins or other film-forming agents permit a sustained, continuous release and a prolonged exposure to the agent or agents. Continuous exposure of the skin to the medication is maintained as long as the coating stays in place. The biologic dressing, therefore can effect symptomatic relief with less frequent applications. For most dermatological disorders treated using a resin or other film-forming agent-based dressing, one or two daily applications will be sufficient to promote regression or disappearance of the targeted skin lesions. For certain less responsive lesions, three daily applications may be required to effect disappearance of symptoms. Other dermatological disorders may require application every second day to realize symptomatic relief. The composition conveniently can be removed at will, by application of an appropriate solvent, normally ethanol. The composition can also be removed by scrubbing with soap and water.

[0050] The subject compositions can be provided for use in one or more applications. For treatment with a pharmaceutical composition comprising an agent identified as one which is effective in treating the symptoms of a disease amenable to treatment by dermal application of medication, the subject compositions can be provided as kits for use in one or more doses. The kits include containers which can also constitute a delivery system, holding a composition comprising an effective agent either as concentrates (including lyophilized compositions), which may be further diluted prior to use or they may be provided at the concentration of use, where the containers may include one or more dosages. Conveniently, the kits single dosages can be provided in sterile containers so that the physician or the patient may employ the containers directly, where the containers have the desired amount and concentration of agents. When the containers contain the formulation for direct use, usually there will be no need for other reagents for use with the method. The kits also can be in the form of a transdermal or transmucosal system for single or multiple applications. The containers can be made of plastic, glass, metal or such material deemed appropriate for each particular medication and can be light opaque as required for light sensitive formulations. The containers can be color-coded, each color being unique to a particular product and its respective active ingredient. The containers can also be color coordinated with the outer packaging to simplify marketing and consumer purchasing. Examples of containers that are also delivery systems are those that facilitate application of the subject compositions to the skin or mucosa. The delivery systems can be any of a wide assortment of types of applicators (e.g., bottles), shapes and sizes of containers such as roll-on, spray with either a manual or aerosolized delivery system, applicators with small padded applicator tips for the delivery of buccal mucosal medications or syringe type applicators for semisolid medication such as are described in U.S. Pat. No. 5,531,703 and references cited therein, particularly for the delivery of vaginal mucosal medications.

[0051] The subject compositions can be contained in packaging material, which comprises a label indicating that the subject compositions can be used to treat dermatologic disorders in humans or to treat other disorders in humans using transdermal delivery means.

[0052] The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

EXAMPLE 1
Treatment of Athlete’s Foot (Tinea Pedis) with a Resin-Based Biological Dressing Comprised of Tincture of Benzoin and Clotrimazole

[0053] Tincture of benzoin compositions are produced with standard tincture of benzoin (3M, Minneapolis, Minn.). Replicated experiments were performed with a composition comprising tincture of benzoin with 90% alcohol plus 1% clotrimazole. The experiments were repeated using mastic gum and elemi gum tinctures as well. To determine efficacy in treating athlete’s foot, the benzoin/clotrimazole composition was applied to cases of athlete’s foot, replicated 5 times. In each replicate, the composition led to complete clearance of the athlete’s foot within 1 week, when applied twice daily for 7 days. No allergic reaction was noted in this test, although the alcohol component reportedly led to stinging when applied to deep fissures. Minimal lint from the socks was noted on the coating where the composition was applied but was easily removed with ethanol. Efficacy of the benzoin/clotrimazole composition was compared to controls of tincture of benzoin alone and no treatment. The benzoin/clotrimazole composition provided symptomatic relief and led to healing more quickly than tincture of benzoin alone, though tincture of benzoin alone improved symptoms and signs more quickly when compared to no treatment. This is likely due to the fact that the sticky coating from the tincture tends to repel moisture. Efficacy of the benzoin/clotrimazole composition also was compared to commercially available medications such as Lamisil®, Lotrimin®, Mycelex® and Tinidox®. In comparison, the benzoin/clotrimazole composition greatly decreased the time necessary for treatment compared to formulations of each of the commercial medications, particularly when the commercial medications were administered in the form of powder, liquid, solution, spray or gel. The benzoin/clotrimazole composition also decreased the time necessary for treatment when compared to cream versions of the above medications and was much less messy than any of the commercial preparations tested.

EXAMPLE 2
Treatment of Onychomycosis (Tinea Unguim) with a Film-Forming Resin-Based Biological Dressing Comprised of Tincture of Mastic Gum and Ciclopinox

[0054] Tincture of mastic gum (Mastisol®) compositions are produced with standard Mastisol (Ferndale Laboratories in
Ferndale, Mich. Replicated experiments were performed with a composition comprising tincture of mastic gum with 82% alcohol plus 8% Ciclopinox. To determine efficacy in treating onychomycosis, the mastic gum/ciclopinox composition was applied to cases of onychomycosis, replicated 6 times. In each replicate, the composition led to significant improvement of the onychomycosis within 6 weeks, when applied once daily for 6 weeks. No allergic reaction was noted in this test. Minimal lint from the socks was noted on the coating where the composition was applied but was easily removed with ethanol. Efficacy of the mastic gum/ciclopinox composition was compared to controls of tincture of mastic gum alone and no treatment. The mastic gum/ciclopinox composition provided symptomatic relief and led to healing more quickly than tincture of mastic gum alone, though tincture of mastic gum alone improved symptoms and signs more quickly when compared to no treatment. This is likely due to the fact that the sticky coating from the tincture tends to repel moisture. Efficacy of the mastic gum/ciclopinox composition also was compared to commercially available medications such as Penlac®. In comparison, the mastic gum/ciclopinox composition greatly decreased the time necessary for treatment compared to formulations of each of the commercial medications, particularly when the commercial medications were administered in the form of powder, liquid, solution, spray or gel. The mastic gum/ciclopinox composition also decreased the time necessary for treatment when compared to cream versions of the above medications and was much less messy than any of the commercial preparations tested.

The above results demonstrate the improved symptomatic relief from a disorder that can be achieved by administering a topically acceptable pharmacological agent in a film-forming resin carrier that forms a biological bondage in comparison presently available carriers. With a film-forming resin-based biological dressing, relief from the unpleasant symptoms associated with a dermatological lesion is realized more efficiently and in a more convenient and palatable manner.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporate by reference.

Although the invention has been described with reference to the above example, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

1. A pharmacological composition comprising: a) one or more resins; b) at least one topically acceptable pharmacologically active agent other than the one or more resins that is effective as a treatment for ameliorating symptoms of a disease of skin or a mucous membrane of a mammal, wherein the pharmacologically active agent can remain in contact with the skin, nail or the mucous membrane for greater than 4 hours without toxic effects to the mammal; and c) a topically acceptable volatile solvent for the one or more resins and the pharmacologically active agent.

2. The composition according to claim 1, wherein the one or more resins are independently selected from the group consisting of a hard resin, an oleoresin, and a gum resin.

3. The composition according to claim 2, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and olibanum gum.

4. The composition according to claim 1, wherein the topically acceptable volatile solvent comprises ethanol.

5. The composition according to claim 3, wherein the topically acceptable volatile solvent is ethanol and comprises about 60% to 95% of the composition.

6. The composition according to claim 1, wherein the pharmacologically active agent is an antimicrobial agent.

7. The composition according to claim 6, wherein the antimicrobial agent is an anti-fungal agent.

8. The composition according to claim 7, wherein the anti-fungal agent is clotrimazole.

9. The composition according to claim 8, wherein the clotrimazole is present at 1% of the composition.

10. The composition according to claim 1, wherein the pharmacologically active agent is a steroidal agent.

11. The composition according to claim 10, wherein the steroidal agent is betamethasone.

12. The composition according to claim 11, wherein the betamethasone is present at 0.025-0.05% of the composition.

13. The composition according to claim 1, wherein the pharmacologically active agent comprises both an antimicrobial agent and a steroidal agent.

14. The composition according to claim 1, further comprising a penetration enhancer.

15. A pharmacological composition comprising: a) one or more resins; b) clotrimazole; and c) ethanol.

16. The composition according to claim 15, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.

17. The composition according to claim 16, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and olibanum gum.

18. A pharmacological composition comprising: a) one or more resins; b) 1% clotrimazole; and c) 90% ethanol.

19. The composition according to claim 18, wherein the one or more resin are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.

20. The composition according to claim 19, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and olibanum gum.

21. The composition according to claim 6, wherein the antimicrobial agent is an anti-viral agent.

22. The composition according to claim 21, wherein the antimicrobial agent is an antibacterial agent.

23. The composition according to claim 6, wherein the antibacterial agent is an antibiotic.

24. The composition according to claim 23, wherein the pharmacological agent is a hormone.

25. The composition according to claim 24, wherein the pharmacological agent is an antihistamine.

26. The composition according to claim 7, wherein the anti-fungal agent is terbinafine.

27. The composition according to claim 26, wherein the terbinafine is present at 1% of the composition.

28. A pharmacological composition comprising: a) one or more resins; b) terbinafine; and c) ethanol.
29. The composition according to claim 28, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
30. The composition according to claim 29, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
31. A pharmacological composition comprising: a) one or more resins; and b) 1% terbutaline; and c) 90% ethanol.
32. The composition according to claim 31, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
33. The composition according to claim 32, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
34. A pharmacological composition comprising: a) one or more resins; b) ciclopirox olamine; and c) ethanol.
35. The composition according to claim 34, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
36. The composition according to claim 35, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
37. A pharmacological composition comprising: a) one or more resins; b) 1% ciclopirox olamine; and c) 90% ethanol.
38. The composition according to claim 37, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
39. The composition according to claim 38, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
40. The composition according to claim 2, wherein the one or more resins are selected from the group consisting of an exudate from Burseraceae trees, Eucalyptus species, and Myrtaceae species.
41. The composition according to claim 1, wherein the one or more resins are selected from the group consisting of an adhesive polymer, a hydrogel polymer, a cellulose biodegradable, a synthetic lattice, and a mucosal adhesive.
42. The composition according to claim 41, wherein the adhesive polymer is an acrylic polymer, a polyisobutylene, or a silicone.
43. The composition according to claim 23, wherein the antibiotic is clindamycin, erythromycin, tetracycline, mupirocin, gentamycin, metronidazole, bacitracin, neomycin, or polymyxin B.
44. The composition according to claim 23, wherein the antibiotic is a mixture of one or more of clindamycin, erythromycin, tetracycline, mupirocin, gentamycin, metronidazole, bacitracin, neomycin, and polymyxin B.
45. The composition according to claim 23, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
46. The composition according to claim 1, wherein the pharmacologically active agent is a miticide or pediculocide.
47. The composition according to claim 1, wherein the pharmacologically active agent is an anesthetic.
48. The composition according to claim 1, further comprising an oil.
49. A pharmacological composition comprising: a) one or more resins; b) nafliine; and c) ethanol.
50. The composition according to claim 49, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
51. The composition according to claim 50, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
52. The composition according to claim 49, further comprising a penetration enhancer.
53. The composition according to claim 52, wherein the penetration enhancer is DMSO.
54. A pharmacological composition comprising: a) one or more resins; b) 1% to 10% nafliine; and c) 90% ethanol.
55-56. (canceled)
57. A pharmacological composition comprising: a) one or more resins; b) ciclopirox; and c) ethanol.
58. The composition according to claim 57, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
59. The composition according to claim 58, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
60. The composition according to claim 57, further comprising a penetration enhancer.
61. The composition according to claim 60, wherein the penetration enhancer is DMSO.
62. A pharmacological composition comprising: a) one or more resins; b) 8% ciclopirox; and c) 90% ethanol.
63. The composition according to claim 62, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
64. The composition according to claim 63, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
65. The composition according to claim 62, further comprising a penetration enhancer.
66. The composition according to claim 65, further comprising a penetration enhancer.
67. A pharmacological composition comprising: a) one or more resins; b) terbutaline; and c) ethanol.
68. The composition according to claim 67, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
69. The composition according to claim 68, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
70. The composition according to claim 67, further comprising a penetration enhancer.
71. The composition according to claim 70, wherein the penetration enhancer is DMSO.
72. A pharmacological composition comprising: a) one or more resins; b) clotrimazole; and c) ethanol.
73. The composition according to claim 72, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
74. The composition according to claim 73, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
75. A pharmacological composition comprising: a) one or more resins; b) Bacitracin; c) Polymyxin B; and d) ethanol.
76. The composition according to claim 75, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.
77. The composition according to claim 76, wherein the one or more resins are selected from the group consisting of benzoic, mastic gum, elemi gum, and obilbanum gum.
78. A pharmacological composition comprising: a) one or more resins; b) 500 units/cc Bacitracin; c) 10,000 units/cc Polymyxin B; and d) 90% ethanol.

79. A pharmacological composition comprising: a) one or more resins; b) 500 units/cc Bacitracin; and c) 90% ethanol.

80. A pharmacological composition comprising: a) one or more resins; b) 0.025 Retin-A; and c) 90% ethanol.

81. A pharmacological composition comprising: a) one or more resins; b) 0.5% to 1.8% Salicylic Acid; and c) 90% ethanol.

82. A pharmacological composition comprising: a) one or more resins; b) 7.5% meradimate; c) 7.5% octrainoxate; d) 10% homosalate; e) 10% sulisobenzone; and 90% ethanol.

83. A pharmacological composition comprising: a) one or more resins; b) 500 units/cc Bacitracin; c) 10,000 units/cc Polymyxin B; d) 3.5 mg/cc Neomycin; and e) 90% ethanol.

84. A pharmacological composition comprising: a) one or more resins; b) 500 units/cc Bacitracin; c) 3.5 mg/cc Neomycin; and d) 90% ethanol.

85. A method of treating a subject having onychomycosis comprising contacting a nail of a subject having onychomycosis with a biological dressing comprising:

(a) one or more resins;
(b) at least one topically acceptable pharmacologically active agent other than the one or more resins that is effective as a treatment for ameliorating symptoms of onychomycosis, wherein the pharmacologically active agent can remain in contact with the skin or nail for greater than 4 hours without toxic effects to the mammal; and
(c) a topically acceptable volatile solvent for the one or more resins and the pharmacologically active agent.

86. The method of claim 85, wherein the one or more resins are selected from the group consisting of a hard resin, an oleoresin, and a gum resin.

87. The method of claim 85, wherein the one or more resins are selected from the group consisting of benzoin, mastic gum, elemi gum, and olibanum gum.

88. The method of claim 85, wherein the pharmacologically active agent is ciclopirox, naftifine or terbinafine.

89. The method of claim 85, wherein the solvent is ethanol, ethyl acetate, or a propyl acetate.

90. The composition according to claim 54, further comprising a penetration enhancer.

91. The composition according to claim 55, wherein the penetration enhancer is DMSO.

* * * * *