(19) (" DE 198 15 865 B4 2004.11.04

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Patentschrift

(21) Aktenzeichen: 198 15 865.3 1) Intcl”: GO6F 9/45
(22) Anmeldetag: 08.04.1998
(43) Offenlegungstag: 10.12.1998
(45) Veroffentlichungstag
der Patenterteilung: 04.11.2004

Innerhalb von 3 Monaten nach Verdffentlichung der Erteilung kann Einspruch erhoben werden.

(30) Unionsprioritat: (72) Erfinder:
827619 09.04.1997 uUs Greenbaum, Jack E., Menlo Park, Calif., US;
Baxter, Michael A., Menlo Park, Calif., US
(71) Patentinhaber:
Ricoh Co., Ltd., Tokio/Tokyo, JP (56) Fur die Beurteilung der Patentfahigkeit in Betracht
gezogene Druckschriften:
(74) Vertreter: DE 196 14 991 A1

Schwabe, Sandmair, Marx, 81677 Miinchen

(54) Bezeichnung: Kompiliersystem und Verfahren zum rekonfigurierbaren Rechnen

(57) Hauptanspruch: Kompilierverfahren mittels eines pymememn [s B R BN = - = S e
Kompilers zur Erzeugung einer Folge (50) von Programm- —7 '
befehlen und Rekonfigurations-Anweisungen zur Ausfiih- = " h 2

rung in einem dynamisch rekonfigurierbaren Computer n EhRioiAG

(10), der ein Prozessor-Modul (130) aufweist, das ein dyna-
misch rekonfigurierbares Prozessor-Submodul (12), einen

mit dem Prozessor-Submodul (12) verbundenen Pro- - -
gramm/Daten-Speicher (133) und einen mit dem Prozes- ' —
sor-Submodul (12) verbundenen Bitstrom-Speicher (132) [
umfasst, wobei das Prozessor-Submodul durch Laden ei- & ————
nes Bitstroms aus dem Bitstrom-Speicher auf Rekonfigura- D a7 —»
tions-Anweisungen hin wahrend der Ausfiihrung der Folge 18 20
von Programm-Befehlen wahlweise unter einer Anzahl von
Befehlssatz-Architekturen (ISA) rekonfiguriert werden
kann, mit den folgenden Schritten: L ——
a) als Eingabe wird eine Quelldatei (301) empfangen, die P
eine Anzahl von Quellcode-Befehlsanweisungen enthalt, ~

und zwar einschliefllich mindestens eines ersten Untersat-
zes von Quellcode-Befehlsanweisungen und eines zweiten
Untersatzes von Quellcode-Befehlsanweisungen;

b) fir den ersten Untersatz von Quellcode-Befehlsanwei-
sungen wird ein erster Befehlsatz, der einer ersten Befehl-
satz-Architektur entspricht, mittels einer ersten im Quell-
code enthaltenen Rekonfigurations-Ubersetzungsanwei-
sung identifiziert, wobei die erste Rekonfigurations-Uber-
setzungsanweisung den ersten Befehlsatz spezifiziert;
C)...

DE 198 15 865 B4 2004.11.04

Beschreibung

[0001] Die vorliegende Erfindung betrifft generell Software fur rekonfigurierbare Computer und insbesondere
ein Kompiliersystem und ein Verfahren zur Erzeugung ausfuhrbarer Dateien zur Verwendung in einem dyna-
misch rekonfigurierbaren Computer, der eine veranderbare interne Hardwareorganisation aufweist.

[0002] Ein ,dynamisch rekonfigurierbarer Computer" wird im folgenden auch ,dynamisch rekonfigurierbare
Verarbeitungseinheit" genannt. Weiter wird ein ,Prozessor-Modul" auch ,Hardwareorganisation" genannt. Ein
~Prozessor-Submodul" wird auch ,Prozessor-Hardware" genannt. Ein ,Bitstrom-Speicher" wird auch ,Speicher
fur Rekonfigurationsbits" und ein ,Programm/Daten-Speicher" auch ,Speicher flir Programme" genannt. Eine
,Rekonfigurations-Ubersetzungsanweisung" wird auch ,Rekonfigurations-Betriebsanweisung" genannt.

Stand der Technik

[0003] Im Stand der Technik sind Versuche unternommen worden, rekonfigurierbare Gerate bzw. Einheiten
zu schaffen. Ein erster bekannter Losungsansatz besteht in herunterladbaren (downloadable) Mikrocode-Ge-
raten, bei denen das Verhalten bzw. der Betriebsablauf von festen, nicht rekonfigurierbaren Hardwarebetriebs-
mitteln zur Ausfihrung von Programmen wahlweise verandert werden kann, in dem eine bestimmte Version
des Mikrocodes (Programmiersprache fir ein Steuerwerk) verwendet wird, der in einen programmierbaren
Steuerspeicher geladen wird. Ein Beispiel hierfur findet sich in J.L. Hennessy und D.A. Paterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufmann, 1990. In einigen solcher Systeme kann der Mikro-
code vom Benutzer nach der Herstellung geschrieben oder verandert werden. Siehe beispielsweise W.T. Wil-
ner ,Design of the Burroughs B1700", in AFIPS Fall Joint Computer Conference, AFIPS Press, 1972; W.G. Ma-
theson, ,User Microprogrammability in the HP-21MX Minicomputer”, in Proceedings of the Seventh Annual Mi-
croprogramming Workshop, IEEE Computer Society Press, 1974. Weil die zugrundeliegende Computerhard-
ware in solchen bekannten Systemen nicht selbst rekonfigurierbar ist, zeigen solche Systeme keine optimierte
Rechenleistung, wenn man an einen groften Bereich von Problemtypen denkt. Insbesondere sind solche Sys-
teme generell nicht in der Lage, den Datenpfad zu andern, sind durch die Grolie bzw. SpeichergréRe der Aus-
fuhrungseinheiten begrenzt und sind nur in der Lage, Wechsel-Befehlssatze (alternate instruction sets) fur die-
selbe Hardware zu schaffen. Solche Systeme stellen keinen Einzelkompiler zur Verfligung, der in der Lage ist,
zwei verschiedene Architekturen zu kompilieren bzw. zu Uibersetzen.

[0004] Ein zweiter bekannter Losungsansatz beinhaltet ein System, bei dem die Hardware, die einen Rechen-
vorgang ausfuhrt, mit Hilfe einer programmierbaren Logik realisiert wird. Es gibt Beispiele hierfir, die feldpro-
grammierbare Logikschaltungen bzw. feldprogrammierbare Gatearrays (FPGAs) von der Stange verwenden
(PAM, SPLASH, VCC) und anwenderprogrammierbare Logik (TERAMAC). Siehe beispielsweise: P. Bertin et
al., Programmable Active Memories: A Performance Assessment, Tech. Rep. 24, Digital Paris Research La-
boratory, Marz 1993; D.A. Buell et al., Splash 2: FPGAs in a Custom Computing Machine, IEEE Computer So-
ciety Press, 1996; S. Casselman, "Virtual Computing and The Virtual Computer”, in IEEE Symposium on FP-
GAs for Custom Computing Macines, IEEE Computer Society Press, 1994; R. Amerson et al., "Teramac-Con-
figurable Custom Computing", in IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Com-
puter Society Press, 1995. Im allgemeinen erfordern es diese Technologien, da® eine Anwendung bzw. Appli-
kation hinsichtlich der Hardwarebeschreibung spezifiziert wird, was entweder in Form einer schematischen Be-
schreibungssprache oder unter Verwendung einer Hardware-Beschreibungssprache, wie beispielsweise VH-
DL, erfolgt, anstatt da® man Software flir einen Computer schreibt, der durch FPGAs festgelegt wird. Beispiels-
weise wird ein PAM programmiert, indem man ein C++-Programm schreibt, das eine Netzliste erzeugt, die die
Konfiguration und Architektur der Gatter bzw. Schaltelemente (Gate) beschreibt. Ein Applikationsentwickler
spezifiziert eine Datenstruktur, die eine Hardwarebeschreibung zur Umsetzung der Applikation beschreibt, an-
statt dald er eine Spezifizierung eines Applikationsalgorithmus kompiliert. SPLASH wird auf eine der folgenden
drei Arten programmiert: 1) Ein schematisches Erfassungspaket (schematic capture package) zum Aufbauen
einer Hardwarespezifizierung, basierend auf einem Schaltschema bzw. schematischen Diagramm; 2) einer
Hardware-Beschreibungssprache (wie beispielsweise VHDL), die mit einem Synthese-Paket gekoppelt ist, das
VHDL in einfache Gate-Anweisungen (primitives) Ubersetzt; oder 3) einer DBC, d.h. einer C-Untersprache, die
in Gate-Beschreibungen kompiliert wird. TERAMAC wird mit Hilfe eines schematischen Erfassungspakets
oder einer Hardware-Beschreibungssprache programmiert. Keines dieser Programmierverfahren beschreibt
Algorithmenschritte; stattdessen sorgen sie fir einen Mechanismus zur Spezifizierung von Hardware-Architek-
turen.

[0005] Ein dritter bekannter Lésungsansatz beinhaltet rekonfigurierbare Computer, die Softwareprogramme
ausfuhren. Der RISC-4005-Prozessor und der Hokie-Prozessor realisieren Standard-Mikroprozessoren inner-

2/50

DE 198 15 865 B4 2004.11.04

halb von FPGAs. Der RISC 4005 ist im wesentlichen die Demonstration einer eingebetteten (embedded) zen-
tralen Prozessoreinheit (CPU) innerhalb eines kleinen Abschnittes eines FPGAs, dessen weitere Betriebsmit-
tel (resources) einigen Coprozessor-Funktionen zugeordnet sind. Hokie wird als Lerntubung fir Informatikstu-
denten oder Elektrotechnikstudenten verwendet. Eine Befehlsatzarchitektur (instruction set architecture; ISA)
wird vor der Kompilierung und Ausfiihrung des Programmes ausgewahlt und diese Befehlsatzarchitektur wird
dann fortwahrend verwendet. AuRerdem wird der Bitstrom fiir den Prozessor separat von der Software abge-
speichert, die dieser ausfihrt. Ad hoc-Verfahren werden verwendet, um sicherzustellen, daf} ein korrekter Bit-
strom geladen wird. Siehe beispielsweise P. Athanas und R. Hudson, "Using Rapid Prototyping to Teach the
Design of Complete Computing Solutions", in IEEE Symposium on FPGAs for Custom Computing Machines,
IEEE Computer Society Press, 1996. Diese Systeme sorgen nicht fiir eine Laufzeit-Rekonfigurierung (wahrend
der Ausfiihrung des Programm).

[0006] Beieinem weiteren bekannten, rekonfigurierbaren Computer handelt es sich um den dynamischen Be-
fehlsatz-Computer (Dynamic Instruction Set Computer; DISC), der eine rekonfigurierbare Prozessoreinheit
verwendet. Siehe beispielsweise M.J. Wirthlin und B.L. Hutchings, "A Dynamic Instruction Set Computer", in
IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, 1995; D.A.
Clark und B.L. Hutchings, "The DISC Programming Environment", in IEEE Symposium on FPGAs for Custom
Computing Machines, IEEE Computer Society Press, 1996. Die Ausfiihrung und Konfiguration der FPGA der
DISC-Prozessoreinheit wird mit Hilfe eines Mikrocontrollers gesteuert, der ebenfalls in Form eines FPGAs rea-
lisiert ist. Der Mikrocontroller wird in einem Dialekt der C-Programmiersprache programmiert. Der Kompiler
bzw. das Ubersetzungsprogramm fiir diesen C-Dialekt erkennt, daR gewisse Programmanweisungen durch
entsprechende Hardware-Konfigurationen der Verarbeitungseinheit ausgefiihrt werden sollen und sendet ei-
nen Mikrocontroller-Code aus, der veranlal3t, dafd der richtige Konfigurations-Bitstrom wahrend der Ausfiihrung
des Programms in die Verarbeitungseinheit geladen wird. Der Fachmann auf diesem Gebiet wird erkennen,
dal der Mikrocontroller seinerseits einen festen Befehlsatz aufweist und daf} der Kompiler diesen festen Be-
fehlsatz kompiliert bzw. Uibersetzt. Es bestehen mehrere Nachteile hinsichtlich dieser von einem DISC verwen-
deten Architektur. Weil der Mikrocontroller fest bzw. statisch ist, kann dieser nicht optimiert werden, um ver-
schiedene Arten von Verarbeitungseinheiten zu steuern. Die Konfigurations-Bitstrome werden in externer
Hardware aulierhalb des Speicherplatzes des Mikrocontrollers gespeichert, weshalb das System nicht
selbst-enthaltend ist. AulRerdem offenbaren die vorstehend im Wege der Bezugnahme in dieser Offenbarung
mit beinhalteten Dokumente nicht, wie ein DISC zum Parallelrechnen, zur globalen Signalisierung bzw. sys-
temweiten Datenubermittlung und zum Takten oder zur Handhabung von Interrupts bzw. Unterbrechungsan-
weisungen verwendet werden kdnnte. Schliellich werden neue Befehle nur als EinzelgroRRen spezifiziert. Der
Kompiler sendet nur Befehle fiir einen Befehlsatz aus, 1alt es jedoch zu, dald einzelne Befehle vom Program-
mierer hinzugefligt werden. Jede Konfigurierung der Verarbeitungseinheit ist ein einzelner Befehl in Form von
Hardware, der von dem Programmierer zur Verfigung gestellt wird, wodurch die mégliche Flexibilitat einge-
schrankt wird.

[0007] Ein vierter bekannter Loésungsansatz besteht darin, Systeme zu mischen, wobei verschiedene Teile
des Algorithmus bzw. Rechenvorgangs auf verschiedene Komponenten bzw. Elemente des Systems abgebil-
det werden. Ein bekanntes System bildet einen Algorithmus, der in einem erweiterten C-Dialekt ausgedruickt
ist, auf eine gemischte FPGA/DSP-Architektur ab. Der Benutzer markiert ausdrucklich Abschnitte des Einga-
beprogramms zur Zuordnung zum DSP, wahrend der Rest des Codes in Gates zur FPGA-Realisierung hinein
kompiliert wird. Solche Systeme erfordern spezialisierte Werkzeuge bzw. Tools, weil sie eine nicht tbliche Syn-
tax fiir ISA-Anderungen verwenden. AuRBerdem ist der Betrieb solcher Systeme miihsam, was an der Verwen-
dung von Netzlisten zur FPGA-Spezifizierung von Abschnitten des Programms liegt. Solche Programme schaf-
fen keine tatsachliche Hardware-Rekonfigurierung, sondern sorgen lediglich fur die Fahigkeit zur Abbildung auf
ein anderes Teil der Hardware.

[0008] In gleicher Weise verwenden einige Systeme einen Standard-Mikroprozessor mit einigen konfigurier-
baren Logik-Betriebsmitteln. Diese Betriebsmittel (Ressourcen) werden verwendet, um spezielle Befehle bzw.
Instruktionen zu realisieren, die die Ausflihrung von bestimmten Programmen beschleunigen. Siehe beispiels-
weise R. Razdan und M.D. Smith, "A High-Performance Microarchitecture with Hardware-Programmable
Functional Units", in Proceedings of the Twenty-Seventh Annual Microprogramming Workshop, IEEE Compu-
ter Society Press, 1994. Solche Systeme werden typischerweise als Zentralprozessoreinheit (CPU) realisiert,
und zwar mit einem Abschnitt des Silizium-Chips, der verwendet wird, um einen FPGA zu realisieren. Die CPU
besitzt einen festen bzw. fixierten Datenpfad, mit dem die FPGAs verbunden sind. Der Kompiler kombiniert
ausgewahlte Assembler-Codesequenzen in Einzelbefehlanweisungen zur Ausfihrung durch ein FPGA. Je-
doch arbeiten solche Systeme generell nur auf Ebenen eines bestehenden Assembler-Sprachcodes und er-
fordern eine angrenzende, feste Befehlsatzarchitektur (nachfolgend als ISA oder auch I1S-Architektur bezeich-

3/50

DE 198 15 865 B4 2004.11.04

net) als Ausgangspunkt. Auflerdem halten solche Systeme generell keine Laufzeit-Rekonfigurierung bereit.
SchlieBlich sind solche Systeme nicht weit anwendbar und sorgen ublicher Weise nicht fur eine deutliche Ge-
schwindigkeitsverbesserung im Vergleich zu anderen herkdmmlichen Systemen.

Aufgabenstellung

[0009] Obwohl die zuvor genannten Systeme jeweils ein gewisses Niveau fiir die Rekonfigurierbarkeit von
Hardware schaffen, beschreibt keines von diesen ein Verfahren oder eine Vorrichtung zur Zusammenfassung
von binaren Maschinensprache-Befehlen und von Daten gemeinsam mit den Hardware-Konfigurierungen, die
notwendig sind, um die Maschinenbebefehle in der in diesem Patent beanspruchten Art und Weise auszufuh-
ren. Aulerdem offenbaren die bekannten Systeme weder eine Mehrfacharchitektur-ISA-Rekonfiguration auf
der Ebene der Granularitat, die vergleichbar zu RISC- oder CISC-Befehlen ist, die hierin beansprucht werden,
noch Kompilierungsverfahren innerhalb der C-Sprachensyntax zum Ausfuhren auf dynamisch rekonfigurierten
IS-Architekturen, wie diese hierin beansprucht werden.

[0010] Aus DE 19 614 991 A1 ist ein System und Verfahren zum skalierbaren, parallelen, dynamisch rekon-
figurierbaren Rechnen bekannt. Insbesondere ist daraus ein dynamisch rekonfigurierbarer Computer bekannt.

[0011] Aufgabe der Erfindung ist es, ein Kompilierverfahren fiir einen dynamisch rekonfigurierbaren Compu-
ter bereitzustellen, wobei insbesondere unterschiedliche Befehlssatze effizient eingesetzt werden sollen.

[0012] Vorstehende Aufgabe wird durch die Gegenstande der Anspriiche 1, 21 und 22 geldst. Vorteilhafte
Weiterbildungen gehen aus den Unteranspriichen hervor.

[0013] Erfindungsgemal wird ein Verfahren zur Kompilierung von Quellcode geschaffen, der beispielsweise
in C oder Pascal geschrieben ist, um ausfiihrbare Dateien bzw. Programme zur Verwendung in einer dyna-
misch rekonfgurierbaren Prozessoreinheit zu erzeugen, die eine wahlweise veranderbare interne Hardwareor-
ganisation aufweist. Bei einer Ausfuhrungsform kénnen erfindungsgemaf Maschinenbefehle und Daten ge-
meinsam mit Hardware-Konfigurationen zusammengefallt werden, welche erforderlich sind, um die Maschi-
nenbefehle auszuflihren. In der rekonfigurierbaren Architektur besteht jeder einzelne Prozessor beispielsweise
aus: Einer rekonfigurierbaren Prozessor-Hardware, wie beispielsweise einem vollstandig FPGA-basierten Pro-
zessor, einem Datenspeicher und einem Programmspeicher, einer Parallel-Verbindungseinheit und einem wie-
derbeschreibbaren Speicher fir FPGA-Konfigurationsbits. Durch dynamisches Laden von FPGA-Konfigurati-
onsbitstromen realisiert die vorliegende Erfindung einen dynamischen ISA-Computer, der eine hohe Leistungs-
fahigkeit erreicht, in dem ISAs verwendet werden, die fliir spezielle Phasen der Ausflihrung der Applikation op-
timiert sind.

[0014] Bei der Architektur werden Applikationen als Software zur Verfigung gestellt, wird Hardware in der
Form von Schaltungen (ein zentrales Service-Modul, Prozessormodule, Eingabe/Ausgabe-Module (I/0O)) so-
wie Bitstrome flr Befehlsatzarchitekturen (ISAs) bereitgestellt, die auf den FPGAs des Prozessormoduls be-
heimatet sind. Ein ISA bzw. eine IS-Architektur ist ein primitiver Satz von Befehlen, der dazu verwendet werden
kann, einen Computer zu programmieren. Applikationssoftware wird mit Hilfe von FPGAs ausgefuhrt, die als
ISAs auf den Prozessormodulen konfiguriert sind.

[0015] Die vorliegende Erfindung beschreibt ein System, das ausgelegt ist, so daR FPGA-Konfigurationsbit-
strdme statisch wahrend der Kompilierung mit dem Programm verbunden bzw. verknlpft werden kénnen, das
diese ausfihrt, und da diese zum dynamischen Schalten von ISAs und/oder FPGA-Applikationselementrea-
lisierungen unabhangig und in Echtzeit programmiert werden kénnen.

[0016] Die ISAs fihren Programmbefehle aus, die in RAM 133 gespeichert sind. Diese Programmbefehle um-
fassen wahlweise eine oder mehrere Rekonfigurations-Ubersetzungsanweisungen (reconfiguration directi-
ves). Bei Auswahl einer Rekonfigurations-Ubersetzungsanweisung bzw. Rekonfigurations-Betriebsanweisung
wird die Hardware rekonfiguriert, um flr eine optimierte Realisierung einer bestimmten Befehlsatzarchitektur
zu sorgen. Zusétzlich zu ihrer spezifischen Funktionalitat umfaRt jede ISA einen Befehl oder eine Uberset-
zungsanweisung, der bzw. die veranlal3t, daR® eine andere ISA in den rekonfigurierbaren Prozessor geladen
wird, so daf} die Ausfiihrung der Software anschlieend unter Verwendung der neuen ISA fortfahrt.

[0017] Weil die Speicherstelle der ISA-Bitstrome im Speicher ein Argument flir den Rekonfigurationsbefehl

darstellt, wird diese Speicherstelle vorzugsweise zum Zeitpunkt der Verbindung (link) oder des Ladens be-
stimmt, was auch fur die Speicherstellen fur Funktions-Aufrufziele und -Variablen gilt. Ebenso wie fur diese

4/50

DE 198 15 865 B4 2004.11.04

Funktionen und Variablen hat es sich als wiinschenswert herausgestellt, symbolische Namen fir die Adressen
eines Bitstroms zu verwenden. Die vorliegende Erfindung verwendet ein Objektdatei-Format, das die Vorstel-
lung einer ausfiihrbaren Software auf ISA-Bitstrome erweitert. Daraus resultieren einige Vorteile, wie beispiels-
weise:
— Tools bzw. Werkzeuge kénnen leicht aufgebaut bzw. erstellt werden. Weil die Rekonfigurierung als ein Be-
fehl und Bitstrdme als Daten behandelt wird, kdnnen standardmaRige Software-Verbindungsverfahren ein-
gesetzt werden, um softwaregesteuerte Hardwareanderungen mit den erforderlichen Bitstrom zu binden.
Keine neue Softwaretechnologie tber die Bitstrom-als-Daten-Abstraktion muf erzeugt werden.
— Flexibilitat beim Laden. Indem Rekonfigurationsdaten auf einen Teil des Ausfiihrbaren isoliert werden,
wird die Fahigkeit Konfigurationen in geschutzte Bereiche des Speichers zu laden, vereinfacht. Mit Ge-
sichtspunkten der Speicherausrichtung wird man auf strukturierte Weise leicht fertig, wie nachfolgend aus-
fuhrlicher beschrieben werden wird.
— Das Laden wird vereinfacht. Alle Daten, die erforderlich sind, um das Programm auszufiihren, werden in
einer einzigen Datei aufbewahrt, so dal} keine Ladezeit-ldentifikation und keine Lokalisierung von Bitstro-
men ausgefihrt zu werden braucht, falls das Ausfiihrbare bzw. das Programm statisch verbunden wird.
— Das Konfigurationsmanagement wird vereinfacht. Nur eine einzige Datei braucht zur gleichen Zeit beibe-
halten werden, sobald ein Programm gebunden worden ist. Dies vereinfacht die Vorgehensweise zur Ver-
teilung von Applikationen auf einzelne Gerate und entfernte Stellen.

Ausflihrungsbeispiel

[0018] Nachfolgend wird die Erfindung in beispielhafter Weise und unter Bezugnahme auf die Zeichnungen
beschrieben, in denen:

[0019] Fig. 1 ein Blockschema der Hardwarekomponenten einer dynamisch rekonfigurierbaren Rechenarchi-
tektur ist;

[0020] Fig. 1A ein Blockschema eines erfindungsgemalfen Prozessormoduls ist;

[0021] Fig. 1B und 1C Blockschema einer Systemarchitektur zur Realisierung der Erfindung sind, die ein Bei-
spiel fur die Rekonfiguration eines FPGAs zeigen;

[0022] Fig. 2 ein Beispiel fiir ein Programmlisting ist, das Rekonfigurations-Ubersetzungsanweisungen ent-
halt;

[0023] Fig. 3 ein FluRdiagramm fiir ein Gesamt-Kompilierverfahren ist, das von einem Kompiler bzw. Uber-
setzungsprogramm zum dynamisch rekonfigurierbaren Rechnen ausgefihrt wird;

[0024] Fig. 3A und 3B ein FluRdiagramm von bevorzugten Kompiliervorgangen sind, die von einem Kompiler
zum dynamisch rekonfigurierbaren Rechnen ausgefiihrt werden;

[0025] Fig. 3C ein FluRdiagramm von weiteren Kompiliervorgangen ist, die von einem Kompiler zum dyna-
misch rekonfigurierbaren Rechnen ausgefiihrt werden;

[0026] Fig. 4 ein Blockschema eines Kompiliersystems gemaR der vorliegenden Erfindung ist;
[0027] Fig. 5 ein Schema eines Objektdateiformats aus dem Stand der Technik ist;

[0028] Fig. 6 ein FluRdiagramm fiir ein Verfahren zum Erhalten eines Programmzustands gemaR der vorlie-
genden Erfindung ist;

[0029] Fig. 7 ein FluRdiagramm fir ein Verfahren zur strukturierten Rekonfiguration gemag der vorliegenden
ist; und

[0030] Fig. 8A, 8B und 8C Diagramme von Stapelinhalten wahrend einer strukturierten Rekonfiguration ge-
maR der vorliegenden Erfindung darstellen.

[0031] Fig. 9 ein Blockdiagramm einer bevorzugten Ausflihrungsform eines Systems fiir ein skalierbares, pa-
ralleles, dynamisch rekonfigurierbares Berechnen, gemaf der Erfindung;

5/50

DE 198 15 865 B4 2004.11.04

[0032] Fig. 10 ein Blockdiagramm einer bevorzugten Ausfihrungsform einer S-Einrichtung geman der Erfin-
dung;

[0033] Fig. 11A ein beispielhaftes Programmauflisten, das Rekonfigurationsanweisungen enthalt;

[0034] Fig. 11B ein Ablaufdiagramm von herkémmlichen Kompilieroperationen, die wahrend der Kompilation
einer Folge von Programmbefehlen durchgefiihrt worden sind;

[0035] Fig. 11C und 11D ein Ablaufdiagramm von bevorzugten Kompilieroperationen, welche mittels eines
Kompilierers fur ein dynamisch rekonfigurierbares Berechnen durchgefiihrt worden sind;

[0036] Die vorliegende Erfindung ist auf ein Kompiliersystem und ein Verfahren zur Erzeugung ausfiihrbarer
Dateien zur Verwendung bei einer dynamisch rekonfigurierbaren Prozessoreinheit gerichtet, deren Hard-
ware-Konfiguration nachfolgend insbesondere anhand der Fig. 9 bis 11D beschrieben wird.

[0037] InFig. 1 istein Blockschema eines skalierbaren, parallelen, dynamisch rekonfigurierbaren Computers
10 zum Ausflihren von Objektdateien gezeigt, die gemaR der vorliegenden Erfindung erzeugt wurden. Der
Computer 10 umfalBt vorzugsweise mindestens eine S-Einrichtung 12, eine T-Einrichtung 14, die jeder S-Ein-
richtung 12 entspricht, eine Mehrzweck-Verbindungsmatrix (General Purpose Interconnect Matrix; GPI-Matrix)
16, mindestens eine Eingabe-/Ausgabe-T-Einrichtung 18, eine oder mehrere Eingabe-/Ausgabeeinrichtungen
20 und eine Master-Zeitbasiseinheit 22. Bei der bevorzugten Ausfihrungsform umfaf3t der Computer 10 meh-
rere S-Einrichtungen 12 und somit auch mehrere T-Einrichtungen 14 und auRerdem mehrere Eingabe-/Aus-
gabe-T-Einrichtungen 18 und mehrere Eingabe-/Ausgabeeinrichtungen 20.

[0038] Jede der S-Einrichtungen 12, T-Einrichtungen 14 und Eingabe-/Ausgabe-T-Einrichtungen 18 hat einen
Mastertakteingang, der mit dem Taktausgang der Masterzeitbasiseinheit 22 verbunden ist. Jede S-Einrichtung
12 hat einen Eingang und einen Ausgang, der mit ihrer entsprechenden T-Einrichtung 14 verbunden ist. Zu-
satzlich zu dem Eingang und dem Ausgang, die mit der entsprechenden S-Einrichtung 12 verbunden sind,
weist jede T-Einrichtung 14 einen Wegsteuerungseingang (routing input) und einen Wegsteuerungsausgang
auf, die mit der GPI-Matrix 16 verbunden sind. Dementsprechend hat jede Eingabe-/Ausgabe-T-Einrichtung 18
einen Eingang und einen Ausgang, die mit einer Eingabe-/Ausgabeeinrichtung 20 verbunden sind, sowie einen
Wegsteuerungseingang und einen Wegsteuerungsausgang, der mit der GPI-Matrix 16 verbunden ist.

[0039] Bei jeder S-Einrichtung 12 handelt es sich um einen dynamisch rekonfigurierbaren Rechner. Die
GPI-Matrix 16 stellt ein paralleles Punkt-zu-Punkt-Verbindungsmittel bzw. ein paralleles Maschen-Verbin-
gungsmittel dar, das die Kommunikation zwischen den T-Einrichtungen 14 erleichtert. Der Satz von T-Einrich-
tungen 14 und die GPI-Matrix 16 bilden ein paralleles Punkt-zu-Punkt-Verbindungsmittel fir einen Datentrans-
fer zwischen Speichern, die der S-Einrichtung 12 zugeordnet sind. In ahnlicher Weise bilden die GPI-Matrix
16, der Satz von T-Einrichtungen 14 und der Satz von Eingabe-/Ausgabe-T-Einrichtungen 18 ein paralleles
Punkt-zu-Punkt-Verbindungsmittel fir einen Eingabe-/Ausgabetransfer zwischen S-Einrichtungen 12 und je-
der Eingabe-/Ausgabeeinrichtung 20. Die Master-Zeitbasiseinheit 22 umfal3t einen Oszillator, der jeder S-Ein-
richtung 12 und jeder T-Einrichtung 14 ein Master-Taktsignal zur Verfligung stellt.

[0040] In einer beispielhaften Ausfiihrungsform ist jede S-Einrichtung 12 durch Verwendung eines Xilinx
XC4013 (Xilinx, Inc., San Jose, CA) feldprogrammierbaren Gate-Arrays (FPGA) bzw. Logikanordnung ausge-
fuhrt, das mit einem 64 MB Direktzugriffsspeicher (RAM) verbunden ist. Jede T-Einrichtung 14 ist durch Ver-
wendung von annahernd 50 % der rekonfigurierbaren Hardware-Betriebsmittel in einem Xilinx XC4013 FPGA
ausgefiihrt, ebenso jede Eingabe-/Ausgabe-T-Einrichtung 18. Die GPI-Matrix 16 ist als ein ringférmiges Ver-
bindungsmaschennetz ausgefihrt. Die Master-Zeitbasiseinheit 22 ist ein Taktoszillator, der mit einer Taktver-
teilungsschaltung verbunden ist, um fiir eine systemweite Frequenzreferenz zu sorgen, wie nachfolgend an-
hand der Fig. 9 bis 25B beschrieben wird. Vorzugsweise Ubertragen die GPI-Matrix 16, die T-Einrichtungen 14
und die Eingabe-/Ausgabe-T-Einrichtungen 18 Information entsprechend dem Punkt-zu-Punkt-Protokoll des
ANSI/IEEE-Standard 1596-1992, wodurch ein skalierbares koharentes Interface (SCI) definiert ist.

[0041] In Fig. 1A ist ein Blockschema eines Prozessormoduls 130 gezeigt, das in einer Ausfiihrungsform der
vorliegenden Erfindung verwendet wird. Der 5-Einrichtungs-FPGA 12 ist mit einem zugeordneten bzw. reser-
vierten Bitstromspeicher 132 und einem Programm-/Datenspeicher 133, einer oder mehreren T-Einrichtungen
14 und einer Takterzeugungsschaltung verbunden, wie beispielsweise einen Taktgenerator 131, um ein Pro-
zessormodul 130 zu bilden. Das Modul 130 ist mit anderen, vergleichbaren Modulen uber die T-Einrichtungen
14 in einer solchen Art und Weise verbunden, die einen Parallelbetrieb erleichtert. Der Programm-/Datenspei-

6/50

DE 198 15 865 B4 2004.11.04

cher 133 speichert Programmbefehle und ist in Form eines iblichen RAMs realisiert. Der Bitstromspeicher 132
speichert Bitstrome, die die FPGA-Konfigurationen beschreiben. In einer Ausfiihrungsform ist der Pro-
gramm-/Datenspeicher 133 als dynamisches RAM (DRAM) implementiert und der Bitstromspeicher 132 als
statisches RAM (SRAM).

[0042] Inden Fig. 1B und 1C sind Beispiele fur eine FPGA-Rekonfiguration gezeigt, um ISAs in rekonfigurier-
barer Architektur zu realisieren. Die Figuren zeigen Blockschema einer Systemarchitektur zur Realisierung der
vorliegenden Erfindung, wobei die S-Einrichtungs-FPGA 12 umprogrammiert ist, so daR sie eine arithmetische
Logikeinheit (ALU) 143 in Fig. 1B umfal3t sowie einen finiten Impulsantwortfilter (FIR) 148 in Fig. 1C. Ein Bit-
strom-RAM 132 und ein Programm-/Daten-RAM 133 ist vorgesehen. Der Speicherbus 149 halt einen Kommu-
nikationskanal zwischen dem S-Einrichtungs-FPGA 12 und RAM 132 und 133 bereit. Die FPGA-Konfigurati-
onshardware 140 ermdglicht die Rekonfiguration des S-Einrichtungs-FPGAs 12 entsprechend den ISA-Bitstro-
men vom Bitstrom-RAM 132. Konfigurationen des S-Einrichtungs-FPGA 12 umfassen beispielsweise Daten-
register bzw.

[0043] Datenspeicher 141, Adrelregister 142, einen Registermultiplexer 144 und ein Speicherdatenregister
145. Jede oder alle dieser Komponenten kann modifiziert oder in anderen Konfigurationen entfernt werden,
was von dem Bitstrom abhangt. Beispielsweise taucht Alu 143 in der in Fig. 1B gezeigten Konfiguration auf,
ist aber in der Konfiguration aus Fig. 1C durch den FIR-Filter 148 ersetzt.

Rekonfigurations-Ubersetzungsanweisungen

[0044] Vorzugsweise speichert der Computer 10 Programmbefehle in RAM wahlweise, und zwar einschlief3-
lich von Rekonfigurations-Ubersetzungsanweisungen zur Rekonfigurierung von Computer 10, indem die Kon-
figuration der S-Einrichtung 12 geandert wird. In Fig. 2 ist ein beispielhaftes Programmlisting 50 gezeigt, das
einen Satz von AuRRenschleifenabschnitten 52, einen ersten Innenschleifenabschnitt 54, einen zweiten Innen-
schleifenabschnitt 55, einen dritten Innenschleifenabschnitt 56, einen vierten Innenschleifenabschnitt 57 und
einen flnften Innenschleifenabschnitt 58 umfal’t. Wie der Fachmann weif, verweist der Begriff "Innenschleife"”
auf einen iterativen Abschnitt eines Programms, der daflr verantwortlich ist, einen ganz bestimmten Satz von
verwandten Operationen auszufiihren; und der Begriff "Aulienschleife" verweist auf die Abschnitte eines Pro-
gramms, die hauptsachlich dafir verantwortlich sind, Mehrzweck-Operationen bzw. universelle Operationen
und/oder eine Ubertragungssteuerung von einem Innenschleifenabschnitt zum anderen durchzufiihren. Im all-
gemeinen fuhren die Innenschleifenabschnitte 54 bis 58 eines Programms spezifische Operationen an mogli-
cherweise groRen Datensatzen durch. Eine oder mehrere der Rekonfigurations-Ubersetzungsanweisungen
kann einem vorgegebenen Innenschleifenabschnitt 54, 55, 56, 57 oder 58 zugeordnet sein, so dal sich eine
geeignete ISA im Kontext befinden wird, wenn der Innenschleifenabschnitt ausgefihrt wird. Im allgemeinen
werden fur ein beliebiges vorgegebenes Programm die AuRenschleifenabschnitte 52 des Programmlistings 50
eine Vielzahl von Mehrzweck-Befehlsarten umfassen, wahrend die Innenschleifenabschnitte 54, 56 des Pro-
grammlistings 50 aus vergleichsweise wenig Befehlsarten bestehen werden, die dazu verwendet werden, ei-
nen spezifischen Satz von Operationen auszufiihren.

[0045] In einer beispielhaften Programmauflistung 50 erscheint eine erste Rekonfigurations-Ubersetzungsan-
weisung zu Beginn des ersten Innenschleifenabschnitts 54 und erscheint eine zweite Rekonfigurations-Uber-
setzungsanweisung am Ende des ersten Innenschleifenabschnitts 54. Dementsprechend erscheint eine dritte
Rekonfigurations-Ubersetzungsanweisung zu Beginn des zweiten Innenschleifenabschnitts 55; eine vierte Re-
konfigurations-Ubersetzungsanweisung erscheint zu Beginn des dritten Innenschleifenabschnitts 56 usw. Je-
der Rekonfigurationsbefehl verweist vorzugsweise auf einen Konfigurationsdatensatz, der von einem Bitstrom
dargestellt wird. Der Bitstrom spezifiziert eine interne Hardware-Organisation fir jede S-Einrichtung 12, und
zwar einschlief3lich einer dynamisch rekonfigurierbaren Prozessoreinheit (nachfolgend DRPU genannt), einer
Adref3-Betriebseinheit (AOU), einer Befehl-Abrufeinheit (IFU) und einer Datenbetriebseinheit (DOU) (nicht ge-
zeigt). Eine solche Hardware-Organisation ist gedacht und optimiert zur Realisierung einer bestimmten Befehl-
satzarchitektur (Instruction Set Architecture; ISA). Eine I1S-Architektur ist ein einfacher Satz oder Kernsatz von
Befehlen bzw. Instruktionen, die dazu verwendet werden kdnnen, um einen Rechner zu programmieren. Eine
IS-Architektur definiert Befehlsformate, Operationscodes, Datenformate, Adressiermodes, Ausfiihrungs-Steu-
erflags und programmzugangliche Register bzw. Verzeichnisse. Bei der rekonfigurierbaren Rechnerarchitek-
tur, die zur Ausfiihrung von Objektdateien eingesetzt wird, die geman der vorliegenden Erfindung erzeugt wer-
den, kann jede S-Einrichtung sehr rasch und in Echtzeit konfiguriert werden, um unmittelbar eine Folge von
IS-Architekturen durch Verwendung eines eindeutigen Konfigurationsdatensatzes fir jede gewilinschte IS-Ar-
chitektur zu realisieren, die durch einen Bitstrom spezifiziert wird. Somit wird jede I1S-Architektur mit einer spe-
ziellen, internen Hardware-Organisation realisiert, wie sie durch einen entsprechenden Konfigurationsdaten-

7/50

DE 198 15 865 B4 2004.11.04

satz spezifiziert wird. Folglich entsprechen in dem Beispiel aus Fig. 2 die ersten funf Innenschleifenabschnitte
54 bis 58 jeweils einer eindeutigen IS-Architektur 1, 2, 3, 4 bzw. k. Der Fachmann erkennt, daf3 jede nachfol-
gende IS-Architektur nicht eindeutig zu sein braucht. Folglich kénnte ISA k 1, 2, 3, 4 oder irgendeine andere
ISA sein. Der Satz von AulRenschleifenabschnitten 52 entspricht ebenfalls einer eindeutigen ISA, namlich ISA
0. Wahrend der Programmausfilhrung kann die Auswahl nachfolgender Rekonfigurations-Ubersetzungsan-
weisungen von den Daten abhangen. Bei Auswahl einer gegebenen Rekonfigurations-Ubersetzungsanwei-
sung werden im Anschluf® daran Befehle bzw. Anweisungen nach einer entsprechenden ISA Uber eine eindeu-
tige 5-Einrichtungs-Hardwarekonfiguration ausgefuhrt, wie sie durch den Bitstrom spezifiziert wird, auf den
durch die Rekonfigurations-Ubersetzungsanweisung verwiesen wird.

[0046] Mit der Ausnahme von Rekonfigurations-Ubersetzungsanweisungen umfalt das beispielhafte Pro-
grammlisting 50 aus Fig. 2 Ubliche Hochsprachen-Anweisungen, beispielsweise Anweisungen, die entspre-
chend der C-Programmiersprache geschrieben sind.

[0047] Der Fachmann erkennt, daR der Einbau von einer oder mehreren Rekonfigurations-Ubersetzungsan-
weisungen in einer Folge von Programmanweisungen einen Kompiler bzw. ein Ubersetzungsprogramm erfor-
dert, der bzw. das modifiziert wurde, um den Rekonfigurations-Ubersetzungsanweisungen Rechnung zu tra-
gen. Folglich umfafit das erfindungsgemafRe Kompiliersystem und das erfindungsgemaRe Verfahren Vorgange
einschlieRlich von Rekonfigurations-Ubersetzungsanweisungen durch Zusammenfassung von Verweisungen
auf Bitstrome, die Hardware-Konfigurationen beschreiben, und durch Ubersetzung bzw. Kompilierung von
Quellcode entsprechend den Spezifikationen von bestimmten ISAs, die durch die Rekonfigurations-Uberset-
zungsanweisungen identifiziert werden.

[0048] In einer Ausfuhrungsform der vorliegenden Erfindung unterstitzen alle dem Computer 10 zur Verfi-
gung stehende ISAs die folgenden Vorgange:
— Einen Stapelzeiger (stack pointer; SP) und ein Zeiger Adrefl3verzeichnis fiir nachste Befehle (Next Instruc-
tion Pointer Address Register; NIPAR; auch bekannt als Programmzahler (PC)), um einen stapel-basierten
Speicher von Informationen und Parametern wahrend der Rekonfiguration zu realisieren;
— geeignete Befehle in Assemblersprache zur Fluf3steuerung, und zwar einschlielichbeispielsweise von
"jsr" bzw. "jump to subroutine" fir einen Unterprogramm-Einsprung und "rts" bzw. "return to subroutine" fir
eine Unterprogramm-Ruickkehr; und
— eine geeignete Speicher-Schnittstelleneinheit zum Speichern und Laden von Verzeichniswerten in bzw.
aus dem Stapel.

[0049] Die Betriebsweise dieser Komponenten zur Realisierung einer Rekonfiguration wird nachfolgend an-
hand der Fig. 6 bis 8C beschrieben.

Komponenten des Kompiliersystems

[0050] In Fig. 4 ist ein Blockschema eines erfindungsgemafen Kompiliersystems dargestellt. Das Kompilier-
system und das erfindungsgemaRe Verfahren lauft auf einer typischen Workstation oder einem PC, der ein tb-
liches Betriebssystem, wie beispielsweise Unix, verwendet. Die Unix-Umgebung ist wegen der grof3en Verflug-
barkeit von Quellcode fiir Software-Entwicklungstools und der Robustheit der Benutzer-Umgebung vorteilhaft.
Wie der Fachmann erkennen wird, kdnnte das erfindungsgemafe System und das erfindungsgemafie Verfah-
ren direkt auf einem rekonfigurierbaren Computer laufen. In Fig. 3 ist ein FluRdiagramm fir ein erfindungsge-
maRes Gesamtverfahren zur Kompilierung bzw. Ubersetzung, zur Assemblierung, zur Verbindung bzw. Ver-
knlipfung und zum Laden gezeigt. Die Kompilierschritte aus Fig. 3 werden nachfolgend anhand der Fig. 3A
bis 3C ausflhrlicher beschrieben.

[0051] Die Quelldateien 401 werden mit Hilfe eines speziell modifizierten C-Kompilers 402 kompiliert, der
nachfolgend beschrieben wird. Der Kompiler 402 liest (301) die Quelldateien 401, die Quellcode-Befehlsan-
weisungen enthalten, von einem Plattenspeicher oder von einem anderen Eingabe- oder Speichergerat. Der
Kompiler 402 identifiziert (302) dann eine ISA fir einen Untersatz von Quellcodebefehisanweisungen. In einer
Ausfiihrungsform werden ISAs von Rekonfigurations-Ubersetzungsanweisungen identifiziert, wie nachfolgend
ausfiihrlicher beschrieben wird. Der Kompiler 402 erzeugt (303) geeignete Rekonfigurations-Ubersetzungsan-
weisungen, um die identifizierte ISA zu spezifizieren, und kompiliert (304) den Untersatz von Befehlen zur Aus-
fuhrung durch die identifizierte ISA, um Anweisungen in Assemblersprache zu erzeugen. Der Kompiler 402 be-
stimmt dann (305), ob ein nachfolgender Untersatz von Befehlsanweisungen (typischerweise eine separate
Funktion innerhalb der Quelldatei 401) mit einer anderen ISA kompiliert werden soll. In einer Ausfihrungsform
wird eine solche Bestimmung wiederum dadurch ausgefiihrt, daft die Rekonfigurationsiibersetzungsanweisun-

8/50

DE 198 15 865 B4 2004.11.04

gen Uberprift werden. Falls eine andere ISA identifiziert wird, kehrt der Kompiler 402 zu Schritt 302 zurtick.

[0052] Anderenfalls, wenn das Ende der Quelldatei erreicht wird, werden die Assemblersprachenanweisun-
gen vom Assembler 409 assembiliert (306), um Objektdateien 403 zu erzeugen. Die Objektdateien 403 werden
mit Hilfe des Softwarelinkers bzw. Softwarebinders 404 verbunden (307), der modifiziert wurde, um Bit-
strom-Speicherstellen und abgeglichene bzw. synchronisierte 64-Bit-Adressen zu behandeln, um ein ausfihr-
bares Programm 405 zu erzeugen. Wie nachfolgend beschrieben wird, enthalt das ausfiihrbare Programm 405
aufgeldste Verweise (Referenzen) auf ISA-Bitstrome 406, die FPGA-Architekturen festlegen. Nachdem das
ausflihrbare Programm 405 vom Binder 404 erzeugt wurde, wird dieses Uber die Netzwerkverbindung 408 an
das Ladeprogramm 407 gesendet, das auf einem rekonfigurierbaren Computer 10 ablauft, zum Laden (308)
in den Computer 10. Fir den Fall einer dynamischen Verbindung werden ISA-Bitstréme 406 auch Uber die
Netzwerkverbindung 408 an das Ladeprogramm 407 gesendet.

Beliebige und strukturierte Rekonfigurierung

[0053] In einer Ausfihrungsform IaRt der Kompiler 402 eine beliebige Rekonfigurierung (arbitrary reconfigu-
ration) zu, bei der die Rekonfigurations-Ubersetzungsanweisungen an einer beliebigen Stelle in dem Quell-
code lokalisiert sein kdnnen. Bei einer anderen Ausfihrungsform lalkt der Kompiler 402 eine strukturierte Re-
konfigurierung (structured reconfiguration) zu, bei der Rekonfigurierungs-Ubersetzungsanweisungen nur zu-
gelassen wird, wenn von einer Funktion aufgerufen oder zurtickgekehrt wird, so daf} jede Funktion mit einer
einzelnen ISA bezeichnet wird, die wahrend des gesamten Ablaufs der Funktion im Kontext bzw. Zusammen-
hang sein soll. Wahrend eine beliebige Rekonfigurierung zusatzliche Flexibilitdt und einen kleineren Quellcode
ermoglicht, sorgt eine strukturierte Rekonfigurierung fir eine bessere Vorhersagbarkeit und einen besseren
Determinismus beim Laden einer ISA, was zu einer groReren Zuverlassigkeit fuhrt. Weil der Maschinencode
generell fir verschiedene ISAs verschieden ist, wird der Determinismus bevorzugt, so daf} der Kompiler in der
Lage ist, einen geeigneten Maschinencode fur ein bestimmtes Segment des Quellcodes zu erzeugen. Die be-
liebige Rekonfigurierung kann zu nicht deterministischen Situationen flhren, wenn diese mit gewissen Kondi-
tionalkonstrukten im Quellcode kombiniert wird. Diese Situationen werden durch Verwendung einer strukturier-
ten Rekonfigurierung beseitigt.

[0054] Der folgende Auszug aus einem Code stellt ein Beispiel fir eine nicht deterministische Rekonfiguration
dar, die auftreten kann, wenn eine beliebige Rekonfiguration verwendet wird:

#pragma reconfig ISAO

x =0

if (a!= 0) {

#pragma reconfig ISA1
} else {

#pragma reconfig ISA2

}

y =X+ 2;

[0055] Die ISA im Kontext nach der if-Anweisung kann zum Zeitpunkt der Kompilierung nicht bestimmt wer-
den, weil es zur Laufzeit zwei mogliche Pfade fir den Steuerflu3 gibt, von denen jeder eine Rekonfiguration zu
einer anderen ISA bewirkt. Deshalb kann der Kompiler fir diese Prozedur keinen gultigen Maschinencode aus-
geben, solange ISA1 und ISA2 binar kompatibel sind. Ein solcher Nichtdeterminismus wird beseitigt, wenn eine
strukturierte Rekonfiguration verwendet wird, weil nur eine ISA pro Funktion spezifiziert werden kann.

[0056] Bei dem oben genannten Beispiel ist der Wert der Variablen x wahrend des Rekonfigurationsvorgangs
geschitzt, so daf’ auf diesen von der neuen IS-Architektur zugegriffen werden kann. In einer Ausfiihrungsform
wird der Wert in einem Register bzw. Verzeichnis von ISAQ in herkdmmlicher Art und Weise abgespeichert. Die
Rekonfigurierung in ISA1 oder ISA2 kann jedoch bewirken, dal} dieses Verzeichnis aufhort, zu existieren oder
seinen Wert verliert, so dal man sich nicht auf das Verzeichnis verlassen kann, wenn es den Wert von x nach
der Rekonfiguration liefert. Der Kompiler 402 (iberwacht deshalb die lebenden Verzeichniswerte, die nach ei-
ner Rekonfiguration verwendet werden, um sicherzustellen, dal} ihre Werte zur Verfiigung stehen, wenn sie
bendtigt werden.

[0057] Wenn eine beliebige Rekonfiguration verwendet wird, legt der Kompiler 402 fest, wie eine darauffol-

9/50

DE 198 15 865 B4 2004.11.04

gende ISA mit einem Zugriff auf eine Variable versehen wird, indem dieser beriicksichtigt, wie die augenblick-
liche ISA die Variable abgespeichert hat, ebenso wie die Einrichtungen, auf die die nachfolgende ISA zugreifen
mul. In der strukturierten Rekonfiguration wird der Stapel dazu verwendet, um Werte abzuspeichern, wie dies
Ublich ist, wenn Werte an eine aufgerufene Funktion Gbergeben oder von dieser abgerufen werden. Weil sich
die Verzeichnisarchitektur wahrend der Rekonfiguration radikal andern kann, werden lebende Variablen von
der scheidenden ISA abgespeichert und dann wieder von der nachfolgenden ISA geladen, wie nachfolgend
ausfuhrlicher im Zusammenhang mit Fig. 6 erdrtert wird.

[0058] Bei einer Ausfiihrungsform realisiert der Kompiler 402 eine bekannte "Linear"-Optimierung (inlining op-
timization), um eine strukturierte Rekonfiguration zu ermdéglichen, um den Aufwand bzw. Systemverwaltungs-
aufwand der JSR-Anweisung zu vermeiden. Inlining ist ein bekanntes Verfahren zur Optimierung der Kompi-
lierung von Funktionsaufrufen, indem die Vorgange einer aufgerufenen Funktion "in der Linie" aufgerufen wer-
den, um so den Aufwand zu vermeiden, der mit dem Aufruf der Funktion in tblicher Weise verbunden ist. Somit
kann ein Code-Segment, wie beispielsweise:

#pragma reconfig ISA1

jst SUBROUTINE_A
#pragma reconfig ISAQ
#pragma reconfig ISA2
jst SUBROUTINE_B
#pragma reconfig ISAQ

tibersetzt werden durch:

#pragma reconfig ISA1

< code von SUBROUTINE_A >
#pragma reconfig ISAO

#pragma reconfig ISA2

jst SUBROUTINE B

#pragma reconfig ISAO

wodurch die Leistungsfahigkeit verbessert wird, indem die Notwendigkeit einer Sprunganweisung und einer
Programmriickkehr umgangen wird und auch die zugeordneten Stapel-Schreibvorgange, die beim Aufruf einer
Funktion und bei der Ruckkehr von der Funktion involviert sind.

[0059] AuRerdem kann eine zusétzliche Optimierung erfolgen, indem alle Rekonfigurations-Ubersetzungsan-
weisungen bis auf die letzte eliminiert werden, wenn mehr als eine Rekonflgurations-Ubersetzungsanweisung
in Folge auftritt. Somit kann die dritte Zeile (#pragma reconfig ISAQ) von dem oben genannten Code-Segment
geldscht werden.

[0060] Wenn man eine beliebige Rekonfiguration verwendet, kann eine aufgerufene Funktion eine Rekonfi-
guration bewirken, die wirksam bleibt, auch nachdem der Programmfluf3 zu der aufgerufenen Funktion zurlick-
kehrt. Beispielsweise beginnt eine aufgerufene Funktion, die die oben genannte Code-Auflistung enthalt, in ei-
ner ISA, rekonfiguriert zweimal und kehrt dann zu einer aufrufenden Funktion zurlick. Von nachfolgenden An-
weisungen in der aufrufenden Funktion mufd deshalb angenommen werden, daf} diese die ISA von der letzten
Rekonfiguration verwenden. In einer Ausfihrungsform fiihrt der Kompiler 402 eine interprozedurale Analyse
durch, um zu bestimmen, welche ISAs sich bei jedem Funktionsaufruf und bei jeder Funktionsriickkehr im Kon-
text befinden. Dort, wo Quelldateien separat in Objektdateien kompiliert werden, bevor diese in ausfihrbare
Programmanweisungen gebunden werden, kann es schwierig oder unmaoglich sein, zu bestimmen, welche ISA
sich im Kontext befinden wird, nachdem eine aufgerufene Funktion zurlickkehrt. In solchen Situationen kann
die ISA-Information abgespeichert werden, beispielsweise in Header-Dateien bzw. Kopfinformationsdateien,
um zu spezifizieren, welche ISA sich im Kontext bei einer Funktions-Einsprungstelle sowie bei einer Funkii-
ons-Austrittsstelle befindet, und zwar fiir alle externen Funktionen, die von einem Modul aufgerufen werden.
Alternativ kénnen Parameter unter Funktionen weitergeleitet werden, um die ISA-Kontexte zu spezifizieren.

10/50

DE 198 15 865 B4 2004.11.04

[0061] Wenn eine strukturierte Rekonfiguration verwendet wird, ist die ISA-Information im Vereinbarungsteil
der Funktion vorgesehen, so daf} keine Notwendigkeit besteht, dal® der Kompiler 402 ISA-Spezifikationen ge-
gen den Steuerflul verifiziert, und es gibt keine Méglichkeit, dall eine unerwartete Rekonfiguration wahrend
einer aufgerufenen Funktion auftritt.

[0062] Ein weiterer Vorteil einer strukturierten Rekonfiguration besteht darin, da® diese den Rekonfigurations-
vorgang vom semantischen Standpunkt her besser wiedergibt. Weil eine Rekonfiguration generell ein Maf3 an
Aufwand mit sich bringt, das zumindest vergleichbar mit dem Aufwand flr einen Funktionsaufruf ist, und weil
eine Rekonfiguration viele derselben Arten von Operationen beinhaltet, wie beispielsweise die Abspeicherung
von Werten auf einem Stapel, ist es wiinschenswert, eine dhnliche Syntax sowohl fir die Rekonfiguration als
auch fur Funktionsaufrufe zu schaffen. Die strukturierte Rekonfiguration verbindet die Idee einer Rekonfigura-
tion mit der Idee von Funktionsaufrufen und verwirklicht deshalb dieses semantische Ziel. Weitere Beispiele
fur eine strukturierte und beliebige Rekonfiguration werden nachfolgend erértert.

Rekonfigurations-Ubersetzungsanweisungen

[0063] Bei der bevorzugten Ausfiihrungsform steht vir Rekonfigurations-Ubersetzungsanweisungen #prag-
ma, eine normale Meta-Syntax, die bei der C-Sprache vorgesehen ist, um Information an den Kompiler weiter-
zuleiten, die aus der Sprachsyntax herausfallt. Die Verwendung der #pragma-Syntax ermdglicht es, dalt die
Rekonfigurations-Ubersetzungsanweisung im Kontext eines C-Programms verwendet werden kann. Ein Bei-
spiel firr eine Rekonfigurations-Ubersetzungsanweisung, die man in dem Quellcode finden kann, wiirde wie
folgt lauten:

#pragma func-isa func2 isa2

[0064] Bei einer Ausfiihrungsform sind drei #pragma-Ubersetzungsanweisungen vorgesehen. Jede Uberset-
zungsanweisungen wird auf einem anderen Niveau der Granularitdt oder des Giiltigkeitsbereichs betrieben
und beeinfluf3t deshalb einen spezifischen Teil des Codes:

- reconfig: beeinflult eine Zwischen-Rekonfiguration zu einer neuen ISA (Gultigkeitsbereich ist ein beliebi-

ger Block des Codes);

— func_isa: spezifiziert fir eine bestimmte Funktion eine ISA (Giiltigkeitsbereich ist die Funktion); und

— default_func_isa: spezifiziert eine Standard-ISA (Glltigkeitsbereich ist die gesamte Datei).

[0065] Diese Rekonfigurations-Ubersetzungsanweisungen resultieren in Registertransferniveau-Rekonfigu-
rationsanweisungen (RTL), die den Kompiler mit Information versorgen, um zu bestimmen, welche ISA fir je-
den Block des Codes bendétigt wird, wie nachfolgend ausfihrlicher beschrieben wird.

[__0066] Das nachfolgende Codelisting stellt ein Beispiel fur die Verwendung von jeder der oben genannten
Ubersetzungsanweisungen in einer strukturierten Rekonfigurationsumgebung dar.

11/50

16
17
18

19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

37

38
38
40
41

[0067] Zeile 4 des Codelistings stellt ein Beispiel fiir die default_func_ isa-Ubersetzungsanweisung dar, die
spezifiziert, dal® ISAO fur jegliche Funktionen verwendet werden soll, die keine andere ISA spezifizieren. Der
Gliltigkeitsbereich dieser Ubersetzungsanweisung ist die gesamte Datei; deshalb gilt die Ubersetzungsanwei-

DE 198 15 865 B4 2004.11.04

#include "icarus_types.h”
#include "icarus_isas.h”
ginclude "fixed.h" '
#pragma default_func_lsa ISAC
uns8 color_map(256];

#pragma func_isa build_color_map FIXED_POINT_ISA

void '
build_color_map(1nt16 contrast)

{
unsigned color;
“unsB *color_map_tmp = color map:
‘ for (color = 0; color < 255U; color++) ¢
color_map_tmplcolor] =
fixed mul_int8 (contxrast, colox);
}
}
void

map_contrast(int x. int v, uns8 *image)

{

register int i, tmp;
tmp = X Y Y

#pragma reconfig BYTE_MAP_ISA
{

regiscer int i:

register uns8 *map;

register uns8 *image tmp;
#pragma isa_pragma map_pointer map
#pragma isa_pragma image_901nte:‘xmage_tmp
#pragma isa_pragma loop_counter 1

image_tmp = ilmage:

map = colox_map;

for (i = tmp; 1>0; i--} (
*image_tmp = map [*image_tmpl;
image_tmp++;

}

do_contrast(int x. int ¥y, uns8 *image,
uns8 contrast)
{

buildicolor_map(con;rast);
map_contrasti{x, y, 1lmage);

)

sung fur das gesamte gezeigte Listing.

[0068] Zeile 6 des Codelistings stellt ein Beispiel fiir die func_isa-Ubersetzungsanweisung, die spezifiziert,
dafl FIXED_POINT_ISA die geeignete ISA flr die Funktion darstellt, die build_color_map genannt wird. Der

Gultigkeitsbereich dieser Ubersetzungsanweisung ist die spezifizierte Funktion.

[0069] Zeile 21 des Codelistings stellt ein Beispiel fiir die reconfig-Ubersetzungsanweisung dar, die spezifi-

12/50

DE 198 15 865 B4 2004.11.04

ziert, da BYTE_MAP_ISA die geeignete ISA fiir den Codeblock darstellt, der unmittelbar der Ubersetzungs-
anweisung folgt. Der Gliltigkeitsbereich dieser Ubersetzungsanweisung ist der in den Zeilen 22 bis 35 des Co-
delistings gezeigte Codeblock.

[0070] Das folgende Codelisting stellt ein Beispiel fiir die Verwendung von jeder der oben genannten Uber-
setzungsanweisungen in einer beliebigen Rekonfigurationsumgebung dar.

1 unsigned char color_map(256};

/= int is 16 bits for supercomputer 1A v/

typedef unsigned int unslé;
typedef unsigned char uns8§;

2

3

4

5 void
6 build_color_map(unsls concrast)
7

8

{
int color;

#pragma reconfig FixedIsa
io i ??or (coler = 0; color < 256; color++) (
11 color_maplcolor} =

: fixed_mul_int8 (contrast, color);

12 }
13 }
14 map_contrast{int x, int Yy, uns8 *image)
lS { . 2
16 register int 1, tmp;
17 register uns8 *map;
13 tmp = X Y Y

19 #pragma reconfig ByteMaplsa
20 #$pragma map_polinter map

21 #pragma map_counter i

22 #pragma target_polnter lmage

23 i = cmp;

24 map = colox_map;

25 while (i--) {

26 *image = map[*image];

27 . image++;

28 }

29 }

30 /* Beim Einsprung in do-contrast Isa0 annehmen */

31 do_contrast(int x, int Yy, uns8 *image,
BinFrac *contrast) ’

32 (
33 build_color_map(contrast);
34 map_contrast(x, y, image);
35 }

[0071] Zeilen 9 und 19 enthalten reconfig-Ubersetzungsanweisungen, die solange wirksam bleiben, bis eine
andere Rekonfigurations-Ubersetzungsanweisung festgestellt wird. Fiir eine beliebige Rekonfiguration kénnen
die Ubersetzungsanweisungen an einem beliebigen Punkt in dem Code auftreten und sie sind nicht auf die
Funktionsebenen-Granularitat begrenzt.

Kompilierungsverfahren

[0072] In den Fig. 3A und 3B ist ein FluRdiagramm eines bevorzugten Kompilierungsverfahrens gemafg der

13/50

DE 198 15 865 B4 2004.11.04

vorliegenden Erfindung gezeigt. Fig. 3A zeigt die Schritte, die von der Kompiler-Oberflache ausgefiihrt wer-
den, wahrend Fig. 3B die Schritte zeigt, die vom Kompiler-Kern ausgefiihrt werden. Die Oberflache interpre-
tiert Rekonfigurations-Ubersetzungsanweisungen und erzeugt RTL-Anweisungen, die vom Kern in Ublicher
Weise interpretiert werden kdnnen. Wie man weil3, sind RTL-Anweisungen ISA-unabhangige Zwischenniveau-
anweisungen, die den herkdmmlichen Kompilern eingesetzt werden, die beispielsweise in dem GNU C-Kom-
piler (GCC), der von der Firma Free Software Foundation (Cambridge, MA) hergestellt wird. RTL kann entspre-
chend der Spezifikation des Stanford University Intermediate Format (SUIF) ausgefiihrt werden, wie diese in
Stanford SUIF Compiler Group, SUIF: A Parallelizing & Optimizing Research Compiler, Tech. Rep.
CSL-TR-94-620, Computer Systems Lab, Stanford University, May 1994 offenbart ist. Beispielsweise konnte
die Quellcode-Anweisung:

X=y+3;

in RTL wie folgt dargestellt werden:
ri<-y

r0<-r1+3

x<-r0

[0073] Das Verfahren aus den Fig. 3A und 3B zieht als Eingangsgrélie die Quelldatei 401 heran, die eine Fol-
ge von Hochsprachen-Quellcodebefehlsanweisungen enthalt und die auch mindestens eine Rekonfigurati-
ons-Ubersetzungsanweisung enthalt, die eine ISA zur Ausfilhrung von nachfolgenden Anweisungen spezifi-
ziert. Um dies zu erlautern, sei eine strukturierte Rekonfigurationsumgebung angenommen, bei der eine Re-
konfiguration Funktion fir Funktion erfolgt. Die Oberflache des Kompilers 402 wahlt (600) die nachste Hoch-
sprachenanweisung von der Quelldatei 401 aus und stellt fest (601), ob die ausgewahlte Hochsprachenanwei-
sung ein Funktionsaufruf ist. Falls dies nicht der Fall ist, sendet (603) der Kompiler 402 einen RTL-Code fur
diese Anweisung.

[0074] Falls der Kompiler 402 in Schritt 601 feststellt, da® die Anweisung ein Funktionsaufruf ist, stellt der
Kompiler 402 in Schritt 602 fest, ob die gerade aufgerufene Funktion in einer anderen ISA als der gerade im
Kontext befindlichen ISA ablauft. Falls dies nicht der Fall ist, gibt der Kompiler 402 im Schritt 605 einen
RTL-Code fur den Funktionsaufruf und fur das Einlesen des Riickkehrwerts der Funktion in Schritt 613 ab.

[0075] Falls der Kompiler 402 in Schritt 602 feststellt, dal die Funktion in einer anderen ISA arbeitet, gibt der
Kompiler 402 einen RTL-Code ab, der erforderlich ist, um die Rekonfiguration zu bewirken, und zwar ein-
schliellich des Abspeicherns aller lebenden Register in Schritt 607 und der Durchfiihrung der Rekonfiguration
in Schritt 604. Bei der bevorzugten Ausfihrungsform handelt es sich bei der RTL-Rekonfigurationsanweisung
um keine Standard-RTL-Anweisung, die eine ISA-ldentifikation enthalt. Der Kompiler 402 gibt dann in Schritt
606 einen RTL-Code flir den Funktionsaufruf ab. Der Kompiler 402 gibt dann in Schritt 609 den RTL-Code fir
die Rekonfiguration zurlick an die erste ISA, um in Schritt 611 lebende Register wieder abzuspeichern und um
den Rickgabewert der Funktion in Schritt 613 zu lesen.

[0076] Bei Beendigung der Schritte 603 oder 613 stellt der Kompiler 402 in Schritt 608 fest, ob eine andere
Hochsprachenanweisung berticksichtigt werden mul3. Falls dies der Fall ist, kehrt der Kompiler 402 zu Schritt
600 zurtick; anderenfalls fahrt er mit Schritt 610 fort.

[0077] InFig. 3B fihrt der Kern des Kompilers 402 die Schritte 610 bis 622 aus, um zuvor generierte RTL-An-
weisungen in Assemblersprache zu lbersetzen.

[0078] Der Kompiler 402 wahlt dann in Schritt 612 eine nachste RTL-Anweisung innerhalb der augenblicklich
bertcksichtigten Gruppe von RTL-Anweisungen aus. Der Kompiler 402 erhalt in Schritt 618 eine Regel, die
eine Weise spezifiziert, in der die augenblickliche Gruppe von RTL-Anweisungen in einen Satz von Maschi-
nenspracheanweisungen Ubersetzt werden kann, die fur die augenblicklich berucksichtigte Gruppe von
RTL-Anweisungen existiert. Der Kompiler 402 erzeugt in Schritt 620 einen Satz von Maschinenspracheanwei-
sungen, die entsprechend der Regel der augenblicklich bertcksichtigten Gruppe von RTL-Anweisungen ent-
spricht. Der Kompiler 402 stellt dann in Schritt 622 fest, ob eine andere RTL-Anweisung innerhalb des Kontext
einer nachsten Gruppe von RTL-Anweisungen bericksichtigt werden mul. Falls dies der Fall ist, kehrt der
Kompiler 402 zu Schritt 612 zuriick. Anderenfalls fihrt der Kompiler 402 in Schritt 610 Registerreservierungs-

14/50

DE 198 15 865 B4 2004.11.04

schritte (register allocation) aus. Bekanntlich ist eine konsistente Registerarchitektur von einer ISA zur anderen
nicht unbedingt erforderlich. AuBerdem kdnnen gewisse Innenschleifen-ISAs spezielle Register besitzen, fir
die normale Registerreservierungsvorgange nicht gelten. Im allgemeinen sind jedoch AuRenschleifen-ISAs in
der Lage, normale Registerreservierungen zu verwenden.

[0079] Beispielsweise kénnte der oben angefiihrte RTL-Code etwa wie folgt in einen Assembler-Code tber-
setzt werden, wobei der Assembler-Code von ISA zu ISA verschieden ware:

Idy, r3

Id [r3], rO
add 3, r0
st r0, [X]

[0080] Somit erzeugt der Kompiler 402 wahlweise und automatisch in Entsprechung mit Vielfach-ISAs wah-
rend Kompilierungsvorgangen Assemblersprachenanweisungen. Oder mit anderen Worten: Wahrend des
Kompilierungsvorgangs kompiliert der Kompiler 402 einen Einzelsatz von Programmanweisungen von den
Quelldateien 401 entsprechend einer variablen ISA. Bei dem Kompiler 402 handelt es sich vorzugsweise um
einen Ublichen Kompiler, der modifiziert ist, um die bevorzugten Kompilierungsvorgange durchzufihren, die
zuvor anhand der Fig. 3A und 3B beschrieben wurden.

[0081] Der Assembler 409 bzw. der Ubersetzer fiir maschinenorientierte Programmiersprache wird betrieben,
um Maschinensprachenanweisungen, die vom Kompiler 403 erzeugt wurden, auch dazu zu verwenden, um
Objektdateien 403 zu erzeugen. Die Objektdateien 403 werden dann vom Binder bzw. Linker 404 gebunden,
der Bitstrom-Speicherstellen und 64-Bit, Bit-ausgerichtete bzw. Bit-abgeglichene Adressen handhabt, um ein
ausflihrbares Programm 405 zu erzeugen. Das Ladeprogramm 407 verkettet gleiche Segmente von einer An-
zahl von Objektdateien 403, einschlieRlich von Bitstrom-Segmenten, in ein einzelnes Speicherbild zur Uber-
mittlung an einen rekonfigurierbaren Computer 10. Bei einer Ausfuhrungsform erfolgt eine solche Verkettung
wahrend der Laufzeit bzw. in Echtzeit; bei einer alternativen Ausflihrungsform erfolgt dies off-line. Es ist vor-
teilhaft, wenn der Binder 404 in der Lage ist, eine Speicherausrichtung bzw. einen Speicherabgleich auf dem
ausfuhrbaren Programm 405 auszufiihren, um fur die Ausrichtungserfordernisse fur den FPGA-Bitstrom zu
sorgen. Gewisse FPGA-Ladeprogrammhardware erfordert Bitstrome von konstanter GroRe. Deshalb kann der
Binder die Speicherausrichtung vornehmen, indem er Bitstrdme aufflllt, damit die Anforderungen fur eine sol-
che Hardware erflllt werden.

[0082] Wenn ein statisches Einbinden (static linking) verwendet wird, werden Bitstrome 406 und ausfiihrbare
Programme 405 vom Binder 404 zur Zeit des Bindens verbunden. Wenn ein dynamisches Binden verwendet
wird, werden die ISA-Bitstrome 406 und die ausfiihrbaren Programme 405 zum Zeitpunkt des Ladens des Pro-
gramms verbunden, so dal} das ausflihrbare Programm 405 und die Bitstrome 406 Uber die Netzwerkverbin-
dung 408 zu dem Ladeprogramm 407 gesendet werden, das auf einen rekonfigurierbaren Computer 10 lauft.

[0083] In Fig. 3C ist ein FluBdiagramm von weiteren Schritten gezeigt, die zur Erzeugung eines Maschinen-
sprachencodes gemal einer Ausfiihrungsform der vorliegenden Erfindung ausgefihrt werden. Dieses Fluf3di-
agramm gibt im Detail die Zwischendateien an, die erzeugt werden, wenn der RTL-Code in einen maschinen-
lesbaren Code fir einen rekonfigurierbaren Computer Gibersetzt wird. Der RTL-Code ist mit Bemerkungen ver-
sehen 331, um anzuzeigen, welche ISA sich in Kontext fir jede RTL-Anweisung in dem Code befindet. Zu die-
sem Zeitpunkt werden RTL-Anweisungen modifiziert. Der Kode wird dann in Schritt 332 mit Hilfe von ISA-ab-
hangigen Verfahren und ISA-unabhangigen Verfahren mittels eines Optimierungs-Dienstprogrammes opti-
miert. Obwohl das Optimierungsdienstprogramm eine ISA-abhangige Optimierung ausfuhrt, verwendet seine
Ausgabe maschinenunabhangigen Code. Somit wiirde die Ausgabe dennoch auf einer beliebigen ISA laufen,
obwohl dies nicht notwendiger Weise optimal ist. Schliellich werden maschinenabhangige Befehle im Schritt
333 von dem optimierten Code mittels des Assemblers 409 erzeugt. Dieser Code verwendet abstrakte Register
(abstract registers) und andere maschinenabhangige Merkmale. Zusatzliche Schritte zum Aufraumen von Ver-
knipfungen bzw. Links und weitere unwichtige Schritte kdnnen dann ausgefuhrt werden.

[0084] Bei der bevorzugten Ausfihrungsform der vorliegenden Erfindung umfassen die ISAs eine recon-

fig-Anweisung, die bewirkt, dal® der FPGA von S-Einrichtung 12 einen Bitstrom |adt, auf den mittels eines Pa-
rameters der Anweisung verwiesen wird. Somit besitzt jede ISA zumindest einen Programmverschiebungstyp,

15/50

DE 198 15 865 B4 2004.11.04

der mit Programmverschiebungsbitstromadressen in Zusammenhang steht, die als Parameter fiir die recon-
fig-Anweisung der ISAs verwendet werden. Die Programmverschiebungseinsprungstelle in der Objektdatei
teilt dem Binder mit, die augenblickliche Adresse einer GréRe in ein Segment eines ausfihrbaren Programms
zum Zeitpunkt der Bindung zu ersetzen. Programmverschiebungstypen werden nachfolgend ausfiihrlicher be-
schrieben.

[0085] Wie nachfolgend beschrieben wird, werden Bitstrome als Datenobjekte definiert, die sich in einem be-
stimmten Abschnitt befinden, mdglicherweise nur zum Lesen, und deshalb sind Standard-Programmverschie-
bungsverfahren in der Lage, fir eine Programmverschiebung von Bitstromadressen zu sorgen, die in analoger
Weise mit ISA-reconfig-Anweisungen zu irgendwelchen programmdefinierten, nur lesbaren Daten verwendet
werden.

[0086] Der rekonfigurierbare Computer 10 fihrt die Ergebnisse von dem Ladeprogramm aus, das nachfol-
gend anhand der Fig. 9 bis 25B beschrieben wird. Insbesondere erkennt der rekonfigurierbare Computer 10
reconfig-Anweisungen und Iadt geeignete ISA-Bitstrome, wie sie in Parametern fir solche Anweisungen spe-
zifiziert sind.

Erhaltung des Programmzustands

[0087] Eine FPGA-Rekonfiguration durch Laden einer neuen ISA kann zu einem Verlust von interner Hard-
warezustandsinformation fihren. Folglich behalt das erfindungsgemafie System und das Verfahren den Pro-
grammzustand wahrend einer Rekonfiguration bei, um den Verlust der Ausfihrungsbefehlfolge bei solchen
Ubergangen der Hardware zu vermeiden.

[0088] Wahrend der Rekonfiguration verwendet der rekonfigurierbare Computer 10 vorzugsweise einen Auf-
rufstapel, um irgendwelche Daten abzuspeichern, die erforderlich sein kdnnten, nachdem die neue ISA gela-
den worden ist. Ein solcher Speichervorgang wird durch Schieben von Werten auf den Aufrufstapel bewerk-
stelligt und durch Abspeichern des Stapelzeigers in einer vordefinierten Speicherzelle, die nicht durch die Re-
konfiguration beeinflut werden wird. Im Anschluf® an die Rekonfiguration verwendet der rekonfigurierbare
Computer 10 den Stapelzeiger, um die zuvor abgespeicherten Werte von dem Aufrufstapel auszuspeichern.

[0089] Es sind Stapel in Laufzeitumgebungen fir laufende Maschinenprogramme bekannt, die von Hochspra-
chen kompiliert wurden, die eine Rekursion unterstiitzen, wie beispielsweise C/C++, Lisp und Pascal. Ein Sta-
pel ist in einem Bereich des Speichers realisiert und der Stapelzeiger (stack Pointer; SP) wird in der ISA dazu
verwendet, um die Adresse des Beginns des Stapels zu behalten. Ein Wert, beispielsweise die Programmda-
ten oder die Adresse, wird in dem Stapel gespeichert (oder auf den Stapel "geschoben"), indem der Stapelzei-
ger dekrementiert wird und der Wert in die in dem Stapelzeiger enthaltene Adresse geschrieben wird. Der Wert
wird wieder von dem Stapel abgerufen (oder vom Stapel "heruntergeschoben"), indem der Wert von der in dem
Stapelzeigerregister enthaltenen Adresse gelesen wird; dann wird der Stapelzeiger inkrementiert.

[0090] Bei der vorliegenden Erfindung wird der dynamische Zustand des Programms, wie beispielsweise lo-
kale Variablen und die Speicherstelle der nachsten Anweisung, die die Hardware ausfiihren soll, die typischer-
weise in einem Adref3register fur den nachsten Anweisungszeiger (Next Instruction Pointer Address Register;
NIPAR) oder in einen Programmzahler (PC) abgespeichert ist, vor der Rekonfiguration der Hardware auf dem
Stapel abgespeichert. Der Stapelzeiger wird bei der vorbestimmten Speicheradresse aufbewahrt. Somit wer-
den die Werte des Stapelzeigers und des NIPARs bei der Hardware-Rekonfiguration aufbewahrt, so daf} auf
diese spater Zugriff genommen werden kann, wenn die Ausfiihrung des Programms beginnt.

[0091] In Fig. 6 ist ein FluRdiagramm flr ein Verfahren zum Konservieren des Programmzustands gemaf der
vorliegenden Erfindung gezeigt. Bei Schritt 601 wird eine reconfig-Anweisung empfangen, die anzeigt, dal} ein
Bitstrom, der eine neue ISA-Konfiguration darstellt, in die Prozessor-Hardware geladen werden soll. Das Ar-
gument fur die reconfig-Anweisung ist eine physikalische Speicheradresse, die die zu ladende ISA-Konfigura-
tion enthalt.

[0092] Der Stapelzeiger wird bei Schritt 652 dekrementiert und der NIPAR wird in Schritt 653 in die von dem
Stapelzeiger angezeigte Adresse hineingeladen, wodurch NIPAR auf den Stapel geschoben wird. Der Stapel-
zeiger wird in Schritt 654 unter einer vorbestimmten Adresse im Speicher abgespeichert, die der neuen
ISA-Konfiguration bekannt ist. Die neue ISA-Konfiguration wird dann im Schritt 655 in die Hardware hineinge-
laden, indem die FPGA 12 dazu veranlal3t wird, den ISA-Bitstrom von einer Speicherstelle in dem Bitstrom-
speicher 132 zu lesen. Sobald die neue Konfiguration geladen worden ist, I1&dt diese in Schritt 656 den Stapel-

16/50

DE 198 15 865 B4 2004.11.04

zeiger von der bekannten, vorbestimmten Adresse und 1adt dann NIPAR von dem Stapel, indem dieser von der
Speicherstelle abgerufen wird, die in Schritt 657 in dem Stapelzeiger abgespeichert wurde und dann wird der
Stapelzeiger in Schritt 658 inkrementiert. Ein Beispiel fur Stapelinhalte wahrend des Rekonfigurationsvorgangs
aus Fig. 6 wird nachfolgend anhand der Fig. 8A bis 8C beschrieben.

Realisierung einer strukturierten Rekonfiguration

[0093] Bei einer Ausflihrungsform der vorliegenden Erfindung wird eine strukturierte Rekonfiguration dadurch
bewerkstelligt, dafl reconfig-Anweisungen von dem Quellcode in eine Folge von Assemblersprachenanwei-
sungen ubersetzt werden. Wie zuvor beschrieben wurde, werden bei der strukturierten Rekonfiguration Rekon-
figurations-Ubersetzungsanweisungen nur dann zugelassen, wenn eine Funktion aufgerufen wird oder zu ei-
ner Funktion zurlickgekehrt wird, so daf jede Funktion mit einer einzigen ISA gekennzeichnet ist, die sich wah-
rend der gesamten Ausfiihrung der Funktion im Kontext befinden soll. In Fig. 7 ist ein FluBdiagramm fur ein
Verfahren zur Realisierung der strukturierten Rekonfiguration geman einer Ausfihrungsform der vorliegenden
Erfindung gezeigt.

[0094] Das Verfahren gemaR Fig. 7 wird ausgefihrt, wenn der Aufruf einer Funktion eine aufgerufene Funk-
tion mit sich bringt, die eine ISA-Rekonfigurationsanweisung besitzt. Die S-Einrichtung 12 rettet in Schritt 707
lebende Registerwerte, so dal} diese nicht als Folge der Rekonfiguration verlorengehen. Die S-Einrichtung 12
verwendet die augenblickliche ISA, um in Schritt 701 Parameter fiir die aufgerufene Funktion auf den Stapel
zu schieben, weil diese Parameter in Registern vorliegen kdnnen. Die S-Einrichtung 12 rekonfiguriert in Schritt
702 in die neue ISA und ruft in Schritt 703 das Unterprogramm auf, das die Funktion darstellt, wobei eine An-
weisung, wie beispielsweise "jsr", der ISA der Zielfunktion verwendet wird. Nachdem die aufgerufene Funktion
die Ausflihrung beendet hat, kehrt eine Riickkehranweisung, wie beispielsweise "ret", in Schritt 704 zu der auf-
rufenden Funktion zurtck. S-Einrichtung 12 10 rekonfiguriert in Schritt 705 zu der urspringlichen ISA fir die
aufrufende Funktion, liest in Schritt 706 einen Riickgabewert der aufgerufenen Funktion und speichert lebende
Registerwerte in Schritt 708 wieder ab. Die Verfahren aus Fig. 7 zur Weitergabe von Stapelparametern und
zur Rickgabe von Werten kénnen in Gblicher Weise realisiert werden, wie sie in nicht rekonfigurierbaren Com-
putern verwendet werden, die keine Parameter oder Rickgabewerte in Register weiterleiten.

[0095] Das folgende stellt ein Beispiel fir einen Code zur Realisierung einer strukturierten Rekonfiguration
dar:

#pragma func_isa funcl another_isa
int
funcl(int *i)

{

#pragma func_isa main isa0
main()

{

int foo, bar;

bar = funcl (&foo);
}

[0096] Zwei Funktionen sind bekannt: main, das ISAO verwendet, einen Mehrzweck-Anweisungssatz; und
func1, das einen anderen Anweisungssatz (another IS) verwendet, der als another_isa bezeichnet wird. Die
#pragma-Anweisungen spezifizieren die Anweisungssatze fur die zwei Funktionen.

[0097] In einer Ausfiihrungsform der vorliegenden Erfindung, die eine strukturierte Rekonfiguration verwen-

det, wiirde der Kompiler 402 die Funktion call bar = func1 (&foo) von dem oben genannten Listing in den fol-
genden Assemblercode Ubersetzen. Dabei wurden Kommentare zum Zwecke der Erlauterung hinzugeflgt.

17/50

DE 198 15 865 B4 2004.11.04

1 schaffe Platz fiir den Rickgabewert durch Dekrementierung von SP
2 eldi 16, a0

3 esub a0, sp

4 ; berechne die Adresse von Argument foo

5 emov sp, al

6 eadd a0, al

7 ; und schiebe diese auf den Stapel

8 estr al, sp

9 ; reconfig

10 reconfig another_isa

[0098] Diese Seite bleibt aus technischen Griinden frei.

11 ; rufe das Unterprogramm auf
12 jsr funcl

13 ; gehe zuriick zu isa0

14 reconfig isa0

15 ; losche den geschobenen Parameter

16 eldf do
17 ; und lese das Ergebnis in die Registervariable bar
18 1df do

[0099] Aulierdem kdnnte Assemblercode zum Abspeichern und wieder Herstellen von lebenden Registerwer-
ten vor der Zeile 1 bzw. nach der Zeile 18 hinzugefligt werden.

[0100] In den Fig. 8A bis 8C sind Diagramme der Speicherinhalte bei verschiedenen Punkten wahrend der
Ausfiihrung des Assemblercodes gezeigt. Die Fig. 8A zeigt den Zustand des Stapels 800 nach der Ausfiihrung
der Zeilen 1 bis 8 des oben angeflihrten Assemblercodes. Diese Zeilen bilden den Stapelrahmen, der von
func1 verwendet wird. Zunachst wird Platz geschaffen, um einen Riickgabewert abzuspeichern; dann wird die
Adresse der Variablen foo auf den Stapel geschoben. Die Speicherstelle 801 enthalt die Variable foo im Sta-
pelrahmen fiir die Funktion main. In diesem Beispiel wird die Variable bar in einem ISAO-Register abgespei-
chert und erscheint deshalb nicht auf dem Stapel 800. Die Speicherstelle 802 wird fiir einen Riickgabewert re-
serviert und die Speicherstelle 803 enthalt die Adresse der Variablen foo.

[0101] Fig. 8B zeigt den Zustand des Stapels 800 auf halben Wege wahrend der Ausflhrung der reconfig-An-
weisung bei Zeile 10. Wie man auch durch Vergleich mit Fig. 6 erkennen wird, entspricht dieser Zustand des
Stapels 800 dem Ende des Schrittes 654, unmittelbar bevor die neue Konfiguration geladen werden soll. Die
augenblickliche Adresse der nachsten Anweisung (NIPAR) wurde auf den Stapel 800 bei der Speicherstelle
804 geschoben und der Stapelzeiger SP wurde auf eine vorbestimmte Adresse (nicht gezeigt) geschrieben.
An dieser Stelle werden die Schritte 655 bis 658 ausgeflihrt, namlich die Hardware wird rekonfiguriert, der Sta-
pelzeiger wird geladen und NIPAR wird ausgespeichert, wie zuvor beschrieben wurde.

[0102] Fig. 8C zeigt den Zustand des Stapels 800 bei der Einsprungstelle zu func1, wobei die jsr func1-An-
weisung bei Zeile 12 verwendet wird. Die Speicherstelle 804 enthalt nun die Riickkehradresse. Wenn func1
zurlickkehrt, rekonfiguriert der Computer 10 zu ISAO zurtick, wird der Parameter &foo von dem Speicher ent-
fernt und wird der Riickkehrwert in die Variable bar gelesen, die der Kompiler 402 fiir Register d0 reserviert
hatte.

18/50

DE 198 15 865 B4 2004.11.04

Ausfuhrbares Programm und Bindungsformat

[0103] Die bevorzugte Ausfuhrungsform der vorliegenden Erfindung erweitert Standardparadigmen zur Soft-
wareentwicklung, um Bitstrdme mit einzuschlieen, die Hardwarekonfigurationen festlegen, die einen mit Hilfe
von FPGAs realisierten Computer spezifizieren, der binare Maschinenanweisungen von einer ausflihrbaren
Datei 405 ausflhrt. Dies wird dadurch bewerkstelligt, dafl® ein neues Dateiformat verwendet wird, das als ICA-
RUS ELF bezeichnet wird und das eine Erweiterung des Executable and Linking Format (ELF) umfal}t, das
haufig auf Unix-Workstations verwendet wird und in UNIX System Laboratories, Inc., System V Application Bi-
nary Interface, 3. Auflage, 1993 beschrieben ist und das hiermit im Wege der Bezugnahme in dieser Patent-
beschreibung mit aufgenommen sei.

[0104] Wie in dem UNIX System Laboratories, Inc., System V Application Binary Interface, 3. Auflage, 1993
beschrieben ist, handelt es sich bei ELF-Dateien entweder um programmverschiebliche (relocatable) Dateien
(Objektdateien 403) oder um ausfiihrbare Dateien 405. ELF sorgt fiir Parallelansichten der Inhalte der Datei,
was die differierenden Erfordernisse dieser zwei Formate reflektiert. In Fig. 5 ist im Teil 501 ein typisches
ELF-Dateiformat in einer Binden-Ansicht und im Teil 502 in einer Ausfuhren-Ansicht gemafl dem Stand der
Technik dargestellt. Der ELF-Kopfteil 503 enthalt einen "Plan", der die Organisation der Datei beschreibt. Die
Abschnitte 505 beinhalten den GroRteil der Information der Objektdatei fir die Binden-Betrachtungsweise 501,
einschlieRlich von Anweisungen, Daten, Symboltabellen, Verschiebungsinformation und dergleichen, wie
nachfolgend ausfihrlicher beschrieben wird. Die Abschnitte 507, die in der Ausfihren-Darstellung 502 verwen-
det werden, entsprechen den Abschnitten 505, wobei jeder Abschnitt 507 einem oder mehreren Abschnitten
505 entspricht. AuRerdem kénnen die Abschnitte 507 Kopfteile umfassen, die Information enthalten, wie bei-
spielsweise die Information, ob der Abschnitt 507 sich in einem Schreib-Speicher befindet, was auf die Ab-
schnitte 505 anwendbar sein kann oder nicht. Im allgemeinen enthalten die Abschnitte 505 Information, die
wahrend des Bindens verwendet wird, wahrend die Abschnitte 507 Information enthalten, die wahrend des La-
dens verwendet wird.

[0105] Die Programmkopfteiltabelle 504 (falls vorhanden), teilt dem Computer 10 mit, wie ein Verarbeitungs-
bild aufzubauen ist. Die Abschnittskopfteiltabelle 506 enthalt Information, die die Abschnitte 505 beschreibt.
Jeder Abschnitt 505 besitzt einen Eintrag in Tabelle 506; jeder Eintrag gibt Information an, wie beispielsweise
den Namen des Abschnitts, die Groflke und dergleichen. Die in Fig. 5 gezeigten Elemente kénnen in einer be-
liebigen Reihenfolge vorgesehen sein und einige Elemente kdnnen fehlen.

[0106] Weitere Details, die die in Fig. 5 gezeigten Elemente betreffen, kann man in UNIX System Laborato-
ries, Inc., System V Application Binary Interface, 3. Auflage, 1993 finden. Die folgende Beschreibung erklart
die Unterschiede zwischen dem Standard-ELF, wie in System V Application Binary Interface beschrieben, und
dem ICARUS ELF-Dateiformat, das bei der vorliegenden Erfindung verwendet wird.

[0107] Das ICARUS ELF-Dateiformat verwendet prozessorabhangige Merkmale von ELF, um fir eine Ver-
schiebung von Bitstromadressen zu sorgen, die innerhalb des Programmtextes verwendet werden, und um fur
eine Verschiebung und fir ein Binden von Bitstréomen in Segmente zu sorgen, die wahrend des Ablaufens des
Programms innerhalb eines hierfir vorgesehenen Bitstromspeichers 132 geladen werden kénnen. ICARUS
ELF erweitert somit Standard-ELF, um die Abspeicherung von Bitstrémen zu erleichtern, die FPGA-Konfigura-
tionen sowie den ausfiihrbaren Code definieren, der auf der FPGA-definierten Hardware lauft.

[0108] ICARUS ELF erganzt den Standard-ELF, um fiir neue Datentypen, Abschnitte, Symboltypen und Ver-
schiebungstypen fir ISA-Bitstrome zu sorgen.

Datentypen

[0109] Bei der bevorzugten Ausfiihrungsform verwendet der rekonfigurierbare Computer Bitadressen, die 64
Bit breit sind. Die Adressen zeigen auf den Bitversatz des niedrigstwertigen Bits des Daten-Gegenstands. ICA-
RUS ELF ist fir 64-Bit Byte-Adressen ausgelegt, wobei die Adresse auf das erste Byte (niedrigstwertig fur klei-
ne Endian-Prozessoren, hdchstwertig fiir groRe Endian-Prozessoren) fiir jedes Datenelement zeigt. Wahrend
die Versatze in Kopfteilen bezulglich der Bytes definiert werden, werden zu verschiebende Adressen in 64-Bit
Bit-Adressen spezifiziert. Dies a3t die Verwendung eines Binders auf einem Byte-orientierten Computer zu.
ICARUS ELF verwendet zwei neue Datentypen, um eine 64-Bitadressierung zu erleichtern:
—ICARUS_ELF_Addr: GroRe-8-Bytes, mit Ausrichtung, die flr die augenblickliche ISA durch K, festgelegt
wird, das den Zweier-Logarithmus der Bitbreite des Speichers darstellt (beispielsweise 3 fur 8-Bit, 4 fir
16-Bit).

19/50

DE 198 15 865 B4 2004.11.04

—ICARUS_ELF_Off: Byte-Versatz in die Datei, GroRRe 4 Bytes, Ausrichtung 1 Byte.
Abschnitte

[0110] Eine Ausfihrungsform der vorliegenden Erfindung figt einen neuen Abschnitt hinzu, der FPGA-Bit-
stromdaten enthalt, mit dem Namen .ICARUS.bitstream. Einer oder mehrere solcher Abschnitte kbnnen vor-
gesehen sein. Bei der bevorzugten Ausfihrungsform ist jeder solcher Abschnitte vom ELF-Abschnittstyp
SHT_PROGBITS und besitzt das ELF-Abschnittsattribut SHF_ALLOC.SHT_PROGBITS bezeichnet einen Ab-
schnitt, der Information enthalt, die durch das Programm festgelegt wird, deren Format und Bedeutung aus-
schliellich Gber das Programm festgelegt wird. Attribut SHF_ALLOC spezifiziert, dal® der Abschnitt wahrend
der Vorgangsausfiihrung einen Speicher besetzt, Information, die fir das Ladeprogramm nutzlich sein kann.

[0111] Weil ELF mehrere Beispiele fur einen Abschnitt mit einem bestimmten Namen erlaubt, kann die vor-
liegende Erfindung einen Abschnitt pro Bitstrom verwenden, oder kann alternativ alle Bitstrdme in einen Ab-
schnitt mit geeigneter Ausrichtung verbinden.

[0112] Es ist vorteilhaft, fur einen neuen Abschnitt fir Bitstrome zu sorgen, so da® Hardware mit speziellen
Speicherbereichen fiir Bitstrome hergestellt werden kann. Der separate Abschnitt erleichtert die Plazierung
von Bitstrémen in diesen speziellen Speicherbereichen mit Hilfe des Ladeprogramms. Falls solche Speicher-
bereiche nicht erforderlich sind, kann die vorliegende Erfindung unter Verwendung eines Standard-Datenab-
schnitts fur Nur-Lese-Programmdaten realisiert werden, wie beispielsweise .rodata und .rodata1, wie in Sys-
tem V Application Binary Interface beschrieben ist, anstatt das spezielle Bitstromabschnitte eingefiihrt werden.

Symbole

[0113] sObjektdateien enthalten Symboltabellen, die Information zur Lokalisierung bzw. Fixierung und zur
Verschiebung der Symboladressen und Verweise eines Programms halten. In einer Ausfiihrungsform der vor-
liegenden Erfindung besitzt jeder Bitstrom, der in dem Abschnitt .ICARUS .bitstream enthalten ist, einen Eintrag
in der Symboltabelle der Objektdatei. In der Binden-Ansicht 501 aus Fig. 5 ist die Symboltabelle in einem se-
paraten Abschnitt 505 lokalisiert. Das Symbol hat die folgenden Attribute:
— st_narre: Der Name des Symbols ist der Name, der verwendet wird, um es in der Maschinensprachen-
quelle fur die Objektdatei zu referenzieren. st_name enthalt einen Index in die Symbolstringtabelle der Ob-
jektdatei, die die Zeichendarstellungen der Symbolnamen enthalt.
st_value: Sorgt bei Bitstrom-Symbolen flr den Versatz des Bitstroms innerhalb des Abschnittes.
st_size: Grofde des Bitstroms in Bits.
st_info: Spezifiziert den Typ und die Binde-Attribute. Ein neuer Typ wird verwendet, der als
STT_BITSTREAM bezeichnet wird. Dieser neue Typ ist charakteristisch fir die vorliegende Erfindung und
zeigt an, dal dieses Symbol sich in einem FPGA-Bitstrom befindet. Der Bindevorgang legt die Sichtbarkeit
der Bindung und das Verhalten fest und kann STB_LOCAL oder STB_GLOBAL sein. STB_LOCAL zeigt
an, dall das Symbol nicht auf3erhalb der Objektdatei, die die Definition des Symbols enthalt, sichtbar ist.
STB-GLOBAL zeigt an, dal das Symbol fir alle Dateien, die kombiniert werden, sichtbar ist. Fir Bit-
strom-Symbole kann das Binden entweder STB_LOCAL oder STB-GLOBAL sein. Weil Bitstrome fir ge-
wohnlich von mehr als einem Codeabschnitt verwendet werden und deshalb in eine Bibliothek zur Wieder-
verwendung Ubersetzt werden kdnnen, ist es wahrscheinlicher, dall STB-GLOBAL verwendet wird.

[0114] Verschiebungen (Relocations) Verschiebung ist der Vorgang der Verbindung symbolischer Referen-
zen mit symbolischen Definitionen. Verschiebbare Dateien enthalten Verschiebungen bzw. Programmver-
schiebungen, die Daten darstellen, die beschreiben, wo spezielle symbolische Definitionen gefunden werden
kdnnen, so dal® der Binder diese lokalisieren kann. Spezielle Verschiebungsvorgange variieren von ISA zu
ISA, wie dies auch bei Standard-ELF-Dateien der Fall ist. Verschiebungstypen sind innerhalb der Felder r_info
von ICARUS_ELF_REL-Strukturen und ICARUS_ELF_RELA-Strukturen enthalten. Beispiele fir solche Ver-
schiebungstypen umfassen:

— ICARUS_64 BIT_ADDR: 64-Bitadressen, die zum Zeitpunkt der Ubersetzung bestimmt werden. Typi-

scherweise gemeinsam mit der eldi-Anweisung in den Prozessor geladen.

—ICARUS_64_BIT_OFFSET: RelativadreRversatz von augenblicklicher NIPAR-Stelle zu einem Symbol, ty-

pischerweise einem Kennzeichen (label). Von den br-Anweisungen (branch; Programmverzweigung) ver-

wendet.

[0115] Aus den genannten Griinden macht erfindungsgeman das zuvor beschriebene ICARUS ELF-Objekt-
dateiformat neuartigen Gebrauch von der Softwarebindungstechnologie, um Computerprogramme gemein-

20/50

DE 198 15 865 B4 2004.11.04

sam mit der Hardwarekonfiguration zusammenzufligen, auf der das Programm lauft, wobei ein rekonfigurier-
barer Computer 10 verwendet wird, wie er zuvor beschrieben wurde. Das System und das Verfahren gemaf
der vorliegenden Erfindung kann eine Kompilierung fir Mehrfach-ISAs innerhalb einer einzigen Quelldatei aus-
fuhren und ist bei einer Ausfihrungsform in der Lage, Maschinenanweisungen und Daten gemeinsam mit
Hardwarekonfigurationen zusammenzufligen, die erforderlich sind, um die Maschinenin struktionen auszufih-
ren.

[0116] Nachfolgend wird anhand der Fig. 9 bis 11D eine bevorzugte Hardware-Umgebung beschrieben, in
der die Erfindung bevorzugt angewendet wird.

[0117] In Fig. 9 ist ein Blockdiagramm einer bevorzugten Ausfuhrungsform eines Systems 3010 fir ein ska-
lierbares, paralleles, dynamisch rekonfigurierbares Berechnen dargestellt, das gemal der Erfindung ausge-
fuhrt wird. Das in. Fig. 9 gezeigte System 3010 entspricht im wesentlichen dem in Fig. 1 gezeigten System 10.
Das System 3010 weist vorzugsweise zumindest eine S-Einrichtung 3012, eine T-Einrichtung 3014 entspre-
chend jeder S-Einrichtung 3012, eine universelle Verbindungsmatrix (GPIM) 3016, zumindest eine Ein-/Aus-
gabe-T-Einrichtung 3018, ein oder mehrere Ein-/Ausgabevorrichtungen 3020 und eine Master-Zeitbasiseinheit
3022 auf. In der bevorzugten Ausfihrungsform weist das System 3010 mehrere S-Einrichtungen 3012 und
folglich mehrere T-Einrichtungen 3014 plus mehrere Ein-/Ausgabe-T-Einrichtungen 3018 und mehrere
Ein-/Ausgabe-Vorrichtungen 3020 auf.

[0118] Jede der S-Einrichtungen 3012, der T-Einrichtungen 3014 und der Ein-/Ausgabe-T-Einrichtungen
3018 hat einen Master-Zeitsteuereingang, der mit einem Zeitsteuerausgang der Master-Zeitbasiseinheit 3022
verbunden ist. Jede S-Einrichtung 3012 hat einen Eingang und einen Ausgang, der mit der entsprechenden
T-Einrichtung 3014 verbunden ist. Zusatzlich zu dem Eingang und dem Ausgang, der mit der entsprechenden
S-Einrichtung 3012 verbunden ist, hat jede T-Einrichtung 3014 einen Leiteingang und einen Leitausgang, wel-
che mit der GPI-Matrix 3016 verbunden sind. Dementsprechend hat jede Ein-/Ausgabe-T-Einrichtung 3018 ei-
nen Eingang und einen Ausgang, welcher mit einer Ein-/Ausgabe-Vorrichtung 3020 verbunden ist, und einen
Leiteingang und einen Leitausgang, der mit der GPI-Matrix 3016 verbunden ist.

[0119] Wie unten im einzelnen noch beschrieben wird, ist jede S-Einrichtung 3012 ein dynamisch rekonfigu-
rierbarer Rechner. Die GPI-Matrix 3016 stellt ein paralleles Punkt-zu-Punkt-Verbindungsmittel dar, welches
eine Kommunikation zwischen T-Einrichtungen 3014 erleichtert. Der Satz T-Einrichtungen 3014 und die
GPI-Matrix 3016 bilden ein paralleles Punkt-zu-Punkt-Verbindungsmittel fir einen Datentransfer zwischen
S-Einrichtungen 3012. In dhnlicher Weise bilden die GPI-Matrix 3016, der Satz T-Einrichtungen 3014 und der
Satz Ein-/Ausgabe-T-Einrichtungen 3018 ein paralleles Punkt-zu-Punkt-Verbindungsmittel fir einen Ein-/Aus-
gabe-Transfer zwischen S-Einrichtungen 3012 und jeder Ein-/Ausgabevorrichtung 3020. Die Master-Zeitbasis-
einheit 3022 weist einen Oszillator auf, der ein Master-Zeitsteuersignal zu jeder S-Einrichtung 3012 und jeder
T-Einrichtung 3014 schafft.

[0120] In einer beispielhaften Ausflihrungsform ist jede S-Einrichtung 3012 durch Verwenden eines Xilinx
C4013 (Xilinx, Inc., San Jose, CA) feldprogrammierbaren Gate-Array (FPGA) ausgefihrt, das mit einem 64
Megabyte Randomspeicher (RAM) verbunden ist. Jede T-Einrichtung 3014 ist durch Verwenden von anna-
hernd 50% der rekonfigurierbaren Hardware-Ressourcen in einem Xilinx XC4013 FPGA ausgefihrt, ebenso
jede Ein-/Ausgabe-T-Einrichtung 3018 ist. Die GPI-Matrix 3014 ist als ein ringférmiges Verbindungsmaschen-
netz ausgefihrt. Die Master-Zeitbasiseinheit 3020 ist ein Taktoszillator, der vorgesehen ist, um eine Vertei-
lungsschaltung zu takten, um eine systemweite Frequenzreferenz zu schaffen. Vorzugsweise ubertragen die
GPI-Matrix 3014 die T-Einrichtung 3012 und die Ein-/Ausgabe-T-Einrichtung 3018 Information entsprechend
ANSI/IEEE-Standard 1596 bis 1992, wodurch ein skalierbares koharentes Interface (SCI) definiert ist.

[0121] In der bevorzugten Ausfuhrungsform weist das System 3010 mehrere S-Einrichtungen 3012 auf, wel-
che parallel arbeiten. Der Aufbau und die Funktionalitat jeder der einzelnen S-Einrichtungen 3012 wird im ein-
zelnen anhand von Fig. 10 bis 20B beschrieben. In Fig. 10 ist ein Blockdiagramm einer bevorzugten Ausfuh-
rungsform einer S-Einrichtung 3012 dargestellt. Die S-Einrichtung 3012 weist eine erste lokale Zeitbasiseinheit
3030, eine dynamisch rekonfigurierbare Verarbeitungs-(DRP-)Einheit 3032 zum Ausfihren von Programmbe-
fehlen und einen Speicher 3034 auf. Die erste lokale Zeitbasiseinheit 303 hat einen Zeitsteuereingang, welche
den Master-Zeitsteuereingang der S-Einrichtung bildet. Die erste lokale Zeitbasiseinheit 3030 hat auch einen
Zeitsteuerausgang, der ein erstes lokales Zeitsteuersignal oder ein Taktsignal an einem Zeitsteuereingang der
DRP-Einheit 3032 und an einem Zeitsteuereingang des Speichers 3034 Uiber eine erste Zeitsteuerleitung 3040
schafft. Die DRP-Einheit 3032 hat einen Steuersignal-Ausgang, der mit einem Steuersignaleingang des Spei-
chers 3034 Uber eine Speichersteuerleitung 3042 verbunden ist, einen Adressenausgang, der mit einem

21/50

DE 198 15 865 B4 2004.11.04

Adresseneingang des Speichers 3034 Uber eine Adressenleitung 3044 verbunden ist, und einen zweiseitig ge-
richteten Steuerport, der mit einem zweiseitig gerichteten Steuerport des Speichers 3034 Uber eine Spei-
cher-Ein-/Ausgabeleitung 3046 verbunden ist. Die DPR-Einheit 3032 hat zusatzlich einen zweiseitig gerichte-
ten Steuerport, der iber einen zweiseitig gerichteten Steuerport der entsprechenden T-Einrichtung 3014 Gber
eine externe Steuerleitung 3048 verbunden ist. Wie in Fig. 10 dargestellt, iberspannt die Speichersteuerlei-
tung 3042 X-Bits; die Adressenleitung 3044 Gberspannt M-Bits; die Speicherein-/Ausgabeleitung 3046 lber-
spannt (N x k) Bits und die externe Steuerleitung 3048 Uiberspannt Y-Bits.

[0122] In der bevorzugten Ausfuhrungsform empfangt die erste lokale Zeitbasiseinheit 3030 das Master-Zeit-
steuersignal bzw. Master-Taktsignal von der Master-Zeitbasiseinheit 3022. Die erste lokale Zeitbasiseinheit
3030 erzeugt das erste lokale Zeitsteuersignal auf dem Master-Zeitsteuersignal und gibt das erste lokale Zeit-
steuersignal an die DRP-Einheit 3032 und den Speicher 3034 ab. In der bevorzugten Ausfihrungsform kann
sich das erste lokale Zeitsteuersignal von einer S-Einrichtung 3012 zur anderen andern. Folglich arbeiten die
DRP-Einheit 3032 und der Speicher 3034 in einer vorgegebenen S-Einrichtung 3012 mit einer unabhangigen
Taktrate beziglich der DRP-Einheit 3032 und dem Speicher 3034 in einer anderen S-Einrichtung 3012. Vor-
zugsweise ist das erste lokale Zeitsteuersignal phasensynchronisiert mit dem Master-Zeitsteuersignal. In der
bevorzugten Ausflihrungsform ist die erste lokale Zeitbasiseinheit 3030 durch Verwenden einer phasengekop-
pelten Frequenzumwandlungsschaltung ausgefiihrt, die eine phasengekoppelte Detektionsschaltung enthalt,
die mit Hilfe von rekonfigurierbaren Hardware-Ressourcen augefiihrt ist. Der Fachmann weif3, dal in einer al-
ternativen Ausflihrungsform die erste lokale Zeitbasiseinheit 3030 auch als ein Teil eines Taktverteilungsbaums
ausgefihrt sein kdnnte.

[0123] Der Speicher 3034 ist vorzugsweise als ein RAM ausgefihrt und speichert Programmbefehle, Pro-
grammdaten und Konfigurationsdatensatze fir die DRP-Einheit 3032. Der Speicher 3034 einer vorgegebenen
S-Einrichtung 3012 ist vorzugsweise fur eine andere S-Einrichtung 3012 in dem System 3010 uber die GPI-Ma-
trix 3016 zuganglich. Daruber hinaus ist jede S-Einrichtung 3012 vorzugsweise dadurch gekennzeichnet, dal}
sie einen gleichférmigen Speicheradressenplatz hat. In der bevorzugten Ausfuhrungsform enthalten Pro-
grammbefehle, die in dem Speicher 3040 selektiv gespeichert sind, Rekonfigurationsanweisungen, die in Rich-
tung der DRP-Einheit 3032 gerichtet sind.

[0124] In Fig. 11A weist die beispielhafte Programmauflistung 3050 einen Satz Aufenschleifenteile 3052, so-
wie erste bis flinfte Innenschleifenteile 3050 bis 3057 auf. Wie der Fachmann weil3, verweist der Begriff "In-
nenschleife" auf einen iterativen Teil eines Programms, das dafir verantwortlich ist, einen ganz bestimmten
Satz verwandter Operationen durchzuflihren, und der Begriff "Aufienschleife" verweist auf die Teile eines Pro-
gramms hin, die hauptsachlich dafiir verantwortlich sind, universelle Operationen und/oder eine Ubertragungs-
steuerung von einem Innenschleifenteil zu einem anderen durchzufiihren. Im allgemeinen fihren Innenschleif-
enteile 3054 bis 3058 eines Programms spezifische Operationen an mdglicherweise groen Datensatzen
durch. Bei einer Bildverarbeitungsanwendung kann der erste innere Schleifenteil 3054 Farbformat-Umsetzo-
perationen an Bilddaten durchfihren, und die zweiten bis flinften Innenschleifenteile 3055 bis 3058 konnen
eine lineare Filterung, eine Faltung, Mustersuch- und Kompressionsoperationen durchfihren. Wie der Fach-
mann weil3, kann eine aneinanderhangene Folge von Innenschleifenteilen 3055 bis 3058 als eine Softwa-
re-Pipeline betrachtet werden. Jeder AuRenschleifenteil 3052 wurde fir eine Daten-Ein-/Ausgabe und/oder fur
ein Leiten der Datenlbertragung und ein Steuern von dem ersten Innenschleifenteil 3054 zu dem zweiten In-
nenschleifenteil 3055 verantwortlich sein. Zusatzlich erkennt der Fachmann, dal ein vorgegebener Innen-
schleifenteil 3054 bis 3058 eine oder mehrere Rekonfigurationsanweisungen enthalten kann. Im allgemeinen
werden flr ein vorgegebenes Programm die AuRenscheifenteile 3052 der Programmauflistung 3050 eine Viel-
falt von universellen Befehlstypen enthalten, wahrend die Innenschleifenteile 3054, 3056 der Programmauflis-
tung 3050 aus verhaltnismaRig wenigen Befehlstypen bestehen, die verwendet werden, um eine spezifische
Menge an Operationen durchzufiihren.

[0125] In einer beispielhaften Programmauflistung 3050 erscheint eine erste Konfigurationsanweisung am
Anfang des ersten Innenschleifenteils 3054, und eine zweite Rekonfigurationsanweisung erscheint am Ende
des ersten Innenschleifenteils 3054. Dementsprechend erscheint eine dritte Konfigurationsanweisung zu Be-
ginn des zweiten Innenschleifenteils 3055; eine vierte Rekonfigurationsanweisung erscheint zu Beginn des
dritten Innenschleifenteils 3056; eine finfte Rekonfigurationsanweisung erscheint zu Beginn des vierten Innen-
schleifenteils 3057 und eine sechste und siebte Rekonfigurationsanweisung erscheint am Anfang bzw. am
Ende des flinften Innenschleifenteils 3058. Jede Rekonfigurationsanweisung verweist vorzugsweise auf einen
Rekonfigurationsdatensatz, welcher eine interne DRPU-Hardware-Organisation spezifiziert, die auf die Aus-
fihrung einer ganz bestimmen Befehlssatz-Architektur (ISA) gewidmet und dafiir optimiert worden ist. Eine
IS-Architektur ist ein Stamm- oder Kernsatz von Informationen, die verwendet werden kénnen, um einen Rech-

22/50

DE 198 15 865 B4 2004.11.04

ner zu programmieren. Eine I1S-Architektur definiert Befehlsformate, Operationscodes, Datenformate, Adres-
siermodes, Ausfuhrungs-Steuerflags und programmzugangliche Register. Der Fachmann weil}, daf} dies der
herkdmmlichen Definition einer IS-Architektur entspricht. In der vorliegenden Erfindung kann jede DRP-Einheit
3032 einer S-Einrichtung schnell laufzeit-konfiguriert werden, um direkt Mehrfach-1S-Architekturen durch die
Verwendung eines eindeutigen Konfigurationsdatensatzes fiir jede gewinschte 1S-Architektur auszufihren.
Das heildt, jede 1S-Achitektur wird mit einer eindeutigen internen DRPU-Hardware-Organisation durchgefihrt,
wie die durch einen entsprechenden Konfigurationsdatensatz spezifiziert ist. Folglich entsprechen in der vor-
liegenden Erfindung die ersten bis fiinften Innenschleifenteile 3054 bis 3058 jeweils einer eindeutigen 1S-Ar-
chitektur, ndmlich ISA 1, 2, 3, 4 bzw. k. Der Fachmann erkennt, dal3 jede nachfolgende I1S-Architektur nicht ein-
deutig zu sein braucht. Folglich kénnte ISA k ISA 1, 2, 3, 4 oder irgendeine andere ISA sein. Der Satz Aul3en-
schleifenteile 3052 entspricht auch einer eindeutigen ISA, nadmlich ISA 0. In der bevorzugten Ausfuhrungsform
kann wahrend einer Programmausfiihrung die Auswahl von aufeinanderfolgenden Rekonfigurationsanweisun-
gen datenabhangig sein. Bei Auswahl einer vorgegebenen Rekonfigurationsanweisung werden Programmbe-
fehle nacheinander gemaR einer entsprechenden IS-Architektur Gber eine eindeutige DRPU-Hardware-Konfi-
guration ausgefiihrt, was durch einen entsprechenden Konfigurations-Datensatz spezifiziert ist.

[0126] In der Erfindung kann eine vorgegebene IS-Architektur als eine Innenschleifen-1S-Architektur oder als
eine Aulienschleifen-1S-Architektur entsprechend der Anzahl und den Typen von Befehlen, welche sie enthalt,
in Kategorien eingeteilt werden. Eine I1S-Architektur, die mehrere Befehle enthalt und die zum Durchfihren ge-
nereller Operationen brauchbar ist, ist eine AulRenschleifen-ISA, wahrend eine ISA, die aus relativ wenigen Be-
fehlen besteht und die darauf ausgerichtet ist, spezifische Operationstypen durchzufiihren, eine Innenschlei-
fen-ISA ist. Da eine Auldenschleifen-ISA darauf gerichtet ist, generelle Operationen durchzufiihren, ist eine Au-
Renschleifen-ISA am zweckdienlichsten, wenn eine parallele Programm-Befehlsausfliihrung wiinschenswert
ist. Die Wirksamkeit einer Ausflihrung einer Innenschleifen-ISA ist vorzugsweise hinsichtlich Befehlen gekenn-
zeichnet, die pro Taktzyklus durchgefuhrt werden oder hinsichtlich rechten Ergebnissen gekennzeichnet, die
pro Taktzyklus erzeugt worden sind.

[0127] Der Fachmann erkennt, da® die vorhergehende Erdrterung einer sequentiellen Programmbefehlsaus-
fihrung und einer parallelen Programmbefehlsausfliihrung eine Programmbefehlsausfliihrung mit einer einzi-
gen DRP-Einheit 3032 betrifft. Das Vorhandensein von mehreren S-Einrichtung Rekonfigurationsanweisungen
3012 in dem System 3010 erleichtert die parallele Ausfiihrung von mehreren Programmbefehlsfolgen in einer
vorgegebenen Zeit, wobei jede Programmbefehlsfolge durch eine vorgegebene DRP-Einheit 3032 durchge-
fuhrt wird. Jede DRP-Einheit 3032 ist entsprechend konfiguriert, um eine parallele oder serielle Hardware zu
haben, um eine ganz bestimmte Innenschleifen-ISA bzw. eine AuRenschleifen-ISA in einer ganz bestimmten
Zeit durchzufuhren. Die interne Hardware-Konfiguration einer vorgegebenen DRP-Einheit 3032 andert sich mit
der Zeit entsprechend der Auswahl von einer oder mehreren Rekonfigurationsanweisungen, die in eine Folge
von durchzuflihrenden Programmbefehlen eingebettet sind.

[0128] In einer bevorzugten Ausfihrungsform sind jede IS-Architektur und deren entsprechende interne
DRPU-Hardware-Organisation entsprechend ausgelegt, um eine optimale Rechenleistung fiir eine ganz be-
stimmte Klasse von Rechenproblemen bezlglich einer Menge verfligbarer rekonfigurierbarer Hardware-Res-
sourcen zu schaffen. Wie vorher bereits erwahnt und wie nunmehr nachstehend im einzelnen naher beschrie-
ben wird, ist eine interne DRPU-Hardware-Organisation, die einer Auf3enschleifen-ISA entspricht, vorzugswei-
se fur eine sequentielle Programmbefehlsausfiihrung optimiert, und eine interne DRPU-Hardware-Organisati-
on, die einer Innenschleifen-ISA entspricht, ist vorzugsweise fir eine parallele Programmbefehlsausfihrung
optimiert.

[0129] Mit Ausnahme jeder Rekonfigurationsanweisung weist die beispielhafte Programmauflistung 3050 der
Fig. 11A vorzugsweise herkdmmliche Hochsprachenangaben auf, beispielsweise Angaben die entsprechend
der C-Programmiersprache geschrieben sind. Der Fachmann erkennt, dal® das Einbeziehen von einer oder
mehreren Rekonfigurationsanweisungen in eine Folge von Programmbefehlen einen Compiler erfordert, der
modifiziert ist, um fur die Rekonfigurationsanweisungen verantwortlich zu sein.

[0130] In Fig. 11B ist ein FluRdiagramm von herkdbmmlichen Compilieroperationen dargestellt, die wahrend
des Compilierens bzw. Ubersetzens einer Folge von Programmbefehlen durchgefiihrt worden sind. Hierbei
entsprechen die herkdmmlichen Compilieroperationen im allgemeinen denjenigen, die von dem GNU C Com-
piler (GCC) durchgefiihrt worden sind, der von der Free Software Foundation (Cambridge, MA) hergestellt wor-
den ist. Der Fachmann weil}, daf} die herkdmmlichen Compilieroperationen, die unten beschrieben werden,
ohne weiteres fur andere Compiler verallgemeinert werden kénnen. Die herkdmmlichen Compilieroperationen
beginnen beim Schritt 3500 mit dem Compiler-Frontende, das eine nachste Hochsprachen-Anweisung fir eine

23/50

DE 198 15 865 B4 2004.11.04

Folge von Programmbefehlen auswahlt. Als nachstes erzeugt das Compiler-Frontende beim Schritt 3502 ei-
nen Zwischencode, der der ausgewahlten Hochsprachen-Anweisung entspricht, welche im Falle von GCC Re-
gister-Transferpegel-(RTL-)Angaben entspricht. Im Anschluf? an den Schritt 3502 bestimmt das vordere Com-
pilerende, ob eine andere Hochsprachen-Anweisung eine Beachtung beim Schritt 3504 erfordert. Wenn dem
so ist, kehrt das bevorzugte Verfahren auf den Schritt 3500 zurlck.

[0131] Wenn beim Schritt 3504 das vordere Compilerende bestimmt, daf’ keine andere Hochsprachenanwei-
sung Beachtung erfordert, fiihrt das hintere Compilerende als nachstes herkdmmliche Registerzuordnungso-
perationen beim Schritt 3605 durch. Nach dem Schritt 3506 wahlt das hintere Compilerende eine nachste
RTL-Angabe hinsichtlich einer aktuellen RTL-Anweisungsgruppe beim Schritt 3508 aus. Das hintere Compile-
rende bestimmt dann, ob eine Vorschrift, die eine Art und Weise spezifiziert, in welcher die aktuelle RTL-An-
weisungsgruppe in einen Satz von Assemblersprachen-Anweisungen Ubersetzt werden kann, beim Schritt
3510 vorhanden ist. Wenn eine derartige Vorschrift nicht vorhanden ist, kehrt das bevorzugte Verfahren auf
den Schritt 3508 zurlick, um eine andere RTL-Anweisung flir ein Einbeziehen in die aktuelle RTL-Anweisungs-
gruppe auszuwahlen. Wenn eine Vorschrift, die der aktuellen RTL-Anweisungsgruppe entspricht, existiert, er-
zeugt das hintere Compilerende beim Schritt 3512 einen Satz Assemblersprachen-Anweisungen entspre-
chend der Vorschrift. Nach dem Schritt 3512 stellt das hintere Compilerende fest, ob eine nachste RTL-Anwei-
sung Beachtung im Kontext mit einer nachsten RTL-Anweisungsgruppe erfordert. wenn dem so ist, kehrt das
bevorzugte Verfahren auf Schritt 3508 zuriick; andernfalls ist das bevorzugte Verfahren beendet.

[0132] Die vorliegende Erfindung enthalt vorzugsweise einen Compiler fir ein dynamisch rekonfigurierbares
Berechnen. In Fig. 11C und 11D ist ein FluRdiagramm von bevorzugten Compilieroperationen dargestellt, die
von einem Compiler fiir ein dynamisch rekonfigurierbares Berechnen durchgefiihrt worden sind. Die bevorzug-
ten Compileroperationen beginnen beim Schritt 3600 mit dem vorderen Ende des Compilers, der eine nachste
Hochsprachen-Anweisung in einer Folge von Programmbefehlen auswahlt. Als nachstes bestimmt das vorde-
re Ende des Compilers beim Schritt 3602, ob die ausgewahlte Hochsprachen-Anweisung eine Rekonfigurati-
onsanweisung ist. Wenn dem so ist, erzeugt das vordere Ende des Compilers eine RTL-Regkonfigurationsan-
weisung beim Schritt 3604, worauf dann das bevorzugte Verfahren auf Schritt 3600 zurtickkehrt. In der bevor-
zugten Ausfihrungsform ist die RTL-Rekonfigurationsanweisung eine nichtnormierte RTL-Anweisung, die ei-
nen ISA-ldentifizierung erhalt. Wenn beim Schritt 3602 die ausgewahlte Hochprogramm-Anweisung nicht eine
Rekonfigurationsanweisung ist, erzeugt das vordere Ende des Compilers als nachstes einen Satz RTL-Anwei-
sungen in herkdmmlicher Weise beim Schritt 3606. Nach dem Schritt 3606 bestimmt das vordere Ende des
Compilers beim Schritt 3608, ob eine andere Hochsprachen-Anweisung Berlcksichtigung erfordert. Wenn
dem so ist, kehrt das bevorzugte Verfahren auf den Schritt 3600 zurlick; anderenfalls geht das bevorzugte Ver-
fahren auf Schritt 3610 tGber, um Operationen am Compilerende zu initiieren.

[0133] Beim Schritt 3610 fihrt das hintere Ende des Compilers fiir ein dynamisch rekonfigurierbares Berech-
nen Register-Zuordnungsoperationen durch. In der bevorzugten Ausfihrungsform der Erfindung ist jede
ISA-Architektur so definiert, da® die Register-Architektur von einer 1S-Architektur zur anderen folgerichtig ist;
daher werden Register-Zuordnungsoperationen in herkémmlicher Weise durchgefuhrt. Der Fachmann er-
kennt, daf® im allgemeinen eine folgerichtige Register-Architektur von einer ISA zur anderen keine absolute
Forderung ist. Als nachstes wahlt das hintere Ende des Compilers eine nachste RTL-Anweisung in einer aktu-
ell in Betracht gezogenen RTL-Anweisungsgruppe beim Schritt 3612 aus. Das hintere Ende des Compilers be-
stimmt dann beim Schritt 3614, ob die ausgewahlte RTL-Anweisung eine RTL-Rekonfigurationsanweisung ist.
Wenn die ausgewahlte RTL-Anweisung nicht eine RTL-Rekonfigurationsanweisung ist, bestimmt das hintere
Ende des Compilers beim Schritt 3618, ob eine Vorschrift fir die aktuell in Betracht gezogene RTL-Anwei-
sungsgruppe existiert. Wenn dem nicht so ist, kehrt das bevorzugte Verfahren auf den Schritt 3612 zurlick, um
eine nachste RTL-Anweisung fir ein Einbeziehen in die aktuell in Betracht gezogene RTL-Anweisungsgruppe
zu wahlen. In dem Fall, daBd eine Vorschrift fir die aktuell in Betracht gezogene RTL-Anweisungsgruppe beim
Schritt 3618 existiert, erzeugt das hintere Ende des Compilers als nachstes einen Satz Assemblerspra-
chen-Anweisungen beim Schritt 3620, welche der aktuell in Betracht gezogenen RTL-Anweisungsgruppe ge-
malR dieser Vorschrift entsprechen. Nach dem Schritt 3620 bestimmt das hintere Ende des Compilers beim
Schritt 3622, ob eine andere RTL-Anweisung eine Berlcksichtigung im Kontext mit einer nachsten RTL-An-
weisungsgruppe erfordert. Wenn dem so ist, kehrt das bevorzugte Verfahren auf den Schritt 3612 zurtick; an-
derenfalls endet das bevorzugte Verfahren.

[0134] Wenn beim Schritt 3614 die ausgewahlte RTL-Anweisung eine RTL-Rekonfigurationsanweisung ist,
wahlt das hintere Ende des Compilers einen Vorschriftensatz. beim Schritt 3616 aus, welcher der ISA-Identifi-
zierung der RTL-Rekonfigurationsanweisung entspricht. In der vorliegenden Erfindung existiert vorzugsweise
ein eindeutiger Vorschriftensatz fur jede ISA. Jeder Vorschriftensatz schafft daher eine oder mehrere Vorschrif-

24/50

DE 198 15 865 B4 2004.11.04

ten, um Gruppen von RTL-Anweisungen in Assemblersprachen-Anweisungen entsprechend einer ganz be-
stimmten IS-Architektur umzuwandeln. Nach dem Schritt 3616 geht das bevorzugte Verfahren auf Schritt 3618
Uber. Der Vorschriftensatz, der einer vorgegebenen IS-Architektur entspricht, enthalt vorzugsweise ein Vor-
schrift, um die RTL-Rekonfigurationsanweisung in einen Satz Assemblersprachen-Befehle zu Ubersetzen, die
eine Software-Unterbrechnung erzeugen, die auf eine Durchfihrung eines Rekonfigurations-Abwicklers
(handler) hinauslauft, wie im einzelnen unten beschrieben wird.

[0135] In der vorstehend beschriebenen Weise erzeugt der Compiler fir dynamisch rekonfigurierbares Be-
rechnen selektiv und automatisch Assemblersprachen-Anweisungen entsprechend mehreren IS-Architekturen
wahrend Compileroperationen. Mit anderen Worten, wahrend des Compilerprozesses ubersetzt der Compiler
einen einzigen Satz Programmbefehlen entsprechend einer variablen 1S-Architektur. Der Compiler ist vorzugs-
weise ein herkémmlicher Compiler, der modifiziert worden ist, um bevorzugte Compileroperationen durchzu-
fuhren, die vorstehend unter Bezugnahme auf Fig. 11C und 11D beschrieben worden sind. Der Fachmann er-
kennt, dal3, obwohl die geforderten Modifikationen nicht komplex sind, solche Modifikationen im Hinblick so-
wohl auf herkémmliche Compilertechniken als auch im Hinblick auf herkémmliche rekonfigurierbaren Berech-
nungsmethoden nicht offensichtlich und naheliegend sind.

[0136] Die Lehren der vorliegenden Erfindung unterscheiden sich deutlich von anderen Systemen und Ver-
fahren fiir ein umprograinmierbares oder rekonfigurierbares Rechnen. Insbesondere ist die vorliegende Erfin-
dung nicht aquivalent mit einer herunterladbaren Mikrocode-Architektur, da solche Architekturen im allgemei-
nen auf nicht-rekonfigurierbare Steuereinrichtung und eine nicht-rekonfigurierbare Hardware angewiesen sind.
Die vorliegende Erfindung unterscheidet sich also deutlich von einem angeschlossen rekonfiguierbaren Pro-
zessor-(ARP-)System, in welchem eine Gruppe von rekonfigurierbaren Hardware-Ressourcen mit einem
nicht-rekonfigurierbaren Host-Prozessor oder Host-System verbunden ist. Die ARP-Einrichtung hangt von dem
Host ab, um gewisse Programmbefehle durchzuflihren. Daher wird eine Menge verfigbarer Silizium-Ressour-
cen nicht maximal tUber den Zeitrahmen der Programmdurchfiihrung genutzt, da Silizium-Ressourcen bei der
ARP-Einrichtung oder dem Host unbenutzt sind oder ineffizient genutzt werden, wenn der Host bzw. die
ARP-Einrichtung mit Daten arbeitet. Im Unterschied hierzu ist jede S-Einrichtung 3012 ein unabhangiger Rech-
ner, in welchem ganze Programme ohne weiteres ausgefiihrt werden kénnen. Mehrere S-Einrichtungen 3012
fuhren vorzugsweise gleichzeitig Programme durch. Die vorliegende Erfindung lehrt daher die standige maxi-
male Ausnutzung von Silizium-Ressourcen sowohl fir einzelne Programme, die von einzelnen S-Einrichtun-
gen 3012 durchgefiihrt werden oder von mehreren Programmen, die von dem gesamten System 3010 ausge-
fuhrt werden.

[0137] Eine ARP-Einrichtung stellt einen Rechenbeschleuniger fir einen ganz bestimmten Algorithmus in ei-
ner ganz bestimmten Zeit zur Verfligung und ist als ein Satz von Verkniipfungsgliedern ausgefiihrt, die optimal
beziglich dieses spezifischen Algorithmus miteinander verbunden sind. Die Verwendung von rekonfigurierba-
ren Hardware-Ressourcen fur universelle Operationen, wie eine verwaltende Befehlsausflihrung, ist bei
ARP-System vermieden. Darliber hinaus behandelt ein ARP-System nicht eine vorgegebene Menge von mit-
einander verbundenen Verknipfungsgliedern bzw. Gates als eine ohne weiteres wiederverwendbare Ressour-
ce. Im Gegensatz, die vorliegende Erfindung lehrt eine dynamisch rekonfigurierbare Verarbeitungseinrichtung,
die fir ein effizientes Management einer Befehlsausfiihrung gemaf einem Befehlsausfihrungsmodells konfi-
guriert ist, das am besten fiir die Rechenerfordernisse zu einem ganz bestimmten Zeitpunkt ausgelegt ist. Jede
S-Einrichtung 3012 weist eine Vielzahl ohne weiteres wiederverwendbarer Ressourcen, beispielsweise das
ISS 3100, die Unterbrechungslogik 3106 und die Speicher/Ausrichtlogik 3152 auf. Die vorliegende Erfindung
lehrt die Verwendung von rekonfigurierbaren logischen Ressourcen auf dem Niveau von LCBs- oder
IOBs-Gruppen und rekonfigurierbarer Verbindungen, jedoch nicht auf dem Niveau von miteinander verbunde-
nen Gates. Die vorliegende Erfindung lehrt folglich die Verwendung von rekonfigurierbaren héherwertigen lo-
gischen Designkonstrakts, die zum Durchflihren von Operationen der ganzen Klassen von Rechenproblemen
verwendbar sind, und lehrt nicht ein brauchbares Verbindungsschema, das fiir einen einzigen Algorithmus ver-
wendbar ist.

[0138] Im allgemeinen sind ARP-Systeme auf ein Ubertragen eines ganz bestimmten Algorithmus in einen
Satz von miteinander verbundenen Gates gerichtet. Einige ARP-Systeme versuchen, hochwertige Befehle in
einer optimalen Hardware-Konfiguration zu compilieren, welches im allgemeinen ein hartes NP-Problem ist. Im
Unterschied hierzu lehrt die Erfindung die Verwendung eines Compilers flr ein dynamisch rekonfigurierbares
Berechnen, das hochwertige Programmbefehle in Assembler-Sprachenbefehle geman einer variablen ISA auf
sehr unkomplizierte Weise compiliert.

[0139] Eine ARP-Einrichtung ist im allgemeinen nicht in der Lage, ihre eigenes Host-Programm als Daten zu

25/50

DE 198 15 865 B4 2004.11.04

behandeln oder es selbst zu kontextualisieren. Im Unterscheid hierzu kann jede S-Einrichtung in dem System
3010 ihre eigenen Programme als Daten behandeln, und folglich ohne weiteres selbst kontextualisieren. Das
System 3010 kann ohne weiteres sich selbst durch die Ausflihrung seiner eigenen Programme simmulieren.
Die vorliegende Erfindung hat zusatzlich die Fahigkeit, ihren eigenen Compiler zu compilieren.

[0140] In der vorliegenden Erfindung kann ein einziges Programm eine erste Gruppe von Befehlen, die zu
einem ersten ISA gehoren, eine zweite Gruppe von Befehlen, die zu einer zweiten ISA gehoren, eine dritte
Gruppe von Befehlen, die zu noch einer weiteren ISA gehdren, usw. enthalten. Die hier beschriebene Archi-
tektur fuhrt jede derartige Gruppe von Befehlen mit Hilfe von Hardware durch, die hinsichtlich Durchlaufzeit
konfiguriert ist, um die ISA durchzufihren, zu welcher die Befehle gehéren. Keine bekannten Systeme oder
Methoden bieten ahnliche Lehren an.

[0141] Die Erfindung lehrt ferner ein rekonfigurierbares Unterbrechungsschema, bei welchem Unterbre-
chungslatenz, Unterbrechungsprazision und ein programmierbares Zustandsiibergangs-Freigeben gemaf der
aktuellen, in Betracht gezogenen ISA sich andern kann. Keine anlogen Lehren werden in anderen Computer-
systemen gefunden. Die vorliegende Erfindung lehrt zusatzlich ein Computersystem mit einer rekonfigurierba-
ren Datenweg-Bitbreite, einer Adressen-Bitbreite und rekonfigurierbare Steuerzeilen-Breiten im Unterschied
zu herkdbmmlichen Computersystemen.

[0142] Zusammenfassend wurde ein Kompiliersystem und ein Verfahren zur Erzeugung einer Folge von Pro-
grammbefehlen zur Verwendung in einer dynamisch rekonfigurierbaren Verarbeitungseinheit geschaffen, die
eine interne Hardwareorganisation aufweist, die wahlweise unter einer Anzahl von Hardwarearchitekturen ge-
andert werden kann, wobei jede Hardwarearchitektur Befehle von einem entsprechenden Befehlsatz ausfihrt.
Quelldateien werden zur Ausfiihrung mit Hilfe von mehreren Befehlsatzarchitekturen (instruction set architec-
tures) kompiliert, wie dies durch Rekonfigurations-Ubersetzungsanweisungen spezifiziert wird. Die Objektda-
teien fassen wahlweise Bitstrome, die Hardwarearchitekturen spezifizieren, die Befehlsatzarchitekturen ent-
sprechen, mit ausfliihrbarem Code zur Ausfihrung auf den Architekturen zusammen.

Bezugszeichenliste

Fig. 1

12 - 5-Einrichtung
14 - T-Einrichtung
18 — Ein/Ausgabe-T-Einrichtung
20 - Ein/Ausgabeeinrichtung
16— Mehrzweckverbindungsmatrix (GPI-Matrix)
22 - Master-Zeitbasiseinheit

Fig. 1A
131- Taktgenerator
132 - Bitstromspeicher
133 - Programm-/Datenspeicher
12 - S-Einrichtung
14 - T-Einrichtung

Fig. 1B
149 - Speicherbus
140 - FPGA Konfigurationshardware
146 — Befehle dekodieren
147 — Speicherinterface
132 - ISAOQ Bitstrom;

ISA1 Bitstrom
Fig. 1C

siehe Fig. 1B

26/50

301 -
302 -
303 -
304 -
305 -
306 -
307 -
308 -
309 -

600 -
601 -
602 -
603 -
605 -
607 -
604 -
606 -
608 -
609 -
611 -
613 -

612 -
618 -
620 -
622 -
610 -

331 -
332 -
333 -

401 -
403 -
404 -
405 -
406 -
10 -

407 -

501 -
503 -
504 -
505 -

DE 198 15865 B4 2004.11.04
Fig. 3

Quelldatei lesen

ISA identifizieren

Rekonfigurationsanweisung erzeugen
Anweisungen fir identifizierte ISA kompilieren
weitere ISA?

Ubersetzen

binden

laden

Ende

Fig. 3A

nachste Hochsprachenanweisung auswahlen
Funktionsaufruf

verschiedene ISA?

RTL-Code abgeben

RTL-Funktionsaufruf abgeben

RTL-Code zum Speichern lebender Register abgeben
RTL-Rekonfigurationscode abgeben
RTL-Funktionsaufruf abgeben

weitere Hochsprachenanweisung?
RTL-Rekonfigurationscode abgeben

RTL-Code zum Wiederherstellen lebender Register abgeben
RTL-Code zum Lesen von Riickgabewert abgeben

Fig. 3B

nachste RTL-Anweisung auswahlen
Regel fir aktuelle RTL-Anweisungsgruppe erhalten

Maschinensprachenanweisung erzeugen. Gemaf der Regel fir diese ISA setzen

andere RTL-Anweisung?
Registerreservierung ausfihren

Fig. 3C

RTL-Code mit neuer ISA mit Bemerkungen versehen
ISA-abhangige und ISA-unabhangige Optimierung
maschinenabhéangige Anweisungen erzeugen

Fig. 4

Quelle

Objekt

Binder

ausflihrbares Programm
ISA-Bitstrome
rekonfigurierbarer Computer
Ladeprogramm

Fig. 5
Binden-Ansicht
ELF-Kopfteil
Programmkopfteiltabelle optional
Abschnitt 1

Abschnitt n

27/50

DE 198 15 865 B4 2004.11.04

506 — Abschnittskopfteiltabelle
502 - Ausfihren-Ansicht
503 - ELF-Kopfteil
504 - Programmkopfteiltabelle
505- Abschnitt 1

Abschnitt 2

506 — Abschnittskopfteiltabelle optional

Fig. 6
651 - Anweisung reconfig
654 — vorbestimmte Adresse <= SP
655 — Hardware ladt nachste Konfiguration
656 — SP < = vorbestimmte Adresse
Fig. 7
707 — lebende Registerwerte retten
701 - Parameter zu aufgerufener Funktion schieben
702 - rekonfigurieren zu neuer ISA
703 - Unterprogramm aufrufen
704 — Flul® zum Aufrufer zuriickkehren
705 - auf urspriingliche ISA rekonfigurieren
706 — Rickgabewert lesen
708 — lebende Registerwerte wieder herstellen
Patentanspriiche

1. Kompilierverfahren mittels eines Kompilers zur Erzeugung einer Folge (50) von Programmbefehlen und
Rekonfigurations-Anweisungen zur Ausfiihrung in einem dynamisch rekonfigurierbaren Computer (10), der ein
Prozessor-Modul (130) aufweist, das ein dynamisch rekonfigurierbares Prozessor-Submodul (12), einen mit
dem Prozessor-Submodul (12) verbundenen Programm/Daten-Speicher (133) und einen mit dem Prozes-
sor-Submodul (12) verbundenen Bitstrom-Speicher (132) umfasst, wobei das Prozessor-Submodul durch La-
den eines Bitstroms aus dem Bitstrom-Speicher auf Rekonfigurations-Anweisungen hin wahrend der Ausfiih-
rung der Folge von Programm-Befehlen wahlweise unter einer Anzahl von Befehlssatz-Architekturen (ISA) re-
konfiguriert werden kann, mit den folgenden Schritten:

a) als Eingabe wird eine Quelldatei (301) empfangen, die eine Anzahl von Quellcode-Befehlsanweisungen ent-
halt, und zwar einschlief3lich mindestens eines ersten Untersatzes von Quellcode-Befehlsanweisungen und ei-
nes zweiten Untersatzes von Quellcode-Befehlsanweisungen;

b) fir den ersten Untersatz von Quellcode-Befehlsanweisungen wird ein erster Befehlsatz, der einer ersten Be-
fehlsatz-Architektur entspricht, mittels einer ersten im Quellcode enthaltenen Rekonfigurations-Ubersetzungs-
anweisung identifiziert, wobei die erste Rekonfigurations-Ubersetzungsanweisung den ersten Befehlsatz spe-
zifiziert;

c) fir den zweiten Untersatz von Quellcode-Befehlsanweisungen wird ein zweiter Befehlsatz, der einer zweiten
Befehlsatz-Architektur entspricht, mittels einer zweiten im Quellcode enthaltenen Rekonfigurations-Uberset-
zungsanweisung identifiziert, wobei die zweite Rekonfigurations-Ubersetzungsanweisung den zweiten Befehl-
satz spezifiziert; und

d) der erste Untersatz von Quellcode-Befehlsanweisungen wird unter Verwendung des ersten Befehlsatzes
kompiliert und der zweite Untersatz von Quellcode-Befehlsanweisungen wird unter Verwendung des zweiten
Befehlsatzes kompiliert;

e) wobei fir eine als mit dem ersten Befehlsatz gekennzeichnete Quellcode-Befehlsanweisung (600) nur kom-
pilierte Programm-Befehle (603, 605) erzeugt werden, falls die ausgewahlte Quellcode-Befehlsanweisung kei-
nen Funktionsaufruf (601) oder einen Funktionsaufruf zu einer ebenfalls als mit dem ersten Befehlsatz gekenn-
zeichneten Funktion enthalt;

f) wobei in Reaktion auf eine als mit dem ersten Befehlsatz gekennzeichnete Quellcode-Befehlsanweisung
(600), die (601) einen Funktionsaufruf zu einer als mit dem zweiten Befehlsatz gekennzeichneten (602) Funk-
tion enthalt, die folgenden Schritte der Reihe nach ausgefiihrt werden:

f.1) (607) ein Zustand der Programm-Ausfiihrung wird in einem vorbestimmten Speicherbereich gespeichert,

28/50

DE 198 15 865 B4 2004.11.04

f.2) (604) Rekonfigurations-Anweisungen, die erforderlich sind, um eine Rekonfiguration von der ersten Befehl-
satz-Architektur zur zweiten Befehlsatz-Architektur zu erzielen, werden an das Prozessor-Submodul abgege-
ben;

f.3) (606) nach der Rekonfiguration wird flir den Funktionsaufruf ein kompilierter Programm-Befehl in der zwei-
ten Befehlsatz-Architektur abgegeben;

f.4) (609) nach Ablauf der Funktion wird eine Rekonfigurations-Anweisung zur Rekonfiguration des Prozes-
sor-Submodules in den ersten Befehlsatz abgegeben und f.5) (602) der Zustand der Programm-Ausfiihrung
zu Beginn der Rekonfiguration wird durch Laden aus dem vorbestimmten Speicherbereich wieder hergestellt.
g) die Schritte e) und f) werden fir jede Quellcode-Befehlsanweisung in der Quelldatei wiederholt.

2. Verfahren nach Anspruch 1, bei dem jede Rekonfigurations-Ubersetzungsanweisung unter Verwendung
einer Meta-Syntax bereitgestellt wird.

3. Verfahren nach Anspruch 1 oder 2, bei dem jede Rekonfigurations-Ubersetzungsanweisung e_ntweder
eine Direkt-Rekonfigurations-Ubersetzungsanweisung, eine Funktionsebenen-Rekonfigurations-Uberset-
zungsanweisung oder eine Standard-Rekonfigurations-Ubersetzungsanweisung umfasst.

4. Verfahren nach einem der vorhergehenden Anspriiche, mit dem weiteren Schritt:
es wird eine ausflihrbare Datei erzeugt, die die Ergebnisse der Kompilation beinhalten und auRerdem fiir jeden
Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der dem Un-
tersatz von Befehlsanweisungen entspricht.

5. Verfahren nach einem der Anspriiche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausflihrbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und auflerdem fiir je-
den Untersatz von Befehlsanweisungen einen Verweis, der einen Bitstrom bestimmt, der den Befehlsatz dar-
stellt, der dem Untersatz von Befehlsanweisungen entspricht.

6. Verfahren nach einem der Anspriiche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausflhrbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und aulerdem fir den
Untersatz von Befehlsanweisungen einen Verweis, der entsprechend einem erweiterten, ausfihrbaren Pro-
gramm und einem Bindungsformat codiert ist, wobei der Verweis einen Bistrom bestimmt, der den Befehlsatz
darstellt, der dem Untersatz von Befehlsanweisungen entspricht.

7. Verfahren nach einem der Anspruche 1 bis 4, mit dem weiteren Schritt:
es wird eine ausflihrbare Datei erzeugt, die die Ergebnisse des Kompilierens beinhaltet und auflerdem fiir je-
den Untersatz von Befehlsanweisungen einen Bistrom, der den Befehlsatz darstellt, der dem Untersatz von
Befehlsanweisungen entspricht.

8. Verfahren nach einem der Anspriiche 1 bis 4, mit den weiteren Schritten:
h) eine erste Objektdatei wird erzeugt, die die Ergebnisse des Kompilierens beinhaltet und auf’erdem fiir jeden
Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der dem Un-
tersatz von Befehlsanweisungen entspricht;
i) die Schritte a) bis h) werden mindestens fir eine zweite Quelldatei wiederholt, um mindestens eine zweite
Objektdatei zu erzeugen; und
j) die in den Schritten h) und i) erzeugten Objektdateien werden gebunden, um eine ausfuhrbare Datei zu er-
zeugen.

9. Verfahren nach Anspruch 8, mit dem weiteren Schritt:
k) an der erzeugten, ausfiihrbaren Datei wird entsprechend den Ausrichtungserfordernissen eine Speicheraus-
richtung vorgenommen.

10. Verfahren nach Anspruch 9, bei dem die erzeugte, ausfiihrbare Datei einem Bitstrom zugeordnet ist,
der einen Befehlsatz darstellt, und bei dem der Schritt k) den Schritt umfasst:
k.1) der Bitstrom wird aufgefullt, um eine Speicherausrichtung durchzufiihren.

11. Verfahren nach Anspruch 8, bei dem:
beim Schritt a) als Eingabe eine Quelldatei empfangen wird, die eine Anzahl von Quellcode-Befehlsanweisun-
gen einschliel3lich mindestens eines ersten Untersatzes von Befehlsanweisungen enthalt, wobei zumindest
eine der Befehlsanweisungen einen externen Verweis enthalt; und
beim Schritt h) eine erste Objektdatei erzeugt wird, die die Ergebnisse des Kompilierens enthalt und aul’erdem

29/50

DE 198 15 865 B4 2004.11.04

fur jeden Untersatz von Befehlsanweisungen einen Rekonfigurationscode, der den Befehlsatz identifiziert, der
dem Untersatz von Befehlsanweisungen entspricht, wobei zumindest eine der Befehlsanweisungen einen ex-
ternen Verweis enthalt; und

mit dem weiteren Schritt:

i.1) vor der Ausfliihrung des Schrittes j) werden fiir jede Objektdatei die externen Verweise aufgeldst.

12. Verfahren nach einem der vorhergehenden Anspriiche, bei dem der erste Untersatz von Befehlsanwei-
sungen eine erste definierte Funktion und der zweite Untersatz von Befehlsanweisungen eine zweite definierte
Funktion umfasst.

13. Verfahren nach einem der Anspruche 1 bis 12, bei dem der erste Untersatz von Befehlsanweisungen
einen ersten beliebigen Block von Anweisungen und der zweite Untersatz von Befehlsanweisungen einen
zweiten beliebigen Block von Anweisungen umfasst.

14. Verfahren nach Anspruch 13, bei dem die Quelldatei mindestens einen Funktionsaufruf und einen
Funktionsriicksprung umfasst und bei dem die Schritte b) und c) jeweils die wahlweise Ausfihrung einer inter-
prozeduralen Analyse umfassen, um bei jedem Funktionsaufruf und bei jedem Funktionsricksprung eine im
Kontext befindliche Befehlsatzarchitektur (ISA) zu identifizieren.

15. Verfahren nach Anspruch 1, mit den weiteren Schritten:
h) der erste kompilierte Untersatz von Befehlsanweisungen wird fiir den ersten Befehlsatz optimiert; und
i) der zweite kompilierte Untersatz von Befehlsanweisungen wird fiir den zweiten Befehlsatz optimiert.

16. Verfahren nach Anspruch 1, bei dem der Schritt f.1) den folgenden Schritt umfasst:
es wird eine Codeanweisung zum Retten von lebenden Registern abgegeben; und bei dem der Schritt f.5) den
folgenden Schritt umfasst:
es wird eine Codeanweisung zur Wiederherstellung der geretteten, lebenden Register abgegeben.

17. Verfahren nach Anspruch 16, bei dem die Codeanweisungen Registertransferebenenanweisungen
(RTL-Anweisungen) umfassen.

18. Verfahren nach Anspruch 17, mit den weiteren Schritten:
eine Registerreservierung wird durchgefiihrt;
fur jede Registertransferebenenanweisung wird:
bestimmt, ob fiir die Registertransferebenenanweisung eine Ubersetzungsregel existiert; und
in Antwort auf die Feststellung, dass eine Ubersetzungsregel existiert, wird fiir die Registertransferebenenan-
weisung entsprechend der Ubersetzungsregel ein Assemblercode erzeugt.

19. Verfahren nach Anspruch 17, mit den weiteren Schritten:
jede Registertransferebenenanweisung wird mit Bemerkungen versehen, um eine Befehlsatzarchitektur (ISA)
anzugeben,;
die Registertransferebenenanweisungen werden optimiert; und
aus den optimierten Registertransferebenenanweisungen wird ein maschinenabhangiger Assemblercode er-
zeugt.

20. Verfahren nach einem der Anspriche 1 bis 19, bei dem der Schritt f.1) die folgenden Schritte umfasst:
Zustandsvariablen werden auf einem Stapel gespeichert, auf den mit Hilfe eines Stapelzeigers (SP) verwiesen
wird; und
der Stapelzeiger wird in einer Speicherstelle abgespeichert; und
bei dem der Schritt f.5) die Schritte umfasst:
der Stapelzeiger wird von der Speicherstelle wieder abgerufen; und
die Zustandvariablen werden von dem Stapel wieder abgerufen.

21. Computerprogramm zur Erzeugung einer Folge von Programmbefehlen zur Ausfihrung in einer dyna-
misch rekonfigurierbaren Verarbeitungseinheit, dadurch gekennzeichnet, dass das Computerprogramm das
Verfahren nach einem der Anspriche 1 bis 21 ausflhrt.

22. Computerverwendbares Datenspeichermedium, auf dem die Programmbefehle des Computerpro-
gramms nach Anspruch 21 gespeichert sind.

Es folgen 20 Blatt Zeichnungen

30/50

DE 198 15 865 B4 2004.11.04

Anhangende Zeichnungen

L "OId

JIFHNIISISVELIFZ-Y3ISW

2z
0z L g1
SNUHOTINI3 |, oNAIHORNIZ-L [«
~JAVOSIV/NI3 —30VOSTY/NI
1 .\\ gt
| oNuHonNT3-1 [
~JAVOSNV/NI3
0z e
ONUHORNIT| <, -
§ - ONUHOTNI3-L
JOSIV/NI3 —38VOSTV/NI3
(\. ON A \\n m —
ONUHOINI | < -
} - ONUHOIINI3-L
JEVISIV/NI —38V95IY/NI3

(XTUIW-TD) XTYIWW
~SONNONIRIIANOIMZLHIW

9l

J
14t /1 21 /1

o > lonnuorNTa-L > ONNIHOTUNII-S
vl

/1 ct /

< > IONUHORINT3- L »| NUHORINIZ-S
i,r # Z1 \

- ONNIHOTANIZ-1 > ONMUHOTINII-S
vl ﬂ FA H 4

- ONLHOTINIZ- L[[oNUHOIINT3-S

01

31/50

Vi diivid

NITNAOWIOSSIZ0Ud NIYIANY NZ NIONNANIGFA
A

|

S
=

Y

ONNLHOTANI3-1
14

32/50

¥ # f

DE 198 15 865 B4 2004.11.04

¢—>
YFHOTIISNALYC ¥HIIIS
INUHOTNT™S /A0 “WOULSL 18
cl €eil ’ ct!

?,

HOLVIAINTD VL

1El

DE 198 15 865 B4 2004.11.04

£el

[AR}

OVS! Btjuodsay

dew

TamToo P

1503 ‘assp pi

o483 “ebwuwt py

21Qel PlA

I¥S1 btjuodaa

toe) ‘02 138

63 ‘g aox

- WOMISLIE IVSI

WOUIS1IE OWSI
]

1)owas

:boad

abvwt

31qgea

W

qr 574

JFOVRAUINIYFHIIAIS
NFY3IA0¥3a I HIS34

Yy =

J
1A S, N
Bl P
7'~
Mr_ ¥5d4
A
A 4
TAMaH
- | -Sno1LvY
- —>1 -MOINOY
e ~ dd
ov1
bhl
SNRIFHIIIAS
.

33/50

DE 198 15 865 B4 2004.11.04

£et N//

et M

0YS1 Dtjuodaz

drw

2UN0d Spt

1503 ‘Issp py

J¥s2 ‘sbwvwy pi

s{ava pia

t¥S1 bdtrjyuodsas

toe} ‘ga 3s

U= T AOUX

"WOUISLIE IYSI

e e

WRIISLIE OvSI

Xovuas

:boad

:abvury

ERCLE

o1 btd

JOVRIIINIYFHIIIAS

\\\\\|IZ&HQ¥Em%me

\ Sp1
Y Zrt

i 10
LyINY | \ 1!%#&WMWMW\&
“ ~— Pyl
IvT~__ 7
————
®
T~ 3h~ t 1 _ //\
vod4 e
1 | -snoriw
fvt - ™1 ~OIINOA
ont V9d4
SNEYIHIIIJS

34/50

50

DE 198 15 865 B4 2004.11.04

52

o

{

Reconfigure (ISA 1)

Reconfigure (ISA Q)

~

54

Reconfigure (ISA 2)

Reconfigure (ISA 3)

Reconfigure (ISA 4)

Reconfigure (ISA k)

Reconfigure (ISA Q)

~ Y~

56

58

35/50

FIGR 2

DE 198 15 865 B4 2004.11.04

300
START

301

QUELLDATET LESEN

3

302

ISA IDENTIFIZIEREN

v

303
REKONF IGURATIONSANWE ISUNG

ERZEUGEN
v

304
ANWEISUNGEN FUR IDENTIFIZIERTE
ISA KOMPILIEREN

NEIN

306
UBERSETZEN

307
BINDEN

308
LADEN

309

ENDE FIGUR

36/50

DE 198 15 865 B4 2004.11.04

=
y

600
NACHSTE HOCHSPRACHENANWEISUNG |

AUSWAHLEN

603

FUNKT IONSAUFRUF RTL-CODE ABGEBEN

605

RTL-FUNKTIONSAUFRUF

802 ABGEBEN

VERSCHIEDENE ISA?

607

RTL-CODE ZUM SPEICHERN LEBENDER
REGISTER ABGEBEN

y

604
RTL~REKONF IGURATIONSCODE ABGEBENI

v

606
RTL-FUNKTIONSAUFRUF ABGEBEN

v

609
RTL-REKONFIGURATIONSCODE ABGEBEN
- Y

i 613

611 RTL-CODE ZUM LESEN
RTL-CODE ZUM WIEDERHERSTELLEN VON RUCKGABEWERT
LEBENDER REGISTER ABGEBEN | ABGEBEN

FIGUR 3A

37/50

DE 198 15 865 B4 2004.11.04

612
NACHSTE RTL-ANWEISUNG AUSWAHLEN l

618

REGEL FUR AKTUELLE RTL-ANWEISUNGSGRUPPE
ERHALTEN

620
MASCHINENSPRACHENANWEISUNG ERZHJGEN.
GEMAB DER REGEL FUR DIESE ISA SETZEN

. ANDERE RTL-ANWEISUNG?

610
REGISTERRESERVIERUNG AUSFUHREN

FIGUR 3B

38/50

DE 198 15 865 B4 2004.11.04

331

RTL-CODE MIT NEUER ISA MIT
BEMERKUNGEN VERSEHEN

l

332
ISA-ABHANGIGE UND ISA-UNABHANGIGE

OPTIMIERUNG

333

MASCHINENABHANGIGE ANWEISUNGEN
ERZEUGEN

FIGUR 3C

39/50

DE 198 15 865 B4 2004.11.04

401
QUELLE

402

KOMPILER

v

403

ASSEMBLER

_ / | \
OBJEKT OBJEKT
404

BINDER

STATISCHE VERBINDUNG
406

ISA-BITSTROME

405

AUSFUHRBARES
PROGRAMM

DYNAMISCHE VERBINDUNG

10 407

REKONF IGURIERBARER
COMPUTER 4— LADEPROGRAMM

FIGUR 4

40/50

501
503

505
505
505
505
505
506

DE 198 15 865 B4 2004.11.04

BINDEN-ANSICHT AUSFUHREN-ANSICHT
ELF-KOPFTEIL ELF-KOPFTEIL
PROGRAVMKOPFTEILTABELLE | | PROGRAMMKOPFTEILTABELLE
OPTIONAL

ABSCHNITT 1 ABSCHNITT 1

ABSCNITT ABSCHNITT 2
ABSCHNITTSKOPFTEIL- ABSCHNITTSKOPFTEIL-
TABELLE TABELLE OPTIONAL

FIGUR 5 (STAND DER TECHNIK)

41/50

502
503

505

505

505

506

DE 198 15 865 B4 2004.11.04

651
ANWEISUNG RECONFIG

v

652
SP<=SP-1"

v

653
(SP)<=NIPAR

v

654

VORBESTIMMTE ADRESSE
<=SP

v

655
HARDWARE LADT NACHSTE
KONFIGURATION

v

656
SP<= VORBESTIMMTE
ADRESSE

v

657

NIPAR<=(SP)

y
658

SP<=SP+1

FIGUR 6

42/50

DE 198 15 865 B4 2004.11.04

707
LEBENDE REGISTERWERTE
RETTEN

701
PARAMETER ZU AUFGE-
RUFENER FUNKTION
SCHIEBEN

v

702

REKONFIGURIEREN ZU
NEUER ISA

v

703
UNTERPROGRAMM AUFRUFEN

v

704
FLUB ZUM AUFRUFER
ZURUCKKEHREN

v

705
AUF URSPRUNGLICHE ISA
REKONFIGURIEREN

v

706

RUCKGABEWERT LESEN

v

708

LEBENDE REGISTERWERTE
WIEDER HERSTELLEN

FIGUR 7

43/50

DE 198 15 865 B4 2004.11.04

28 HNOI4

|

008
¥08 7~ N\ 1ppe a1
(810
€08~ _/ !
208 7N\ 184
g~ _| ©°9

<+— dS

g8 4nold

508 ~ _/J| UVJIN
NG I
208 \/\ [eA a1
18~ \| ©°9

<+— dS

ve HdNoid

00
€08 ~ \ J
208 7\ 1ea
1087 N\U| 99

<+— dS

44/50

DE 198 15 865 B4 2004.11.04

5 DId

LIHNTT

-SISVILIHZ-ATLSVH

220§ JS!
\\ 020§ _ ’ \. 810¢

NIDRRIA | DI |«
avavaE [§ | -aveavam o
810g

r SN DIRNGL M
“SENOQIVNIT .
\Soﬂ Y 8104

NUIDIPIN INUDIRNIZ-L <
“anvogwam | | -anveawia | >~
mNom Is 8104

SN DRRIN JeNwDRNE-L |,
“aveawnE |] VA >

XTULVH

~SONNANTHAA

AT TREINAD

ONNLIDTANI t4—— PNLOLUNT

J 910¢
p10S AT
\ L
| ONNLHDIANT: ONNLHDTUNTE
- = D | oS
v10g Z105
S cz::.uEzﬁA » DNALLIDTINT
— o — -3
p10¢ Z10¢ 4
ruz::“qz ; N
— , zm_.A ;z:_.:u;zm
P10g 2o
¥ 4
-

45/50

DE 198 15 865 B4 2004.11.04

OF "DId

ONNIHDTANIZ
L NOA/NZ

omom.yl

)

LTIHNTA

dIVAOT 91549

;ﬂ,@vom

9v0§ Y
X
i vwwm . LIAHNIS
pe0S ~ | -SoNnLIagaVAEA
Y uanporads »: RAVEIA 1IN A
LW L NOYRM HDSTWVNAG
290§
M \J
— X
ONAIHOTUNTH 4
-1 NOA
ONNIHDTUNIE

-L Noa/nz ~—————f

A
- Y08

Z10¢

rd

LIHHNIE
-SIsvaLIdz

-SISvaLIaz[< ~ddLSVA NOA

J

{£0¢

46/50

DE 198 15 865 B4 2004.11.04

3052

3052 {

REKONFIGURIEREN (ISA 1)

-

3054
REKONFIGURIEREN (ISA 0)
REKONFIGURIEREN (ISA 2)

3055
REKONFIGURIEREN (ISA 3

3056
REKONFIGURIEREN (ISA 4))

3057
REKONFIGURIEREN (ISA K)

REKONFIGURIEREN (ISA 0)

3052 <<:

FIG. 1 A

47/50

DE 198 15 865 B4 2004.11.04

START /)
3500

Y
,///’ NACHSTE HOHERE AN-

| WEISUNG AUSWAHLEN

1 y .

/3502
JORDERGS RTL-CODE ERZEUGEN
COMPILERENDE
3504
////’ REGISTERZUORDNUNG |/
DURCHFUHREN
| 3508
NACHSTE RTL- <
2 ANWEISUNG WAHLEN
HINTERES
COMPILERENDE

3510

ASSEMBLERSPRACHEN-
ANWEISUNG ERZEUGEN

I

ENDE

FIG. 1 B

48/50

1

/

VORDERES

COMPILERENDE

DE 198 15 865 B4 2004.11.04

AN

START

) 4

3600

NACHSTE HOHERE

ANWEISUNG AUSWAHLEN

'3602

RTL~-REKONFIGURA-
TIONSANWEISUNG
ERZEUGEN

3606

TL-CODE ERZEUGEN

3608

FIG. 1C

49/50

DE 198 15 865 B4 2004.11.04

HINTERES
COMPILERENDE

///// REGISTERZUORDNUNG

3610

DURCHFUHREN

v 3612

NACHSTE RTL-ANWEI-

SUNG_AUSWAHLEN

VORSCHRIFTENSATZ l/
ENTSPRECHEND SPE-
ZIFIZIERTER ISA -
AUSWAHLEN

3620 _ | ASSEMBLERSPRACHE-AN-
U WEISUNG ERZEUGEN;
GEMAR VORSCHRIET
SETZEN

3622

ANDERE RTL-
VORSCHRIFT ?

ENDE

FIG. 11D

50/50

	Titelseite
	Beschreibung
	Stand der Technik
	Aufgabenstellung
	Ausführungsbeispiel
	Bezugszeichenliste

	Patentansprüche
	Anhängende Zeichnungen

