
DE19815865B420041104
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 198 15 865 B4 2004.11.04

(12) Patentschrift

(21) Aktenzeichen: 198 15 865.3
(22) Anmeldetag: 08.04.1998
(43) Offenlegungstag: 10.12.1998
(45) Veröffentlichungstag

der Patenterteilung: 04.11.2004

(51) Int Cl.7: G06F 9/45

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden.

(54) Bezeichnung: Kompiliersystem und Verfahren zum rekonfigurierbaren Rechnen

(57) Hauptanspruch: Kompilierverfahren mittels eines
Kompilers zur Erzeugung einer Folge (50) von Programm-
befehlen und Rekonfigurations-Anweisungen zur Ausfüh-
rung in einem dynamisch rekonfigurierbaren Computer
(10), der ein Prozessor-Modul (130) aufweist, das ein dyna-
misch rekonfigurierbares Prozessor-Submodul (12), einen
mit dem Prozessor-Submodul (12) verbundenen Pro-
gramm/Daten-Speicher (133) und einen mit dem Prozes-
sor-Submodul (12) verbundenen Bitstrom-Speicher (132)
umfasst, wobei das Prozessor-Submodul durch Laden ei-
nes Bitstroms aus dem Bitstrom-Speicher auf Rekonfigura-
tions-Anweisungen hin während der Ausführung der Folge
von Programm-Befehlen wahlweise unter einer Anzahl von
Befehlssatz-Architekturen (ISA) rekonfiguriert werden
kann, mit den folgenden Schritten:
a) als Eingabe wird eine Quelldatei (301) empfangen, die
eine Anzahl von Quellcode-Befehlsanweisungen enthält,
und zwar einschließlich mindestens eines ersten Untersat-
zes von Quellcode-Befehlsanweisungen und eines zweiten
Untersatzes von Quellcode-Befehlsanweisungen;
b) für den ersten Untersatz von Quellcode-Befehlsanwei-
sungen wird ein erster Befehlsatz, der einer ersten Befehl-
satz-Architektur entspricht, mittels einer ersten im Quell-
code enthaltenen Rekonfigurations-Übersetzungsanwei-
sung identifiziert, wobei die erste Rekonfigurations-Über-
setzungsanweisung den ersten Befehlsatz spezifiziert;
c)...

(30) Unionspriorität:
827619 09.04.1997 US

(71) Patentinhaber:
Ricoh Co., Ltd., Tokio/Tokyo, JP

(74) Vertreter:
Schwabe, Sandmair, Marx, 81677 München

(72) Erfinder:
Greenbaum, Jack E., Menlo Park, Calif., US;
Baxter, Michael A., Menlo Park, Calif., US

(56) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:
DE 196 14 991 A1
1/50

DE 198 15 865 B4 2004.11.04
Beschreibung

[0001] Die vorliegende Erfindung betrifft generell Software für rekonfigurierbare Computer und insbesondere
ein Kompiliersystem und ein Verfahren zur Erzeugung ausführbarer Dateien zur Verwendung in einem dyna-
misch rekonfigurierbaren Computer, der eine veränderbare interne Hardwareorganisation aufweist.

[0002] Ein „dynamisch rekonfigurierbarer Computer" wird im folgenden auch „dynamisch rekonfigurierbare
Verarbeitungseinheit" genannt. Weiter wird ein „Prozessor-Modul" auch „Hardwareorganisation" genannt. Ein
„Prozessor-Submodul" wird auch „Prozessor-Hardware" genannt. Ein „Bitstrom-Speicher" wird auch „Speicher
für Rekonfigurationsbits" und ein „Programm/Daten-Speicher" auch „Speicher für Programme" genannt. Eine
„Rekonfigurations-Übersetzungsanweisung" wird auch „Rekonfigurations-Betriebsanweisung" genannt.

Stand der Technik

[0003] Im Stand der Technik sind Versuche unternommen worden, rekonfigurierbare Geräte bzw. Einheiten
zu schaffen. Ein erster bekannter Lösungsansatz besteht in herunterladbaren (downloadable) Mikrocode-Ge-
räten, bei denen das Verhalten bzw. der Betriebsablauf von festen, nicht rekonfigurierbaren Hardwarebetriebs-
mitteln zur Ausführung von Programmen wahlweise verändert werden kann, in dem eine bestimmte Version
des Mikrocodes (Programmiersprache für ein Steuerwerk) verwendet wird, der in einen programmierbaren
Steuerspeicher geladen wird. Ein Beispiel hierfür findet sich in J.L. Hennessy und D.A. Paterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufmann, 1990. In einigen solcher Systeme kann der Mikro-
code vom Benutzer nach der Herstellung geschrieben oder verändert werden. Siehe beispielsweise W.T. Wil-
ner „Design of the Burroughs B1700", in AFIPS Fall Joint Computer Conference, AFIPS Press, 1972; W.G. Ma-
theson, „User Microprogrammability in the HP-21MX Minicomputer", in Proceedings of the Seventh Annual Mi-
croprogramming Workshop, IEEE Computer Society Press, 1974. Weil die zugrundeliegende Computerhard-
ware in solchen bekannten Systemen nicht selbst rekonfigurierbar ist, zeigen solche Systeme keine optimierte
Rechenleistung, wenn man an einen großen Bereich von Problemtypen denkt. Insbesondere sind solche Sys-
teme generell nicht in der Lage, den Datenpfad zu ändern, sind durch die Größe bzw. Speichergröße der Aus-
führungseinheiten begrenzt und sind nur in der Lage, Wechsel-Befehlssätze (alternate instruction sets) für die-
selbe Hardware zu schaffen. Solche Systeme stellen keinen Einzelkompiler zur Verfügung, der in der Lage ist,
zwei verschiedene Architekturen zu kompilieren bzw. zu übersetzen.

[0004] Ein zweiter bekannter Lösungsansatz beinhaltet ein System, bei dem die Hardware, die einen Rechen-
vorgang ausführt, mit Hilfe einer programmierbaren Logik realisiert wird. Es gibt Beispiele hierfür, die feldpro-
grammierbare Logikschaltungen bzw. feldprogrammierbare Gatearrays (FPGAs) von der Stange verwenden
(PAM, SPLASH, VCC) und anwenderprogrammierbare Logik (TERAMAC). Siehe beispielsweise: P. Bertin et
al., Programmable Active Memories: A Performance Assessment„ Tech. Rep. 24, Digital Paris Research La-
boratory, März 1993; D.A. Buell et al., Splash 2: FPGAs in a Custom Computing Machine, IEEE Computer So-
ciety Press, 1996; S. Casselman, "Virtual Computing and The Virtual Computer", in IEEE Symposium on FP-
GAs for Custom Computing Macines, IEEE Computer Society Press, 1994; R. Amerson et al., "Teramac-Con-
figurable Custom Computing", in IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Com-
puter Society Press, 1995. Im allgemeinen erfordern es diese Technologien, daß eine Anwendung bzw. Appli-
kation hinsichtlich der Hardwarebeschreibung spezifiziert wird, was entweder in Form einer schematischen Be-
schreibungssprache oder unter Verwendung einer Hardware-Beschreibungssprache, wie beispielsweise VH-
DL, erfolgt, anstatt daß man Software für einen Computer schreibt, der durch FPGAs festgelegt wird. Beispiels-
weise wird ein PAM programmiert, indem man ein C++-Programm schreibt, das eine Netzliste erzeugt, die die
Konfiguration und Architektur der Gatter bzw. Schaltelemente (Gate) beschreibt. Ein Applikationsentwickler
spezifiziert eine Datenstruktur, die eine Hardwarebeschreibung zur Umsetzung der Applikation beschreibt, an-
statt daß er eine Spezifizierung eines Applikationsalgorithmus kompiliert. SPLASH wird auf eine der folgenden
drei Arten programmiert: 1) Ein schematisches Erfassungspaket (schematic capture package) zum Aufbauen
einer Hardwarespezifizierung, basierend auf einem Schaltschema bzw. schematischen Diagramm; 2) einer
Hardware-Beschreibungssprache (wie beispielsweise VHDL), die mit einem Synthese-Paket gekoppelt ist, das
VHDL in einfache Gate-Anweisungen (primitives) übersetzt; oder 3) einer DBC, d.h. einer C-Untersprache, die
in Gate-Beschreibungen kompiliert wird. TERAMAC wird mit Hilfe eines schematischen Erfassungspakets
oder einer Hardware-Beschreibungssprache programmiert. Keines dieser Programmierverfahren beschreibt
Algorithmenschritte; stattdessen sorgen sie für einen Mechanismus zur Spezifizierung von Hardware-Architek-
turen.

[0005] Ein dritter bekannter Lösungsansatz beinhaltet rekonfigurierbare Computer, die Softwareprogramme
ausführen. Der RISC-4005-Prozessor und der Hokie-Prozessor realisieren Standard-Mikroprozessoren inner-
2/50

DE 198 15 865 B4 2004.11.04
halb von FPGAs. Der RISC 4005 ist im wesentlichen die Demonstration einer eingebetteten (embedded) zen-
tralen Prozessoreinheit (CPU) innerhalb eines kleinen Abschnittes eines FPGAs, dessen weitere Betriebsmit-
tel (resources) einigen Coprozessor-Funktionen zugeordnet sind. Hokie wird als Lernübung für Informatikstu-
denten oder Elektrotechnikstudenten verwendet. Eine Befehlsatzarchitektur (instruction set architecture; ISA)
wird vor der Kompilierung und Ausführung des Programmes ausgewählt und diese Befehlsatzarchitektur wird
dann fortwährend verwendet. Außerdem wird der Bitstrom für den Prozessor separat von der Software abge-
speichert, die dieser ausführt. Ad hoc-Verfahren werden verwendet, um sicherzustellen, daß ein korrekter Bit-
strom geladen wird. Siehe beispielsweise P. Athanas und R. Hudson, "Using Rapid Prototyping to Teach the
Design of Complete Computing Solutions", in IEEE Symposium on FPGAs for Custom Computing Machines,
IEEE Computer Society Press, 1996. Diese Systeme sorgen nicht für eine Laufzeit-Rekonfigurierung (während
der Ausführung des Programm).

[0006] Bei einem weiteren bekannten, rekonfigurierbaren Computer handelt es sich um den dynamischen Be-
fehlsatz-Computer (Dynamic Instruction Set Computer; DISC), der eine rekonfigurierbare Prozessoreinheit
verwendet. Siehe beispielsweise M.J. Wirthlin und B.L. Hutchings, "A Dynamic Instruction Set Computer", in
IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, 1995; D.A.
Clark und B.L. Hutchings, "The DISC Programming Environment", in IEEE Symposium on FPGAs for Custom
Computing Machines, IEEE Computer Society Press, 1996. Die Ausführung und Konfiguration der FPGA der
DISC-Prozessoreinheit wird mit Hilfe eines Mikrocontrollers gesteuert, der ebenfalls in Form eines FPGAs rea-
lisiert ist. Der Mikrocontroller wird in einem Dialekt der C-Programmiersprache programmiert. Der Kompiler
bzw. das Übersetzungsprogramm für diesen C-Dialekt erkennt, daß gewisse Programmanweisungen durch
entsprechende Hardware-Konfigurationen der Verarbeitungseinheit ausgeführt werden sollen und sendet ei-
nen Mikrocontroller-Code aus, der veranlaßt, daß der richtige Konfigurations-Bitstrom während der Ausführung
des Programms in die Verarbeitungseinheit geladen wird. Der Fachmann auf diesem Gebiet wird erkennen,
daß der Mikrocontroller seinerseits einen festen Befehlsatz aufweist und daß der Kompiler diesen festen Be-
fehlsatz kompiliert bzw. übersetzt. Es bestehen mehrere Nachteile hinsichtlich dieser von einem DISC verwen-
deten Architektur. Weil der Mikrocontroller fest bzw. statisch ist, kann dieser nicht optimiert werden, um ver-
schiedene Arten von Verarbeitungseinheiten zu steuern. Die Konfigurations-Bitströme werden in externer
Hardware außerhalb des Speicherplatzes des Mikrocontrollers gespeichert, weshalb das System nicht
selbst-enthaltend ist. Außerdem offenbaren die vorstehend im Wege der Bezugnahme in dieser Offenbarung
mit beinhalteten Dokumente nicht, wie ein DISC zum Parallelrechnen, zur globalen Signalisierung bzw. sys-
temweiten Datenübermittlung und zum Takten oder zur Handhabung von Interrupts bzw. Unterbrechungsan-
weisungen verwendet werden könnte. Schließlich werden neue Befehle nur als Einzelgrößen spezifiziert. Der
Kompiler sendet nur Befehle für einen Befehlsatz aus, läßt es jedoch zu, daß einzelne Befehle vom Program-
mierer hinzugefügt werden. Jede Konfigurierung der Verarbeitungseinheit ist ein einzelner Befehl in Form von
Hardware, der von dem Programmierer zur Verfügung gestellt wird, wodurch die mögliche Flexibilität einge-
schränkt wird.

[0007] Ein vierter bekannter Lösungsansatz besteht darin, Systeme zu mischen, wobei verschiedene Teile
des Algorithmus bzw. Rechenvorgangs auf verschiedene Komponenten bzw. Elemente des Systems abgebil-
det werden. Ein bekanntes System bildet einen Algorithmus, der in einem erweiterten C-Dialekt ausgedrückt
ist, auf eine gemischte FPGA/DSP-Architektur ab. Der Benutzer markiert ausdrücklich Abschnitte des Einga-
beprogramms zur Zuordnung zum DSP, während der Rest des Codes in Gates zur FPGA-Realisierung hinein
kompiliert wird. Solche Systeme erfordern spezialisierte Werkzeuge bzw. Tools, weil sie eine nicht übliche Syn-
tax für ISA-Änderungen verwenden. Außerdem ist der Betrieb solcher Systeme mühsam, was an der Verwen-
dung von Netzlisten zur FPGA-Spezifizierung von Abschnitten des Programms liegt. Solche Programme schaf-
fen keine tatsächliche Hardware-Rekonfigurierung, sondern sorgen lediglich für die Fähigkeit zur Abbildung auf
ein anderes Teil der Hardware.

[0008] In gleicher Weise verwenden einige Systeme einen Standard-Mikroprozessor mit einigen konfigurier-
baren Logik-Betriebsmitteln. Diese Betriebsmittel (Ressourcen) werden verwendet, um spezielle Befehle bzw.
Instruktionen zu realisieren, die die Ausführung von bestimmten Programmen beschleunigen. Siehe beispiels-
weise R. Razdan und M.D. Smith, "A High-Performance Microarchitecture with Hardware-Programmable
Functional Units", in Proceedings of the Twenty-Seventh Annual Microprogramming Workshop, IEEE Compu-
ter Society Press, 1994. Solche Systeme werden typischerweise als Zentralprozessoreinheit (CPU) realisiert,
und zwar mit einem Abschnitt des Silizium-Chips, der verwendet wird, um einen FPGA zu realisieren. Die CPU
besitzt einen festen bzw. fixierten Datenpfad, mit dem die FPGAs verbunden sind. Der Kompiler kombiniert
ausgewählte Assembler-Codesequenzen in Einzelbefehlanweisungen zur Ausführung durch ein FPGA. Je-
doch arbeiten solche Systeme generell nur auf Ebenen eines bestehenden Assembler-Sprachcodes und er-
fordern eine angrenzende, feste Befehlsatzarchitektur (nachfolgend als ISA oder auch IS-Architektur bezeich-
3/50

DE 198 15 865 B4 2004.11.04
net) als Ausgangspunkt. Außerdem halten solche Systeme generell keine Laufzeit-Rekonfigurierung bereit.
Schließlich sind solche Systeme nicht weit anwendbar und sorgen üblicher Weise nicht für eine deutliche Ge-
schwindigkeitsverbesserung im Vergleich zu anderen herkömmlichen Systemen.

Aufgabenstellung

[0009] Obwohl die zuvor genannten Systeme jeweils ein gewisses Niveau für die Rekonfigurierbarkeit von
Hardware schaffen, beschreibt keines von diesen ein Verfahren oder eine Vorrichtung zur Zusammenfassung
von binären Maschinensprache-Befehlen und von Daten gemeinsam mit den Hardware-Konfigurierungen, die
notwendig sind, um die Maschinenbebefehle in der in diesem Patent beanspruchten Art und Weise auszufüh-
ren. Außerdem offenbaren die bekannten Systeme weder eine Mehrfacharchitektur-ISA-Rekonfiguration auf
der Ebene der Granularität, die vergleichbar zu RISC- oder CISC-Befehlen ist, die hierin beansprucht werden,
noch Kompilierungsverfahren innerhalb der C-Sprachensyntax zum Ausführen auf dynamisch rekonfigurierten
IS-Architekturen, wie diese hierin beansprucht werden.

[0010] Aus DE 19 614 991 A1 ist ein System und Verfahren zum skalierbaren, parallelen, dynamisch rekon-
figurierbaren Rechnen bekannt. Insbesondere ist daraus ein dynamisch rekonfigurierbarer Computer bekannt.

[0011] Aufgabe der Erfindung ist es, ein Kompilierverfahren für einen dynamisch rekonfigurierbaren Compu-
ter bereitzustellen, wobei insbesondere unterschiedliche Befehlssätze effizient eingesetzt werden sollen.

[0012] Vorstehende Aufgabe wird durch die Gegenstände der Ansprüche 1, 21 und 22 gelöst. Vorteilhafte
Weiterbildungen gehen aus den Unteransprüchen hervor.

[0013] Erfindungsgemäß wird ein Verfahren zur Kompilierung von Quellcode geschaffen, der beispielsweise
in C oder Pascal geschrieben ist, um ausführbare Dateien bzw. Programme zur Verwendung in einer dyna-
misch rekonfgurierbaren Prozessoreinheit zu erzeugen, die eine wahlweise veränderbare interne Hardwareor-
ganisation aufweist. Bei einer Ausführungsform können erfindungsgemäß Maschinenbefehle und Daten ge-
meinsam mit Hardware-Konfigurationen zusammengefaßt werden, welche erforderlich sind, um die Maschi-
nenbefehle auszuführen. In der rekonfigurierbaren Architektur besteht jeder einzelne Prozessor beispielsweise
aus: Einer rekonfigurierbaren Prozessor-Hardware, wie beispielsweise einem vollständig FPGA-basierten Pro-
zessor, einem Datenspeicher und einem Programmspeicher, einer Parallel-Verbindungseinheit und einem wie-
derbeschreibbaren Speicher für FPGA-Konfigurationsbits. Durch dynamisches Laden von FPGA-Konfigurati-
onsbitströmen realisiert die vorliegende Erfindung einen dynamischen ISA-Computer, der eine hohe Leistungs-
fähigkeit erreicht, in dem ISAs verwendet werden, die für spezielle Phasen der Ausführung der Applikation op-
timiert sind.

[0014] Bei der Architektur werden Applikationen als Software zur Verfügung gestellt, wird Hardware in der
Form von Schaltungen (ein zentrales Service-Modul, Prozessormodule, Eingabe/Ausgabe-Module (I/O)) so-
wie Bitströme für Befehlsatzarchitekturen (ISAs) bereitgestellt, die auf den FPGAs des Prozessormoduls be-
heimatet sind. Ein ISA bzw. eine IS-Architektur ist ein primitiver Satz von Befehlen, der dazu verwendet werden
kann, einen Computer zu programmieren. Applikationssoftware wird mit Hilfe von FPGAs ausgeführt, die als
ISAs auf den Prozessormodulen konfiguriert sind.

[0015] Die vorliegende Erfindung beschreibt ein System, das ausgelegt ist, so daß FPGA-Konfigurationsbit-
ströme statisch während der Kompilierung mit dem Programm verbunden bzw. verknüpft werden können, das
diese ausführt, und daß diese zum dynamischen Schalten von ISAs und/oder FPGA-Applikationselementrea-
lisierungen unabhängig und in Echtzeit programmiert werden können.

[0016] Die ISAs führen Programmbefehle aus, die in RAM 133 gespeichert sind. Diese Programmbefehle um-
fassen wahlweise eine oder mehrere Rekonfigurations-Übersetzungsanweisungen (reconfiguration directi-
ves). Bei Auswahl einer Rekonfigurations-Übersetzungsanweisung bzw. Rekonfigurations-Betriebsanweisung
wird die Hardware rekonfiguriert, um für eine optimierte Realisierung einer bestimmten Befehlsatzarchitektur
zu sorgen. Zusätzlich zu ihrer spezifischen Funktionalität umfaßt jede ISA einen Befehl oder eine Überset-
zungsanweisung, der bzw. die veranlaßt, daß eine andere ISA in den rekonfigurierbaren Prozessor geladen
wird, so daß die Ausführung der Software anschließend unter Verwendung der neuen ISA fortfährt.

[0017] Weil die Speicherstelle der ISA-Bitströme im Speicher ein Argument für den Rekonfigurationsbefehl
darstellt, wird diese Speicherstelle vorzugsweise zum Zeitpunkt der Verbindung (link) oder des Ladens be-
stimmt, was auch für die Speicherstellen für Funktions-Aufrufziele und -Variablen gilt. Ebenso wie für diese
4/50

DE 198 15 865 B4 2004.11.04
Funktionen und Variablen hat es sich als wünschenswert herausgestellt, symbolische Namen für die Adressen
eines Bitstroms zu verwenden. Die vorliegende Erfindung verwendet ein Objektdatei-Format, das die Vorstel-
lung einer ausführbaren Software auf ISA-Bitströme erweitert. Daraus resultieren einige Vorteile, wie beispiels-
weise:
– Tools bzw. Werkzeuge können leicht aufgebaut bzw. erstellt werden. Weil die Rekonfigurierung als ein Be-
fehl und Bitströme als Daten behandelt wird, können standardmäßige Software-Verbindungsverfahren ein-
gesetzt werden, um softwaregesteuerte Hardwareänderungen mit den erforderlichen Bitstrom zu binden.
Keine neue Softwaretechnologie über die Bitstrom-als-Daten-Abstraktion muß erzeugt werden.
– Flexibilität beim Laden. Indem Rekonfigurationsdaten auf einen Teil des Ausführbaren isoliert werden,
wird die Fähigkeit Konfigurationen in geschützte Bereiche des Speichers zu laden, vereinfacht. Mit Ge-
sichtspunkten der Speicherausrichtung wird man auf strukturierte Weise leicht fertig, wie nachfolgend aus-
führlicher beschrieben werden wird.
– Das Laden wird vereinfacht. Alle Daten, die erforderlich sind, um das Programm auszuführen, werden in
einer einzigen Datei aufbewahrt, so daß keine Ladezeit-Identifikation und keine Lokalisierung von Bitströ-
men ausgeführt zu werden braucht, falls das Ausführbare bzw. das Programm statisch verbunden wird.
– Das Konfigurationsmanagement wird vereinfacht. Nur eine einzige Datei braucht zur gleichen Zeit beibe-
halten werden, sobald ein Programm gebunden worden ist. Dies vereinfacht die Vorgehensweise zur Ver-
teilung von Applikationen auf einzelne Geräte und entfernte Stellen.

Ausführungsbeispiel

[0018] Nachfolgend wird die Erfindung in beispielhafter Weise und unter Bezugnahme auf die Zeichnungen
beschrieben, in denen:

[0019] Fig. 1 ein Blockschema der Hardwarekomponenten einer dynamisch rekonfigurierbaren Rechenarchi-
tektur ist;

[0020] Fig. 1A ein Blockschema eines erfindungsgemäßen Prozessormoduls ist;

[0021] Fig. 1B und 1C Blockschema einer Systemarchitektur zur Realisierung der Erfindung sind, die ein Bei-
spiel für die Rekonfiguration eines FPGAs zeigen;

[0022] Fig. 2 ein Beispiel für ein Programmlisting ist, das Rekonfigurations-Übersetzungsanweisungen ent-
hält;

[0023] Fig. 3 ein Flußdiagramm für ein Gesamt-Kompilierverfahren ist, das von einem Kompiler bzw. Über-
setzungsprogramm zum dynamisch rekonfigurierbaren Rechnen ausgeführt wird;

[0024] Fig. 3A und 3B ein Flußdiagramm von bevorzugten Kompiliervorgängen sind, die von einem Kompiler
zum dynamisch rekonfigurierbaren Rechnen ausgeführt werden;

[0025] Fig. 3C ein Flußdiagramm von weiteren Kompiliervorgängen ist, die von einem Kompiler zum dyna-
misch rekonfigurierbaren Rechnen ausgeführt werden;

[0026] Fig. 4 ein Blockschema eines Kompiliersystems gemäß der vorliegenden Erfindung ist;

[0027] Fig. 5 ein Schema eines Objektdateiformats aus dem Stand der Technik ist;

[0028] Fig. 6 ein Flußdiagramm für ein Verfahren zum Erhalten eines Programmzustands gemäß der vorlie-
genden Erfindung ist;

[0029] Fig. 7 ein Flußdiagramm für ein Verfahren zur strukturierten Rekonfiguration gemäß der vorliegenden
ist; und

[0030] Fig. 8A, 8B und 8C Diagramme von Stapelinhalten während einer strukturierten Rekonfiguration ge-
mäß der vorliegenden Erfindung darstellen.

[0031] Fig. 9 ein Blockdiagramm einer bevorzugten Ausführungsform eines Systems für ein skalierbares, pa-
ralleles, dynamisch rekonfigurierbares Berechnen, gemäß der Erfindung;
5/50

DE 198 15 865 B4 2004.11.04
[0032] Fig. 10 ein Blockdiagramm einer bevorzugten Ausführungsform einer S-Einrichtung gemäß der Erfin-
dung;

[0033] Fig. 11A ein beispielhaftes Programmauflisten, das Rekonfigurationsanweisungen enthält;

[0034] Fig. 11B ein Ablaufdiagramm von herkömmlichen Kompilieroperationen, die während der Kompilation
einer Folge von Programmbefehlen durchgeführt worden sind;

[0035] Fig. 11C und 11D ein Ablaufdiagramm von bevorzugten Kompilieroperationen, welche mittels eines
Kompilierers für ein dynamisch rekonfigurierbares Berechnen durchgeführt worden sind;

[0036] Die vorliegende Erfindung ist auf ein Kompiliersystem und ein Verfahren zur Erzeugung ausführbarer
Dateien zur Verwendung bei einer dynamisch rekonfigurierbaren Prozessoreinheit gerichtet, deren Hard-
ware-Konfiguration nachfolgend insbesondere anhand der Fig. 9 bis 11D beschrieben wird.

[0037] In Fig. 1 ist ein Blockschema eines skalierbaren, parallelen, dynamisch rekonfigurierbaren Computers
10 zum Ausführen von Objektdateien gezeigt, die gemäß der vorliegenden Erfindung erzeugt wurden. Der
Computer 10 umfaßt vorzugsweise mindestens eine S-Einrichtung 12, eine T-Einrichtung 14, die jeder S-Ein-
richtung 12 entspricht, eine Mehrzweck-Verbindungsmatrix (General Purpose Interconnect Matrix; GPI-Matrix)
16, mindestens eine Eingabe-/Ausgabe-T-Einrichtung 18, eine oder mehrere Eingabe-/Ausgabeeinrichtungen
20 und eine Master-Zeitbasiseinheit 22. Bei der bevorzugten Ausführungsform umfaßt der Computer 10 meh-
rere S-Einrichtungen 12 und somit auch mehrere T-Einrichtungen 14 und außerdem mehrere Eingabe-/Aus-
gabe-T-Einrichtungen 18 und mehrere Eingabe-/Ausgabeeinrichtungen 20.

[0038] Jede der S-Einrichtungen 12, T-Einrichtungen 14 und Eingabe-/Ausgabe-T-Einrichtungen 18 hat einen
Mastertakteingang, der mit dem Taktausgang der Masterzeitbasiseinheit 22 verbunden ist. Jede S-Einrichtung
12 hat einen Eingang und einen Ausgang, der mit ihrer entsprechenden T-Einrichtung 14 verbunden ist. Zu-
sätzlich zu dem Eingang und dem Ausgang, die mit der entsprechenden S-Einrichtung 12 verbunden sind,
weist jede T-Einrichtung 14 einen Wegsteuerungseingang (routing input) und einen Wegsteuerungsausgang
auf, die mit der GPI-Matrix 16 verbunden sind. Dementsprechend hat jede Eingabe-/Ausgabe-T-Einrichtung 18
einen Eingang und einen Ausgang, die mit einer Eingabe-/Ausgabeeinrichtung 20 verbunden sind, sowie einen
Wegsteuerungseingang und einen Wegsteuerungsausgang, der mit der GPI-Matrix 16 verbunden ist.

[0039] Bei jeder S-Einrichtung 12 handelt es sich um einen dynamisch rekonfigurierbaren Rechner. Die
GPI-Matrix 16 stellt ein paralleles Punkt-zu-Punkt-Verbindungsmittel bzw. ein paralleles Maschen-Verbin-
gungsmittel dar, das die Kommunikation zwischen den T-Einrichtungen 14 erleichtert. Der Satz von T-Einrich-
tungen 14 und die GPI-Matrix 16 bilden ein paralleles Punkt-zu-Punkt-Verbindungsmittel für einen Datentrans-
fer zwischen Speichern, die der S-Einrichtung 12 zugeordnet sind. In ähnlicher Weise bilden die GPI-Matrix
16, der Satz von T-Einrichtungen 14 und der Satz von Eingabe-/Ausgabe-T-Einrichtungen 18 ein paralleles
Punkt-zu-Punkt-Verbindungsmittel für einen Eingabe-/Ausgabetransfer zwischen S-Einrichtungen 12 und je-
der Eingabe-/Ausgabeeinrichtung 20. Die Master-Zeitbasiseinheit 22 umfaßt einen Oszillator, der jeder S-Ein-
richtung 12 und jeder T-Einrichtung 14 ein Master-Taktsignal zur Verfügung stellt.

[0040] In einer beispielhaften Ausführungsform ist jede S-Einrichtung 12 durch Verwendung eines Xilinx
XC4013 (Xilinx, Inc., San Jose, CA) feldprogrammierbaren Gate-Arrays (FPGA) bzw. Logikanordnung ausge-
führt, das mit einem 64 MB Direktzugriffsspeicher (RAM) verbunden ist. Jede T-Einrichtung 14 ist durch Ver-
wendung von annähernd 50 % der rekonfigurierbaren Hardware-Betriebsmittel in einem Xilinx XC4013 FPGA
ausgeführt, ebenso jede Eingabe-/Ausgabe-T-Einrichtung 18. Die GPI-Matrix 16 ist als ein ringförmiges Ver-
bindungsmaschennetz ausgeführt. Die Master-Zeitbasiseinheit 22 ist ein Taktoszillator, der mit einer Taktver-
teilungsschaltung verbunden ist, um für eine systemweite Frequenzreferenz zu sorgen, wie nachfolgend an-
hand der Fig. 9 bis 25B beschrieben wird. Vorzugsweise übertragen die GPI-Matrix 16, die T-Einrichtungen 14
und die Eingabe-/Ausgabe-T-Einrichtungen 18 Information entsprechend dem Punkt-zu-Punkt-Protokoll des
ANSI/IEEE-Standard 1596-1992, wodurch ein skalierbares kohärentes Interface (SCI) definiert ist.

[0041] In Fig. 1A ist ein Blockschema eines Prozessormoduls 130 gezeigt, das in einer Ausführungsform der
vorliegenden Erfindung verwendet wird. Der 5-Einrichtungs-FPGA 12 ist mit einem zugeordneten bzw. reser-
vierten Bitstromspeicher 132 und einem Programm-/Datenspeicher 133, einer oder mehreren T-Einrichtungen
14 und einer Takterzeugungsschaltung verbunden, wie beispielsweise einen Taktgenerator 131, um ein Pro-
zessormodul 130 zu bilden. Das Modul 130 ist mit anderen, vergleichbaren Modulen über die T-Einrichtungen
14 in einer solchen Art und Weise verbunden, die einen Parallelbetrieb erleichtert. Der Programm-/Datenspei-
6/50

DE 198 15 865 B4 2004.11.04
cher 133 speichert Programmbefehle und ist in Form eines üblichen RAMs realisiert. Der Bitstromspeicher 132
speichert Bitströme, die die FPGA-Konfigurationen beschreiben. In einer Ausführungsform ist der Pro-
gramm-/Datenspeicher 133 als dynamisches RAM (DRAM) implementiert und der Bitstromspeicher 132 als
statisches RAM (SRAM).

[0042] In den Fig. 1B und 1C sind Beispiele für eine FPGA-Rekonfiguration gezeigt, um ISAs in rekonfigurier-
barer Architektur zu realisieren. Die Figuren zeigen Blockschema einer Systemarchitektur zur Realisierung der
vorliegenden Erfindung, wobei die S-Einrichtungs-FPGA 12 umprogrammiert ist, so daß sie eine arithmetische
Logikeinheit (ALU) 143 in Fig. 1B umfaßt sowie einen finiten Impulsantwortfilter (FIR) 148 in Fig. 1C. Ein Bit-
strom-RAM 132 und ein Programm-/Daten-RAM 133 ist vorgesehen. Der Speicherbus 149 hält einen Kommu-
nikationskanal zwischen dem S-Einrichtungs-FPGA 12 und RAM 132 und 133 bereit. Die FPGA-Konfigurati-
onshardware 140 ermöglicht die Rekonfiguration des S-Einrichtungs-FPGAs 12 entsprechend den ISA-Bitströ-
men vom Bitstrom-RAM 132. Konfigurationen des S-Einrichtungs-FPGA 12 umfassen beispielsweise Daten-
register bzw.

[0043] Datenspeicher 141, Adreßregister 142, einen Registermultiplexer 144 und ein Speicherdatenregister
145. Jede oder alle dieser Komponenten kann modifiziert oder in anderen Konfigurationen entfernt werden,
was von dem Bitstrom abhängt. Beispielsweise taucht Alu 143 in der in Fig. 1B gezeigten Konfiguration auf,
ist aber in der Konfiguration aus Fig. 1C durch den FIR-Filter 148 ersetzt.

Rekonfigurations-Übersetzungsanweisungen

[0044] Vorzugsweise speichert der Computer 10 Programmbefehle in RAM wahlweise, und zwar einschließ-
lich von Rekonfigurations-Übersetzungsanweisungen zur Rekonfigurierung von Computer 10, indem die Kon-
figuration der S-Einrichtung 12 geändert wird. In Fig. 2 ist ein beispielhaftes Programmlisting 50 gezeigt, das
einen Satz von Außenschleifenabschnitten 52, einen ersten Innenschleifenabschnitt 54, einen zweiten Innen-
schleifenabschnitt 55, einen dritten Innenschleifenabschnitt 56, einen vierten Innenschleifenabschnitt 57 und
einen fünften Innenschleifenabschnitt 58 umfaßt. Wie der Fachmann weiß, verweist der Begriff "Innenschleife"
auf einen iterativen Abschnitt eines Programms, der dafür verantwortlich ist, einen ganz bestimmten Satz von
verwandten Operationen auszuführen; und der Begriff "Außenschleife" verweist auf die Abschnitte eines Pro-
gramms, die hauptsächlich dafür verantwortlich sind, Mehrzweck-Operationen bzw. universelle Operationen
und/oder eine Übertragungssteuerung von einem Innenschleifenabschnitt zum anderen durchzuführen. Im all-
gemeinen führen die Innenschleifenabschnitte 54 bis 58 eines Programms spezifische Operationen an mögli-
cherweise großen Datensätzen durch. Eine oder mehrere der Rekonfigurations-Übersetzungsanweisungen
kann einem vorgegebenen Innenschleifenabschnitt 54, 55, 56, 57 oder 58 zugeordnet sein, so daß sich eine
geeignete ISA im Kontext befinden wird, wenn der Innenschleifenabschnitt ausgeführt wird. Im allgemeinen
werden für ein beliebiges vorgegebenes Programm die Außenschleifenabschnitte 52 des Programmlistings 50
eine Vielzahl von Mehrzweck-Befehlsarten umfassen, während die Innenschleifenabschnitte 54, 56 des Pro-
grammlistings 50 aus vergleichsweise wenig Befehlsarten bestehen werden, die dazu verwendet werden, ei-
nen spezifischen Satz von Operationen auszuführen.

[0045] In einer beispielhaften Programmauflistung 50 erscheint eine erste Rekonfigurations-Übersetzungsan-
weisung zu Beginn des ersten Innenschleifenabschnitts 54 und erscheint eine zweite Rekonfigurations-Über-
setzungsanweisung am Ende des ersten Innenschleifenabschnitts 54. Dementsprechend erscheint eine dritte
Rekonfigurations-Übersetzungsanweisung zu Beginn des zweiten Innenschleifenabschnitts 55; eine vierte Re-
konfigurations-Übersetzungsanweisung erscheint zu Beginn des dritten Innenschleifenabschnitts 56 usw. Je-
der Rekonfigurationsbefehl verweist vorzugsweise auf einen Konfigurationsdatensatz, der von einem Bitstrom
dargestellt wird. Der Bitstrom spezifiziert eine interne Hardware-Organisation für jede S-Einrichtung 12, und
zwar einschließlich einer dynamisch rekonfigurierbaren Prozessoreinheit (nachfolgend DRPU genannt), einer
Adreß-Betriebseinheit (AOU), einer Befehl-Abrufeinheit (IFU) und einer Datenbetriebseinheit (DOU) (nicht ge-
zeigt). Eine solche Hardware-Organisation ist gedacht und optimiert zur Realisierung einer bestimmten Befehl-
satzarchitektur (Instruction Set Architecture; ISA). Eine IS-Architektur ist ein einfacher Satz oder Kernsatz von
Befehlen bzw. Instruktionen, die dazu verwendet werden können, um einen Rechner zu programmieren. Eine
IS-Architektur definiert Befehlsformate, Operationscodes, Datenformate, Adressiermodes, Ausführungs-Steu-
erflags und programmzugängliche Register bzw. Verzeichnisse. Bei der rekonfigurierbaren Rechnerarchitek-
tur, die zur Ausführung von Objektdateien eingesetzt wird, die gemäß der vorliegenden Erfindung erzeugt wer-
den, kann jede S-Einrichtung sehr rasch und in Echtzeit konfiguriert werden, um unmittelbar eine Folge von
IS-Architekturen durch Verwendung eines eindeutigen Konfigurationsdatensatzes für jede gewünschte IS-Ar-
chitektur zu realisieren, die durch einen Bitstrom spezifiziert wird. Somit wird jede IS-Architektur mit einer spe-
ziellen, internen Hardware-Organisation realisiert, wie sie durch einen entsprechenden Konfigurationsdaten-
7/50

DE 198 15 865 B4 2004.11.04
satz spezifiziert wird. Folglich entsprechen in dem Beispiel aus Fig. 2 die ersten fünf Innenschleifenabschnitte
54 bis 58 jeweils einer eindeutigen IS-Architektur 1, 2, 3, 4 bzw. k. Der Fachmann erkennt, daß jede nachfol-
gende IS-Architektur nicht eindeutig zu sein braucht. Folglich könnte ISA k 1, 2, 3, 4 oder irgendeine andere
ISA sein. Der Satz von Außenschleifenabschnitten 52 entspricht ebenfalls einer eindeutigen ISA, nämlich ISA
0. Während der Programmausführung kann die Auswahl nachfolgender Rekonfigurations-Übersetzungsan-
weisungen von den Daten abhängen. Bei Auswahl einer gegebenen Rekonfigurations-Übersetzungsanwei-
sung werden im Anschluß daran Befehle bzw. Anweisungen nach einer entsprechenden ISA über eine eindeu-
tige 5-Einrichtungs-Hardwarekonfiguration ausgeführt, wie sie durch den Bitstrom spezifiziert wird, auf den
durch die Rekonfigurations-Übersetzungsanweisung verwiesen wird.

[0046] Mit der Ausnahme von Rekonfigurations-Übersetzungsanweisungen umfaßt das beispielhafte Pro-
grammlisting 50 aus Fig. 2 übliche Hochsprachen-Anweisungen, beispielsweise Anweisungen, die entspre-
chend der C-Programmiersprache geschrieben sind.

[0047] Der Fachmann erkennt, daß der Einbau von einer oder mehreren Rekonfigurations-Übersetzungsan-
weisungen in einer Folge von Programmanweisungen einen Kompiler bzw. ein Übersetzungsprogramm erfor-
dert, der bzw. das modifiziert wurde, um den Rekonfigurations-Übersetzungsanweisungen Rechnung zu tra-
gen. Folglich umfaßt das erfindungsgemäße Kompiliersystem und das erfindungsgemäße Verfahren Vorgänge
einschließlich von Rekonfigurations-Übersetzungsanweisungen durch Zusammenfassung von Verweisungen
auf Bitströme, die Hardware-Konfigurationen beschreiben, und durch Übersetzung bzw. Kompilierung von
Quellcode entsprechend den Spezifikationen von bestimmten ISAs, die durch die Rekonfigurations-Überset-
zungsanweisungen identifiziert werden.

[0048] In einer Ausführungsform der vorliegenden Erfindung unterstützen alle dem Computer 10 zur Verfü-
gung stehende ISAs die folgenden Vorgänge:
– Einen Stapelzeiger (stack pointer; SP) und ein Zeiger Adreßverzeichnis für nächste Befehle (Next Instruc-
tion Pointer Address Register; NIPAR; auch bekannt als Programmzähler (PC)), um einen stapel-basierten
Speicher von Informationen und Parametern während der Rekonfiguration zu realisieren;
– geeignete Befehle in Assemblersprache zur Flußsteuerung, und zwar einschließlichbeispielsweise von
"jsr" bzw. "jump to subroutine" für einen Unterprogramm-Einsprung und "rts" bzw. "return to subroutine" für
eine Unterprogramm-Rückkehr; und
– eine geeignete Speicher-Schnittstelleneinheit zum Speichern und Laden von Verzeichniswerten in bzw.
aus dem Stapel.

[0049] Die Betriebsweise dieser Komponenten zur Realisierung einer Rekonfiguration wird nachfolgend an-
hand der Fig. 6 bis 8C beschrieben.

Komponenten des Kompiliersystems

[0050] In Fig. 4 ist ein Blockschema eines erfindungsgemäßen Kompiliersystems dargestellt. Das Kompilier-
system und das erfindungsgemäße Verfahren läuft auf einer typischen Workstation oder einem PC, der ein üb-
liches Betriebssystem, wie beispielsweise Unix, verwendet. Die Unix-Umgebung ist wegen der großen Verfüg-
barkeit von Quellcode für Software-Entwicklungstools und der Robustheit der Benutzer-Umgebung vorteilhaft.
Wie der Fachmann erkennen wird, könnte das erfindungsgemäße System und das erfindungsgemäße Verfah-
ren direkt auf einem rekonfigurierbaren Computer laufen. In Fig. 3 ist ein Flußdiagramm für ein erfindungsge-
mäßes Gesamtverfahren zur Kompilierung bzw. Übersetzung, zur Assemblierung, zur Verbindung bzw. Ver-
knüpfung und zum Laden gezeigt. Die Kompilierschritte aus Fig. 3 werden nachfolgend anhand der Fig. 3A
bis 3C ausführlicher beschrieben.

[0051] Die Quelldateien 401 werden mit Hilfe eines speziell modifizierten C-Kompilers 402 kompiliert, der
nachfolgend beschrieben wird. Der Kompiler 402 liest (301) die Quelldateien 401, die Quellcode-Befehlsan-
weisungen enthalten, von einem Plattenspeicher oder von einem anderen Eingabe- oder Speichergerät. Der
Kompiler 402 identifiziert (302) dann eine ISA für einen Untersatz von Quellcodebefehisanweisungen. In einer
Ausführungsform werden ISAs von Rekonfigurations-Übersetzungsanweisungen identifiziert, wie nachfolgend
ausführlicher beschrieben wird. Der Kompiler 402 erzeugt (303) geeignete Rekonfigurations-Übersetzungsan-
weisungen, um die identifizierte ISA zu spezifizieren, und kompiliert (304) den Untersatz von Befehlen zur Aus-
führung durch die identifizierte ISA, um Anweisungen in Assemblersprache zu erzeugen. Der Kompiler 402 be-
stimmt dann (305), ob ein nachfolgender Untersatz von Befehlsanweisungen (typischerweise eine separate
Funktion innerhalb der Quelldatei 401) mit einer anderen ISA kompiliert werden soll. In einer Ausführungsform
wird eine solche Bestimmung wiederum dadurch ausgeführt, daß die Rekonfigurationsübersetzungsanweisun-
8/50

DE 198 15 865 B4 2004.11.04
gen überprüft werden. Falls eine andere ISA identifiziert wird, kehrt der Kompiler 402 zu Schritt 302 zurück.

[0052] Anderenfalls, wenn das Ende der Quelldatei erreicht wird, werden die Assemblersprachenanweisun-
gen vom Assembler 409 assembliert (306), um Objektdateien 403 zu erzeugen. Die Objektdateien 403 werden
mit Hilfe des Softwarelinkers bzw. Softwarebinders 404 verbunden (307), der modifiziert wurde, um Bit-
strom-Speicherstellen und abgeglichene bzw. synchronisierte 64-Bit-Adressen zu behandeln, um ein ausführ-
bares Programm 405 zu erzeugen. Wie nachfolgend beschrieben wird, enthält das ausführbare Programm 405
aufgelöste Verweise (Referenzen) auf ISA-Bitströme 406, die FPGA-Architekturen festlegen. Nachdem das
ausführbare Programm 405 vom Binder 404 erzeugt wurde, wird dieses über die Netzwerkverbindung 408 an
das Ladeprogramm 407 gesendet, das auf einem rekonfigurierbaren Computer 10 abläuft, zum Laden (308)
in den Computer 10. Für den Fall einer dynamischen Verbindung werden ISA-Bitströme 406 auch über die
Netzwerkverbindung 408 an das Ladeprogramm 407 gesendet.

Beliebige und strukturierte Rekonfigurierung

[0053] In einer Ausführungsform läßt der Kompiler 402 eine beliebige Rekonfigurierung (arbitrary reconfigu-
ration) zu, bei der die Rekonfigurations-Übersetzungsanweisungen an einer beliebigen Stelle in dem Quell-
code lokalisiert sein können. Bei einer anderen Ausführungsform läßt der Kompiler 402 eine strukturierte Re-
konfigurierung (structured reconfiguration) zu, bei der Rekonfigurierungs-Übersetzungsanweisungen nur zu-
gelassen wird, wenn von einer Funktion aufgerufen oder zurückgekehrt wird, so daß jede Funktion mit einer
einzelnen ISA bezeichnet wird, die während des gesamten Ablaufs der Funktion im Kontext bzw. Zusammen-
hang sein soll. Während eine beliebige Rekonfigurierung zusätzliche Flexibilität und einen kleineren Quellcode
ermöglicht, sorgt eine strukturierte Rekonfigurierung für eine bessere Vorhersagbarkeit und einen besseren
Determinismus beim Laden einer ISA, was zu einer größeren Zuverlässigkeit führt. Weil der Maschinencode
generell für verschiedene ISAs verschieden ist, wird der Determinismus bevorzugt, so daß der Kompiler in der
Lage ist, einen geeigneten Maschinencode für ein bestimmtes Segment des Quellcodes zu erzeugen. Die be-
liebige Rekonfigurierung kann zu nicht deterministischen Situationen führen, wenn diese mit gewissen Kondi-
tionalkonstrukten im Quellcode kombiniert wird. Diese Situationen werden durch Verwendung einer strukturier-
ten Rekonfigurierung beseitigt.

[0054] Der folgende Auszug aus einem Code stellt ein Beispiel für eine nicht deterministische Rekonfiguration
dar, die auftreten kann, wenn eine beliebige Rekonfiguration verwendet wird:

[0055] Die ISA im Kontext nach der if-Anweisung kann zum Zeitpunkt der Kompilierung nicht bestimmt wer-
den, weil es zur Laufzeit zwei mögliche Pfade für den Steuerfluß gibt, von denen jeder eine Rekonfiguration zu
einer anderen ISA bewirkt. Deshalb kann der Kompiler für diese Prozedur keinen gültigen Maschinencode aus-
geben, solange ISA1 und ISA2 binär kompatibel sind. Ein solcher Nichtdeterminismus wird beseitigt, wenn eine
strukturierte Rekonfiguration verwendet wird, weil nur eine ISA pro Funktion spezifiziert werden kann.

[0056] Bei dem oben genannten Beispiel ist der Wert der Variablen x während des Rekonfigurationsvorgangs
geschützt, so daß auf diesen von der neuen IS-Architektur zugegriffen werden kann. In einer Ausführungsform
wird der Wert in einem Register bzw. Verzeichnis von ISA0 in herkömmlicher Art und Weise abgespeichert. Die
Rekonfigurierung in ISA1 oder ISA2 kann jedoch bewirken, daß dieses Verzeichnis aufhört, zu existieren oder
seinen Wert verliert, so daß man sich nicht auf das Verzeichnis verlassen kann, wenn es den Wert von x nach
der Rekonfiguration liefert. Der Kompiler 402 überwacht deshalb die lebenden Verzeichniswerte, die nach ei-
ner Rekonfiguration verwendet werden, um sicherzustellen, daß ihre Werte zur Verfügung stehen, wenn sie
benötigt werden.

[0057] Wenn eine beliebige Rekonfiguration verwendet wird, legt der Kompiler 402 fest, wie eine darauffol-
9/50

DE 198 15 865 B4 2004.11.04
gende ISA mit einem Zugriff auf eine Variable versehen wird, indem dieser berücksichtigt, wie die augenblick-
liche ISA die Variable abgespeichert hat, ebenso wie die Einrichtungen, auf die die nachfolgende ISA zugreifen
muß. In der strukturierten Rekonfiguration wird der Stapel dazu verwendet, um Werte abzuspeichern, wie dies
üblich ist, wenn Werte an eine aufgerufene Funktion übergeben oder von dieser abgerufen werden. Weil sich
die Verzeichnisarchitektur während der Rekonfiguration radikal ändern kann, werden lebende Variablen von
der scheidenden ISA abgespeichert und dann wieder von der nachfolgenden ISA geladen, wie nachfolgend
ausführlicher im Zusammenhang mit Fig. 6 erörtert wird.

[0058] Bei einer Ausführungsform realisiert der Kompiler 402 eine bekannte "Linear"-Optimierung (inlining op-
timization), um eine strukturierte Rekonfiguration zu ermöglichen, um den Aufwand bzw. Systemverwaltungs-
aufwand der JSR-Anweisung zu vermeiden. Inlining ist ein bekanntes Verfahren zur Optimierung der Kompi-
lierung von Funktionsaufrufen, indem die Vorgänge einer aufgerufenen Funktion "in der Linie" aufgerufen wer-
den, um so den Aufwand zu vermeiden, der mit dem Aufruf der Funktion in üblicher Weise verbunden ist. Somit
kann ein Code-Segment, wie beispielsweise:

wodurch die Leistungsfähigkeit verbessert wird, indem die Notwendigkeit einer Sprunganweisung und einer
Programmrückkehr umgangen wird und auch die zugeordneten Stapel-Schreibvorgänge, die beim Aufruf einer
Funktion und bei der Rückkehr von der Funktion involviert sind.

[0059] Außerdem kann eine zusätzliche Optimierung erfolgen, indem alle Rekonfigurations-Übersetzungsan-
weisungen bis auf die letzte eliminiert werden, wenn mehr als eine Rekonflgurations-Übersetzungsanweisung
in Folge auftritt. Somit kann die dritte Zeile (#pragma reconfig ISA0) von dem oben genannten Code-Segment
gelöscht werden.

[0060] Wenn man eine beliebige Rekonfiguration verwendet, kann eine aufgerufene Funktion eine Rekonfi-
guration bewirken, die wirksam bleibt, auch nachdem der Programmfluß zu der aufgerufenen Funktion zurück-
kehrt. Beispielsweise beginnt eine aufgerufene Funktion, die die oben genannte Code-Auflistung enthält, in ei-
ner ISA, rekonfiguriert zweimal und kehrt dann zu einer aufrufenden Funktion zurück. Von nachfolgenden An-
weisungen in der aufrufenden Funktion muß deshalb angenommen werden, daß diese die ISA von der letzten
Rekonfiguration verwenden. In einer Ausführungsform führt der Kompiler 402 eine interprozedurale Analyse
durch, um zu bestimmen, welche ISAs sich bei jedem Funktionsaufruf und bei jeder Funktionsrückkehr im Kon-
text befinden. Dort, wo Quelldateien separat in Objektdateien kompiliert werden, bevor diese in ausführbare
Programmanweisungen gebunden werden, kann es schwierig oder unmöglich sein, zu bestimmen, welche ISA
sich im Kontext befinden wird, nachdem eine aufgerufene Funktion zurückkehrt. In solchen Situationen kann
die ISA-Information abgespeichert werden, beispielsweise in Header-Dateien bzw. Kopfinformationsdateien,
um zu spezifizieren, welche ISA sich im Kontext bei einer Funktions-Einsprungstelle sowie bei einer Funkti-
ons-Austrittsstelle befindet, und zwar für alle externen Funktionen, die von einem Modul aufgerufen werden.
Alternativ können Parameter unter Funktionen weitergeleitet werden, um die ISA-Kontexte zu spezifizieren.
10/50

DE 198 15 865 B4 2004.11.04
[0061] Wenn eine strukturierte Rekonfiguration verwendet wird, ist die ISA-Information im Vereinbarungsteil
der Funktion vorgesehen, so daß keine Notwendigkeit besteht, daß der Kompiler 402 ISA-Spezifikationen ge-
gen den Steuerfluß verifiziert, und es gibt keine Möglichkeit, daß eine unerwartete Rekonfiguration während
einer aufgerufenen Funktion auftritt.

[0062] Ein weiterer Vorteil einer strukturierten Rekonfiguration besteht darin, daß diese den Rekonfigurations-
vorgang vom semantischen Standpunkt her besser wiedergibt. Weil eine Rekonfiguration generell ein Maß an
Aufwand mit sich bringt, das zumindest vergleichbar mit dem Aufwand für einen Funktionsaufruf ist, und weil
eine Rekonfiguration viele derselben Arten von Operationen beinhaltet, wie beispielsweise die Abspeicherung
von Werten auf einem Stapel, ist es wünschenswert, eine ähnliche Syntax sowohl für die Rekonfiguration als
auch für Funktionsaufrufe zu schaffen. Die strukturierte Rekonfiguration verbindet die Idee einer Rekonfigura-
tion mit der Idee von Funktionsaufrufen und verwirklicht deshalb dieses semantische Ziel. Weitere Beispiele
für eine strukturierte und beliebige Rekonfiguration werden nachfolgend erörtert.

Rekonfigurations-Übersetzungsanweisungen

[0063] Bei der bevorzugten Ausführungsform steht vir Rekonfigurations-Übersetzungsanweisungen #prag-
ma, eine normale Meta-Syntax, die bei der C-Sprache vorgesehen ist, um Information an den Kompiler weiter-
zuleiten, die aus der Sprachsyntax herausfällt. Die Verwendung der #pragma-Syntax ermöglicht es, daß die
Rekonfigurations-Übersetzungsanweisung im Kontext eines C-Programms verwendet werden kann. Ein Bei-
spiel für eine Rekonfigurations-Übersetzungsanweisung, die man in dem Quellcode finden kann, würde wie
folgt lauten:
#pragma func-isa func2 isa2

[0064] Bei einer Ausführungsform sind drei #pragma-Übersetzungsanweisungen vorgesehen. Jede Überset-
zungsanweisungen wird auf einem anderen Niveau der Granularität oder des Gültigkeitsbereichs betrieben
und beeinflußt deshalb einen spezifischen Teil des Codes:
– reconfig: beeinflußt eine Zwischen-Rekonfiguration zu einer neuen ISA (Gültigkeitsbereich ist ein beliebi-
ger Block des Codes);
– func_isa: spezifiziert für eine bestimmte Funktion eine ISA (Gültigkeitsbereich ist die Funktion); und
– default_func_isa: spezifiziert eine Standard-ISA (Gültigkeitsbereich ist die gesamte Datei).

[0065] Diese Rekonfigurations-Übersetzungsanweisungen resultieren in Registertransferniveau-Rekonfigu-
rationsanweisungen (RTL), die den Kompiler mit Information versorgen, um zu bestimmen, welche ISA für je-
den Block des Codes benötigt wird, wie nachfolgend ausführlicher beschrieben wird.

[0066] Das nachfolgende Codelisting stellt ein Beispiel für die Verwendung von jeder der oben genannten
Übersetzungsanweisungen in einer strukturierten Rekonfigurationsumgebung dar.
11/50

DE 198 15 865 B4 2004.11.04
[0067] Zeile 4 des Codelistings stellt ein Beispiel für die default_func_ isa-Übersetzungsanweisung dar, die
spezifiziert, daß ISA0 für jegliche Funktionen verwendet werden soll, die keine andere ISA spezifizieren. Der
Gültigkeitsbereich dieser Übersetzungsanweisung ist die gesamte Datei; deshalb gilt die Übersetzungsanwei-
sung für das gesamte gezeigte Listing.

[0068] Zeile 6 des Codelistings stellt ein Beispiel für die func_isa-Übersetzungsanweisung, die spezifiziert,
daß FIXED_POINT_ISA die geeignete ISA für die Funktion darstellt, die build_color_map genannt wird. Der
Gültigkeitsbereich dieser Übersetzungsanweisung ist die spezifizierte Funktion.

[0069] Zeile 21 des Codelistings stellt ein Beispiel für die reconfig-Übersetzungsanweisung dar, die spezifi-
12/50

DE 198 15 865 B4 2004.11.04
ziert, daß BYTE_MAP_ISA die geeignete ISA für den Codeblock darstellt, der unmittelbar der Übersetzungs-
anweisung folgt. Der Gültigkeitsbereich dieser Übersetzungsanweisung ist der in den Zeilen 22 bis 35 des Co-
delistings gezeigte Codeblock.

[0070] Das folgende Codelisting stellt ein Beispiel für die Verwendung von jeder der oben genannten Über-
setzungsanweisungen in einer beliebigen Rekonfigurationsumgebung dar.

[0071] Zeilen 9 und 19 enthalten reconfig-Übersetzungsanweisungen, die solange wirksam bleiben, bis eine
andere Rekonfigurations-Übersetzungsanweisung festgestellt wird. Für eine beliebige Rekonfiguration können
die Übersetzungsanweisungen an einem beliebigen Punkt in dem Code auftreten und sie sind nicht auf die
Funktionsebenen-Granularität begrenzt.

Kompilierungsverfahren

[0072] In den Fig. 3A und 3B ist ein Flußdiagramm eines bevorzugten Kompilierungsverfahrens gemäß der
13/50

DE 198 15 865 B4 2004.11.04
vorliegenden Erfindung gezeigt. Fig. 3A zeigt die Schritte, die von der Kompiler-Oberfläche ausgeführt wer-
den, während Fig. 3B die Schritte zeigt, die vom Kompiler-Kern ausgeführt werden. Die Oberfläche interpre-
tiert Rekonfigurations-Übersetzungsanweisungen und erzeugt RTL-Anweisungen, die vom Kern in üblicher
Weise interpretiert werden können. Wie man weiß, sind RTL-Anweisungen ISA-unabhängige Zwischenniveau-
anweisungen, die den herkömmlichen Kompilern eingesetzt werden, die beispielsweise in dem GNU C-Kom-
piler (GCC), der von der Firma Free Software Foundation (Cambridge, MA) hergestellt wird. RTL kann entspre-
chend der Spezifikation des Stanford University Intermediate Format (SUIF) ausgeführt werden, wie diese in
Stanford SUIF Compiler Group, SUIF: A Parallelizing & Optimizing Research Compiler, Tech. Rep.
CSL-TR-94-620, Computer Systems Lab, Stanford University, May 1994 offenbart ist. Beispielsweise könnte
die Quellcode-Anweisung:

x = y + 3;

in RTL wie folgt dargestellt werden:

r1 <– y

r0 <– r1 + 3

x <– r0

[0073] Das Verfahren aus den Fig. 3A und 3B zieht als Eingangsgröße die Quelldatei 401 heran, die eine Fol-
ge von Hochsprachen-Quellcodebefehlsanweisungen enthält und die auch mindestens eine Rekonfigurati-
ons-Übersetzungsanweisung enthält, die eine ISA zur Ausführung von nachfolgenden Anweisungen spezifi-
ziert. Um dies zu erläutern, sei eine strukturierte Rekonfigurationsumgebung angenommen, bei der eine Re-
konfiguration Funktion für Funktion erfolgt. Die Oberfläche des Kompilers 402 wählt (600) die nächste Hoch-
sprachenanweisung von der Quelldatei 401 aus und stellt fest (601), ob die ausgewählte Hochsprachenanwei-
sung ein Funktionsaufruf ist. Falls dies nicht der Fall ist, sendet (603) der Kompiler 402 einen RTL-Code für
diese Anweisung.

[0074] Falls der Kompiler 402 in Schritt 601 feststellt, daß die Anweisung ein Funktionsaufruf ist, stellt der
Kompiler 402 in Schritt 602 fest, ob die gerade aufgerufene Funktion in einer anderen ISA als der gerade im
Kontext befindlichen ISA abläuft. Falls dies nicht der Fall ist, gibt der Kompiler 402 im Schritt 605 einen
RTL-Code für den Funktionsaufruf und für das Einlesen des Rückkehrwerts der Funktion in Schritt 613 ab.

[0075] Falls der Kompiler 402 in Schritt 602 feststellt, daß die Funktion in einer anderen ISA arbeitet, gibt der
Kompiler 402 einen RTL-Code ab, der erforderlich ist, um die Rekonfiguration zu bewirken, und zwar ein-
schließlich des Abspeicherns aller lebenden Register in Schritt 607 und der Durchführung der Rekonfiguration
in Schritt 604. Bei der bevorzugten Ausführungsform handelt es sich bei der RTL-Rekonfigurationsanweisung
um keine Standard-RTL-Anweisung, die eine ISA-Identifikation enthält. Der Kompiler 402 gibt dann in Schritt
606 einen RTL-Code für den Funktionsaufruf ab. Der Kompiler 402 gibt dann in Schritt 609 den RTL-Code für
die Rekonfiguration zurück an die erste ISA, um in Schritt 611 lebende Register wieder abzuspeichern und um
den Rückgabewert der Funktion in Schritt 613 zu lesen.

[0076] Bei Beendigung der Schritte 603 oder 613 stellt der Kompiler 402 in Schritt 608 fest, ob eine andere
Hochsprachenanweisung berücksichtigt werden muß. Falls dies der Fall ist, kehrt der Kompiler 402 zu Schritt
600 zurück; anderenfalls fährt er mit Schritt 610 fort.

[0077] In Fig. 3B führt der Kern des Kompilers 402 die Schritte 610 bis 622 aus, um zuvor generierte RTL-An-
weisungen in Assemblersprache zu übersetzen.

[0078] Der Kompiler 402 wählt dann in Schritt 612 eine nächste RTL-Anweisung innerhalb der augenblicklich
berücksichtigten Gruppe von RTL-Anweisungen aus. Der Kompiler 402 erhält in Schritt 618 eine Regel, die
eine Weise spezifiziert, in der die augenblickliche Gruppe von RTL-Anweisungen in einen Satz von Maschi-
nenspracheanweisungen übersetzt werden kann, die für die augenblicklich berücksichtigte Gruppe von
RTL-Anweisungen existiert. Der Kompiler 402 erzeugt in Schritt 620 einen Satz von Maschinenspracheanwei-
sungen, die entsprechend der Regel der augenblicklich berücksichtigten Gruppe von RTL-Anweisungen ent-
spricht. Der Kompiler 402 stellt dann in Schritt 622 fest, ob eine andere RTL-Anweisung innerhalb des Kontext
einer nächsten Gruppe von RTL-Anweisungen berücksichtigt werden muß. Falls dies der Fall ist, kehrt der
Kompiler 402 zu Schritt 612 zurück. Anderenfalls führt der Kompiler 402 in Schritt 610 Registerreservierungs-
14/50

DE 198 15 865 B4 2004.11.04
schritte (register allocation) aus. Bekanntlich ist eine konsistente Registerarchitektur von einer ISA zur anderen
nicht unbedingt erforderlich. Außerdem können gewisse Innenschleifen-ISAs spezielle Register besitzen, für
die normale Registerreservierungsvorgänge nicht gelten. Im allgemeinen sind jedoch Außenschleifen-ISAs in
der Lage, normale Registerreservierungen zu verwenden.

[0079] Beispielsweise könnte der oben angeführte RTL-Code etwa wie folgt in einen Assembler-Code über-
setzt werden, wobei der Assembler-Code von ISA zu ISA verschieden wäre:

ld y, r3

ld [r3], r0

add 3, r0

st r0, [x]

[0080] Somit erzeugt der Kompiler 402 wahlweise und automatisch in Entsprechung mit Vielfach-ISAs wäh-
rend Kompilierungsvorgängen Assemblersprachenanweisungen. Oder mit anderen Worten: Während des
Kompilierungsvorgangs kompiliert der Kompiler 402 einen Einzelsatz von Programmanweisungen von den
Quelldateien 401 entsprechend einer variablen ISA. Bei dem Kompiler 402 handelt es sich vorzugsweise um
einen üblichen Kompiler, der modifiziert ist, um die bevorzugten Kompilierungsvorgänge durchzuführen, die
zuvor anhand der Fig. 3A und 3B beschrieben wurden.

[0081] Der Assembler 409 bzw. der Übersetzer für maschinenorientierte Programmiersprache wird betrieben,
um Maschinensprachenanweisungen, die vom Kompiler 403 erzeugt wurden, auch dazu zu verwenden, um
Objektdateien 403 zu erzeugen. Die Objektdateien 403 werden dann vom Binder bzw. Linker 404 gebunden,
der Bitstrom-Speicherstellen und 64-Bit, Bit-ausgerichtete bzw. Bit-abgeglichene Adressen handhabt, um ein
ausführbares Programm 405 zu erzeugen. Das Ladeprogramm 407 verkettet gleiche Segmente von einer An-
zahl von Objektdateien 403, einschließlich von Bitstrom-Segmenten, in ein einzelnes Speicherbild zur Über-
mittlung an einen rekonfigurierbaren Computer 10. Bei einer Ausführungsform erfolgt eine solche Verkettung
während der Laufzeit bzw. in Echtzeit; bei einer alternativen Ausführungsform erfolgt dies off-line. Es ist vor-
teilhaft, wenn der Binder 404 in der Lage ist, eine Speicherausrichtung bzw. einen Speicherabgleich auf dem
ausführbaren Programm 405 auszuführen, um für die Ausrichtungserfordernisse für den FPGA-Bitstrom zu
sorgen. Gewisse FPGA-Ladeprogrammhardware erfordert Bitströme von konstanter Größe. Deshalb kann der
Binder die Speicherausrichtung vornehmen, indem er Bitströme auffüllt, damit die Anforderungen für eine sol-
che Hardware erfüllt werden.

[0082] Wenn ein statisches Einbinden (static linking) verwendet wird, werden Bitströme 406 und ausführbare
Programme 405 vom Binder 404 zur Zeit des Bindens verbunden. Wenn ein dynamisches Binden verwendet
wird, werden die ISA-Bitströme 406 und die ausführbaren Programme 405 zum Zeitpunkt des Ladens des Pro-
gramms verbunden, so daß das ausführbare Programm 405 und die Bitströme 406 über die Netzwerkverbin-
dung 408 zu dem Ladeprogramm 407 gesendet werden, das auf einen rekonfigurierbaren Computer 10 läuft.

[0083] In Fig. 3C ist ein Flußdiagramm von weiteren Schritten gezeigt, die zur Erzeugung eines Maschinen-
sprachencodes gemäß einer Ausführungsform der vorliegenden Erfindung ausgeführt werden. Dieses Flußdi-
agramm gibt im Detail die Zwischendateien an, die erzeugt werden, wenn der RTL-Code in einen maschinen-
lesbaren Code für einen rekonfigurierbaren Computer übersetzt wird. Der RTL-Code ist mit Bemerkungen ver-
sehen 331, um anzuzeigen, welche ISA sich in Kontext für jede RTL-Anweisung in dem Code befindet. Zu die-
sem Zeitpunkt werden RTL-Anweisungen modifiziert. Der Kode wird dann in Schritt 332 mit Hilfe von ISA-ab-
hängigen Verfahren und ISA-unabhängigen Verfahren mittels eines Optimierungs-Dienstprogrammes opti-
miert. Obwohl das Optimierungsdienstprogramm eine ISA-abhängige Optimierung ausführt, verwendet seine
Ausgabe maschinenunabhängigen Code. Somit würde die Ausgabe dennoch auf einer beliebigen ISA laufen,
obwohl dies nicht notwendiger Weise optimal ist. Schließlich werden maschinenabhängige Befehle im Schritt
333 von dem optimierten Code mittels des Assemblers 409 erzeugt. Dieser Code verwendet abstrakte Register
(abstract registers) und andere maschinenabhängige Merkmale. Zusätzliche Schritte zum Aufräumen von Ver-
knüpfungen bzw. Links und weitere unwichtige Schritte können dann ausgeführt werden.

[0084] Bei der bevorzugten Ausführungsform der vorliegenden Erfindung umfassen die ISAs eine recon-
fig-Anweisung, die bewirkt, daß der FPGA von S-Einrichtung 12 einen Bitstrom lädt, auf den mittels eines Pa-
rameters der Anweisung verwiesen wird. Somit besitzt jede ISA zumindest einen Programmverschiebungstyp,
15/50

DE 198 15 865 B4 2004.11.04
der mit Programmverschiebungsbitstromadressen in Zusammenhang steht, die als Parameter für die recon-
fig-Anweisung der ISAs verwendet werden. Die Programmverschiebungseinsprungstelle in der Objektdatei
teilt dem Binder mit, die augenblickliche Adresse einer Größe in ein Segment eines ausführbaren Programms
zum Zeitpunkt der Bindung zu ersetzen. Programmverschiebungstypen werden nachfolgend ausführlicher be-
schrieben.

[0085] Wie nachfolgend beschrieben wird, werden Bitströme als Datenobjekte definiert, die sich in einem be-
stimmten Abschnitt befinden, möglicherweise nur zum Lesen, und deshalb sind Standard-Programmverschie-
bungsverfahren in der Lage, für eine Programmverschiebung von Bitstromadressen zu sorgen, die in analoger
Weise mit ISA-reconfig-Anweisungen zu irgendwelchen programmdefinierten, nur lesbaren Daten verwendet
werden.

[0086] Der rekonfigurierbare Computer 10 führt die Ergebnisse von dem Ladeprogramm aus, das nachfol-
gend anhand der Fig. 9 bis 25B beschrieben wird. Insbesondere erkennt der rekonfigurierbare Computer 10
reconfig-Anweisungen und lädt geeignete ISA-Bitströme, wie sie in Parametern für solche Anweisungen spe-
zifiziert sind.

Erhaltung des Programmzustands

[0087] Eine FPGA-Rekonfiguration durch Laden einer neuen ISA kann zu einem Verlust von interner Hard-
warezustandsinformation führen. Folglich behält das erfindungsgemäße System und das Verfahren den Pro-
grammzustand während einer Rekonfiguration bei, um den Verlust der Ausführungsbefehlfolge bei solchen
Übergängen der Hardware zu vermeiden.

[0088] Während der Rekonfiguration verwendet der rekonfigurierbare Computer 10 vorzugsweise einen Auf-
rufstapel, um irgendwelche Daten abzuspeichern, die erforderlich sein könnten, nachdem die neue ISA gela-
den worden ist. Ein solcher Speichervorgang wird durch Schieben von Werten auf den Aufrufstapel bewerk-
stelligt und durch Abspeichern des Stapelzeigers in einer vordefinierten Speicherzelle, die nicht durch die Re-
konfiguration beeinflußt werden wird. Im Anschluß an die Rekonfiguration verwendet der rekonfigurierbare
Computer 10 den Stapelzeiger, um die zuvor abgespeicherten Werte von dem Aufrufstapel auszuspeichern.

[0089] Es sind Stapel in Laufzeitumgebungen für laufende Maschinenprogramme bekannt, die von Hochspra-
chen kompiliert wurden, die eine Rekursion unterstützen, wie beispielsweise C/C++, Lisp und Pascal. Ein Sta-
pel ist in einem Bereich des Speichers realisiert und der Stapelzeiger (stack Pointer; SP) wird in der ISA dazu
verwendet, um die Adresse des Beginns des Stapels zu behalten. Ein Wert, beispielsweise die Programmda-
ten oder die Adresse, wird in dem Stapel gespeichert (oder auf den Stapel "geschoben"), indem der Stapelzei-
ger dekrementiert wird und der Wert in die in dem Stapelzeiger enthaltene Adresse geschrieben wird. Der Wert
wird wieder von dem Stapel abgerufen (oder vom Stapel "heruntergeschoben"), indem der Wert von der in dem
Stapelzeigerregister enthaltenen Adresse gelesen wird; dann wird der Stapelzeiger inkrementiert.

[0090] Bei der vorliegenden Erfindung wird der dynamische Zustand des Programms, wie beispielsweise lo-
kale Variablen und die Speicherstelle der nächsten Anweisung, die die Hardware ausführen soll, die typischer-
weise in einem Adreßregister für den nächsten Anweisungszeiger (Next Instruction Pointer Address Register;
NIPAR) oder in einen Programmzähler (PC) abgespeichert ist, vor der Rekonfiguration der Hardware auf dem
Stapel abgespeichert. Der Stapelzeiger wird bei der vorbestimmten Speicheradresse aufbewahrt. Somit wer-
den die Werte des Stapelzeigers und des NIPARs bei der Hardware-Rekonfiguration aufbewahrt, so daß auf
diese später Zugriff genommen werden kann, wenn die Ausführung des Programms beginnt.

[0091] In Fig. 6 ist ein Flußdiagramm für ein Verfahren zum Konservieren des Programmzustands gemäß der
vorliegenden Erfindung gezeigt. Bei Schritt 601 wird eine reconfig-Anweisung empfangen, die anzeigt, daß ein
Bitstrom, der eine neue ISA-Konfiguration darstellt, in die Prozessor-Hardware geladen werden soll. Das Ar-
gument für die reconfig-Anweisung ist eine physikalische Speicheradresse, die die zu ladende ISA-Konfigura-
tion enthält.

[0092] Der Stapelzeiger wird bei Schritt 652 dekrementiert und der NIPAR wird in Schritt 653 in die von dem
Stapelzeiger angezeigte Adresse hineingeladen, wodurch NIPAR auf den Stapel geschoben wird. Der Stapel-
zeiger wird in Schritt 654 unter einer vorbestimmten Adresse im Speicher abgespeichert, die der neuen
ISA-Konfiguration bekannt ist. Die neue ISA-Konfiguration wird dann im Schritt 655 in die Hardware hineinge-
laden, indem die FPGA 12 dazu veranlaßt wird, den ISA-Bitstrom von einer Speicherstelle in dem Bitstrom-
speicher 132 zu lesen. Sobald die neue Konfiguration geladen worden ist, lädt diese in Schritt 656 den Stapel-
16/50

DE 198 15 865 B4 2004.11.04
zeiger von der bekannten, vorbestimmten Adresse und lädt dann NIPAR von dem Stapel, indem dieser von der
Speicherstelle abgerufen wird, die in Schritt 657 in dem Stapelzeiger abgespeichert wurde und dann wird der
Stapelzeiger in Schritt 658 inkrementiert. Ein Beispiel für Stapelinhalte während des Rekonfigurationsvorgangs
aus Fig. 6 wird nachfolgend anhand der Fig. 8A bis 8C beschrieben.

Realisierung einer strukturierten Rekonfiguration

[0093] Bei einer Ausführungsform der vorliegenden Erfindung wird eine strukturierte Rekonfiguration dadurch
bewerkstelligt, daß reconfig-Anweisungen von dem Quellcode in eine Folge von Assemblersprachenanwei-
sungen übersetzt werden. Wie zuvor beschrieben wurde, werden bei der strukturierten Rekonfiguration Rekon-
figurations-Übersetzungsanweisungen nur dann zugelassen, wenn eine Funktion aufgerufen wird oder zu ei-
ner Funktion zurückgekehrt wird, so daß jede Funktion mit einer einzigen ISA gekennzeichnet ist, die sich wäh-
rend der gesamten Ausführung der Funktion im Kontext befinden soll. In Fig. 7 ist ein Flußdiagramm für ein
Verfahren zur Realisierung der strukturierten Rekonfiguration gemäß einer Ausführungsform der vorliegenden
Erfindung gezeigt.

[0094] Das Verfahren gemäß Fig. 7 wird ausgeführt, wenn der Aufruf einer Funktion eine aufgerufene Funk-
tion mit sich bringt, die eine ISA-Rekonfigurationsanweisung besitzt. Die S-Einrichtung 12 rettet in Schritt 707
lebende Registerwerte, so daß diese nicht als Folge der Rekonfiguration verlorengehen. Die S-Einrichtung 12
verwendet die augenblickliche ISA, um in Schritt 701 Parameter für die aufgerufene Funktion auf den Stapel
zu schieben, weil diese Parameter in Registern vorliegen können. Die S-Einrichtung 12 rekonfiguriert in Schritt
702 in die neue ISA und ruft in Schritt 703 das Unterprogramm auf, das die Funktion darstellt, wobei eine An-
weisung, wie beispielsweise "jsr", der ISA der Zielfunktion verwendet wird. Nachdem die aufgerufene Funktion
die Ausführung beendet hat, kehrt eine Rückkehranweisung, wie beispielsweise "ret", in Schritt 704 zu der auf-
rufenden Funktion zurück. S-Einrichtung 12 10 rekonfiguriert in Schritt 705 zu der ursprünglichen ISA für die
aufrufende Funktion, liest in Schritt 706 einen Rückgabewert der aufgerufenen Funktion und speichert lebende
Registerwerte in Schritt 708 wieder ab. Die Verfahren aus Fig. 7 zur Weitergabe von Stapelparametern und
zur Rückgabe von Werten können in üblicher Weise realisiert werden, wie sie in nicht rekonfigurierbaren Com-
putern verwendet werden, die keine Parameter oder Rückgabewerte in Register weiterleiten.

[0095] Das folgende stellt ein Beispiel für einen Code zur Realisierung einer strukturierten Rekonfiguration
dar:

[0096] Zwei Funktionen sind bekannt: main, das ISA0 verwendet, einen Mehrzweck-Anweisungssatz; und
func1, das einen anderen Anweisungssatz (another IS) verwendet, der als another_isa bezeichnet wird. Die
#pragma-Anweisungen spezifizieren die Anweisungssätze für die zwei Funktionen.

[0097] In einer Ausführungsform der vorliegenden Erfindung, die eine strukturierte Rekonfiguration verwen-
det, würde der Kompiler 402 die Funktion call bar = func1 (&foo) von dem oben genannten Listing in den fol-
genden Assemblercode übersetzen. Dabei wurden Kommentare zum Zwecke der Erläuterung hinzugefügt.
17/50

DE 198 15 865 B4 2004.11.04
[0098] Diese Seite bleibt aus technischen Gründen frei.

[0099] Außerdem könnte Assemblercode zum Abspeichern und wieder Herstellen von lebenden Registerwer-
ten vor der Zeile 1 bzw. nach der Zeile 18 hinzugefügt werden.

[0100] In den Fig. 8A bis 8C sind Diagramme der Speicherinhalte bei verschiedenen Punkten während der
Ausführung des Assemblercodes gezeigt. Die Fig. 8A zeigt den Zustand des Stapels 800 nach der Ausführung
der Zeilen 1 bis 8 des oben angeführten Assemblercodes. Diese Zeilen bilden den Stapelrahmen, der von
func1 verwendet wird. Zunächst wird Platz geschaffen, um einen Rückgabewert abzuspeichern; dann wird die
Adresse der Variablen foo auf den Stapel geschoben. Die Speicherstelle 801 enthält die Variable foo im Sta-
pelrahmen für die Funktion main. In diesem Beispiel wird die Variable bar in einem ISA0-Register abgespei-
chert und erscheint deshalb nicht auf dem Stapel 800. Die Speicherstelle 802 wird für einen Rückgabewert re-
serviert und die Speicherstelle 803 enthält die Adresse der Variablen foo.

[0101] Fig. 8B zeigt den Zustand des Stapels 800 auf halben Wege während der Ausführung der reconfig-An-
weisung bei Zeile 10. Wie man auch durch Vergleich mit Fig. 6 erkennen wird, entspricht dieser Zustand des
Stapels 800 dem Ende des Schrittes 654, unmittelbar bevor die neue Konfiguration geladen werden soll. Die
augenblickliche Adresse der nächsten Anweisung (NIPAR) wurde auf den Stapel 800 bei der Speicherstelle
804 geschoben und der Stapelzeiger SP wurde auf eine vorbestimmte Adresse (nicht gezeigt) geschrieben.
An dieser Stelle werden die Schritte 655 bis 658 ausgeführt, nämlich die Hardware wird rekonfiguriert, der Sta-
pelzeiger wird geladen und NIPAR wird ausgespeichert, wie zuvor beschrieben wurde.

[0102] Fig. 8C zeigt den Zustand des Stapels 800 bei der Einsprungstelle zu func1, wobei die jsr func1-An-
weisung bei Zeile 12 verwendet wird. Die Speicherstelle 804 enthält nun die Rückkehradresse. Wenn func1
zurückkehrt, rekonfiguriert der Computer 10 zu ISA0 zurück, wird der Parameter &foo von dem Speicher ent-
fernt und wird der Rückkehrwert in die Variable bar gelesen, die der Kompiler 402 für Register d0 reserviert
hatte.
18/50

DE 198 15 865 B4 2004.11.04
Ausführbares Programm und Bindungsformat

[0103] Die bevorzugte Ausführungsform der vorliegenden Erfindung erweitert Standardparadigmen zur Soft-
wareentwicklung, um Bitströme mit einzuschließen, die Hardwarekonfigurationen festlegen, die einen mit Hilfe
von FPGAs realisierten Computer spezifizieren, der binäre Maschinenanweisungen von einer ausführbaren
Datei 405 ausführt. Dies wird dadurch bewerkstelligt, daß ein neues Dateiformat verwendet wird, das als ICA-
RUS ELF bezeichnet wird und das eine Erweiterung des Executable and Linking Format (ELF) umfaßt, das
häufig auf Unix-Workstations verwendet wird und in UNIX System Laboratories, Inc., System V Application Bi-
nary Interface, 3. Auflage, 1993 beschrieben ist und das hiermit im Wege der Bezugnahme in dieser Patent-
beschreibung mit aufgenommen sei.

[0104] Wie in dem UNIX System Laboratories, Inc., System V Application Binary Interface, 3. Auflage, 1993
beschrieben ist, handelt es sich bei ELF-Dateien entweder um programmverschiebliche (relocatable) Dateien
(Objektdateien 403) oder um ausführbare Dateien 405. ELF sorgt für Parallelansichten der Inhalte der Datei,
was die differierenden Erfordernisse dieser zwei Formate reflektiert. In Fig. 5 ist im Teil 501 ein typisches
ELF-Dateiformat in einer Binden-Ansicht und im Teil 502 in einer Ausführen-Ansicht gemäß dem Stand der
Technik dargestellt. Der ELF-Kopfteil 503 enthält einen "Plan", der die Organisation der Datei beschreibt. Die
Abschnitte 505 beinhalten den Großteil der Information der Objektdatei für die Binden-Betrachtungsweise 501,
einschließlich von Anweisungen, Daten, Symboltabellen, Verschiebungsinformation und dergleichen, wie
nachfolgend ausführlicher beschrieben wird. Die Abschnitte 507, die in der Ausführen-Darstellung 502 verwen-
det werden, entsprechen den Abschnitten 505, wobei jeder Abschnitt 507 einem oder mehreren Abschnitten
505 entspricht. Außerdem können die Abschnitte 507 Kopfteile umfassen, die Information enthalten, wie bei-
spielsweise die Information, ob der Abschnitt 507 sich in einem Schreib-Speicher befindet, was auf die Ab-
schnitte 505 anwendbar sein kann oder nicht. Im allgemeinen enthalten die Abschnitte 505 Information, die
während des Bindens verwendet wird, während die Abschnitte 507 Information enthalten, die während des La-
dens verwendet wird.

[0105] Die Programmkopfteiltabelle 504 (falls vorhanden), teilt dem Computer 10 mit, wie ein Verarbeitungs-
bild aufzubauen ist. Die Abschnittskopfteiltabelle 506 enthält Information, die die Abschnitte 505 beschreibt.
Jeder Abschnitt 505 besitzt einen Eintrag in Tabelle 506; jeder Eintrag gibt Information an, wie beispielsweise
den Namen des Abschnitts, die Größe und dergleichen. Die in Fig. 5 gezeigten Elemente können in einer be-
liebigen Reihenfolge vorgesehen sein und einige Elemente können fehlen.

[0106] Weitere Details, die die in Fig. 5 gezeigten Elemente betreffen, kann man in UNIX System Laborato-
ries, Inc., System V Application Binary Interface, 3. Auflage, 1993 finden. Die folgende Beschreibung erklärt
die Unterschiede zwischen dem Standard-ELF, wie in System V Application Binary Interface beschrieben, und
dem ICARUS ELF-Dateiformat, das bei der vorliegenden Erfindung verwendet wird.

[0107] Das ICARUS ELF-Dateiformat verwendet prozessorabhängige Merkmale von ELF, um für eine Ver-
schiebung von Bitstromadressen zu sorgen, die innerhalb des Programmtextes verwendet werden, und um für
eine Verschiebung und für ein Binden von Bitströmen in Segmente zu sorgen, die während des Ablaufens des
Programms innerhalb eines hierfür vorgesehenen Bitstromspeichers 132 geladen werden können. ICARUS
ELF erweitert somit Standard-ELF, um die Abspeicherung von Bitströmen zu erleichtern, die FPGA-Konfigura-
tionen sowie den ausführbaren Code definieren, der auf der FPGA-definierten Hardware läuft.

[0108] ICARUS ELF ergänzt den Standard-ELF, um für neue Datentypen, Abschnitte, Symboltypen und Ver-
schiebungstypen für ISA-Bitströme zu sorgen.

Datentypen

[0109] Bei der bevorzugten Ausführungsform verwendet der rekonfigurierbare Computer Bitadressen, die 64
Bit breit sind. Die Adressen zeigen auf den Bitversatz des niedrigstwertigen Bits des Daten-Gegenstands. ICA-
RUS ELF ist für 64-Bit Byte-Adressen ausgelegt, wobei die Adresse auf das erste Byte (niedrigstwertig für klei-
ne Endian-Prozessoren, höchstwertig für große Endian-Prozessoren) für jedes Datenelement zeigt. Während
die Versätze in Kopfteilen bezüglich der Bytes definiert werden, werden zu verschiebende Adressen in 64-Bit
Bit-Adressen spezifiziert. Dies läßt die Verwendung eines Binders auf einem Byte-orientierten Computer zu.
ICARUS ELF verwendet zwei neue Datentypen, um eine 64-Bitadressierung zu erleichtern:
– ICARUS_ELF_Addr: Größe-8-Bytes, mit Ausrichtung, die für die augenblickliche ISA durch Kisa festgelegt
wird, das den Zweier-Logarithmus der Bitbreite des Speichers darstellt (beispielsweise 3 für 8-Bit, 4 für
16-Bit).
19/50

DE 198 15 865 B4 2004.11.04
– ICARUS_ELF_Off: Byte-Versatz in die Datei, Größe 4 Bytes, Ausrichtung 1 Byte.

Abschnitte

[0110] Eine Ausführungsform der vorliegenden Erfindung fügt einen neuen Abschnitt hinzu, der FPGA-Bit-
stromdaten enthält, mit dem Namen .ICARUS.bitstream. Einer oder mehrere solcher Abschnitte können vor-
gesehen sein. Bei der bevorzugten Ausführungsform ist jeder solcher Abschnitte vom ELF-Abschnittstyp
SHT_PROGBITS und besitzt das ELF-Abschnittsattribut SHF_ALLOC.SHT_PROGBITS bezeichnet einen Ab-
schnitt, der Information enthält, die durch das Programm festgelegt wird, deren Format und Bedeutung aus-
schließlich über das Programm festgelegt wird. Attribut SHF_ALLOC spezifiziert, daß der Abschnitt während
der Vorgangsausführung einen Speicher besetzt, Information, die für das Ladeprogramm nützlich sein kann.

[0111] Weil ELF mehrere Beispiele für einen Abschnitt mit einem bestimmten Namen erlaubt, kann die vor-
liegende Erfindung einen Abschnitt pro Bitstrom verwenden, oder kann alternativ alle Bitströme in einen Ab-
schnitt mit geeigneter Ausrichtung verbinden.

[0112] Es ist vorteilhaft, für einen neuen Abschnitt für Bitströme zu sorgen, so daß Hardware mit speziellen
Speicherbereichen für Bitströme hergestellt werden kann. Der separate Abschnitt erleichtert die Plazierung
von Bitströmen in diesen speziellen Speicherbereichen mit Hilfe des Ladeprogramms. Falls solche Speicher-
bereiche nicht erforderlich sind, kann die vorliegende Erfindung unter Verwendung eines Standard-Datenab-
schnitts für Nur-Lese-Programmdaten realisiert werden, wie beispielsweise .rodata und .rodata1, wie in Sys-
tem V Application Binary Interface beschrieben ist, anstatt das spezielle Bitstromabschnitte eingeführt werden.

Symbole

[0113] sObjektdateien enthalten Symboltabellen, die Information zur Lokalisierung bzw. Fixierung und zur
Verschiebung der Symboladressen und Verweise eines Programms halten. In einer Ausführungsform der vor-
liegenden Erfindung besitzt jeder Bitstrom, der in dem Abschnitt .ICARUS.bitstream enthalten ist, einen Eintrag
in der Symboltabelle der Objektdatei. In der Binden-Ansicht 501 aus Fig. 5 ist die Symboltabelle in einem se-
paraten Abschnitt 505 lokalisiert. Das Symbol hat die folgenden Attribute:
– st_narre: Der Name des Symbols ist der Name, der verwendet wird, um es in der Maschinensprachen-
quelle für die Objektdatei zu referenzieren. st_name enthält einen Index in die Symbolstringtabelle der Ob-
jektdatei, die die Zeichendarstellungen der Symbolnamen enthält.
st_value: Sorgt bei Bitstrom-Symbolen für den Versatz des Bitstroms innerhalb des Abschnittes.
st_size: Größe des Bitstroms in Bits.
st_info: Spezifiziert den Typ und die Binde-Attribute. Ein neuer Typ wird verwendet, der als
STT_BITSTREAM bezeichnet wird. Dieser neue Typ ist charakteristisch für die vorliegende Erfindung und
zeigt an, daß dieses Symbol sich in einem FPGA-Bitstrom befindet. Der Bindevorgang legt die Sichtbarkeit
der Bindung und das Verhalten fest und kann STB_LOCAL oder STB_GLOBAL sein. STB_LOCAL zeigt
an, daß das Symbol nicht außerhalb der Objektdatei, die die Definition des Symbols enthält, sichtbar ist.
STB-GLOBAL zeigt an, daß das Symbol für alle Dateien, die kombiniert werden, sichtbar ist. Für Bit-
strom-Symbole kann das Binden entweder STB_LOCAL oder STB-GLOBAL sein. Weil Bitströme für ge-
wöhnlich von mehr als einem Codeabschnitt verwendet werden und deshalb in eine Bibliothek zur Wieder-
verwendung übersetzt werden können, ist es wahrscheinlicher, daß STB-GLOBAL verwendet wird.

[0114] Verschiebungen (Relocations) Verschiebung ist der Vorgang der Verbindung symbolischer Referen-
zen mit symbolischen Definitionen. Verschiebbare Dateien enthalten Verschiebungen bzw. Programmver-
schiebungen, die Daten darstellen, die beschreiben, wo spezielle symbolische Definitionen gefunden werden
können, so daß der Binder diese lokalisieren kann. Spezielle Verschiebungsvorgänge variieren von ISA zu
ISA, wie dies auch bei Standard-ELF-Dateien der Fall ist. Verschiebungstypen sind innerhalb der Felder r_info
von ICARUS_ELF_REL-Strukturen und ICARUS_ELF_RELA-Strukturen enthalten. Beispiele für solche Ver-
schiebungstypen umfassen:
– ICARUS_64_BIT_ADDR: 64-Bitadressen, die zum Zeitpunkt der Übersetzung bestimmt werden. Typi-
scherweise gemeinsam mit der eldi-Anweisung in den Prozessor geladen.
– ICARUS_64_BIT_OFFSET: Relativadreßversatz von augenblicklicher NIPAR-Stelle zu einem Symbol, ty-
pischerweise einem Kennzeichen (label). Von den br-Anweisungen (branch; Programmverzweigung) ver-
wendet.

[0115] Aus den genannten Gründen macht erfindungsgemäß das zuvor beschriebene ICARUS ELF-Objekt-
dateiformat neuartigen Gebrauch von der Softwarebindungstechnologie, um Computerprogramme gemein-
20/50

DE 198 15 865 B4 2004.11.04
sam mit der Hardwarekonfiguration zusammenzufügen, auf der das Programm läuft, wobei ein rekonfigurier-
barer Computer 10 verwendet wird, wie er zuvor beschrieben wurde. Das System und das Verfahren gemäß
der vorliegenden Erfindung kann eine Kompilierung für Mehrfach-ISAs innerhalb einer einzigen Quelldatei aus-
führen und ist bei einer Ausführungsform in der Lage, Maschinenanweisungen und Daten gemeinsam mit
Hardwarekonfigurationen zusammenzufügen, die erforderlich sind, um die Maschinenin struktionen auszufüh-
ren.

[0116] Nachfolgend wird anhand der Fig. 9 bis 11D eine bevorzugte Hardware-Umgebung beschrieben, in
der die Erfindung bevorzugt angewendet wird.

[0117] In Fig. 9 ist ein Blockdiagramm einer bevorzugten Ausführungsform eines Systems 3010 für ein ska-
lierbares, paralleles, dynamisch rekonfigurierbares Berechnen dargestellt, das gemäß der Erfindung ausge-
führt wird. Das in. Fig. 9 gezeigte System 3010 entspricht im wesentlichen dem in Fig. 1 gezeigten System 10.
Das System 3010 weist vorzugsweise zumindest eine S-Einrichtung 3012, eine T-Einrichtung 3014 entspre-
chend jeder S-Einrichtung 3012, eine universelle Verbindungsmatrix (GPIM) 3016, zumindest eine Ein-/Aus-
gabe-T-Einrichtung 3018, ein oder mehrere Ein-/Ausgabevorrichtungen 3020 und eine Master-Zeitbasiseinheit
3022 auf. In der bevorzugten Ausführungsform weist das System 3010 mehrere S-Einrichtungen 3012 und
folglich mehrere T-Einrichtungen 3014 plus mehrere Ein-/Ausgabe-T-Einrichtungen 3018 und mehrere
Ein-/Ausgabe-Vorrichtungen 3020 auf.

[0118] Jede der S-Einrichtungen 3012, der T-Einrichtungen 3014 und der Ein-/Ausgabe-T-Einrichtungen
3018 hat einen Master-Zeitsteuereingang, der mit einem Zeitsteuerausgang der Master-Zeitbasiseinheit 3022
verbunden ist. Jede S-Einrichtung 3012 hat einen Eingang und einen Ausgang, der mit der entsprechenden
T-Einrichtung 3014 verbunden ist. Zusätzlich zu dem Eingang und dem Ausgang, der mit der entsprechenden
S-Einrichtung 3012 verbunden ist, hat jede T-Einrichtung 3014 einen Leiteingang und einen Leitausgang, wel-
che mit der GPI-Matrix 3016 verbunden sind. Dementsprechend hat jede Ein-/Ausgabe-T-Einrichtung 3018 ei-
nen Eingang und einen Ausgang, welcher mit einer Ein-/Ausgabe-Vorrichtung 3020 verbunden ist, und einen
Leiteingang und einen Leitausgang, der mit der GPI-Matrix 3016 verbunden ist.

[0119] Wie unten im einzelnen noch beschrieben wird, ist jede S-Einrichtung 3012 ein dynamisch rekonfigu-
rierbarer Rechner. Die GPI-Matrix 3016 stellt ein paralleles Punkt-zu-Punkt-Verbindungsmittel dar, welches
eine Kommunikation zwischen T-Einrichtungen 3014 erleichtert. Der Satz T-Einrichtungen 3014 und die
GPI-Matrix 3016 bilden ein paralleles Punkt-zu-Punkt-Verbindungsmittel für einen Datentransfer zwischen
S-Einrichtungen 3012. In ähnlicher Weise bilden die GPI-Matrix 3016, der Satz T-Einrichtungen 3014 und der
Satz Ein-/Ausgabe-T-Einrichtungen 3018 ein paralleles Punkt-zu-Punkt-Verbindungsmittel für einen Ein-/Aus-
gabe-Transfer zwischen S-Einrichtungen 3012 und jeder Ein-/Ausgabevorrichtung 3020. Die Master-Zeitbasis-
einheit 3022 weist einen Oszillator auf, der ein Master-Zeitsteuersignal zu jeder S-Einrichtung 3012 und jeder
T-Einrichtung 3014 schafft.

[0120] In einer beispielhaften Ausführungsform ist jede S-Einrichtung 3012 durch Verwenden eines Xilinx
C4013 (Xilinx, Inc., San Jose, CA) feldprogrammierbaren Gate-Array (FPGA) ausgeführt, das mit einem 64
Megabyte Randomspeicher (RAM) verbunden ist. Jede T-Einrichtung 3014 ist durch Verwenden von annä-
hernd 50% der rekonfigurierbaren Hardware-Ressourcen in einem Xilinx XC4013 FPGA ausgeführt, ebenso
jede Ein-/Ausgabe-T-Einrichtung 3018 ist. Die GPI-Matrix 3014 ist als ein ringförmiges Verbindungsmaschen-
netz ausgeführt. Die Master-Zeitbasiseinheit 3020 ist ein Taktoszillator, der vorgesehen ist, um eine Vertei-
lungsschaltung zu takten, um eine systemweite Frequenzreferenz zu schaffen. Vorzugsweise übertragen die
GPI-Matrix 3014 die T-Einrichtung 3012 und die Ein-/Ausgabe-T-Einrichtung 3018 Information entsprechend
ANSI/IEEE-Standard 1596 bis 1992, wodurch ein skalierbares kohärentes Interface (SCI) definiert ist.

[0121] In der bevorzugten Ausführungsform weist das System 3010 mehrere S-Einrichtungen 3012 auf, wel-
che parallel arbeiten. Der Aufbau und die Funktionalität jeder der einzelnen S-Einrichtungen 3012 wird im ein-
zelnen anhand von Fig. 10 bis 20B beschrieben. In Fig. 10 ist ein Blockdiagramm einer bevorzugten Ausfüh-
rungsform einer S-Einrichtung 3012 dargestellt. Die S-Einrichtung 3012 weist eine erste lokale Zeitbasiseinheit
3030, eine dynamisch rekonfigurierbare Verarbeitungs-(DRP-)Einheit 3032 zum Ausführen von Programmbe-
fehlen und einen Speicher 3034 auf. Die erste lokale Zeitbasiseinheit 303 hat einen Zeitsteuereingang, welche
den Master-Zeitsteuereingang der S-Einrichtung bildet. Die erste lokale Zeitbasiseinheit 3030 hat auch einen
Zeitsteuerausgang, der ein erstes lokales Zeitsteuersignal oder ein Taktsignal an einem Zeitsteuereingang der
DRP-Einheit 3032 und an einem Zeitsteuereingang des Speichers 3034 über eine erste Zeitsteuerleitung 3040
schafft. Die DRP-Einheit 3032 hat einen Steuersignal-Ausgang, der mit einem Steuersignaleingang des Spei-
chers 3034 über eine Speichersteuerleitung 3042 verbunden ist, einen Adressenausgang, der mit einem
21/50

DE 198 15 865 B4 2004.11.04
Adresseneingang des Speichers 3034 über eine Adressenleitung 3044 verbunden ist, und einen zweiseitig ge-
richteten Steuerport, der mit einem zweiseitig gerichteten Steuerport des Speichers 3034 über eine Spei-
cher-Ein-/Ausgabeleitung 3046 verbunden ist. Die DPR-Einheit 3032 hat zusätzlich einen zweiseitig gerichte-
ten Steuerport, der über einen zweiseitig gerichteten Steuerport der entsprechenden T-Einrichtung 3014 über
eine externe Steuerleitung 3048 verbunden ist. Wie in Fig. 10 dargestellt, überspannt die Speichersteuerlei-
tung 3042 X-Bits; die Adressenleitung 3044 überspannt M-Bits; die Speicherein-/Ausgabeleitung 3046 über-
spannt (N x k) Bits und die externe Steuerleitung 3048 überspannt Y-Bits.

[0122] In der bevorzugten Ausführungsform empfängt die erste lokale Zeitbasiseinheit 3030 das Master-Zeit-
steuersignal bzw. Master-Taktsignal von der Master-Zeitbasiseinheit 3022. Die erste lokale Zeitbasiseinheit
3030 erzeugt das erste lokale Zeitsteuersignal auf dem Master-Zeitsteuersignal und gibt das erste lokale Zeit-
steuersignal an die DRP-Einheit 3032 und den Speicher 3034 ab. In der bevorzugten Ausführungsform kann
sich das erste lokale Zeitsteuersignal von einer S-Einrichtung 3012 zur anderen ändern. Folglich arbeiten die
DRP-Einheit 3032 und der Speicher 3034 in einer vorgegebenen S-Einrichtung 3012 mit einer unabhängigen
Taktrate bezüglich der DRP-Einheit 3032 und dem Speicher 3034 in einer anderen S-Einrichtung 3012. Vor-
zugsweise ist das erste lokale Zeitsteuersignal phasensynchronisiert mit dem Master-Zeitsteuersignal. In der
bevorzugten Ausführungsform ist die erste lokale Zeitbasiseinheit 3030 durch Verwenden einer phasengekop-
pelten Frequenzumwandlungsschaltung ausgeführt, die eine phasengekoppelte Detektionsschaltung enthält,
die mit Hilfe von rekonfigurierbaren Hardware-Ressourcen augeführt ist. Der Fachmann weiß, daß in einer al-
ternativen Ausführungsform die erste lokale Zeitbasiseinheit 3030 auch als ein Teil eines Taktverteilungsbaums
ausgeführt sein könnte.

[0123] Der Speicher 3034 ist vorzugsweise als ein RAM ausgeführt und speichert Programmbefehle, Pro-
grammdaten und Konfigurationsdatensätze für die DRP-Einheit 3032. Der Speicher 3034 einer vorgegebenen
S-Einrichtung 3012 ist vorzugsweise für eine andere S-Einrichtung 3012 in dem System 3010 über die GPI-Ma-
trix 3016 zugänglich. Darüber hinaus ist jede S-Einrichtung 3012 vorzugsweise dadurch gekennzeichnet, daß
sie einen gleichförmigen Speicheradressenplatz hat. In der bevorzugten Ausführungsform enthalten Pro-
grammbefehle, die in dem Speicher 3040 selektiv gespeichert sind, Rekonfigurationsanweisungen, die in Rich-
tung der DRP-Einheit 3032 gerichtet sind.

[0124] In Fig. 11A weist die beispielhafte Programmauflistung 3050 einen Satz Außenschleifenteile 3052, so-
wie erste bis fünfte Innenschleifenteile 3050 bis 3057 auf. Wie der Fachmann weiß, verweist der Begriff "In-
nenschleife" auf einen iterativen Teil eines Programms, das dafür verantwortlich ist, einen ganz bestimmten
Satz verwandter Operationen durchzuführen, und der Begriff "Außenschleife" verweist auf die Teile eines Pro-
gramms hin, die hauptsächlich dafür verantwortlich sind, universelle Operationen und/oder eine Übertragungs-
steuerung von einem Innenschleifenteil zu einem anderen durchzuführen. Im allgemeinen führen Innenschleif-
enteile 3054 bis 3058 eines Programms spezifische Operationen an möglicherweise großen Datensätzen
durch. Bei einer Bildverarbeitungsanwendung kann der erste innere Schleifenteil 3054 Farbformat-Umsetzo-
perationen an Bilddaten durchführen, und die zweiten bis fünften Innenschleifenteile 3055 bis 3058 können
eine lineare Filterung, eine Faltung, Mustersuch- und Kompressionsoperationen durchführen. Wie der Fach-
mann weiß, kann eine aneinanderhängene Folge von Innenschleifenteilen 3055 bis 3058 als eine Softwa-
re-Pipeline betrachtet werden. Jeder Außenschleifenteil 3052 würde für eine Daten-Ein-/Ausgabe und/oder für
ein Leiten der Datenübertragung und ein Steuern von dem ersten Innenschleifenteil 3054 zu dem zweiten In-
nenschleifenteil 3055 verantwortlich sein. Zusätzlich erkennt der Fachmann, daß ein vorgegebener Innen-
schleifenteil 3054 bis 3058 eine oder mehrere Rekonfigurationsanweisungen enthalten kann. Im allgemeinen
werden für ein vorgegebenes Programm die Außenscheifenteile 3052 der Programmauflistung 3050 eine Viel-
falt von universellen Befehlstypen enthalten, während die Innenschleifenteile 3054, 3056 der Programmauflis-
tung 3050 aus verhältnismäßig wenigen Befehlstypen bestehen, die verwendet werden, um eine spezifische
Menge an Operationen durchzuführen.

[0125] In einer beispielhaften Programmauflistung 3050 erscheint eine erste Konfigurationsanweisung am
Anfang des ersten Innenschleifenteils 3054, und eine zweite Rekonfigurationsanweisung erscheint am Ende
des ersten Innenschleifenteils 3054. Dementsprechend erscheint eine dritte Konfigurationsanweisung zu Be-
ginn des zweiten Innenschleifenteils 3055; eine vierte Rekonfigurationsanweisung erscheint zu Beginn des
dritten Innenschleifenteils 3056; eine fünfte Rekonfigurationsanweisung erscheint zu Beginn des vierten Innen-
schleifenteils 3057 und eine sechste und siebte Rekonfigurationsanweisung erscheint am Anfang bzw. am
Ende des fünften Innenschleifenteils 3058. Jede Rekonfigurationsanweisung verweist vorzugsweise auf einen
Rekonfigurationsdatensatz, welcher eine interne DRPU-Hardware-Organisation spezifiziert, die auf die Aus-
führung einer ganz bestimmen Befehlssatz-Architektur (ISA) gewidmet und dafür optimiert worden ist. Eine
IS-Architektur ist ein Stamm- oder Kernsatz von Informationen, die verwendet werden können, um einen Rech-
22/50

DE 198 15 865 B4 2004.11.04
ner zu programmieren. Eine IS-Architektur definiert Befehlsformate, Operationscodes, Datenformate, Adres-
siermodes, Ausführungs-Steuerflags und programmzugängliche Register. Der Fachmann weiß, daß dies der
herkömmlichen Definition einer IS-Architektur entspricht. In der vorliegenden Erfindung kann jede DRP-Einheit
3032 einer S-Einrichtung schnell laufzeit-konfiguriert werden, um direkt Mehrfach-IS-Architekturen durch die
Verwendung eines eindeutigen Konfigurationsdatensatzes für jede gewünschte IS-Architektur auszuführen.
Das heißt, jede IS-Achitektur wird mit einer eindeutigen internen DRPU-Hardware-Organisation durchgeführt,
wie die durch einen entsprechenden Konfigurationsdatensatz spezifiziert ist. Folglich entsprechen in der vor-
liegenden Erfindung die ersten bis fünften Innenschleifenteile 3054 bis 3058 jeweils einer eindeutigen IS-Ar-
chitektur, nämlich ISA 1, 2, 3, 4 bzw. k. Der Fachmann erkennt, daß jede nachfolgende IS-Architektur nicht ein-
deutig zu sein braucht. Folglich könnte ISA k ISA 1, 2, 3, 4 oder irgendeine andere ISA sein. Der Satz Außen-
schleifenteile 3052 entspricht auch einer eindeutigen ISA, nämlich ISA 0. In der bevorzugten Ausführungsform
kann während einer Programmausführung die Auswahl von aufeinanderfolgenden Rekonfigurationsanweisun-
gen datenabhängig sein. Bei Auswahl einer vorgegebenen Rekonfigurationsanweisung werden Programmbe-
fehle nacheinander gemäß einer entsprechenden IS-Architektur über eine eindeutige DRPU-Hardware-Konfi-
guration ausgeführt, was durch einen entsprechenden Konfigurations-Datensatz spezifiziert ist.

[0126] In der Erfindung kann eine vorgegebene IS-Architektur als eine Innenschleifen-IS-Architektur oder als
eine Außenschleifen-IS-Architektur entsprechend der Anzahl und den Typen von Befehlen, welche sie enthält,
in Kategorien eingeteilt werden. Eine IS-Architektur, die mehrere Befehle enthält und die zum Durchführen ge-
nereller Operationen brauchbar ist, ist eine Außenschleifen-ISA, während eine ISA, die aus relativ wenigen Be-
fehlen besteht und die darauf ausgerichtet ist, spezifische Operationstypen durchzuführen, eine Innenschlei-
fen-ISA ist. Da eine Außenschleifen-ISA darauf gerichtet ist, generelle Operationen durchzuführen, ist eine Au-
ßenschleifen-ISA am zweckdienlichsten, wenn eine parallele Programm-Befehlsausführung wünschenswert
ist. Die Wirksamkeit einer Ausführung einer Innenschleifen-ISA ist vorzugsweise hinsichtlich Befehlen gekenn-
zeichnet, die pro Taktzyklus durchgeführt werden oder hinsichtlich rechten Ergebnissen gekennzeichnet, die
pro Taktzyklus erzeugt worden sind.

[0127] Der Fachmann erkennt, daß die vorhergehende Erörterung einer sequentiellen Programmbefehlsaus-
führung und einer parallelen Programmbefehlsausführung eine Programmbefehlsausführung mit einer einzi-
gen DRP-Einheit 3032 betrifft. Das Vorhandensein von mehreren S-Einrichtung Rekonfigurationsanweisungen
3012 in dem System 3010 erleichtert die parallele Ausführung von mehreren Programmbefehlsfolgen in einer
vorgegebenen Zeit, wobei jede Programmbefehlsfolge durch eine vorgegebene DRP-Einheit 3032 durchge-
führt wird. Jede DRP-Einheit 3032 ist entsprechend konfiguriert, um eine parallele oder serielle Hardware zu
haben, um eine ganz bestimmte Innenschleifen-ISA bzw. eine Außenschleifen-ISA in einer ganz bestimmten
Zeit durchzuführen. Die interne Hardware-Konfiguration einer vorgegebenen DRP-Einheit 3032 ändert sich mit
der Zeit entsprechend der Auswahl von einer oder mehreren Rekonfigurationsanweisungen, die in eine Folge
von durchzuführenden Programmbefehlen eingebettet sind.

[0128] In einer bevorzugten Ausführungsform sind jede IS-Architektur und deren entsprechende interne
DRPU-Hardware-Organisation entsprechend ausgelegt, um eine optimale Rechenleistung für eine ganz be-
stimmte Klasse von Rechenproblemen bezüglich einer Menge verfügbarer rekonfigurierbarer Hardware-Res-
sourcen zu schaffen. Wie vorher bereits erwähnt und wie nunmehr nachstehend im einzelnen näher beschrie-
ben wird, ist eine interne DRPU-Hardware-Organisation, die einer Außenschleifen-ISA entspricht, vorzugswei-
se für eine sequentielle Programmbefehlsausführung optimiert, und eine interne DRPU-Hardware-Organisati-
on, die einer Innenschleifen-ISA entspricht, ist vorzugsweise für eine parallele Programmbefehlsausführung
optimiert.

[0129] Mit Ausnahme jeder Rekonfigurationsanweisung weist die beispielhafte Programmauflistung 3050 der
Fig. 11A vorzugsweise herkömmliche Hochsprachenangaben auf, beispielsweise Angaben die entsprechend
der C-Programmiersprache geschrieben sind. Der Fachmann erkennt, daß das Einbeziehen von einer oder
mehreren Rekonfigurationsanweisungen in eine Folge von Programmbefehlen einen Compiler erfordert, der
modifiziert ist, um für die Rekonfigurationsanweisungen verantwortlich zu sein.

[0130] In Fig. 11B ist ein Flußdiagramm von herkömmlichen Compilieroperationen dargestellt, die während
des Compilierens bzw. Übersetzens einer Folge von Programmbefehlen durchgeführt worden sind. Hierbei
entsprechen die herkömmlichen Compilieroperationen im allgemeinen denjenigen, die von dem GNU C Com-
piler (GCC) durchgeführt worden sind, der von der Free Software Foundation (Cambridge, MA) hergestellt wor-
den ist. Der Fachmann weiß, daß die herkömmlichen Compilieroperationen, die unten beschrieben werden,
ohne weiteres für andere Compiler verallgemeinert werden können. Die herkömmlichen Compilieroperationen
beginnen beim Schritt 3500 mit dem Compiler-Frontende, das eine nächste Hochsprachen-Anweisung für eine
23/50

DE 198 15 865 B4 2004.11.04
Folge von Programmbefehlen auswählt. Als nächstes erzeugt das Compiler-Frontende beim Schritt 3502 ei-
nen Zwischencode, der der ausgewählten Hochsprachen-Anweisung entspricht, welche im Falle von GCC Re-
gister-Transferpegel-(RTL-)Angaben entspricht. Im Anschluß an den Schritt 3502 bestimmt das vordere Com-
pilerende, ob eine andere Hochsprachen-Anweisung eine Beachtung beim Schritt 3504 erfordert. Wenn dem
so ist, kehrt das bevorzugte Verfahren auf den Schritt 3500 zurück.

[0131] Wenn beim Schritt 3504 das vordere Compilerende bestimmt, daß keine andere Hochsprachenanwei-
sung Beachtung erfordert, führt das hintere Compilerende als nächstes herkömmliche Registerzuordnungso-
perationen beim Schritt 3605 durch. Nach dem Schritt 3506 wählt das hintere Compilerende eine nächste
RTL-Angabe hinsichtlich einer aktuellen RTL-Anweisungsgruppe beim Schritt 3508 aus. Das hintere Compile-
rende bestimmt dann, ob eine Vorschrift, die eine Art und Weise spezifiziert, in welcher die aktuelle RTL-An-
weisungsgruppe in einen Satz von Assemblersprachen-Anweisungen übersetzt werden kann, beim Schritt
3510 vorhanden ist. Wenn eine derartige Vorschrift nicht vorhanden ist, kehrt das bevorzugte Verfahren auf
den Schritt 3508 zurück, um eine andere RTL-Anweisung für ein Einbeziehen in die aktuelle RTL-Anweisungs-
gruppe auszuwählen. Wenn eine Vorschrift, die der aktuellen RTL-Anweisungsgruppe entspricht, existiert, er-
zeugt das hintere Compilerende beim Schritt 3512 einen Satz Assemblersprachen-Anweisungen entspre-
chend der Vorschrift. Nach dem Schritt 3512 stellt das hintere Compilerende fest, ob eine nächste RTL-Anwei-
sung Beachtung im Kontext mit einer nächsten RTL-Anweisungsgruppe erfordert. wenn dem so ist, kehrt das
bevorzugte Verfahren auf Schritt 3508 zurück; andernfalls ist das bevorzugte Verfahren beendet.

[0132] Die vorliegende Erfindung enthält vorzugsweise einen Compiler für ein dynamisch rekonfigurierbares
Berechnen. In Fig. 11C und 11D ist ein Flußdiagramm von bevorzugten Compilieroperationen dargestellt, die
von einem Compiler für ein dynamisch rekonfigurierbares Berechnen durchgeführt worden sind. Die bevorzug-
ten Compileroperationen beginnen beim Schritt 3600 mit dem vorderen Ende des Compilers, der eine nächste
Hochsprachen-Anweisung in einer Folge von Programmbefehlen auswählt. Als nächstes bestimmt das vorde-
re Ende des Compilers beim Schritt 3602, ob die ausgewählte Hochsprachen-Anweisung eine Rekonfigurati-
onsanweisung ist. Wenn dem so ist, erzeugt das vordere Ende des Compilers eine RTL-Regkonfigurationsan-
weisung beim Schritt 3604, worauf dann das bevorzugte Verfahren auf Schritt 3600 zurückkehrt. In der bevor-
zugten Ausführungsform ist die RTL-Rekonfigurationsanweisung eine nichtnormierte RTL-Anweisung, die ei-
nen ISA-Identifizierung erhält. Wenn beim Schritt 3602 die ausgewählte Hochprogramm-Anweisung nicht eine
Rekonfigurationsanweisung ist, erzeugt das vordere Ende des Compilers als nächstes einen Satz RTL-Anwei-
sungen in herkömmlicher Weise beim Schritt 3606. Nach dem Schritt 3606 bestimmt das vordere Ende des
Compilers beim Schritt 3608, ob eine andere Hochsprachen-Anweisung Berücksichtigung erfordert. Wenn
dem so ist, kehrt das bevorzugte Verfahren auf den Schritt 3600 zurück; anderenfalls geht das bevorzugte Ver-
fahren auf Schritt 3610 über, um Operationen am Compilerende zu initiieren.

[0133] Beim Schritt 3610 führt das hintere Ende des Compilers für ein dynamisch rekonfigurierbares Berech-
nen Register-Zuordnungsoperationen durch. In der bevorzugten Ausführungsform der Erfindung ist jede
ISA-Architektur so definiert, daß die Register-Architektur von einer IS-Architektur zur anderen folgerichtig ist;
daher werden Register-Zuordnungsoperationen in herkömmlicher Weise durchgeführt. Der Fachmann er-
kennt, daß im allgemeinen eine folgerichtige Register-Architektur von einer ISA zur anderen keine absolute
Forderung ist. Als nächstes wählt das hintere Ende des Compilers eine nächste RTL-Anweisung in einer aktu-
ell in Betracht gezogenen RTL-Anweisungsgruppe beim Schritt 3612 aus. Das hintere Ende des Compilers be-
stimmt dann beim Schritt 3614, ob die ausgewählte RTL-Anweisung eine RTL-Rekonfigurationsanweisung ist.
Wenn die ausgewählte RTL-Anweisung nicht eine RTL-Rekonfigurationsanweisung ist, bestimmt das hintere
Ende des Compilers beim Schritt 3618, ob eine Vorschrift für die aktuell in Betracht gezogene RTL-Anwei-
sungsgruppe existiert. Wenn dem nicht so ist, kehrt das bevorzugte Verfahren auf den Schritt 3612 zurück, um
eine nächste RTL-Anweisung für ein Einbeziehen in die aktuell in Betracht gezogene RTL-Anweisungsgruppe
zu wählen. In dem Fall, daß eine Vorschrift für die aktuell in Betracht gezogene RTL-Anweisungsgruppe beim
Schritt 3618 existiert, erzeugt das hintere Ende des Compilers als nächstes einen Satz Assemblerspra-
chen-Anweisungen beim Schritt 3620, welche der aktuell in Betracht gezogenen RTL-Anweisungsgruppe ge-
mäß dieser Vorschrift entsprechen. Nach dem Schritt 3620 bestimmt das hintere Ende des Compilers beim
Schritt 3622, ob eine andere RTL-Anweisung eine Berücksichtigung im Kontext mit einer nächsten RTL-An-
weisungsgruppe erfordert. Wenn dem so ist, kehrt das bevorzugte Verfahren auf den Schritt 3612 zurück; an-
derenfalls endet das bevorzugte Verfahren.

[0134] Wenn beim Schritt 3614 die ausgewählte RTL-Anweisung eine RTL-Rekonfigurationsanweisung ist,
wählt das hintere Ende des Compilers einen Vorschriftensatz. beim Schritt 3616 aus, welcher der ISA-Identifi-
zierung der RTL-Rekonfigurationsanweisung entspricht. In der vorliegenden Erfindung existiert vorzugsweise
ein eindeutiger Vorschriftensatz für jede ISA. Jeder Vorschriftensatz schafft daher eine oder mehrere Vorschrif-
24/50

DE 198 15 865 B4 2004.11.04
ten, um Gruppen von RTL-Anweisungen in Assemblersprachen-Anweisungen entsprechend einer ganz be-
stimmten IS-Architektur umzuwandeln. Nach dem Schritt 3616 geht das bevorzugte Verfahren auf Schritt 3618
über. Der Vorschriftensatz, der einer vorgegebenen IS-Architektur entspricht, enthält vorzugsweise ein Vor-
schrift, um die RTL-Rekonfigurationsanweisung in einen Satz Assemblersprachen-Befehle zu übersetzen, die
eine Software-Unterbrechnung erzeugen, die auf eine Durchführung eines Rekonfigurations-Abwicklers
(handler) hinausläuft, wie im einzelnen unten beschrieben wird.

[0135] In der vorstehend beschriebenen Weise erzeugt der Compiler für dynamisch rekonfigurierbares Be-
rechnen selektiv und automatisch Assemblersprachen-Anweisungen entsprechend mehreren IS-Architekturen
während Compileroperationen. Mit anderen Worten, während des Compilerprozesses übersetzt der Compiler
einen einzigen Satz Programmbefehlen entsprechend einer variablen IS-Architektur. Der Compiler ist vorzugs-
weise ein herkömmlicher Compiler, der modifiziert worden ist, um bevorzugte Compileroperationen durchzu-
führen, die vorstehend unter Bezugnahme auf Fig. 11C und 11D beschrieben worden sind. Der Fachmann er-
kennt, daß, obwohl die geforderten Modifikationen nicht komplex sind, solche Modifikationen im Hinblick so-
wohl auf herkömmliche Compilertechniken als auch im Hinblick auf herkömmliche rekonfigurierbaren Berech-
nungsmethoden nicht offensichtlich und naheliegend sind.

[0136] Die Lehren der vorliegenden Erfindung unterscheiden sich deutlich von anderen Systemen und Ver-
fahren für ein umprograinmierbares oder rekonfigurierbares Rechnen. Insbesondere ist die vorliegende Erfin-
dung nicht äquivalent mit einer herunterladbaren Mikrocode-Architektur, da solche Architekturen im allgemei-
nen auf nicht-rekonfigurierbare Steuereinrichtung und eine nicht-rekonfigurierbare Hardware angewiesen sind.
Die vorliegende Erfindung unterscheidet sich also deutlich von einem angeschlossen rekonfiguierbaren Pro-
zessor-(ARP-)System, in welchem eine Gruppe von rekonfigurierbaren Hardware-Ressourcen mit einem
nicht-rekonfigurierbaren Host-Prozessor oder Host-System verbunden ist. Die ARP-Einrichtung hängt von dem
Host ab, um gewisse Programmbefehle durchzuführen. Daher wird eine Menge verfügbarer Silizium-Ressour-
cen nicht maximal über den Zeitrahmen der Programmdurchführung genutzt, da Silizium-Ressourcen bei der
ARP-Einrichtung oder dem Host unbenutzt sind oder ineffizient genutzt werden, wenn der Host bzw. die
ARP-Einrichtung mit Daten arbeitet. Im Unterschied hierzu ist jede S-Einrichtung 3012 ein unabhängiger Rech-
ner, in welchem ganze Programme ohne weiteres ausgeführt werden können. Mehrere S-Einrichtungen 3012
führen vorzugsweise gleichzeitig Programme durch. Die vorliegende Erfindung lehrt daher die ständige maxi-
male Ausnutzung von Silizium-Ressourcen sowohl für einzelne Programme, die von einzelnen S-Einrichtun-
gen 3012 durchgeführt werden oder von mehreren Programmen, die von dem gesamten System 3010 ausge-
führt werden.

[0137] Eine ARP-Einrichtung stellt einen Rechenbeschleuniger für einen ganz bestimmten Algorithmus in ei-
ner ganz bestimmten Zeit zur Verfügung und ist als ein Satz von Verknüpfungsgliedern ausgeführt, die optimal
bezüglich dieses spezifischen Algorithmus miteinander verbunden sind. Die Verwendung von rekonfigurierba-
ren Hardware-Ressourcen für universelle Operationen, wie eine verwaltende Befehlsausführung, ist bei
ARP-System vermieden. Darüber hinaus behandelt ein ARP-System nicht eine vorgegebene Menge von mit-
einander verbundenen Verknüpfungsgliedern bzw. Gates als eine ohne weiteres wiederverwendbare Ressour-
ce. Im Gegensatz, die vorliegende Erfindung lehrt eine dynamisch rekonfigurierbare Verarbeitungseinrichtung,
die für ein effizientes Management einer Befehlsausführung gemäß einem Befehlsausführungsmodells konfi-
guriert ist, das am besten für die Rechenerfordernisse zu einem ganz bestimmten Zeitpunkt ausgelegt ist. Jede
S-Einrichtung 3012 weist eine Vielzahl ohne weiteres wiederverwendbarer Ressourcen, beispielsweise das
ISS 3100, die Unterbrechungslogik 3106 und die Speicher/Ausrichtlogik 3152 auf. Die vorliegende Erfindung
lehrt die Verwendung von rekonfigurierbaren logischen Ressourcen auf dem Niveau von LCBs- oder
IOBs-Gruppen und rekonfigurierbarer Verbindungen, jedoch nicht auf dem Niveau von miteinander verbunde-
nen Gates. Die vorliegende Erfindung lehrt folglich die Verwendung von rekonfigurierbaren höherwertigen lo-
gischen Designkonstrakts, die zum Durchführen von Operationen der ganzen Klassen von Rechenproblemen
verwendbar sind, und lehrt nicht ein brauchbares Verbindungsschema, das für einen einzigen Algorithmus ver-
wendbar ist.

[0138] Im allgemeinen sind ARP-Systeme auf ein Übertragen eines ganz bestimmten Algorithmus in einen
Satz von miteinander verbundenen Gates gerichtet. Einige ARP-Systeme versuchen, hochwertige Befehle in
einer optimalen Hardware-Konfiguration zu compilieren, welches im allgemeinen ein hartes NP-Problem ist. Im
Unterschied hierzu lehrt die Erfindung die Verwendung eines Compilers für ein dynamisch rekonfigurierbares
Berechnen, das hochwertige Programmbefehle in Assembler-Sprachenbefehle gemäß einer variablen ISA auf
sehr unkomplizierte Weise compiliert.

[0139] Eine ARP-Einrichtung ist im allgemeinen nicht in der Lage, ihre eigenes Host-Programm als Daten zu
25/50

DE 198 15 865 B4 2004.11.04
behandeln oder es selbst zu kontextualisieren. Im Unterscheid hierzu kann jede S-Einrichtung in dem System
3010 ihre eigenen Programme als Daten behandeln, und folglich ohne weiteres selbst kontextualisieren. Das
System 3010 kann ohne weiteres sich selbst durch die Ausführung seiner eigenen Programme simmulieren.
Die vorliegende Erfindung hat zusätzlich die Fähigkeit, ihren eigenen Compiler zu compilieren.

[0140] In der vorliegenden Erfindung kann ein einziges Programm eine erste Gruppe von Befehlen, die zu
einem ersten ISA gehören, eine zweite Gruppe von Befehlen, die zu einer zweiten ISA gehören, eine dritte
Gruppe von Befehlen, die zu noch einer weiteren ISA gehören, usw. enthalten. Die hier beschriebene Archi-
tektur führt jede derartige Gruppe von Befehlen mit Hilfe von Hardware durch, die hinsichtlich Durchlaufzeit
konfiguriert ist, um die ISA durchzuführen, zu welcher die Befehle gehören. Keine bekannten Systeme oder
Methoden bieten ähnliche Lehren an.

[0141] Die Erfindung lehrt ferner ein rekonfigurierbares Unterbrechungsschema, bei welchem Unterbre-
chungslatenz, Unterbrechungspräzision und ein programmierbares Zustandsübergangs-Freigeben gemäß der
aktuellen, in Betracht gezogenen ISA sich ändern kann. Keine anlogen Lehren werden in anderen Computer-
systemen gefunden. Die vorliegende Erfindung lehrt zusätzlich ein Computersystem mit einer rekonfigurierba-
ren Datenweg-Bitbreite, einer Adressen-Bitbreite und rekonfigurierbare Steuerzeilen-Breiten im Unterschied
zu herkömmlichen Computersystemen.

[0142] Zusammenfassend wurde ein Kompiliersystem und ein Verfahren zur Erzeugung einer Folge von Pro-
grammbefehlen zur Verwendung in einer dynamisch rekonfigurierbaren Verarbeitungseinheit geschaffen, die
eine interne Hardwareorganisation aufweist, die wahlweise unter einer Anzahl von Hardwarearchitekturen ge-
ändert werden kann, wobei jede Hardwarearchitektur Befehle von einem entsprechenden Befehlsatz ausführt.
Quelldateien werden zur Ausführung mit Hilfe von mehreren Befehlsatzarchitekturen (instruction set architec-
tures) kompiliert, wie dies durch Rekonfigurations-Übersetzungsanweisungen spezifiziert wird. Die Objektda-
teien fassen wahlweise Bitströme, die Hardwarearchitekturen spezifizieren, die Befehlsatzarchitekturen ent-
sprechen, mit ausführbarem Code zur Ausführung auf den Architekturen zusammen.

Bezugszeichenliste

Fig. 1

12 – 5-Einrichtung
14 – T-Einrichtung
18 – Ein/Ausgabe-T-Einrichtung
20 – Ein/Ausgabeeinrichtung
16 – Mehrzweckverbindungsmatrix (GPI-Matrix)
22 – Master-Zeitbasiseinheit

Fig. 1A

131 – Taktgenerator
132 – Bitstromspeicher
133 – Programm-/Datenspeicher
12 – S-Einrichtung
14 – T-Einrichtung

Fig. 1B

149 – Speicherbus
140 – FPGA Konfigurationshardware
146 – Befehle dekodieren
147 – Speicherinterface
132 – ISA0 Bitstrom;

ISA1 Bitstrom

Fig. 1C

siehe Fig. 1B
26/50

DE 198 15 865 B4 2004.11.04
Fig. 3

301 – Quelldatei lesen
302 – ISA identifizieren
303 – Rekonfigurationsanweisung erzeugen
304 – Anweisungen für identifizierte ISA kompilieren
305 – weitere ISA?
306 – übersetzen
307 – binden
308 – laden
309 – Ende

Fig. 3A

600 – nächste Hochsprachenanweisung auswählen
601 – Funktionsaufruf
602 – verschiedene ISA?
603 – RTL-Code abgeben
605 – RTL-Funktionsaufruf abgeben
607 – RTL-Code zum Speichern lebender Register abgeben
604 – RTL-Rekonfigurationscode abgeben
606 – RTL-Funktionsaufruf abgeben
608 – weitere Hochsprachenanweisung?
609 – RTL-Rekonfigurationscode abgeben
611 – RTL-Code zum Wiederherstellen lebender Register abgeben
613 – RTL-Code zum Lesen von Rückgabewert abgeben

Fig. 3B

612 – nächste RTL-Anweisung auswählen
618 – Regel für aktuelle RTL-Anweisungsgruppe erhalten
620 – Maschinensprachenanweisung erzeugen. Gemäß der Regel für diese ISA setzen
622 – andere RTL-Anweisung?
610 – Registerreservierung ausführen

Fig. 3C

331 – RTL-Code mit neuer ISA mit Bemerkungen versehen
332 – ISA-abhängige und ISA-unabhängige Optimierung
333 – maschinenabhängige Anweisungen erzeugen

Fig. 4

401 – Quelle
403 – Objekt
404 – Binder
405 – ausführbares Programm
406 – ISA-Bitströme
10 – rekonfigurierbarer Computer
407 – Ladeprogramm

Fig. 5

501 – Binden-Ansicht
503 – ELF-Kopfteil
504 – Programmkopfteiltabelle optional
505 – Abschnitt 1

...
Abschnitt n
...
27/50

DE 198 15 865 B4 2004.11.04
Patentansprüche

1. Kompilierverfahren mittels eines Kompilers zur Erzeugung einer Folge (50) von Programmbefehlen und
Rekonfigurations-Anweisungen zur Ausführung in einem dynamisch rekonfigurierbaren Computer (10), der ein
Prozessor-Modul (130) aufweist, das ein dynamisch rekonfigurierbares Prozessor-Submodul (12), einen mit
dem Prozessor-Submodul (12) verbundenen Programm/Daten-Speicher (133) und einen mit dem Prozes-
sor-Submodul (12) verbundenen Bitstrom-Speicher (132) umfasst, wobei das Prozessor-Submodul durch La-
den eines Bitstroms aus dem Bitstrom-Speicher auf Rekonfigurations-Anweisungen hin während der Ausfüh-
rung der Folge von Programm-Befehlen wahlweise unter einer Anzahl von Befehlssatz-Architekturen (ISA) re-
konfiguriert werden kann, mit den folgenden Schritten:
a) als Eingabe wird eine Quelldatei (301) empfangen, die eine Anzahl von Quellcode-Befehlsanweisungen ent-
hält, und zwar einschließlich mindestens eines ersten Untersatzes von Quellcode-Befehlsanweisungen und ei-
nes zweiten Untersatzes von Quellcode-Befehlsanweisungen;
b) für den ersten Untersatz von Quellcode-Befehlsanweisungen wird ein erster Befehlsatz, der einer ersten Be-
fehlsatz-Architektur entspricht, mittels einer ersten im Quellcode enthaltenen Rekonfigurations-Übersetzungs-
anweisung identifiziert, wobei die erste Rekonfigurations-Übersetzungsanweisung den ersten Befehlsatz spe-
zifiziert;
c) für den zweiten Untersatz von Quellcode-Befehlsanweisungen wird ein zweiter Befehlsatz, der einer zweiten
Befehlsatz-Architektur entspricht, mittels einer zweiten im Quellcode enthaltenen Rekonfigurations-Überset-
zungsanweisung identifiziert, wobei die zweite Rekonfigurations-Übersetzungsanweisung den zweiten Befehl-
satz spezifiziert; und
d) der erste Untersatz von Quellcode-Befehlsanweisungen wird unter Verwendung des ersten Befehlsatzes
kompiliert und der zweite Untersatz von Quellcode-Befehlsanweisungen wird unter Verwendung des zweiten
Befehlsatzes kompiliert;
e) wobei für eine als mit dem ersten Befehlsatz gekennzeichnete Quellcode-Befehlsanweisung (600) nur kom-
pilierte Programm-Befehle (603, 605) erzeugt werden, falls die ausgewählte Quellcode-Befehlsanweisung kei-
nen Funktionsaufruf (601) oder einen Funktionsaufruf zu einer ebenfalls als mit dem ersten Befehlsatz gekenn-
zeichneten Funktion enthält;
f) wobei in Reaktion auf eine als mit dem ersten Befehlsatz gekennzeichnete Quellcode-Befehlsanweisung
(600), die (601) einen Funktionsaufruf zu einer als mit dem zweiten Befehlsatz gekennzeichneten (602) Funk-
tion enthält, die folgenden Schritte der Reihe nach ausgeführt werden:
f.1) (607) ein Zustand der Programm-Ausführung wird in einem vorbestimmten Speicherbereich gespeichert,

...
506 – Abschnittskopfteiltabelle
502 – Ausführen-Ansicht
503 – ELF-Kopfteil
504 – Programmkopfteiltabelle
505 – Abschnitt 1

Abschnitt 2
...

506 – Abschnittskopfteiltabelle optional

Fig. 6

651 – Anweisung reconfig
654 – vorbestimmte Adresse < = SP
655 – Hardware lädt nächste Konfiguration
656 – SP < = vorbestimmte Adresse

Fig. 7

707 – lebende Registerwerte retten
701 – Parameter zu aufgerufener Funktion schieben
702 – rekonfigurieren zu neuer ISA
703 – Unterprogramm aufrufen
704 – Fluß zum Aufrufer zurückkehren
705 – auf ursprüngliche ISA rekonfigurieren
706 – Rückgabewert lesen
708 – lebende Registerwerte wieder herstellen
28/50

DE 198 15 865 B4 2004.11.04
f.2) (604) Rekonfigurations-Anweisungen, die erforderlich sind, um eine Rekonfiguration von der ersten Befehl-
satz-Architektur zur zweiten Befehlsatz-Architektur zu erzielen, werden an das Prozessor-Submodul abgege-
ben;
f.3) (606) nach der Rekonfiguration wird für den Funktionsaufruf ein kompilierter Programm-Befehl in der zwei-
ten Befehlsatz-Architektur abgegeben;
f.4) (609) nach Ablauf der Funktion wird eine Rekonfigurations-Anweisung zur Rekonfiguration des Prozes-
sor-Submodules in den ersten Befehlsatz abgegeben und f.5) (602) der Zustand der Programm-Ausführung
zu Beginn der Rekonfiguration wird durch Laden aus dem vorbestimmten Speicherbereich wieder hergestellt.
g) die Schritte e) und f) werden für jede Quellcode-Befehlsanweisung in der Quelldatei wiederholt.

2. Verfahren nach Anspruch 1, bei dem jede Rekonfigurations-Übersetzungsanweisung unter Verwendung
einer Meta-Syntax bereitgestellt wird.

3. Verfahren nach Anspruch 1 oder 2, bei dem jede Rekonfigurations-Übersetzungsanweisung entweder
eine Direkt-Rekonfigurations-Übersetzungsanweisung, eine Funktionsebenen-Rekonfigurations-Überset-
zungsanweisung oder eine Standard-Rekonfigurations-Übersetzungsanweisung umfasst.

4. Verfahren nach einem der vorhergehenden Ansprüche, mit dem weiteren Schritt:
es wird eine ausführbare Datei erzeugt, die die Ergebnisse der Kompilation beinhalten und außerdem für jeden
Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der dem Un-
tersatz von Befehlsanweisungen entspricht.

5. Verfahren nach einem der Ansprüche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausführbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und außerdem für je-
den Untersatz von Befehlsanweisungen einen Verweis, der einen Bitstrom bestimmt, der den Befehlsatz dar-
stellt, der dem Untersatz von Befehlsanweisungen entspricht.

6. Verfahren nach einem der Ansprüche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausführbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und außerdem für den
Untersatz von Befehlsanweisungen einen Verweis, der entsprechend einem erweiterten, ausführbaren Pro-
gramm und einem Bindungsformat codiert ist, wobei der Verweis einen Bistrom bestimmt, der den Befehlsatz
darstellt, der dem Untersatz von Befehlsanweisungen entspricht.

7. Verfahren nach einem der Ansprüche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausführbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und außerdem für je-
den Untersatz von Befehlsanweisungen einen Bistrom, der den Befehlsatz darstellt, der dem Untersatz von
Befehlsanweisungen entspricht.

8. Verfahren nach einem der Ansprüche 1 bis 4, mit den weiteren Schritten:
h) eine erste Objektdatei wird erzeugt, die die Ergebnisse des Kompilierens beinhaltet und außerdem für jeden
Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der dem Un-
tersatz von Befehlsanweisungen entspricht;
i) die Schritte a) bis h) werden mindestens für eine zweite Quelldatei wiederholt, um mindestens eine zweite
Objektdatei zu erzeugen; und
j) die in den Schritten h) und i) erzeugten Objektdateien werden gebunden, um eine ausführbare Datei zu er-
zeugen.

9. Verfahren nach Anspruch 8, mit dem weiteren Schritt:
k) an der erzeugten, ausführbaren Datei wird entsprechend den Ausrichtungserfordernissen eine Speicheraus-
richtung vorgenommen.

10. Verfahren nach Anspruch 9, bei dem die erzeugte, ausführbare Datei einem Bitstrom zugeordnet ist,
der einen Befehlsatz darstellt, und bei dem der Schritt k) den Schritt umfasst:
k.1) der Bitstrom wird aufgefüllt, um eine Speicherausrichtung durchzuführen.

11. Verfahren nach Anspruch 8, bei dem:
beim Schritt a) als Eingabe eine Quelldatei empfangen wird, die eine Anzahl von Quellcode-Befehlsanweisun-
gen einschließlich mindestens eines ersten Untersatzes von Befehlsanweisungen enthält, wobei zumindest
eine der Befehlsanweisungen einen externen Verweis enthält; und
beim Schritt h) eine erste Objektdatei erzeugt wird, die die Ergebnisse des Kompilierens enthält und außerdem
29/50

DE 198 15 865 B4 2004.11.04
für jeden Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der
dem Untersatz von Befehlsanweisungen entspricht, wobei zumindest eine der Befehlsanweisungen einen ex-
ternen Verweis enthält; und
mit dem weiteren Schritt:
i.1) vor der Ausführung des Schrittes j) werden für jede Objektdatei die externen Verweise aufgelöst.

12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste Untersatz von Befehlsanwei-
sungen eine erste definierte Funktion und der zweite Untersatz von Befehlsanweisungen eine zweite definierte
Funktion umfasst.

13. Verfahren nach einem der Ansprüche 1 bis 12, bei dem der erste Untersatz von Befehlsanweisungen
einen ersten beliebigen Block von Anweisungen und der zweite Untersatz von Befehlsanweisungen einen
zweiten beliebigen Block von Anweisungen umfasst.

14. Verfahren nach Anspruch 13, bei dem die Quelldatei mindestens einen Funktionsaufruf und einen
Funktionsrücksprung umfasst und bei dem die Schritte b) und c) jeweils die wahlweise Ausführung einer inter-
prozeduralen Analyse umfassen, um bei jedem Funktionsaufruf und bei jedem Funktionsrücksprung eine im
Kontext befindliche Befehlsatzarchitektur (ISA) zu identifizieren.

15. Verfahren nach Anspruch 1, mit den weiteren Schritten:
h) der erste kompilierte Untersatz von Befehlsanweisungen wird für den ersten Befehlsatz optimiert; und
i) der zweite kompilierte Untersatz von Befehlsanweisungen wird für den zweiten Befehlsatz optimiert.

16. Verfahren nach Anspruch 1, bei dem der Schritt f.1) den folgenden Schritt umfasst:
es wird eine Codeanweisung zum Retten von lebenden Registern abgegeben; und bei dem der Schritt f.5) den
folgenden Schritt umfasst:
es wird eine Codeanweisung zur Wiederherstellung der geretteten, lebenden Register abgegeben.

17. Verfahren nach Anspruch 16, bei dem die Codeanweisungen Registertransferebenenanweisungen
(RTL-Anweisungen) umfassen.

18. Verfahren nach Anspruch 17, mit den weiteren Schritten:
eine Registerreservierung wird durchgeführt;
für jede Registertransferebenenanweisung wird:
bestimmt, ob für die Registertransferebenenanweisung eine Übersetzungsregel existiert; und
in Antwort auf die Feststellung, dass eine Übersetzungsregel existiert, wird für die Registertransferebenenan-
weisung entsprechend der Übersetzungsregel ein Assemblercode erzeugt.

19. Verfahren nach Anspruch 17, mit den weiteren Schritten:
jede Registertransferebenenanweisung wird mit Bemerkungen versehen, um eine Befehlsatzarchitektur (ISA)
anzugeben;
die Registertransferebenenanweisungen werden optimiert; und
aus den optimierten Registertransferebenenanweisungen wird ein maschinenabhängiger Assemblercode er-
zeugt.

20. Verfahren nach einem der Ansprüche 1 bis 19, bei dem der Schritt f.1) die folgenden Schritte umfasst:
Zustandsvariablen werden auf einem Stapel gespeichert, auf den mit Hilfe eines Stapelzeigers (SP) verwiesen
wird; und
der Stapelzeiger wird in einer Speicherstelle abgespeichert; und
bei dem der Schritt f.5) die Schritte umfasst:
der Stapelzeiger wird von der Speicherstelle wieder abgerufen; und
die Zustandvariablen werden von dem Stapel wieder abgerufen.

21. Computerprogramm zur Erzeugung einer Folge von Programmbefehlen zur Ausführung in einer dyna-
misch rekonfigurierbaren Verarbeitungseinheit, dadurch gekennzeichnet, dass das Computerprogramm das
Verfahren nach einem der Ansprüche 1 bis 21 ausführt.

22. Computerverwendbares Datenspeichermedium, auf dem die Programmbefehle des Computerpro-
gramms nach Anspruch 21 gespeichert sind.

Es folgen 20 Blatt Zeichnungen
30/50

DE 198 15 865 B4 2004.11.04
Anhängende Zeichnungen
31/50

DE 198 15 865 B4 2004.11.04
32/50

DE 198 15 865 B4 2004.11.04
33/50

DE 198 15 865 B4 2004.11.04
34/50

DE 198 15 865 B4 2004.11.04
35/50

DE 198 15 865 B4 2004.11.04
36/50

DE 198 15 865 B4 2004.11.04
37/50

DE 198 15 865 B4 2004.11.04
38/50

DE 198 15 865 B4 2004.11.04
39/50

DE 198 15 865 B4 2004.11.04
40/50

DE 198 15 865 B4 2004.11.04
41/50

DE 198 15 865 B4 2004.11.04
42/50

DE 198 15 865 B4 2004.11.04
43/50

DE 198 15 865 B4 2004.11.04
44/50

DE 198 15 865 B4 2004.11.04
45/50

DE 198 15 865 B4 2004.11.04
46/50

DE 198 15 865 B4 2004.11.04
47/50

DE 198 15 865 B4 2004.11.04
48/50

DE 198 15 865 B4 2004.11.04
49/50

DE 198 15 865 B4 2004.11.04
50/50

	Titelseite
	Beschreibung
	Stand der Technik
	Aufgabenstellung
	Ausführungsbeispiel
	Bezugszeichenliste

	Patentansprüche
	Anhängende Zeichnungen

