
JP 4124849 B2 2008.7.23

10

20

(57)【特許請求の範囲】
【請求項１】
　複数の対称的マルチ・プロセッサを含むコンピュータシステム(200)内の、対称的マル
チプロセッサ(210)のメモリ(212)内に格納されたデータへのアクセスを共用するための、
ソフトウェアにより実行される方法であって、
　上記各対称的マルチ・プロセッサが、複数のプロセッサ(211)、アドレスを有するメモ
リ、及び、入力／出力インターフェース(214)、を含み、それらが互いにバス(213)によっ
て接続され、
　上記入力／出力インターフェースが、ネットワーク(220)によって、対称的マルチ・プ
ロセッサを互いに接続し、
　上記方法は、当該対称的マルチプロセッサのうちの１つによって実行される以下の、
　メモリの１組のアドレスを、共用データ(550)を記憶するための仮想共用アドレスとし
て指定し；
　上記仮想共用アドレスの一部分を、共用データ構造体(551)を記憶するために、いずれ
かのプロセッサで実行されるプログラム(310)によりアクセスできる１つ以上のブロック
として割り当て、特定の割り当てられるブロックのサイズは、共用データ構造体のサイズ
と共に変化し、各ブロックは、整数本のライン(552)を含み、そして各ラインは、所定の
バイト数の共用データを含み；
　複数の共用状態エントリー(545)を含む共用状態テーブル(541)を維持し、１つ以上のブ
ロックの各ラインごとに１つの共用テーブルエントリーがあり、各共用状態エントリーは

(2) JP 4124849 B2 2008.7.23

10

20

30

40

50

、ラインの考えられる状態を指示し、該考えられる状態は、無効、共用、排他的及び保留
であり；
　複数の対称的マルチプロセッサの各プロセッサごとにプライベート状態テーブル(542)
を維持し、各プライベート状態テーブルは、複数のプライベート状態エントリー(545)を
有し、特定のプライベート状態テーブルのプライベート状態テーブルエントリーは、それ
に関連する特定のプロセッサによりアクセスされる特定のラインの考えられる状態を指示
し；
　共用データ構造体の特定のブロックのディレクトリ情報をホームプロセッサのメモリに
記憶し、ディレクトリ情報は、特定のブロックのサイズを含み；
　データが使用できるかどうかチェックするために共用データをアクセスする命令におい
てプログラム(310)を実行可能にし；そして
　共用データをアクセスするための要求を発している１つのプロセッサからアクセス要求
を受信するのに応答して、特定のラインを含む特定のブロックと、その特定のブロックの
サイズとを、ネットワークを経て、上記要求を発しているプロセッサへ送信し、可変サイ
ズのブロックに記憶された共用データ構造体をプロセッサがネットワークを経て交換でき
るようにする、
という段階を備え、
　上記実行可能化が、
　アナライザ(320)で、プログラム(310)を手順(301)に細分化(breaking)し、当該手順(30
1)を、基本実行ブロック(302)に細分化し、当該基本実行ブロックが命令の組からなり、
当該命令の組は、もし、当該組の最初のものが実行されるならば、実行される命令の組で
あり、
　上記基本実行ブロック、及び、データ、及び、実行フロー(303)を分析して、メモリ(21
2)の共用された部分内の割当てられたアドレスへメモリアドレスを割当て、そこへのアク
セスを実行する、命令を特定(locate)し、
　オプティマイザ・モジュール(330)で、命令をプログラム(310)内に挿入して、アクセス
が、整合的な(coherent)やり方でで実行されることを保証するために、データが利用可能
か否かをチェックし、
　イメージ・ジェネレータ(340)で、チェックするための上記命令で実行可能なプログラ
ム(351)、及び、ミス・ハンドリング・プロトコル手順（352）のための手順、及び、メッ
セージ・パッシング・ライブラリ(353)を含む、修正されたマシン実行可能なイメージ(35
0)を生成する、
ステップを含む点において特徴付けられる方法。
【請求項２】
　ホームプロセッサにより維持されたディレクトリ(1300)にディレクトリ情報を記憶し、
ディレクトリは、共用データ構造体(551)の１つ以上のブロックの各ライン(552)ごとにエ
ントリー(1301)を含み、各エントリーは、ラインを含む特定ブロックのサイズ(1315)を含
む請求項１に記載の方法。
【請求項３】
　特定ブロックの各ライン(552)のエントリー(1301)に、上記プロセッサ(211)のうちの制
御しているプロセッサの識別(1310)を維持し、この制御しているプロセッサは特定のライ
ンを含む特定のブロックの排他的コピーを最後に有する請求項２に記載の方法。
【請求項４】
　各プロセッサ(211)ごとに１つのビット(1321)を含むビットベクトル（1320）をエント
リー(1301)に維持し、各ビットは、対応するプロセッサが特定ブロックの共用コピーを有
するかどうか指示する請求項３に記載の方法。
【請求項５】
　プログラム(310)の実行中に共用データ構造体(551)に対して割り当てられた１つ以上の
ブロックのサイズを動的に変更する請求項１に記載の方法。
【請求項６】

(3) JP 4124849 B2 2008.7.23

10

20

30

40

50

　共用テーブルエントリー(545)の１つを変更する前に共用状態テーブルをロックするス
テップ、及び、更に、
　１つあるいはそれより多いブロックのサイズをダイナミックに変更する前に、無効化す
るために、１つあるいはそれより多いブロックの各ライン(552)の状態を設定するステッ
プを含む、
請求項１に記載の方法。
【請求項７】
　プライベート状態テーブルに関連したプロセッサ(211)のみによりプライベート状態テ
ーブル(512)の１つを変更する請求項６に記載の方法。
【請求項８】
　特定のプロセッサに関連したプライベート状態テーブル(542)の状態をダウングレード
するときに、特定の対称的マルチプロセッサ(210)の特定の１つのプロセッサ(211)から、
その特定の対称的マルチプロセッサの他のプロセッサへメッセージを選択的に送信する請
求項７に記載の方法。
【請求項９】
　第１の共用データ構造体(1421)の１つ以上のブロックのラインの数は、第２のデータ構
造体(1431)の１つ以上のブロックのラインの数とは異なる請求項１に記載の方法。
【請求項１０】
　あるプログラム(1411)の第１データ構造体(1421)の１つのラインにおけるバイトの数は
、別のプログラム(1441)の第２データ構造体(1451)の１つのラインにおけるバイトの数と
は異なる請求項１に記載の方法。
【請求項１１】
　ネットワーク(220)と、
　上記ネットワークによって相互接続され各々が複数のプロセッサ(211)を含む複数の対
称的マルチプロセッサ(210)と、
　各対称的マルチプロセッサに対するアドレスのレイアウトを有するメモリ(212)であっ
て、各メモリアドレスは、共用データ(550)を記憶する指定された組の仮想共用アドレス
を有し、上記仮想共用アドレスの一部分は、上記プロセッサのうちのいずれかにおいて実
行されるプログラム(310)によってアクセスしうる１つ以上のブロックとして共用データ
構造体(551)を記憶し、特定の割り当てられるブロックのサイズは、上記共用データ構造
体のサイズと共に変化し、各ブロックは、整数本のライン(552)を含み、各ラインは、所
定のバイト数の共用データを含み、
　及び、
　データが利用可能か否かをチェックするために、上記共用されたデータにアクセスする
命令において、プログラム（351）を実行可能にするための手段(320)、
を含むシステムであって、
　上記レイアウトは、
　ｉ）複数の共用状態エントリー(545)を含む共用状態テーブル（541）であって、１つ以
上のエントリーの各ラインごとに１つの共用エントリーがあり、各共用エントリーは、ラ
インの考えられる状態を指示し、該考えられる状態は、無効、共用、排他的及び保留であ
るような共用状態テーブルと、
　ii）上記複数の対称的マルチプロセッサの各プロセッサごとのプライベート状態テーブ
ル(542)であって、各プライベート状態テーブルは、複数のプライベート状態エントリー(
545)を有し、特定のプライベート状態テーブルのプライベート状態エントリーは、それに
関連する特定のプロセッサによりアクセスされる特定のラインの考えられる状態を指示す
るようなプライベート状態テーブルと、
を含み、
　上記共用データは、データが使用できるかどうかチェックするためにアクセスされ、可
変サイズのブロックに記憶された共用データ構造体を交換するため要求を発しているプロ
セッサへ１つの他のプロセッサから上記ネットワークを経て特定のブロックが送られ、

(4) JP 4124849 B2 2008.7.23

10

20

30

40

50

　上記実行可能とするための手段は、
　プログラム(310)を、手順(301)に細分化(breaking)し、当該手順(301)を、基本実行ブ
ロック(302)に細分化するためのアナライザ・モジュール（320）であって、基本実行ブロ
ックが命令の組からなり、当該命令の組は、もし、当該組の最初のものが実行されるなら
ば、実行されるものであり、
　アナライザ・モジュールが、基本実行ブロック、及び、データ、及び、実行フロー(303
)を分析して、メモリ(212)の共用された部分内の割り当てられたアドレスへメモリ・アド
レスを割り当て、そこへのアクセスを実行する命令を特定(locate)するためのものでもあ
り、
　アクセスが整合的なやり方で実行されることを保証するために、データが利用可能か否
かチェックするために、命令をプログラム(310)内に挿入するためのオプティマイザ・モ
ジュール（330）、
　チェックするための上記命令で実行可能なプログラム(351)、及び、ミス・ハンドリン
グ・プロトコル手順(352)のための手順、及び、メッセージ・パッシング・ライブラリ(35
3)を含む、修正されたマシン実行可能なイメージ(350)を生成するためのイメージ・ジェ
ネレータ(340)、
を含む点において特徴付けられる、システム。
【請求項１２】
　上記プライベート状態テーブル(540)は、排他的テーブル(1000)を含む請求項１１に記
載のシステム。
【請求項１３】
　上記排他的テーブル(1000)は、共用部分（1001）及びプライベート部分(1002)を含む請
求項１２に記載のシステム。
【発明の詳細な説明】
【０００１】
【発明の属する技術分野】
　本発明は、一般に、対称的マルチプロセッサに係り、より詳細には、対称的マルチプロ
セッサ間にデータを共用する方法に係る。
【０００２】
【従来の技術】
　分散型コンピュータシステムは、典型的に、通信ネットワークによって互いに接続され
た多数のコンピュータを備えている。ある分散型コンピュータシステムにおいては、ネッ
トワーク化されたコンピュータが共用データにアクセスすることができる。非常に多数の
コンピュータがネットワーク化される場合には、分散型システムは、「かたまり的に(mas
sively) 」並列であると考えられる。かたまり的に並列なコンピュータは、１つの効果と
して、複雑な計算問題を適度な時間内に解くことができる。
【０００３】
　このようなシステムにおいては、コンピュータのメモリが集合的に分散型共用メモリ（
ＤＳＭ）として知られている。分散型共用メモリに記憶されたデータがコヒレントな仕方
でアクセスされるよう確保することが問題となる。コヒレントとは、ある意味では、一度
に１つのプロセッサしかデータの任意の部分を修正できないことを意味し、その他の点で
は、システムの状態が非決定論的である。
【０００４】
　図１は、複数のコンピュータ１１０を含む典型的な分散型共用メモリシステム１００を
示す。各コンピュータ１１０は、バス１０４によって互いに接続された単一プロセッサ１
０１と、メモリ１０２と、入力／出力（Ｉ／Ｏ）インターフェイス１０３とを備えている
。これらコンピュータは、ネットワーク１２０により互いに接続される。ここでは、コン
ピュータ１１０のメモリ１０２が共用メモリを構成する。
【０００５】
　最近、分散型共用メモリシステムは、対称的なマルチプロセッサ（ＳＭＰ）のクラスタ

(5) JP 4124849 B2 2008.7.23

10

20

30

40

50

として構成されている。ＳＭＰシステムでは、共用メモリをハードウェアで効率的に実施
することができる。というのは、プロセッサが対称的で、例えば、その構造及び動作が同
一であり、そして単一の共用プロセッサバス上で動作するからである。ＳＭＰシステムは
、４個又は８個のプロセッサの場合に良好な価格／性能比を有する。しかしながら、特別
に設計されたバスのために、１２個又は１６個のプロセッサを越えてＳＭＰシステムのサ
イズを拡張することは困難である。
【０００６】
　ネットワークで接続された対称的マルチプロセッサを使用して大規模な分散型共用メモ
リシステムを構成することが望まれる。その目標とするところは、プロセスがメモリを効
率的に共用できるようにして、第１のＳＭＰで実行されている１つのプロセスにより第２
のＳＭＰに取り付けられたメモリからフェッチされたデータを、その第１のＳＭＰで実行
されている全てのプロセスに直ちに使用できるようにすることである。
【０００７】
　ほとんどの既存の分散型共用メモリシステムにおいては、仮想メモリ（ページング）ハ
ードウェアのロジックは、一般に、プロセスが実行されているローカルＳＭＰのメモリに
記憶されていない共用データをアクセスするようにそのプロセスが試みた場合に信号を発
する。データがローカルで入手できない場合には、ページ欠陥ハンドラーの機能が、リモ
ートプロセッサで実行されているプロセスにメッセージを通信するソフトウェアルーチン
に置き換えられる。
【０００８】
【発明が解決しようとする課題】
　この解決策に伴う主たる問題は、典型的な仮想メモリのページ単位が４Ｋ又は８Ｋバイ
トであるために、データコヒレント性が大きな（粗い）サイズの量でしか与えられないこ
とである。このサイズは、多数のプロセスによりアクセスされる非常に小さいサイズのデ
ータ単位、例えば、３２又は６４バイトとは一致しない。粗いページサイズの粒度にする
と、ネットワークトラフィックが増加し、システム性能が低下することになる。
【０００９】
　更に、同じＳＭＰで実行される多数のプロセスは、一般的に、共用データに関する状態
情報を共用する。それ故、競合状態のおそれが生じる。競合状態は、システムの状態が、
どのプロセスが最初に完了するかに依存するときに生じる。例えば、多数のプロセスが同
じアドレスにデータを書き込むことができる場合に、そのアドレスから読み取られるデー
タは、プロセスの実行順序に依存することになる。この順序は、ランタイム条件に基づい
て変化する。競合状態は、ロックやフラグのようなインライン同期チェックをプロセスに
付加することにより回避できる。しかしながら、明確な同期は、オーバーヘッドコストを
増大すると共に、システムの実施を不可能にする。
【００１０】
　対称的マルチプロセッサ間のデータ転送の単位を、アクセスされるデータ構造体のサイ
ズに基づいて変更できるのが望ましい。大きなデータ構造体に対するコヒレント性の制御
は、データを転送する時間を償還できるように大きなデータ単位の転送を許さねばならな
い。小さなデータ構造体に対するコヒレント性は、小さなデータ単位の転送を許さねばな
らない。又、偽の共用を受ける大きなデータ構造体に対しコヒレント性の小さな単位を使
用することもできねばならない。偽の共用とは、異なるプロセスによりアクセスされた独
立したデータエレメントがコヒレントなデータ単位に記憶されるときに生じる状態である
。
【００１１】
【課題を解決するための手段】
　ソフトウェアで実施される本発明の方法は、可変サイズのデータ量を使用する分散型共
用メモリシステムを用いる対称的マルチプロセッサ間にデータを共用できるようにする。
分散型共用メモリシステムにおいては、対称的マルチプロセッサがネットワークにより互
いに接続される。各々の対称的マルチプロセッサは、複数の同一のプロセッサと、アドレ

(6) JP 4124849 B2 2008.7.23

10

20

30

40

50

スを有するメモリと、対称的マルチプロセッサをネットワークを経て相互接続するための
入力／出力インターフェイスとを備えている。
【００１２】
　本発明は、その広い形態においては、コンピュータシステムの対称的マルチプロセッサ
のメモリに記憶されたデータへのアクセスを共用するための請求項１に記載の方法に係る
。
【００１３】
　以下に説明するように、メモリの１組のアドレスが、集合的に、共用データを記憶する
ための仮想共用アドレスと称される。共用データは、対称的マルチプロセッサのいずれか
のプロセッサにおいてプロセスとして実行されるプログラムの命令によりアクセスするこ
とができる。仮想共用アドレスの一部分は、プロセスにより使用される共用データ構造体
を記憶するために１つ以上のブロックとして割り当てられる。データがフェッチされ、そ
して個々のブロックのレベルにコヒレントに保たれる。
【００１４】
　本発明の好ましい実施形態では、特定の割り当てられるブロックのサイズは、特定の共
用データ構造体に対して変更することができる。各ブロックは、整数のラインを含み、各
ラインは、所定のバイト数の共用データを含む。
　特定のブロックのディレクトリ情報が、「ホーム」プロセッサと称するプロセッサのメ
モリのディレクトリに記憶される。割り当てられたブロックは、ラウンドロビン式に種々
のプロセッサに指定される。ディレクトリ情報は、特定ブロックのサイズと、ブロックを
最後に変更したプロセッサの識別と、ブロックのコピーを有する全てのプロセッサの識別
とを含む。
【００１５】
　実行の前に、好ましくは、プログラムを統計学的に分析して、ロード及び記憶命令のよ
うなメモリアクセス命令を探索する。プログラムに付加的な命令を追加することによりプ
ログラムが実行可能化される。付加的な命令は、ロード及び記憶命令のターゲットアドレ
スが共用データ構造体の特定のラインをアクセスするかどうかそしてターゲットアドレス
のデータが有効状態を有するかどうか調べるために動的にチェックすることができる。
【００１６】
　データが無効である場合には、アクセス要求が発生される。要求を発するプロセッサか
らのアクセス要求を受け取るのに応答して、特定のラインを含む特定のブロック及びその
特定のブロックのサイズが、その要求を発するプロセッサへ送られる。ブロックは、ネッ
トワークを経て送られる。これにより、対称的マルチプロセッサは、可変サイズのブロッ
クに記憶された共用データ構造体をネットワークを経て交換することができる。
【００１７】
【発明の実施の形態】
　以下、添付図面を参照し、本発明の好ましい実施形態を一例として詳細に説明する。
　システムの概要
　図２は、本発明を利用することのできる対称的マルチプロセッサ（ＳＭＰ）の分散型共
用メモリ（ＤＳＭ）コンピュータシステム２００を示している。ＤＳＭ－ＳＭＰシステム
２００は、ネットワーク２２０により互いに接続された複数のＳＭＰシステム２１０を備
えている。各ＳＭＰシステム２１０は、プロセッサバス２０９により互いに接続された２
つ、４つ、８つ又はそれ以上の対称的プロセッサ２１１を備えている。更に、各ＳＭＰ２
１０は、システムバス２１３により対称的プロセッサ２１１に接続されたメモリ（Ｍ）２
１２及び入力／出力インターフェイス（Ｉ／Ｏ）２１４を含むことができる。
【００１８】
　メモリ２１２は、ダイナミックランダムアクセスメモリ（ＤＲＡＭ）である。
メモリ２１２は、データの空間的及び時間的ローカル性の利点を取り入れるために高速ハ
ードウェアキャッシュを含んでもよい。頻繁に使用されるデータは、キャッシュに記憶さ
れることが多い。

(7) JP 4124849 B2 2008.7.23

10

20

30

40

50

　メモリ２１２は、プログラム２１５及びデータ構造体２１６を記憶する。メモリ２１２
のアドレスの幾つかは、集合的に、１組の共用仮想アドレスと称することができる。デー
タ構造体の幾つかは、共用データを含むことができる。共用データは、仮想アドレスを用
いていずれかのＳＭＰ２１０のいずれかのプロセッサ２１１で実行されているいずれかの
プロセスによりアクセスすることができる。
【００１９】
　バス２０９及び２１３は、データ、アドレス及び制御ラインを用いてＳＭＰ２１０の要
素を接続する。ネットワーク２２０は、対称的マルチプロセッサ２１０間にメッセージを
通信するためのネットワークプロトコル、例えば、非同期転送モード（ＡＴＭ）又はＦＤ
ＤＩプロトコルを使用する。或いは又、ネットワーク２２０は、デジタル・イクイップメ
ント社により製造されたメモリチャンネルのような高性能のクラスターネットワークの形
態であってもよい。
【００２０】
　一般的なシステムオペレーション
　ＳＭＰ－ＤＳＭシステム２００の動作中に、プログラム２１５の命令がプロセッサ２１
１により実行スレッド又はプロセスとして実行される。命令は、ロード及び記憶命令を用
いてデータ構造体２１６をアクセスする。いずれのプロセッサ２１１で実行されるいずれ
のプログラム２１５も、いずれのメモリ２１２に記憶されたいずれの共用データ構造体２
１６もアクセスできることが望まれる。
【００２１】
　実行可能化
　好ましくは、以下に説明するように、プログラム２１５は、実行の前に実行可能化され
る。実行可能化(instrumentation) とは、プログラム２１５のアクセス命令（ロード及び
記憶）を静的に位置決めするプロセスである。又、実行可能化は、メモリ２１１の部分を
割り当て及び割り当て解除する命令も位置決めする。
【００２２】
　命令が位置決めされると、付加的な命令、例えば、ミスチェックコードをアクセス命令
の前にプログラムに挿入し、メモリアクセスを正しく実行するよう確保することができる
。ミスチェックコードは、付加的な命令を実行するのに必要なオーバーヘッドの量を減少
するように最適化される。割り当て及び割り当て解除命令のために挿入される付加的な命
令は、割り当てられているブロックのサイズのようなコヒレント性の制御情報を維持する
。
【００２３】
　上記のように、プログラム２１５は、分散型メモリ２１２の幾つかのアドレスを共用メ
モリとして見ることができる。共用メモリの特定のターゲットアドレスについては、命令
がデータのローカルコピーをアクセスするか、又はデータのコピーを要求するために別の
プロセッサにメッセージを送らねばならない。
【００２４】
　アクセス状態
　いずれのＳＭＰについても、共用メモリに記憶されるデータは、無効又は有効の２つの
考えられる状態をもつことができる。有効状態は、共用又は排他的なサブ状態をもつこと
ができる。データの状態が無効である場合には、データへのアクセスが許されない。状態
が共用される場合には、ローカルコピーが存在し、他のＳＭＰも、コピーをもつことがで
きる。状態が排他的である場合には、１つのＳＭＰのみがデータの唯一の有効コピーを有
し、他のＳＭＰはデータにアクセスできない。更に、以下に述べるように、データは、遷
移状態、即ち「ペンディング」状態にある。
　データの状態は、ネットワーク２２０を経て通信されるコヒレント性制御メッセージに
より維持される。これらのメッセージは、実行可能化されたプログラムのミスチェックコ
ードによりコールされた手順によって発生される。
【００２５】

(8) JP 4124849 B2 2008.7.23

10

20

30

40

50

　データは、それが共用状態又は排他的状態を有する場合だけローカルＳＭＰのメモリか
ら直接ロードすることができる。データは、状態が排他的である場合だけローカルメモリ
に記憶することができる。プロセッサが無効状態にあるデータをロードするように試みる
場合、又はプロセッサが無効又は共用状態にあるデータを記憶するように試みる場合には
、通信が必要とされる。通信を必要とするこれらのアクセスを「ミス(miss)」と称する。
　メモリ２１２のアドレスは、共用データを記憶するように動的に割り当てることができ
る。幾つかのアドレスは、ローカルプロセッサ上で実行されているプロセスのみによりア
クセスされたプライベートデータを記憶するように静的に割り当てることができる。幾つ
かのアドレスをプライベートデータとして指定することによりオーバーヘッドを減少する
ことができる。というのは、ローカルプロセッサによるプライベートデータへのアクセス
は、ミスに対してチェックする必要がないからである。
【００２６】
　ハードウェア制御式の共用メモリシステムの場合のように、メモリ２１２のアドレスは
、割り当て可能なブロックへと仕切られる。ブロック内の全てのデータは、コヒレント単
位としてアクセスされる。システム２００の特徴として、ブロックは、異なる範囲のアド
レスに対して可変サイズをもつことができる。以下に述べるミスチェックコードを簡単化
するために、可変サイズのブロックは、「ライン(line)」と称する固定サイズ範囲のアド
レスへと更に仕切られる。
　状態情報は、ラインごとのベースで状態テーブルに維持される。ラインのサイズは、特
定のプログラム２１５が実行可能化されるときに予め定められ、通常、３２、６４又は１
２８バイトである。１つのブロックは、整数本のラインを含むことができる。
【００２７】
　システム２００の動作中に、メモリアクセス命令を実行する前に、ミスチェックコード
は、ターゲットアドレスがプライベートメモリ内にあるかどうか決定する。ターゲットア
ドレスがプライベートメモリ内にある場合には、ミスチェックコードは、即座に完了する
ことができる。というのは、プライベートデータは、常にローカルプロセッサによりアク
セスできるからである。さもなくば、ミスチェックコードは、特定ブロックのどのライン
が命令のターゲットアドレスを含むか計算し、そしてそのラインがアクセスに対して正し
い状態にあるかどうか決定する。状態が正しくない場合には、ミスハンドラーが呼び出さ
れ、リモートＳＭＰのメモリからデータをフェッチする。
【００２８】
　実行可能化プロセス
　図３は、付加的な命令に必要とされるオーバーヘッドの量を減少するようにプログラム
を実行可能化するのに使用できるプロセス３００のフローチャートである。更に、プロセ
ス３００は、対称的マルチプロセッサによりアクセスされる可変サイズのデータ量に対し
てコヒレント性の制御を受け入れる。プロセス３００は、アナライザモジュール３２０、
オプチマイザモジュール３３０、及び実行可能なイメージジェネレータ３４０を含む。
【００２９】
　マシンで実行可能なプログラム３１０は、アナライザモジュール３２０へ送られる。ア
ナライザ３２０はプログラム３１０を手順３０１に分断し、そして手順３０１を基本的実
行ブロック３０２に分断する。基本的ブロック３０２は、第１の命令が実行される場合に
全てが実行される１組の命令として定義される。手順及び基本的ブロックの命令は、プロ
グラムコール及び流れグラフ３０３を形成するように分析される。
【００３０】
　グラフ３０３は、プログラム３１０のデータ及び実行の流れを決定するために使用する
ことができる。基本的ブロック及びグラフ３０３は、メモリアドレスを割り当ててその割
り当てたアドレスへのアクセスを実行する命令を位置決めするために分析される。命令が
メモリ２１２の共用部分をアクセスする場合には、そのアクセスがコヒレント的に実行さ
れるよう確保するためにミスチェックコードが挿入される。
【００３１】

(9) JP 4124849 B2 2008.7.23

10

20

30

40

50

　ミスチェックコードは、以下に詳細に述べるように、オプチマイザモジュール３３０に
より挿入される。プログラム３１０が実行可能化された後に、イメージジェネレータ３４
０は、変更されたマシン実行可能なイメージ３５０を発生する。この変更されたイメージ
３５０は、ミスチェックコードを伴う実行可能化されたプログラム３５１と、ミスハンド
リングプロトコル手順３５２と、メッセージパスライブラリ３５３とを含む。
　図４は、図３のオプチマイザモジュール３３０により実行されるステップを示す。これ
らのステップは、メモリの仕切り４１０、レジスタの分析４２０、コードのスケジューリ
ング４３０、ロードチェック分析４４０、及びバッチ処理４５０のステップを含む。
【００３２】
　メモリレイアウト
　図５は、図２のメモリ２１２に対するアドレスの割り当てを示す。アドレスは図５の下
部から上部へと増加する。アドレスは、スタック５１０、プログラムテキスト５２０、静
的に割り当てられたプライベートデータ５３０、状態テーブル５４０、及び動的に割り当
てられた共用データ５５０に対して指定される。
　動作中に、スタック５１０により使用されるアドレスは、スタックオーバーフローエリ
ア５０５に向かって減少する。テキストスペース５２０は、実行可能な命令、例えば図３
のイメージ３５０を記憶するのに使用される。テキストに指定されるアドレスは、テキス
トオーバーフローエリア５２５に向かって増加する。
【００３３】
　プライベートデータセクション５３０のアドレスは、単一のローカルプロセッサにより
排他的に使用されるデータ構造体、例えば、共用されないデータを記憶するのに使用され
る。メモリのこの部分のアドレスは、特定のプログラムが実行のためにロードされるとき
に静的に割り当てられる。
【００３４】
　状態テーブル
　状態テーブル５４０は、共用状態テーブル５４１、プライベート状態テーブル５４２及
び排他テーブル１０００を含む。排他テーブル１０００は、共用部分１００１及びプライ
ベート部分１００２も含む。
　共用及びプライベート状態テーブル５４１及び５４２は、各々、割り当てられたアドレ
スの各ラインごとに１バイトの共用及びプライベート状態エントリー５４５を含む。状態
エントリー５４５のビットは、対応するデータラインの種々の状態を指示するのに使用で
きる。１つ以上のデータラインによりブロックが構成される。
【００３５】
　好ましい実施形態によれば、特定のＳＭＰ２１０の全てのプロセッサ２１１は同じデー
タを共用することができる。それ故、状態テーブルエントリー５４５はＳＭＰ２１０の全
てのプロセッサについて共用される。これは、ブロック、例えば、１つ以上のデータライ
ンがリモートＳＭＰからフェッチされ、そしてブロックの状態が無効から共用又は排他的
へと変化するときに、ＳＭＰの共用メモリハードウェアがデータの状態を確認し、そして
ＳＭＰのプロセッサ２１１が新たなデータをアクセスできることを意味する。
　特定のＳＭＰの２つ以上のプロセッサが状態テーブルエントリーをアクセスするよう同
時に試みることがあるので、エントリーにアクセスがなされる前にエントリーがロックさ
れる。コードに挿入されたミスチェックが状態テーブルエントリーへのアクセスを必要と
することもある。しかしながら、この場合には、オーバーヘッドを減少するためにエント
リーはロックされない。むしろ、各プロセッサは、オーバーヘッドの追加を伴うことなく
インラインコードによりアクセスすることのできる対応するプライベート状態テーブル５
４２を維持する。
【００３６】
　プロセッサのプライベート状態テーブル５４２のエントリーは、２つの異なるメカニズ
ムにより更新される。
　プロセッサが無効データをアクセスするよう試みる場合には、ミス状態が生じそしてデ

(10) JP 4124849 B2 2008.7.23

10

20

30

40

50

ータはリモートＳＭＰからフェッチされる。受信の際に、データの状態が有効となる。こ
れは、今やデータが使用できるので状態の「アップグレード」と称されるが、従来はこの
ようにならない。しかしながら、データは、同じＳＭＰ２１０の他のプロセッサのプライ
ベート状態テーブルにおいて無効とマークされたままとなる。
【００３７】
　これらの他のプロセッサの１つがここでデータをアクセスするよう試みた場合に、他の
プロセッサは、そのプライベート状態テーブル５４２において依然として無効状態を見る
ことになる。他のプロセッサは、共用状態テーブル５４０にロックを収集し、そしてロー
カルＳＭＰに対してデータが有効であることを決定すると共に、それに応じてそのプライ
ベート状態テーブル５４２を更新する。データへのその後のアクセスは、共用状態テーブ
ル５４０をアクセスする必要なく行うことができる。
　データの状態を無効に戻すことが必要であり、例えば、別のＳＭＰのプロセッサがデー
タを必要とする場合には、データの状態が「ダウングレード」される。
この場合に、要求を受け取るプロセッサは、ローカルＳＭＰで動作している他のプロセッ
サに内部メッセージを選択的に送信し、それらのプライベート状態テーブル５４２に維持
された状態をダウングレードできるようにする。ラインの「ダウングレード」は、全ての
プロセッサがそれらのプライベート状態テーブルを切り換えるまで完了されない。
【００３８】
　無効化要求を受け取るプロセッサがローカルＳＭＰの全てのプロセッサの全てのプライ
ベート状態テーブルを直接的に切り換えるべきである場合に競合状態が生じることに注意
されたい。例えば、第１のプロセッサは、記憶に対してインラインチェックを行う間に有
効状態を見るが、第２のプロセッサは、第１のプロセスが修正されたデータを記憶する機
会を得る前にデータの状態を無効へとダウングレードするときに、競合状態が生じる。
【００３９】
　競合状態を回避する１つの方法は、インラインミスチェックコードと共に状態テーブル
ロックを得ることである。しかしながら、この解決策は、ロッキングのためにオーバーヘ
ッドを増加する。これは、デジタル・イクイップメント社により製造されたアルファプロ
セッサのように弛緩メモリモードをもつプロセッサの場合に特に言えることである。従っ
て、競合状態を効率的に回避するためには、プライベート状態テーブルの使用が重要とな
る。
　プライベート状態テーブル５４２の使用は、ミスチェックコードにおける競合状態を回
避するだけでなく、ＳＭＰ２１０内のデータの状態をダウングレードしながらも、通信す
る必要のあるメッセージの数を減少する。例えば、ローカルプロセッサが、ローカルＳＭ
Ｐ内の有効なデータを決してアクセスしない場合は、そのプライベート状態テーブルを更
新する必要はない。
【００４０】
　共用データ
　共用データ５５０のアドレスは、プログラムによりその実行の間に動的に割り当てられ
る。１つの効果として、共用データ５５０のアドレスは、可変サイズのブロック５５１に
おいて割り当てることができる。これらブロックは、ライン５５２へと更に仕切られる。
　図５に示すレイアウトでは、全てのアクセス命令を実行可能化する必要はない。例えば
、プログラムスタック５１０に記憶されるデータは、共用されない。それ故、スタックポ
インタレジスタ（ＳＰ）をベースとして使用する命令は、ミスチェックコードの適用を必
要としない。又、プライベートデータポインタレジスタ（ＰＲ）を用いてプライベートデ
ータ５３０をアクセスする命令は、実行可能化する必要がない。
【００４１】
　レジスタの使用
　図３のアナライザモジュール３２０は、グラフ３０３及びデータ流分析を使用して汎用
レジスタの内容を追跡し、レジスタに記憶された値がＳＰレジスタに基づくアドレスから
導出されたかＰＲレジスタに基づくアドレスから導出されたかを決定する。従って、導出

(11) JP 4124849 B2 2008.7.23

10

20

30

40

50

されたアドレスを経てスタック又はプライベートデータをアクセスする命令は、実行可能
化される必要がない。又、アナライザ３２０は、ミスチェックコードを適用する必要があ
るときに空いているレジスタを位置決めすることができ、これは、ミスチェックコードに
より使用されるレジスタをセーブ及び回復する必要を排除する。
【００４２】
　プライベート状態テーブル５４０を各プロセッサのプライベートアドレススペースのア
ドレス０ｘ２０００００００００でスタートすることにより、ターゲットアクセスアドレ
スのシフトが、プライベート状態テーブル５４０における対応エントリー５４５のアドレ
スを直接的に発生できる。図５に示されたアドレスのレイアウトは、６４ビットのアドレ
ス能力をもつプロセッサに対するものであるが、レイアウト５００は、３２ビット及び他
のアドレス能力を有するプロセッサ用に変更できることを理解されたい。
【００４３】
　最適化されたミスチェックコード
　図６は、図５のメモリレイアウトに対して最適化されたミスチェックコード６００を示
している。アクセスのためのターゲットアドレスは、命令６０１により決定することがで
きる。しかしながら、例えば、既に実行されたロード又は記憶命令により、ターゲットベ
ースアドレスがレジスタに既に確立されている場合には、ターゲットベースアドレスをロ
ードする命令６０１が必要とされない。
【００４４】
　シフト命令６０２は、ターゲットアドレスが共用データエリア５５０内にあるかどうか
決定する。そうでない場合には、分岐命令６０３に直接進み、元の記憶命令が実行される
。シフト命令６０４は、ターゲットアドレスを含むラインに対応する状態テーブルのエン
トリーのアドレスを発生する。状態「ＥＸＣＬＵＳＩＶＥ（排他的）」の値をゼロにする
ことにより、定数値との比較の必要性が排除される。むしろ、ミスに対してチェックする
ために、簡単な分岐命令６０７を実行することができる。命令６０５－６０６は、状態テ
ーブルエントリーを検索する。ミスハンドリングコード６０８は、ミスの場合に実行され
、そして元の記憶命令は、６０９において実行される。
　ミスチェックコード６００は、ターゲットアドレスが共用データエリアにない場合に、
３つの命令の実行を必要とするだけである。共用データアクセスの場合には、７つの命令
を実行することが必要である。
【００４５】
　コードスケジューリング
　図４のステップ４３０において、命令スケジューリング技術を使用し、ミスチェックコ
ード６００により使用されるオーバーヘッドの量を更に減少することができる。パイプラ
イン式及びスーパースケーラーである近代的なプロセッサにおいては、追加されるミスチ
ェックコードは、多くの場合に、最小のパイプライン遅延しか導入せず、且つ単一のプロ
セッササイクル中に多数の命令が発生される可能性を最大にするように構成できる。
【００４６】
　例えば、あるプロセッサでは、シフト動作の結果を使用できるまでに１サイクルの遅延
しか生じない。それ故、図６の第２のシフト命令６０４が前進されて、第１のシフト命令
７０２から生じる遅延スロットを占有する場合には、再配置された第２シフト７０３と、
ｌｄｑ　ｕ命令７０５との間の停動が排除される。これは、コード７００がコード６００
より少数のマシンサイクルで完了できることを意味する。コード６００の場合と同様に、
多くの場合に命令７０１の必要性を排除できることに注意されたい。
【００４７】
　多重発生プロセッサのオーバーヘッドコストを更に減少するために、ミスチェックコー
ド７００の命令は、それらが元の実行可能なコードにおいてパイプラインの停動の間に発
生されるか又は実行可能なイメージの命令と同時に発生されるように配置することができ
る。最初の３つの命令７０１－７０３の実行は、レジスタ（ｒ１及びｒ２）が空き状態に
保たれる限り、命令の基本的ブロックにおいて前進されることに注意されたい。実際に、

(12) JP 4124849 B2 2008.7.23

10

20

30

40

50

多くの場合に、３つ全部の命令は、命令を実行する付加的なオーバーヘッドを完全に隠す
に充分なほど前進させることができる。それ故、図７に示すようにコードを配列すること
が有効であることは明らかである。
【００４８】
　記憶チェック
　このミスチェックコードは、アクセス命令が記憶命令７１０であるときに更に最適化す
ることができる。この場合に、最初の３つの命令７０１－７０３が記憶命令７１０の前に
配置される。残りの命令７０４－７０７は、記憶命令７１０の後に配置される。この配置
は、記憶されるべき値をプログラムが計算する間に待ち時間の長い命令が記憶命令７１０
の直前にある場合に効果的である。この場合に、記憶命令７１０は、値が得られるまで停
動しなければならない。それ故、前進された命令の実行に関連するオーバーヘッドが完全
に隠される。
【００４９】
　ロードチェック
　図８及び９に示すように、ミスチェックコードのオーバーヘッドを更に減少するために
、ロード命令によりロードされるデータを分析することができる。ラインのデータが無効
になるときに、「フラグ」８０１が、そのラインに関連した全てのアドレス８１０－８１
１に記憶される。フラグ８０１は、例えば、０ｘＦＦＦＦＦＦ０３（－２５３）である。
従って、状態テーブルエントリーを経てラインの状態を決定するのではなく、ほとんど全
ての場合に、ロードされたデータから状態を決定することができる。
【００５０】
　例えば、ターゲットアドレスのデータは、ステップ８２０において、ロード命令９０１
に関連される。ステップ８３０において、フラグの補数８４０、例えば２５３が加算され
る。ステップ８５０において、メモリからロードされたデータが無効状態を指示するおそ
れがあるかどうか調べるチェックが行われる。もしそうであれば、ミスコード８７０に進
み、さもなくば、ステップ８６０のノー・ミスに続く。ミスが推定される場合には、状態
テーブル５４０のラインに対してエントリーをチェックすることによりミスコード８７０
を確認することができる。
これは、プログラムがフラグに等しいデータを実際に使用するという稀な場合を考慮する
。
【００５１】
　フラグは、単一の命令９０２を用いて無効データをチェックできるように選択される。
ほとんどの定数を使用できることが考えられる。ゼロの値を用いて無効状態を指示する場
合には、簡単な分岐命令で充分であることに注意されたい。しかしながら、ゼロ又は他の
小さい整数、例えば、－１、０、＋１を使用する場合には、ミスチェックコードの測定さ
れるオーバーヘッドが、多数の偽のミスの取り扱いにより増加すると思われる。実際に、
フラグ０ｘＦＦＦＦＦＦ０３を使用するときには、偽のミスが生じることは稀であり、そ
れ故、図９に示す最適化されたミスチェックコード９００は、ロード命令、例えば２つの
命令に対してミスチェックコードを相当に減少する。
【００５２】
　オーバーヘッドを減少するのに加えて、フラグ技術は、他の効果も有する。主たる効果
は、ロードアクセスが有効である場合に、状態テーブルを検査する必要が排除されること
である。又、ターゲットアドレス及び状態チェックからの「フラグ」データのロードは、
原子的に行われる。この原子性は、同じＳＭＰの別のプロセッサにおいて生じることのあ
る同じアドレスに対するロード命令とプロトコル動作との間の考えられる競合状態を排除
する。
【００５３】
　又、フラグチェック技術は、フローティングポイントロードアクセス命令にも使用でき
る。この場合には、ミスチェックコードは、ターゲットアドレスのデータをフローティン
グポイントレジスタにロードした後に、フローティングポイント加算及び比較を行う。し

(13) JP 4124849 B2 2008.7.23

10

20

30

40

50

かしながら、あるプロセッサにおいては、フローティングポイント命令が長い関連遅延を
もつことがある。それ故、フローティングポイントミスコードは、同じターゲットアドレ
スに対して整数ロードを挿入しそして図８及び９について述べたフラグチェックを行うこ
とにより最適化することができる。付加的なロード命令があっても、この技術は、状態テ
ーブルのエントリーをチェックする場合より依然として効率的である。
【００５４】
　或いは又、フローティングポイントデータは、このような動作がその基礎となるプロセ
ッサにおいて使用できる場合にはフローティングポイントレジスタから整数レジスタへ直
接転送することもできる。
　命令のスケジューリングをロードミスコードチェックのために図９の命令に適用できる
ことも理解されたい。好ましい実施形態では、図４のスケジューリングステップ４３０は
、ロードの値を使用すべきときにパイプラインの停動を回避するために命令９０２及び９
０３の実行を遅延するよう試みる。
【００５５】
　状態テーブル５４０からエントリーをロードするときには、キャッシュのミスは、ミス
チェックコードに対するオーバーヘッドの増加の１つの潜在的な要因となる。プログラム
が良好な空間的ローカル性を有する場合には、プログラムは、多数のハードウェアキャッ
シュミスを経験しない。６４バイトラインを使用する場合には、状態テーブルに必要なメ
モリがそれに対応するラインのメモリの１／６４のみとなる。しかしながら、プログラム
が良好な空間的ローカル性をもたない場合には、データのキャッシュミス及び状態テーブ
ルのキャッシュミスが生じ易い。
【００５６】
　排他テーブル
　図１０は、共用の排他テーブル１００１を示す。各プロセッサごとに１つづつある図５
のプライベートな排他テーブル１００２は、構造的に同様である。排他テーブル１０００
の目的は、記憶命令に対して状態テーブルエントリーをロードするミスチェックコードに
より生じるハードウェアキャッシュのミスを減少することである。排他テーブル１００１
は、各対応するラインごとに１ビットづつのビットエントリー１０１０を有する。対応す
るラインが排他的状態を有する場合には、ビットが論理１にセットされ、さもなくば、ビ
ットが論理０にセットされる。
【００５７】
　状態テーブル５４０のエントリー５４５をチェックするのではなく、記憶ミスチェック
コードは、排他テーブル１０００のビット１０１０を検査して、対応するラインが排他的
状態を有するかどうか決定する。ラインが排他的状態をもたない場合には、記憶を直ちに
実行できる。
　６４バイトラインの場合には、排他テーブル１０００により使用されるメモリは、ライ
ンにより使用されるメモリの量の１／５１２である。それ故、排他テーブル１００１を用
いる記憶ミスチェックコードにより生じるハードウェアキャッシュミスの数は、状態テー
ブルのみを用いる場合に生じるハードウェアキャッシュミスの１／８である。記憶ミスコ
ードチェックに排他テーブル１０００を使用することは、図８の無効フラグ８０１によっ
て一部可能となることに注意されたい。ロードに対するロードミスチェックコードは、デ
ータが有効な場合には状態テーブル５４０にアクセスする必要がない。従って、排他テー
ブル１０００は、記憶命令に対するミスチェックコードによってのみアクセスされる。
【００５８】
　バッチ処理
　図４のバッチ最適化ステップ４５０は、データのロード及び記憶が共通のベースレジス
タに対してしばしばバッチで実行されることを確認する。例えば、プログラムにおいて、
データがそれらのアドレスに基づく逐次の順序でアクセス及び処理される場合がしばしば
ある。バッチ最適化ステップ４５０は、１本のラインのサイズ以下の範囲、例えば、６４
バイト以下の範囲のターゲットアドレスをアクセスする１組の命令を検出する。このよう

(14) JP 4124849 B2 2008.7.23

10

20

30

40

50

な１組のロード及び記憶命令は、せいぜい、２本のすぐ隣接するライン及びある場合には
１本のラインのみにおいてデータをアクセスできるだけである。
【００５９】
　この場合に、ミスチェックコードは、２本のラインが正しい状態にあるかどうか決定す
る。もしそうであれば、その組の全てのロード及び／又は記憶命令は、付加的なチェック
を必要とせずに実行することができる。又、バッチチェックは単一のラインにわたるある
範囲のターゲットアドレスに対して実行できることを理解すべきである。しかしながら、
２本の隣接ラインをチェックするコードは、オーバーヘッドを実質的に増加することなく
単一のラインをチェックすることができる。
　１つの制約として、バッチ式のロード及び記憶命令は、個別のミスチェックコード有す
る他のロード及び記憶と混合することができない。他のロード及び記憶により誘起される
ミスは、バッチ式のロード及び記憶命令に対して不適切な結果を生じるようにラインの状
態を変化させる。しかしながら、多数のベースレジスタを経てのロード及び記憶は、対応
するベースレジスタを経て参照される各ラインに対して適切なミスチェックが行われる限
り、バッチ処理することができる。
【００６０】
　別の制約として、命令のバッチにより使用されるベースレジスタは、チェックされる範
囲内のターゲットアドレスをバッチがアクセスする間に変数により変更することができな
い。これは、バッチに対する初期チェックを無効化する。ベースレジスタを定数により変
更することができる。というのは、この場合には、バッチ式のアクセス命令を実行する前
に範囲のチェックを静的に実行できるからである。
【００６１】
　バッチ処理技術は、ミスチェックコードのオーバーヘッドを常に首尾良く減少する。し
かしながら、この技術は、「解かれた(unrolled)」ループの命令に対して特に有用である
。解かれたループは、繰り返しの円形態ではなく直線的に実行される命令を含む。従って
、アクセス命令は、一般に、繰り返し中に変更されない小さな範囲のベースレジスタ内で
機能する。この場合に、バッチ技術は、ほぼ常時適用することができ、非常に効果的であ
る。
【００６２】
　バッチ処理は、単一の基本的ブロックの命令に対して常に試みられるが、多数の基本的
ブロックにわたるロード及び記憶命令に対してバッチ処理を実行することも考えられる。
多数の基本的ブロックにわたるロード及び記憶がバッチ処理されるときには、付加的な制
約が生じる。バッチ組の命令は、サブルーチンコールを含むことができない。というのは
、これらコールは、被呼サブルーチンに未知のターゲットアドレスを有するロード及び記
憶の実行を生じることがあるからである。又、バッチ式の命令は、ループを含むことがで
きない。というのは、ループが繰り返される回数を、バッチの命令が実行されるまで決定
できないからである。更に、条件分岐を含むバッチにおいては、分岐した実行経路の１つ
に生じる記憶が、全ての経路に生じなければならない。バッチ式の命令が実行されるとき
にはどの記憶アクセスが実行されたかを決定することしかできない。
【００６３】
　バッチ処理は、多数のベースレジスタに対し、１つ以上の基本的ブロックにわたって多
数のロード及び記憶を任意にバッチ処理することができる。
　「グリーディ(greedy)」なバッチアルゴリズムを使用することができる。グリーディな
アルゴリズムは、バッチに含ませることのできる数のロード及び記憶命令を配置すること
ができる。このアルゴリズムは、以下に述べるように終了条件に達したときに完了する。
バッチに単一のロード又は記憶命令しかない場合は、バッチ式のミスチェックコードが使
用されない。
【００６４】
　２つの考えられる実行経路を生じる条件分岐命令に遭遇した場合には、バッチに含むべ
き命令に対して両経路が検査される。２つの別々の実行経路の走査は、２つの経路の実行

(15) JP 4124849 B2 2008.7.23

10

20

30

40

50

が合体するときに合体される。
　終了条件は、変数により変更されたベースレジスタを使用するロード又は記憶命令と；
チェックされているライン以外のターゲットアドレスを有するロード又は記憶命令と；サ
ブルーチンコールと；ループ、例えば１つ以上の命令の再実行を生じる条件分岐命令と；
サブルーチンの終了に到達することと；多数の岐路の１つにおける記憶命令と；並列岐路
と合体する１つの岐路の走査であって、並列岐路の走査が既に終了していることとを含む
。
【００６５】
　命令のバッチに対するミスチェックコード
　図１１及び１２は、ある範囲のターゲットアドレス１１３０をアクセスするバッチ式ロ
ード命令のグループに対する流れ１１００及びミスチェックコード１２００を各々示して
いる。範囲１１３０をチェックする１つの便利な方法は、１組のアクセス命令によりアク
セスされるアドレスの範囲１１３０の最初のアドレス１１１１及び最終アドレス１１２１
においてミスコードチェック１１４０－１１４１を実行することである。最初と最後のア
ドレスは、各々、最初と最後のライン１１１０及び１１２０になければならない。命令１
２０１－１２０４を参照されたい。命令１２０５及び１２０６は、無効フラグをチェック
する。
【００６６】
　いずれかのアドレス１１１１又は１１２１が無効である（１１５０）場合は、ミスハン
ドリングコード１１６０がコールされる。最初と最後の両方のアドレスが有効なデータを
記憶する場合には、その組の全ての命令を、更にチェックを行わずに実行することができ
る。１つの効果として、エンドポイントアドレスに対するミスチェックコード１２００を
互いにインターリーブして、パイプラインの停動を効率的に排除することができる。
【００６７】
　メッセージパスライブラリ
　図３のメッセージパスライブラリ３５３は、対称的マルチプロセッサ２１０がネットワ
ーク２２０を経て通信できるようにするに必要な手順を備えている。例えば、ネットワー
ク２２０がＡＴＭプロトコルを使用する場合には、ライブラリ３５３のルーチンがＡＴＭ
型のメッセージを通信する。ライブラリ３５３のルーチンは、任意のサイズのメッセージ
を送信及び受信することができる。更に、これらルーチンは、到来メッセージを周期的に
チェックすることができる。
【００６８】
　ミスハンドリングプロトコル
　図３の実行可能化されたプログラム３５１にリンクされる他のコードは、ミスハンドリ
ングプロトコルコード３５２である。このコードは、別の対称的マルチプロセッサのメモ
リからデータをフェッチし、データの共用コピー間にコヒレント性を維持し、そしてデー
タを記憶するよう試みるプロセッサがデータの排他的関係を有するよう確保することがで
きる。
【００６９】
　又、プロトコルコード３５２は、「ロック」及び「バリア」のような同期動作も実施す
る。コード３５２は、ミスチェックコードがロード又は記憶ミスを検出するか、或いは同
期動作が要求されるときに、呼び出される。
　プロトコルコード３５２は、ディレクトリベースの無効化プロトコルである。
図５の共用データ５５０の各ブロック５５１に対し、プロセッサの１つが「ホーム」プロ
セッサに指定される。ブロックは、ラウンドロビン式に、例えば、割り当ての順序で異な
るホームプロセッサに指定することができる。ブロックは、図３のプログラム３１０の１
つによって配置のヒントが供給される場合に、特定のプロセッサに明らかに指定すること
ができる。
【００７０】
　ホームプロセッサは、ブロックのアドレスに記憶されたデータを初期化する役目を果た

(16) JP 4124849 B2 2008.7.23

10

20

30

40

50

す。又、ホームプロセッサは、割り当てられたブロックのラインの初期状態を確立し、例
えば、状態は、排他的な所有権を表すことができる。又、ホームプロセッサは、ブロック
に関する初期のディレクトリ情報を形成する。
　又、ディレクトリは、以下に述べるように、どのプロセッサがホームプロセッサに指定
されたブロックのコピーを有するかを指示する。ホームプロセッサ以外のプロセッサがブ
ロックのデータをアクセスしたいときには、ブロックのデータをロードしたいか記憶した
いかを指示するメッセージをホームプロセッサに送信する。記憶の場合には、所有権の要
求も送られる。
【００７１】
　図１３に示すように、各プロセッサ２１０は、プロセッサがホームであるところのブロ
ックに含まれたラインに関する情報を記憶できるディレクトリ１３００を維持する。又、
いかなるときにも、特定のブロックの各ラインは、「制御」プロセッサを有する。ライン
を制御するプロセッサは、そのラインに対して排他的な所有権を最後に有したプロセッサ
である。
　ホームプロセッサが所有する各ブロックに対して、ディレクトリ１３００は、ブロック
の各ラインに対するエントリ１３０１を有する。各エントリー１３０１は、識別（ＩＤ）
１３１０と、ブロックサイズ１３１５と、ビットベクトル１３２０とを含む。ＩＤ１３１
０は、どのプロセッサがブロックを現在制御するかを指示し、そしてベクトル１３２０は
、ブロックのコピーを有する各プロセッサに対して１つのビット１３２１を有する。ブロ
ック１３１５のサイズは、以下に詳細に述べるように、変化させることができる。
【００７２】
　プロトコルメッセージ
　プロセッサ２１１は、図２のネットワーク２２０を経て互いにメッセージを通信する。
メッセージは、次の一般的形式のものである。要求メッセージは、ロード及び記憶の目的
でデータのコピーを要求し、そして応答メッセージは、要求されたデータを含むことがで
きる。データの要求は、一般に、ホームプロセッサに送られる。ホームプロセッサがデー
タのコピーをもたない場合には、要求が制御プロセッサへ送られる。制御プロセッサは、
その要求を発生したプロセッサに直接的に応答することができる。
【００７３】
　又、あるメッセージがプロセス同期に使用される。２つの形式の同期メカニズムを使用
することができる。第１に、プロセッサは、特定の「バリア」アドレスに同期することが
できる。バリアドレスに同期するときには、バリアアドレスに到達したプロセッサは、他
の全てのプロセッサもバリアアドレスに到達するまで待機する。
　別の形式の同期は、ロックによるものである。「ロック」は、共用メモリの特定のアド
レスにおいていずれかのプロセッサにより与えることができる。別のプロセッサは、その
ロックが解除されるまで同じアドレスにロックを与えることができない。
　ミスハンドリングコード３５２によりサポートされるメッセージは、以下に詳細に説明
する。
【００７４】
　読み取りメッセージ
　読み取りメッセージは、特定プロセッサが読み取るためのデータを要求する。
このメッセージは、要求されたデータと、要求を発しているプロセッサの識別とを記憶す
るブロックのアドレスを含む。このメッセージに応答して、要求されたデータを含む全ブ
ロックがフェッチされる。
【００７５】
　書き込みメッセージ
　書き込みメッセージは、要求されたデータのアドレスと、要求を発しているプロセッサ
の識別とを含む。このメッセージは、要求を発しているプロセッサがデータのコピーをも
たないときに、ブロックに新たなデータを記憶する目的でデータのブロックを要求する。
それ故、メッセージは、データのブロックの所有権も要求する。

(17) JP 4124849 B2 2008.7.23

10

20

30

40

50

【００７６】
　所有権メッセージ
　このメッセージは、要求を発しているプロセッサがデータのコピーを有する場合にデー
タの所有権を要求する。このメッセージは、要求を発しているプロセッサがそのデータの
コピーを変更すると決定した場合に使用される。所有権メッセージは、データのアドレス
と、要求を発しているプロセッサの識別とを含む。
【００７７】
　クリーンメッセージ
　このメッセージは、データの（クリーンな）読み取り専用コピーの要求を通信するのに
使用される。クリーンメッセージは、要求されたデータのアドレスと、バイト数と、要求
を発しているプロセッサの識別とを含む。最適化として、ホームプロセッサが要求された
データのコピーを有する場合には、要求を別のプロセッサへ送給する必要がない。
【００７８】
　送給メッセージ
　このメッセージは、データの書き込み可能なコピーを、データを現在制御しているプロ
セッサから、データを要求したプロセッサへ送給することを要求する。
送給メッセージは、要求されたデータのアドレスと、バイト数と、要求を発しているプロ
セッサの識別とを含む。
【００７９】
　無効化メッセージ
　このメッセージは、データのコピーを無効化することを要求する。無効化が完了すると
、要求を発しているプロセッサへ確認が送られる。この無効化メッセージは、要求された
データのアドレスと、無効化されるべきバイト数と、要求を発しているプロセッサの識別
とを含む。
【００８０】
　ダウングレードメッセージ
　このメッセージは、ブロックの状態がダウングレードされるときに、ＳＭＰ内において
、プライベート状態テーブルもダウングレードしなければならないプロセッサへローカル
的に送られる。ダウングレードメッセージは、ダウングレードの形式と、要求されたデー
タのアドレスと、バイト数と、要求を発しているプロセッサの識別とを含む。ダウングレ
ードメッセージを受け取る最後のプロセッサは、ダウングレードを開始した要求に関連し
た動作を完了する。
【００８１】
　クリーン応答メッセージ
　このメッセージは、クリーンメッセージにおいて要求された実際のデータのコピーを含
む。このクリーン応答メッセージは、要求されたデータのアドレスと、バイト数と、デー
タとを含む。
　送給応答メッセージ
　このメッセージは、要求されたデータの書き込み可能なコピーを含む。この送給応答メ
ッセージは、要求されたデータのアドレスと、バイト数と、データとを含む。
【００８２】
　無効化応答メッセージ
　このメッセージは、データが無効化された確認である。この無効化応答メッセージは、
要求されたデータのアドレスと、無効化されたバイト数とを含む。
　バリア待機メッセージ
　このメッセージは、全てのプロセッサが指定のバリアアドレスに到達したときに、要求
を発しているプロセッサへの通知を要求する。このバリア待機メッセージは、バリアアド
レスと、要求を発しているプロセッサの識別とを含む。
【００８３】
　バリア終了メッセージ

(18) JP 4124849 B2 2008.7.23

10

20

30

40

50

　このメッセージは、バリア待機メッセージの条件を満足したことを指示する。
バリア終了メッセージは、バリアアドレスを含む。
　ロックメッセージ
　このメッセージは、ロックの所有権を要求する。ここでの実施においては、ロックは、
共用メモリの指定のアドレスにおいて作用される。そのアドレスに記憶されたデータは、
ロックメッセージには何ら関係ない。ロックメッセージは、ロックに関連したアドレスを
含む。
【００８４】
　ロック送給メッセージ
　このメッセージは、ロックされたアドレスを現在制御しているプロセッサにロック要求
を送給する。このロック送給メッセージは、ロックアドレスを含む。
　ロック応答メッセージ
　このメッセージは、ロックされたアドレスの制御を、要求を発しているプロセッサに転
送する。このロック応答メッセージは、ロックされたアドレスを含む。
【００８５】
　ダーティデータ
　上記したプロトコルメッセージは、「ダーティ(dirty) 」データを共用できるようにす
る。これは、ブロックのホームプロセッサがデータのクリーンな最新のコピーをもつ必要
がないことを意味する。例えば、別のプロセッサがそのデータのコピーを変更し、その後
、その変更されたデータのコピーをホームプロセッサ以外のプロセッサで共用することが
できる。この特徴は、ホームプロセッサへの書き戻しの必要性を任意なものにする。さも
なくば、プロセッサが別のプロセッサからのダーティデータのコピーを読み取るときに、
ホームプロセッサへの書き戻しが必要となる。
【００８６】
　ポーリング
　プロセッサ２１１により発生されたメッセージを処理するのにポーリングメカニズムが
使用される。例えば、ネットワーク２２０は、プロセッサが要求メッセージの応答を待機
するときに到来メッセージに対してポーリングされる。これはデッドロック状態を回避す
る。
　更に、要求に対して適度な応答時間を確保するために、プログラムは、それがファンク
ションコールを行うときに到来メッセージをポーリングするように実行可能化される。ネ
ットワーク２２０が、待ち時間の短い形式のものである場合、ポーリングは、例えば、プ
ログラム制御バックエッジごとのように、より頻繁に行うことができる。プログラム制御
バックエッジは、ループを繰り返し再実行させる分岐型の命令である。それ故、バックエ
ッジポーリングは、ループの各繰り返しごとに行われる。
【００８７】
　メッセージは、割り込みメカニズムを用いてサービスすることができる。しかしながら
、割り込みサービスを行うには、通常、長い処理時間を要する。というのは、割り込み時
に存在する状態を先ずセーブしそしてその後に回復しなければならないからである。又、
ポーリングの場合に、原子的プロトコル動作を実施するタスクは、簡単化される。
【００８８】
　プロセッサ間のメッセージ送信に関連したオーバーヘッドは比較的高いので、余計なプ
ロトコルコヒレントメッセージが最小にされる。ブロックのホームプロセッサは、現在制
御しているプロセッサへ要求を送ることにより要求にサービスするよう保証するので、デ
ィレクトリ１３００の情報を変更する全てのメッセージは、それらメッセージがホームプ
ロセッサに到達するときに完了することができる。従って、送られた要求が満足されたこ
とを確認するために余計なメッセージを送信する必要はない。更に、排他的要求に応答し
て発生される全ての無効化確認は、ホームプロセッサを経るのではなく、要求を発してい
るプロセッサへ直接通信される。
【００８９】

(19) JP 4124849 B2 2008.7.23

10

20

30

40

50

　ロックアップフリーキャッシュ
　プロトコル３５２は、非ブロッキングのロード及び記憶を許すハードウェア型のロック
アップフリーキャッシュと実質的に同等の解除一貫性モデルも与える。
分散型共用メモリに「キャッシュ」されたデータは、無効、共用、排他的、無効保留、又
は共用保留の状態のうちのいずれか１つをもつことができる。保留状態は、ラインを含む
ブロックの要求が未解決になっているときのラインの一時的状態である。無効保留状態は
、未解決の読み取り又は書き込み要求を有するデータに対して存在する。共用保留状態は
、未解決の所有権要求をもつデータに対して存在する。
【００９０】
　非ブロッキングの記憶は、データに対する要求がなされた後にプロセッサが命令を処理
し続けるようにすることによりサポートされる。要求が未解決である間に、プロトコルは
、ブロックのローカルコピーにおいて変更されるデータのアドレスに注目する。次いで、
要求されたデータのブロックが使用できるようになったときに、変更されたデータを要求
されたデータと合体することができる。ロードのバッチ処理は単一のチェックに対し多数
の未解決のロードを招くので、上記のロード及び記憶をバッチ処理することにより非ブロ
ッキングロードが可能となることに注意されたい。
【００９１】
　ロックアップフリー特性は、保留状態を有するデータに対してもサポートできる。保留
データのアドレスにデータを記憶することは、データが記憶されるアドレスに注目しそし
て図３のミスハンドリングコード３５２へアドレスを通すことにより、行うことができる
。
　保留状態におけるブロックへの全ての記憶は、適当な状態テーブルエントリーにロック
が保持される間にプロトコルルーチン内で完了される。保留記憶を行うこの方法は、同じ
ブロックに対してプロトコル動作を後で行うプロセッサに記憶が見えるように確保するた
めに重要である。
【００９２】
　共用保留状態を有するデータのアドレスからのロードは直ちに行うことが許される。と
いうのは、プロセッサがデータのコピーを既に有しているからである。
無効保留状態を有するブロックのデータのアドレスからのロードも、そのロードが有効デ
ータを記憶するブロックのラインのアドレスからである限り、行うことができる。図８の
無効フラグ８０１を使用するために、保留ラインへの有効ロードは、迅速に行うことがで
きる。ロードされた値は、無効フラグに等しくないので、保留ラインへの有効ロードは、
直ちに行うことができる。
【００９３】
　可変粒度
　ここに述べるプロトコルの特徴として、単一のプログラム又は単一のデータ構造体内で
あっても、コヒレント性に対する可変粒度が考えられる。可変粒度が考えられるのは、例
えば、バイト、ロングワード及びクオドワードのような非常に小さな粒度でデータをアク
セスするソフトウェア命令により、ミスに対する全てのチェックが行われるからである。
これに対し、他の分散型メモリシステムは、通常は４０９６又は８１９２バイトの仮想メ
モリページサイズにより決定された固定の粗い粒度のアドレスでミスチェックを行うため
に仮想メモリハードウェアを使用する。
【００９４】
　プログラムにより使用される異なる形式のデータは、ほとんど自然に且つ効率的に可変
粒度でアクセスされる。例えば、入力／出力デバイスの多量の逐次アドレスから読み取ら
れ及びそこに書き込まれるデータのブロックは、例えば、２Ｋ又は４Ｋ等の粗い粒度で最
良に取り扱われる。しかしながら、多くのプログラムは、例えば、３２、２５６、１０２
４バイトのような非常に小さい範囲のアドレスに対してランダムアクセスも必要とする。
【００９５】
　アプリケーションプログラム及びデータ構造体が可変アクセス粒度をもつことを許すこ

(20) JP 4124849 B2 2008.7.23

10

20

30

40

50

とにより、データを最も効率的な転送単位で通信できるために、性能を改善することがで
きる。例えば、ブロックに「凝集」されたデータのように良好な空間的ローカル性を有す
るデータは、長い通信待ち時間を償還するために粗い粒度で搬送することができる。これ
に対して、「偽の共用」を受けるデータは、細かい粒度で通信することができる。
【００９６】
　偽の共用とは、例えば、アレーエレメントのようなデータの独立した部分が、例えば、
１つ以上のブロックのようなデータ構造体に記憶され、そして多数の対称的マルチプロセ
ッサによってアクセスされる状態である。可変サイズのブロックは、偽の共用データの小
さな独立部分を含む固定サイズの多量のデータを対称的マルチプロセッサ間に繰り返し転
送する必要性を排除する。
【００９７】
　従って、図３のプロセス３００は、可変粒度のデータ転送単位を処理するように最適化
される。データ転送の単位、例えば、ブロックは、プログラムに対して選択された固定の
ラインサイズに基づきラインの整数倍となり、例えば、異なるプログラムは、異なるライ
ンサイズ（３２、６４、１２８バイトライン）のデータをアクセスすることができる。
【００９８】
　特定のデータ構造体として適当なブロックサイズを選択するために、割り当てられたサ
イズに基づくヒューリスティックを使用することができる。基本的なヒューリスティック
は、割り当てられたデータ構造体のサイズに等しいブロックサイズから、例えば、１Ｋ又
は２Ｋバイトのようなデータ構造体の所定のスレッシュホールドサイズまでを選択する。
所定のスレッシュホールドサイズより大きい割り当てられたデータ構造体に対しては、粒
度が単にラインのサイズとなる。ヒューリスティックの理論的解釈は、小さなデータ構造
体は、アクセス時に１つの単位として転送されねばならず、一方、アレーのような大きな
データ構造体は、偽の共用を回避するために細かい粒度で通信されねばならないことであ
る。
【００９９】
　ヒューリスティックは、ブロックサイズを明確に定める特殊な割り当て命令をプログラ
ムに挿入することにより変更することができる。割り当てられたブロックのサイズは、プ
ログラムの正しさに影響しないので、最大性能のための適切なブロックサイズを明確に決
定することができる。
　図１３に示すように、データの割り当て可能な部片のブロックサイズ１３１５は、ディ
レクトリ１３００においてホームプロセッサにより操作される。各ラインエントリーは、
対応するブロックのサイズ１３１５を含む。プロセッサは、ブロックのデータが要求を発
しているプロセッサに搬送されるときにブロックのサイズが分かる。
【０１００】
　プロセッサは、ブロックのサイズを知る必要がないので、サイズを動的に決定すること
ができる。例えば、ホームプロセッサは、先ず、データ構造体を構成する全てのラインを
無効化し、次いで、ディレクトリエントリー１３０１においてブロックサイズを変更する
ことにより、全データ構造体の粒度を変更することができる。
【０１０１】
　ホームプロセッサは、特定ラインのターゲットアドレスのデータに対し、例えば、読み
取り、書き込み又は所有権のようなアクセス要求を受け取ると、ブロックのサイズをルッ
クアップすることができる。次いで、ホームプロセッサは、ブロック全体を構成する正し
いライン数を、要求を発しているプロセッサに送信することができる。ベクトル１３２０
を用いるプロセッサによりラインの他のコピーを適当に取り扱うことができる。初期要求
以外のアクセス要求に対する応答において、全てのプロトコル動作は、ブロックの全ての
ラインにおいて行われる。
【０１０２】
　ミスチェックコードを簡単化するために、データの部片の状態がチェックされそしてラ
インごとのベースで維持される。しかしながら、プロトコル３５２は、ブロックの全ての

(21) JP 4124849 B2 2008.7.23

10

20

30

40

50

ラインが常に同じ状態となるよう確保する。それ故、インラインミスチェックコードは、
可変サイズのブロックに対する状態を効率的に維持することができる。
【０１０３】
　可変サイズの粒度の場合には、プロセッサは、要求されたラインを含むブロックのサイ
ズを知らなくてもよい。例えば、プロセッサは、アドレスＡ及びアドレスＡ＋６４のデー
タをアクセスするよう要求する。プロセッサがブロックのサイズを知らない場合には、た
とえアドレスが同じブロックにあっても、各ターゲットアドレスごとに１つづつ、６４バ
イトのラインサイズを仮定して２つの要求を発する。
【０１０４】
　しかしながら、１つの効果として、ここに述べるプロトコルは、ラインを含む全ブロッ
クを単一のメッセージにおいて転送する。その後、初期要求を処理するホームプロセッサ
は、第２の要求が必要とされないことも確認できる。これは、第２ラインの要求が完全に
処理される前に、別のプロセッサが第１ラインへのアクセスを要求するときを除いて、全
ての場合に言えることである。この場合に、データの現在状態を常に決定できないので、
第２要求を初期要求として処理しなければならない。
【０１０５】
　図１４は、可変粒度を有するデータ構造体を示す。メモリ１４０１は、第１のプロセッ
サ（ＰＲＯＣ１）に関連され、そしてメモリ１４０２は、第２のプロセッサ（ＰＲＯＣ２
）に関連される。
　第１プロセッサのメモリ１４０１内で、第１のプログラム（Ｐ１）１４１１は６４バイ
トのラインをもつように割り当てられたデータ構造体を有し、そして第２のプログラム（
Ｐ２）１４４１は、３２バイトのラインをもつように割り当てられたデータ構造体を有す
る。
【０１０６】
　第１のプログラム１４１１は、データ構造体１４２１及び１４３１を含む。データ構造
体１４２１は、１２８バイトの１ブロック、例えば、ブロック当たり２本のラインを含む
。データ構造体１４３１は、６４バイトの８ブロック、例えばブロック当たり１本のライ
ンを有する。
　第２のプログラムは、データ構造体１４５１、１４６１及び１４７１を含む。
データ構造体１４５１は、各々３２バイト（１ライン）の８ブロックを含む。データ構造
体１４６１は、各々１２８バイト（４ライン）の３ブロックを含む。データ構造体１４７
１は、２５６バイトの１ブロック、例えば、８本のラインを含む。
【０１０７】
　第２のプロセッサのメモリ１４０２は、同等のプログラム１４１２及び１４４２と、そ
れらのデータ構造体とを含む。上記のように、プロセッサは、ブロックサイズの転送単位
でデータを通信する。例えば、第１プログラム１４１１及び１４１２は、ブロック１４０
３を用いてデータを転送し、そして第２プログラム１４４１及び１４４２は、ブロック１
４０４を転送する。１つの効果として、ブロック１４０３及び１４０４は、異なるサイズ
、例えば、可変粒度と、異なるラインサイズ、例えば、３２及び６４バイトをもつことが
できる。
【０１０８】
　以上、特定の実施形態について本発明を詳細に説明した。本発明の範囲内で他の応用及
び修正がなされ得ることが理解されよう。それ故、本発明の範囲内に含まれるあらゆる変
更や修正は、特許請求の範囲に包含されるものとする。
【図面の簡単な説明】
【図１】　公知の単一プロセッサの分散型共用メモリシステムを示す図である。
【図２】　本発明の好ましい実施形態による対称的マルチプロセッサの分散型共用メモリ
システムのブロック図である。
【図３】　プログラムを実行可能化するプロセスのフローチャートである。
【図４】　最適化段階のブロック図である。

(22) JP 4124849 B2 2008.7.23

10

20

30

【図５】　メモリの仕切りのブロック図である。
【図６】　最適化された記憶ミスチェックコードを示す図である。
【図７】　最適なスケジューリングのために構成されたミスチェックコードを示す図であ
る。
【図８】　ロードアクセスにおける無効データをチェックするプロセスのフローチャート
である。
【図９】　無効フラグをチェックする命令を示す図である。
【図１０】　排他テーブルのブロック図である。
【図１１】　アクセス命令のバッチをチェックするプロセスのブロック図である。
【図１２】　図１１のプロセスを実施する命令であって、最適なスケジューリングのため
に構成された命令を示す図である。
【図１３】　ブロックディレクトリのブロック図である。
【図１４】　可変粒度を有するデータ構造体のブロック図である。
【符号の説明】
　２００　ＤＳＭ－ＳＭＰコンピュータシステム
　２０９　プロセッサバス
　２１０　ＳＭＰシステム
　２１１　対称的プロセッサ
　２１２　メモリ
　２１３　システムバス
　２１４　Ｉ／Ｏインターフェイス
　２１５　プログラム
　２１６　共用データ構造体
　２２０　ネットワーク
　３００　プロセス
　３０１　手順
　３０２　基本的実行ブロック
　３０３　プログラムコール及び流れグラフ
　３１０　プログラム
　３２０　アナライザモジュール
　３３０　オプチマイザモジュール
　３４０　イメージジェネレータ
　３５０　変更されたマシン実行可能なイメージ
　３５１　実行可能化されたプログラム
　３５２　ミスハンドリングプロトコル手順
　３５３　メッセージパスライブラリ

(23) JP 4124849 B2 2008.7.23

【図１】 【図２】

【図３】 【図４】

(24) JP 4124849 B2 2008.7.23

【図５】 【図６】

【図７】 【図８】

(25) JP 4124849 B2 2008.7.23

【図９】 【図１０】

【図１１】 【図１２】

(26) JP 4124849 B2 2008.7.23

【図１３】 【図１４】

(27) JP 4124849 B2 2008.7.23

10

20

30

フロントページの続き

(74)代理人 100074228
 弁理士　今城　俊夫
(74)代理人 100084009
 弁理士　小川　信夫
(74)代理人 100082821
 弁理士　村社　厚夫
(72)発明者 ダニエル　ジェイ　スケイルズ
 アメリカ合衆国　カリフォルニア州　９４３０６　パロ　アルト　マグノリア　ドライヴ　３８９
 ８－１２
(72)発明者 コウロシュ　ガーラチョルロー
 アメリカ合衆国　カリフォルニア州　９４０２５　メンロ　パーク　カミノ　ア　ロス　セアロス
 　２２６０
(72)発明者 アンシュ　アーガルワル
 アメリカ合衆国　コロラド州　８０３０１　ボールダー　サーティース　ストリート　１６３０－
 ２１６

 審査官 石川　正二

(56)参考文献 特開平０８－０３０５６８（ＪＰ，Ａ）
 特開平０４－１９５６６０（ＪＰ，Ａ）
 Daniel J. Scales, Kourosh Gharachorloo, Chandramohan A. Thekkath，Shasta: A Low Overhe
 ad, Software-Only Approach for Supporting Fine-Grain Shared Memory，Proc. of the 7th S
 ymp. on Architectural Support for Programming Languages and Operating Systems (ASPLOSV
 II)，１９９６年
 Donald Yeung，MGS: A Multigrain Shared Memory System ，Proc. of the 23rd Annual Int'l
 Symp. on Computer Architecture (ISCA'96)，１９９６年

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 15/17
 G06F 12/00
 G06F 12/08

	biblio-graphic-data
	claims
	description
	drawings
	overflow

