(10) 国际公布号
WO 2014/124574 A1

(21) 国际申请号:
PCT/CN2013/074743

(22) 国际申请日:
2013年4月25日 (25.04.2013)

(25) 申请语言:
中文

(81) 摘要
一种基于线阵曝光成像的星敏感器的姿态确定方法，包括以下步骤：

1. 设定曝光时间 t_{ex} 和曝光次数 n；
2. 对每个曝光时机的星敏感器图像进行处理，提取星点位置信息；
3. 利用串行曝光技术，计算出目标星的角度差；
4. 通过优化算法，计算出目标星的姿态参数。

本发明提供的方法简单、准确，能够有效提高星敏感器的姿态确定精度。
一种基于卷帘曝光成像的星敏感器的姿态确定方法，包括如下步骤：优化用于卷帘曝光成像的图像的曝光时间 t_D、行读出时间 t_A、行间积分间隔时间 t_i 和帧处理时间 t_P 之间的关系（S1）；基于 APS 卷帘程序，预测和提取所述星敏感器的星点位置（S2）；以及基于卷帘曝光的单星速推姿态估计，将下一颗导航星点的提取信息与速推获得的所述姿态进行融合，形成更新的所述星敏感器的所述姿态和所述角速率，并依次向下传递所述姿态和所述角速率，直至获得所述星敏感器的最终姿态矩阵和最终角速率。所述姿态确定方法解决了传统星敏感器工作过程中受到曝光与读出时间长、动态性能差、瞬时视场精度低、系统更新率低等缺点，显著提高了星敏感器的性能。
基于卷帘曝光成像的星敏感器的姿态确定方法

技术领域
本发明属于姿态传感器技术领域，尤其涉及一种基于卷帘曝光成像的星敏感器的姿态

背景技术
星敏感器是一种以天体方位作为参考的绝对姿态测量系统，具有测量精度高、无漂移、
工作寿命长等特点。同时，星敏感器也是航天器赖以生存和性能提升的基础性、关键性器
件，是航天技术发展的重要组成部分。在对地遥感、深空探测、空间攻防等航天应用中，
星敏感器发挥着不可替代的重要作用，蕴藏着巨大的经济与社会效益，且具有极高的战略
意义。目前，普遍认为星敏感器是卫星上姿态测量精度最高的传感器，其指向轴精度可达
10"以内，更新率1~5Hz。但传统星敏感器采用的大面阵探测器及帧图像的处理模式导致
更新率低、动态性能差。这已经成为了星敏感器的发展过程中的主要技术壁垒，无法满足日
益增长的高分辨率对地成像、高精度测绘等任务任务快速发展的需求，并已经成为制约航
天领域，尤其是空间遥感技术进步的重要瓶颈。

发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。

为此，本发明需要提供一种基于卷帘曝光成像的星敏感器的姿态确定方法。该方法可以
包括如下步骤：S1：利用所述星敏感器中的图像传感器的、基于行的卷帘曝光成像模式，
对用于卷帘曝光成像的图像的曝光时间t_{ex}、行读出时间t_{rd}、行间积分间隔时间t_{gi}和帧处理
时间t_{fp}之间的关系进行优化；S2：基于优化后的所述曝光时间t_{ex}、所述行读出时间t_{rd}、所
述行间积分间隔时间t_{gi}和帧处理时间t_{fp}之间的关系，预测和提取所述星敏感器内的星图中
所含有的M个导航星点的星点位置，其中每个所述导航星点的星点位置可用于确定导航星
点在所述星敏感器上的行号；S3：根据所述导航星点的星点位置并基于卷帘曝光的单星递
推姿态估计，每当提取一颗导航星像点，则更新一次所述星敏感器的姿态矩阵和角速度，
并将所述星敏感器的姿态矩阵递推到下一颗导航星点的姿态矩阵计算中，将下一颗导航星
点的提取信息与递推获得的所述姿态矩阵进行融合，形成更新的所述星敏感器的所述姿态
矩阵和所述角速度，并依次向下传递所述姿态矩阵和所述角速度，直至获得所述星敏感器
的最终姿态矩阵和最终角速度。
根据本发明的一个实施例的，基于卷帘曝光成像的星敏感器的姿态确定方法，通过对星图中不同行之间成像时刻的精密控制，实现不同星点曝光时刻的精确分离，弥补单帧星图中所有星点曝光时刻相同导致动态信息缺失的不足，并采用读出与曝光流水工作模式。省去传统的星敏感器读出时间：基于此提出连续高动态的星点预测提取算法；并提出卷帘曝光模式下的单星递推姿态估计方法，达到每提取一颗星完成一次当前时刻的姿态，突破星敏感器姿态确定以帧图像多矢量为基础的算法约束，使更新率相对于传统算法提高一个量级，同时可以实现短时间内视场内只有 1 颗星甚至无星时的姿态估计。

根据本发明的一个实施例，在所述步骤 S1 中，所述图像传感器为 APS 图像传感器。

根据本发明的一个实施例，所述图像传感器的总传感器行数目为 n，且所述图像的每行的所述行读出时间 t_{st} 和所述行间积分间隔时间 t_{in} 相同，且所述图像的所述曝光时间 t_{exp} 满足下述公式：

\[t_{exp} \leq (n-1)t_{st}. \]

根据本发明的一个实施例，在所述步骤 S1 中，所述图像传感器基于行依次进行循环曝光，且将经过曝光所获得的所述图像以所述行读出时间 t_{st} 进行依次循环读取，并且对经过曝光所获得的所述图像的读取与对所述图像的曝光同步进行，其中经过曝光所获得的所述图像的第一次读取时刻与所述图像传感器进行的所述图像的第 n 行的曝光的曝光时刻相同。

根据本发明的一个实施例，所述步骤 S2 进一步包括：

S21：将所述星敏感器的姿态矩阵与提取第 k 个导航星点的时间 t_k 组合，以构成组合变量 AR：

\[
AR_k = [A_k, t_k] = [A_k, m_k t_m].
\]

其中，A_k 表示提取第 k 个导航星点后计算得到的所述星敏感器的所述姿态矩阵，t_k 表示被提取的第 k 个导航星点对应的曝光时刻，m_k 表示第 k 个导航星点在所述图像传感器上的对应的行号；

S22：预测所述星敏感器的视场中的全部的所述 M 个导航星点的星点位置；以及

S23：基于所述 M 个导航星点的预测位置，设定 ROI 窗口，以对所述图像进行信号提取。

根据本发明的一个实施例，所述步骤 S22 进一步包括：

S221：设定上一帧图像中第 M 颗星位于第 m_0 行，提取导航星点后获得的所述星敏感器的所述姿态矩阵为 A_k，估计得到所述星敏感器的所述角速度为 \(\dot{\omega}_0 \)；

S222：当前帧图像的第 1 颗星位于所述图像的 m_1 行，提取该第 1 颗星后获得的所述星
敏感器的所述姿态矩阵为 A, 估计得到所述星敏感器的所述角速度 $\bar{\omega}$ 为:

$$\bar{\omega} = \left[I - A A^T \right] \left[(n - m_0 + m_1) r_n \right].$$

通过对当前图像中第 M 颗星在所述图像传感器上的星点位置进行估计，获得与所述第 M 颗星相对应的预测位置 ($\hat{x}_{m1-M}, \hat{y}_{m1-M}$); 而 $S223$; 依次获得所述第 M 个导航星点的，与所述第 $2^M (M-1)$ 导航星点相对应的预测位置 ($\hat{x}_{m2-M}, \hat{y}_{m2-M})$，($\hat{x}_{(M-1)-M}, \hat{y}_{(M-1)-M})$;

$S224$: 基于所述 $\bar{\omega}$ 和所述预测位置，对当前帧图像中的第 M 颗星的位置进行估计;

$S225$: 根据与步骤 $S221$–$S224$ 相似的步骤，依次获得其余的导航星点的预测位置。

根据本发明的一个实施例，所述步骤 $S3$ 包括:

（S31）根据初始捕获算法获取所述图像的初始帧的姿态矩阵 q_k，特征矩阵 K_k 及姿态角速度 $\bar{\omega}_k$，记录所述导航星点的行号 m_k；

（S32）提取第 $k+1$ 个导航星点，所述导航星点所在的行号为 m_{k+1}，根据 $\bar{\omega}_k$ 及当前帧导航星点行号 m_k，当前帧导航星点与上一次姿态矩阵估计所用导航星点的曝光时间差，计算转移矩阵 $\Phi_{k+1/k}$；

（S33）计算当前导航星点对应的特征矩阵 $K_{k+1/k}$:

$$K_{k+1/k} = \Phi_{k+1/k} K_{k/k} \Phi_{k+1/k}^T.$$

（S34）根据当前所取的导航星点矢量观测值及矢量参考值，将提取出的第 $k+1$ 颗星的测量矢量和参考矢量作为参数加入到所述星敏感器的所述姿态矩阵的估计，并计算出第 $k+1$ 个导航星点 δK_{k+1};

（S35）融合步骤 $S33$、$S34$ 中的数据，以计算包含当前导航星点的四元数对应的特征矩阵 $K_{k+1/k+1}$:

$$K_{k+1/k+1} = (1 - \rho) K_{k+1/k} + \rho \delta K_{k+1}$$

其中，$0 < \rho < 1$，且表示当前导航星点矢量的权重系数；

（S36）计算 $K_{k+1/k+1}$ 计算最优的姿态四元数 $q_{k+1/k+1}^*$ 及 $\bar{\omega}_{k+1}$，返回执行步骤 $S32$，以进行所述星敏感器的下一次的递推及姿态矩阵估计。

根据本发明的一个实施例，所述步骤 $S32$ 中，根据四元数差分方程与角速度满足下述公式:

$$\dot{q} = \frac{1}{2} \Omega q,$$

$$\Omega = \begin{bmatrix} [-\omega \times] & \bar{\omega} \\ -\bar{\omega}^T & 0 \end{bmatrix}.$$
根据本发明的一个实施例，设置提取出第 k 颗星时估计的姿态四元数为 q_k，角速度为
$$\tilde{\omega}_k = [\omega_1, \omega_2, \omega_3]^T$$，所述导航星点位于图像中第 m_k 行，设置提取了第 $k+1$ 颗星，其位于图像中 m_{k+1} 行，则从第 k 颗星到第 k+1 颗星的时间间隔为 $(m_{k+1} - m_k)T_0$，得到
$$\Phi_{k+1/k} = \exp \left(\frac{1}{2} \Omega_k (m_{k+1} - m_k)T_0 \right)$$。

根据本发明的一个实施例，在所述步骤（36）中：

通过计算 $K_{k+1/k}q_{k+1}^*$ 的特征值和特征向量，得到第 $k+1$ 颗导航星点参与计算的最优姿态四元数 $q_{k+1/k}^*$，满足：
$$K_{k+1/k}q_{k+1}^* = \lambda_{k+1/k}q_{k+1/k}^*$$
其中第 $k+1$ 颗星参与姿态矩阵估计后的角速度为：
$$\left[\begin{array}{c} \tilde{\omega}_{k+1} \\ 0 \end{array} \right] = \frac{2}{(m_{k+1} - m_k)T_0} \left[\begin{array}{c} -e_{k+1} \\ 0 \end{array} \right] \otimes \left[\begin{array}{c} e_{k+1} \\ 0 \end{array} \right] - \frac{2}{(m_{k+1} - m_k)T_0} \left[\begin{array}{c} -e_{k+1} \\ 0 \end{array} \right] \otimes \left[\begin{array}{c} q_{k+1/k}^* \\ q_{k+1/k}^* \end{array} \right]$$

通过获得 $K_{k+1/k}$ 和 $\tilde{\omega}_{k+1}$，以进行下一次的预测递推。

本发明突破了传统星传感器工作过程中受到曝光与读出时间长、动态性能差、瞬时视场精度不足、系统更新率低的局限，显著提高星传感器的性能。

本发明的附加方面和优点将在下面的描述中部分给出，部分将从下面的描述中变得明显，或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解，其中：

图 1 是根据本发明的一个实施例的星传感器成像原理图；
图 2 是用来说明卷帘曝光原理的示意图，其中显示了在卷帘曝光模式下的运动物体及成像时序的示意图；
图 3 是 APS 探测器的 ERS 示意以及曝光读出方式示意图；
图 4 是基于卷帘曝光模式的星传感器的工作原理示意图；
图 5 是 APS 星传感器真实星图及卷帘流水成像示意图；
图 6 是基于多次单星姿态估计的星点预测提取窗口（ROI）示意图；以及
图 7 显示了根据本发明的一个实施例的，基于卷帘曝光成像的星传感器的姿态确定方法的流程图。

具体实施方式
下面详细描述本发明的实施例，所述实施例的示例在附图中示出，其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的，仅用于解释本发明，而不能理解为对本发明的限制。

在本发明的描述中，需要理解的是，术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系，仅是为了便于描述本发明和简化描述，而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作，因此不能理解为对本发明的限制。此外，术语“第一”、“第二”仅用于描述目的，而不能理解为指示或暗示相对重要性。此外，在本发明的描述中，除非另有说明，“多个”的含义是两个或两个以上。

在本发明的描述中，需要说明的是，除非另有明确的规定和限定，术语“安装”、“相连”、“连接”应做广义理解，例如，可以是固定连接，也可以是可拆卸连接，或一体地连接；可以是机械连接，也可以是电连接；可以是直接相连，也可以通过中间媒介间接相连，可以是两个元件内部的连通。对于本领域的普通技术人员而言，可以根据具体情况理解上述术语在本发明中的具体含义。

为了详细地阐述本发明的基于卷帘曝光成像模式的星敏感器高动态高更新率姿态确定方法，下面将首先介绍根据本发明的一个实施例的工作原理。

星敏感器原理

星敏感器是以恒星作为参考基准进行航天器姿态测量的敏感器，星敏感器的工作原理如图1所示。天球的恒星经星敏感器的光学系统在感光探测器上成像，经过多年大量的天文观测，每颗恒星都在天球中具有各自相对固定的位置，一般以天球平面坐标的赤经和赤纬来表示，记作\((\alpha, \delta)\)。根据直角坐标与球面坐标的关系，可以得到每颗恒星在天球直角坐标系下的方向矢量为：

\[
\mathbf{v} = \begin{bmatrix} \cos \alpha \cos \delta \\ \sin \alpha \cos \delta \\ \sin \delta \end{bmatrix}
\]

式 1

从星库中选出满足星敏感器成像条件的恒星组成导航星，构成导航星表，导航星表在地面上一次性地固化在星敏感器的存储中。
当星敏感器处于天球坐标系中的某一姿态矩阵为 A 时，利用星敏感器的小孔成像原理，可以测量得到导航星 x_i（其对应天球坐标系下的方向矢量为 v_i），在星敏感器坐标系内的方向矢量为 w_i。

其中，星敏感器主轴中心在探测器上的位置 (x_0, y_0)，导航星 x_i 在探测器上的坐标为 (x_i, y_i)，星敏感器的焦距为 f，则可以得到 w_i 矢量的表达式如下：

$$w_i = \frac{1}{\sqrt{(x_i - x_0)^2 + (y_i - y_0)^2 + f^2}} \begin{bmatrix} -(x_i - x_0) \\ -(y_i - y_0) \\ f \end{bmatrix}$$

式 2

在理想情况下具有如下关系：

$$w_i = A v_i$$

式 3

其中：A 为星敏感器姿态矩阵。

当观测量多于两颗星时，根据本发明的一个实施例，可以直接通过 QUEST 方法进行星敏感器的姿态矩阵 A 求解，即求出最优姿态矩阵 A_y，使得下面的目标函数 $J(A_y)$ 达到最小值：

$$J(A_y) = \frac{1}{2} \sum_{i=1}^{n} \alpha_i \| w_i - A_y v_i \|^2$$

式 4

其中，α_i 表示加权系数，满足 $\sum \alpha_i = 1$。

这样，可以得到星敏感器在惯性空间中姿态矩阵的最优姿态矩阵 A_y。

垂帘曝光模式基本原理与效应

目前，星敏感器在跟踪状态下的姿态更新率一般为 4～10Hz，这主要是由感光探测器（CCD 或 APS CMOS）的灵敏度及镜头口径决定的，现在基于 APS 工艺的探测器受到填充因子等影响，灵敏度较低，探测到指定星等所需要的曝光时间一般在 100～200ms 左右。而 CCD 虽然灵敏度较 APS 工艺有所提高，曝光时间略有下降，但是大面阵 CCD 读出时间长，且在数据读出期间无法进行曝光，成为影响姿态更新率的一个主要障碍，随着 APS 工艺的不断改进，尤其是背照式工艺和立体集成工艺的出现，APS 灵敏度与 CCD 逐步接近，而 APS 在抗幅照、读出灵活、低功耗等方面的优势将使其发挥重要作用。

本发明提出一种在不增加星敏感器质量、功耗、体积的前提下实现星敏感器更新率、动态性和精度显著提升的方法。对星敏感器进行合理的曝光与读出时间参数优化，星像点的预测与提取方法改进及姿态确定方法创新。本发明可将星敏感器的姿态更新率提高一个
量级，并实现高精度和高动态的图像输出，彻底摆脱星敏感器姿态更新率低、动态性能差的现状。同时，本发明可以扩展到大面积或低面积拼接构成的高性能星相机、多个星敏感器信息融合等多种应用系统，为实现高精度、高动态、高姿态更新率的星敏感器提供一种全新的解决方式，为卫星的高分辨率成像、快响等应用奠定基础。

下面将对卷帘曝光进行详细说明。卷帘曝光是 APS 感光探测器的独有特点，对于高速运动的物体，采用卷帘曝光模式会出现图像变形的现象，以下将通过简单的例子来阐述其基本原理。如图 2 所示，为一高速运行的巴士汽车在使用卷帘曝光模式下的成像。

从图 2 中可以看出，采用基于行的卷帘曝光模式，从上至下的曝光时刻不同，每一行的曝光开始时刻与上一行的曝光结束时刻的时间差为 \(t_n \)，对于高速运动的巴士，对其最上部进行曝光的开始时刻为 \(t_1 \)，第二行的曝光开始时刻为 \(t_1 + t_n \)，由于在此期间汽车向前运动，其在相机的像平面上产生了移动，造成了汽车从上至下向后倾斜的效应，此即为卷帘曝光模式导致运动物体失真的基本原理，此失真现象恰好反映了曝光时间内的物体运动信息。

这一效应为星敏感器高更新率姿态确定提供了前提。同样以图 2 的汽车运动为例进行简要说明，假定需要通过图像来计算出汽车的位置，传统采用全局曝光（global shutter or snap short）的图像获取方式，当且仅当整幅图像曝光结束，并获取图像结果后，才能计算出汽车的位置，由于巴士汽车整个画面是在同一时刻曝光的，汽车图像是非倾斜的，无法获得其动态信息，只能获得曝光时刻 \(t_0 \) 时的汽车位置 \(x_0 \)。而如采用卷帘曝光（rolling shutter）模式，虽然不能获得 \(t_0 \) 时刻的汽车位置，但可以几乎连续的获得 \(t_k \sim t_m \) 期间的汽车位置 \(x_k \sim x_m \)（如图 2 所示）。采用卷帘曝光模式，在进行优化设计后，可实现曝光与读出同时进行，在一次完整的图像获取后实现了 \(m-k+1 \) 次不同时刻的汽车位置获取，其更新率相对于传统的全局曝光模式，提高了 \(m-k+1 \) 倍。

与这一现象原理类似，基于卷帘曝光（Electric Rolling Shutter; ERS）的成像模式如图 3 所示，星敏感器内的图像传感器的基于行进行卷帘曝光成像，即以行为单位进行图像处理、星图识别和姿态运算方法，从而代替传统的整幅图像同时曝光（snap short or global shutter）的帧图像处理模式，实现对一帧图像中每行的曝光时刻精确控制，不同导航星点的曝光时刻依次分布，以星敏感器视场内探测器的列方向上均匀分布的 10 颗导航星点、单帧曝光时间为 100ms 为例，则探测器（或者图像传感器）上此 10 颗星的曝光时刻依次相差 10ms，每颗星代表星敏感器在 100ms 内不同时刻的姿态，以每颗星作为姿态的运算单元，可以得出星敏感器在 100ms 内不同时刻姿态变化。结合 APS（Active Pixel Sensor）感光探测器曝光与读出流水的处理方式，设置行曝光时间与总读出时间相同，实现曝光与读出同步进行，相对于传统整帧图像的同一时刻拍照及次序读出的处理模式，此方法将实现星
敏感器的更新率提高 10 倍，从传统的 4~10Hz 提高到 40~100Hz 的水平，从而系统的动态性能将显著提高。

星敏感器姿态跟踪模式下星点预测基本原理

在星敏感器姿态跟踪模式下，星点预测方法的基本原理是根据连续两帧星图确定的姿态进行差分递推，预估下一时刻的星敏感器姿态，根据预估姿态再确定星点位置，具体方法如下：

1) 根据初始捕获等方法获得星敏感器的初始姿态 \(A(t_0) \)；

2) 根据估计角速度及当前星敏感器的姿态矩阵 \(A(t) \) 预测下一时刻星敏感器的姿态 \(A_p(t+\delta t) \)，采用线性估计方法如下：

\[
A_p(t+\delta t) = [I - \omega \delta t] A(t)
\]

式 5

在稳定运行情况下，星敏感器的运动角速度 \(\omega \) 一般比较低，低轨卫星大概在 0.06°/s，根据现有的星敏感器的设计思路， \(\delta t \) 的时间也在 0.1s~0.2s 左右，\(\| \omega \delta t \| < 10^{-3} \) rad，对质心的预测精度也基本上在微弧度的量级。

3) 令 \(A_p(t + \delta t) \equiv [A_1 \ A_2 \ A_3]^T \) 和星表中导航星矢量 \(\mathbf{v}_i \)， \(f \) 为星敏感器的焦距，依据式 2 和式 3 可以计算每个星点的中心坐标估计值：

\[
\hat{x}_i = x_0 - f \frac{A_1^T \mathbf{v}_i}{A_1^T}, \quad \hat{y}_i = y_0 - f \frac{A_2^T \mathbf{v}_i}{A_2^T}
\]

式 6

4) 以 \((\hat{x}_i, \hat{y}_i)\) 为中心，在 ROI 窗口内进行星点提取，进而获得 \((t + \delta t)\) 时刻的图像星点质心 \((x_i, y_i)\)，并依据更新的星像点质心进一步计算星敏感器的姿态 \(A(t + \delta t) \)；

5) 根据 \(A(t + \delta t) \) 及 \(A(t) \) 采用差分方法直接更新估计的角速度 \(\omega \)：

\[
\tilde{\omega} = [I - A(t + \delta t) A^T(t)] / (\delta t)
\]

式 7

6) 循环到步骤 2) 进行下一次的预测与更新。

基于帧图像模式的姿态估计方法原理

基于 snap shot 等全局曝光模式的星敏感器进行姿态确定是对同一时刻测得的多个矢量进行姿态估计，属于确定性算法的范畴，它是各种姿态融合方法的基础。现有方法主要
包括 TRIAD 法, QUEST 法, FOAM 法, ESOQ 法等门类及其扩展算法, 其精度基本相当, 从计算效率上则首推 ESOQ-II。为了更好地理解本发明的获得星敏感器的姿态确定方法, 需要对基于帧模式的姿态估计进行简要介绍。

通常, 在星敏感器的姿态估计时, 一般以四元数 q 来表示姿态, 姿态矩阵 A 与 q 的关系如下

\[A(q) = (q^2 - e^T e)I_3 + 2ee^T - 2q_4 [e] \]

式 8

其中, e 和 q_4 分别表示四元数 q 的矢量部分和比例部分; I_3 是 3×3 的单位矩阵, [e] 表示交叉乘积矩阵, 定义如下:

\[
[e] = \begin{bmatrix}
0 & -e_3 & e_2 \\
-e_3 & 0 & -e_1 \\
e_2 & e_1 & 0
\end{bmatrix}
\]

式 9

在现有技术中, 公式 4 可以表示如下:

\[J(A) = \frac{1}{2} \sum_{i=1}^{n} \alpha_i \| w_i - A v_i \|^2 = 1 - q^T K q \]

式 10

其中, K 矩阵通过星图中多个相互对应 w_i, v_i 矢量来确定, \(i = 1, 2, ..., n \)

\[\sum_{i=1}^{n} \alpha_i = 1 \]

式 11

定义 3×3 矩阵 B 和 S, 及 3×1 的列向量 z 和比例系数 \(\sigma \), 如下

\[
\begin{align*}
B &= \sum_{i=1}^{n} \alpha_i w_i v_i^T \\
\sigma &= r(B) \\
z &= \sum_{i=1}^{n} \alpha_i w_i \times v_i \\
S &= B + B^T
\end{align*}
\]

式 12

4×4 的对称矩阵 K 定义如下:

\[K = \begin{bmatrix}
S - \sigma I_3 & z \\
z^T & \sigma
\end{bmatrix} \]

式 13

定义 g(q) 如下:

\[g(q) = q^T K q \]

式 14

归纳式 10~式 14 可以得出, 求解最优姿态 A 从最小化 wahba 函数 J(A) 转变成求解 g(q) 的最大值问题。使得最优 \(q^* \) 满足:
\[Kq^* = \lambda q^* \]

因此，将问题转变为求矩阵 \(K \) 的最大特征值 \(\lambda_{\text{max}} \) 和对应的特征向量 \(q^* \) 的问题。此算法的前提条件是所有的星像点的测量矢量都是同一时刻的。需要说明的是，在现有的卷帘模式成像过程中，这一条件无法满足，即使采用此方法进行姿态估计，其精度本身也是受限的。下面将参照图 4 来说明根据文献的一个实施例的、基于卷帘曝光成像的星敏感器的姿态确定方法。在该基于卷帘曝光成像模式的星敏感器高动态高更新率姿态确定方法中，实现了在提取一帧图像含有 \(n \) 个星点的星图中完成了 \(n \) 次的姿态更新。

如图 4 和 7 中所示，根据文献的一个实施例的基于卷帘曝光成像的星敏感器的姿态确定方法可以包括如下的步骤：

利用所述星敏感器内的 APS 图像传感器的、基于行的卷帘曝光成像模式，优化用于卷帘曝光成像的图像的曝光时间 \(t_{\text{ex}} \)、行读出时间 \(t_{\text{rd}} \)、行间积分间隔时间 \(t_{\text{i}} \) 和帧处理时间 \(t_{\text{fp}} \) 之间的关系（步骤 S1）。基于优化后的所述曝光时间 \(t_{\text{ex}} \)、所述行读出时间 \(t_{\text{rd}} \)、所述行间积分间隔时间 \(t_{\text{i}} \) 和帧处理时间 \(t_{\text{fp}} \) 之间的关系，预测和提取所述星敏感器内星图中所含有的 \(M \) 个导航星点的星点位置，其中每个所述导航星点的星点位置为所述导航星点在所述图像传感器上的行号（步骤 S2）。根据所述导航星点的星点位置并基于所述 APS 图像传感器的卷帘曝光的单星递推姿态估计，每当提取一颗导航星点，则更新一次所述星敏感器的姿态矩阵和角速度，并将所述星敏感器的姿态矩阵递推到下一颗被提取的导航星点的姿态矩阵的计算中，将下一颗导航星点的提取信息与递推获得的所述姿态矩阵进行融合（如图 4 中的迭代部分的星点预测提取和姿态矩阵更新所示），形成更新的所述星敏感器的所述姿态和所述角速度，并依次向下传递所述姿态和所述角速度，直至获得所述星敏感器的最终姿态矩阵和最终角速度（步骤 S3）。

下面将对本文发明的上述步骤 S1 进行详细说明。如图 5 所示，设所述星敏感器内的 APS 图像传感器为 \(n \) 行，每一行的行读出时间为 \(t_{\text{rd}} \)，行之间的积分间隔时间为 \(t_{\text{i}} \)。在根据本文发明的一个实施例中，设置 \(t_{\text{rd}} = t_{\text{i}} \)，并且设置图像积分（曝光）时间 \(t_{\text{ex}} \leq (n-1)t_{\text{rd}} \)。通过设置行曝光时间与总读出时间相同，实现曝光与读出同步进行，相对于传统整幅图像的同一时刻拍照及次序读出的处理模式，此方法将实现星敏感器的更新率几乎提高一个数量级。如果设置积分时间 \(t_{\text{ex}} = (n-1)t_{\text{rd}} \)。此时，在进行图像传感器的最后一行（第 \(n \) 行）曝光时，开始进行第 1 行的完成图像积分（曝光）的图像的读出；第 1 行读出后直接进行第 1 行的下
一次曝光开始，并开始进行第 2 行读出，保证了每行的曝光时间长度一致，在起始时间内相差 t_{rd}，不断实现图像的连续流水线作业，从而可以在图像积分时间内连续获得星敏感器的动态运动信息，而相邻帧间隔的时间为:

$$t_{fp} = t_{bst} + t_{rd} = \left(1 + \frac{1}{n-1}\right)t_{bst} = \frac{n}{n-1}t_{bst}$$

式 16

由于 n 比较大，星敏感器在流水线处理模式下，可以认为星敏感器的帧处理时间近似等于 APS 图像传感器的积分时间 t_{int}，在图 5 中，实心方形表示曝光开始，实心圆形表示开始数据读出。

如图 5 左图所示，根据本发明的一个实施例，设星敏感器的星图中存在例如 11 个导航点，根据上述的流水线作业的卷帘曝光模式，每个导航点的曝光时刻不同，如果以实时的每个星像点的测量信作为一次姿态矩阵更新的参考基础，姿态矩阵的更新率可以提高一个量级。

下面将对本发明的上述方法中的步骤 S2 进行详细说明。该步骤 S2 可以进一步包括:

（S21）将姿态矩阵与提取第 k 个导航星点的时间 t_{i} 组合，以构成组合变量 AR:

$$AR_k = [A_k, t_i] = [A_k, m_i t_{rd}]$$

式 17

其中 A_k 表示提取第 k 个导航星点后计算得到的所述星敏感器的姿态矩阵，t_i 表示被提取的第 k 个导航星点对应的时刻，m_i 表示第 k 个导航星点在所述图像传感器上对应的行号。

（S22）预测视场中的导航星点的位置（以图 5 中所显示的星表为例，其中有 11 个导航星点）。

（S23）基于估计出的 11 个预测值为参考进行 ROI 窗口的设定，实现高信噪比的信号提取。

根据本发明的一个实施例，在上述的步骤 (22) 中:

（S221）假定上一帧图像中第 11 个导航星点位于第 m_o 行，提取导航星点后获得的该星敏感器的姿态矩阵为 A_o，估计的该星敏感器的角速度为 $\bar{\omega}_o$；

（S222）当前帧图像的第 1 个星位于图像的 m_i 行，提取后获得的的姿态矩阵为 A_i，估计的角速度为 $\bar{\omega}_i$，其估计方法与式 7 类似，即通过如下公式获得:

$$\bar{\omega}_i = \frac{[I - A_o A_o^T] / (n - m_o + m_i) t_{rd}}{}$$

式 18

n 表示探测器总共的行数目，同样采用与前述式 6 中相似的方法，对当前图像中第 11
颗星在探测器上的位置进行估计，获得 \((\hat{x}_{11}, \hat{y}_{11}) \)，为了表示其采用第 1 颗星估计的，将其表示成为 \((\hat{x}_{m-11}, \hat{y}_{m-11}) \)。

(S223) 依次根据第 2~10 颗星，获得第 11 颗星的与该第 2~10 颗导航星点相对应的预测位置分别为 \((\hat{x}_{m-11}, \hat{y}_{m-11}) \sim (\hat{x}_{m_{11}}, \hat{y}_{m_{11}}) \)。

(S224) 基于所述预测位置和 \(\hat{\omega}_k \) 的估计值，共得到 11 个值对当前帧图像的中的第 11 颗星位置进行估计。

(S225) 与预测第 11 颗星原理相同，可以得到共 11 颗星的位置预测值。如图 6 所示，表示从第 k-1 帧图像 (Frame_{k-1}) 的最后 1 星点开始预测第 k 帧图像 (Frame_k) 的最后 1 个星点的过程，其中 \(t_{m} \) 表示导航星点的积分时间。

下面将对本发明的步骤 S3 进行详细说明。所述步骤 S3 可以进一步包括：

(S31) 根据初始捕获算法获取初始帧的姿态矩阵 \(q_k \)、特征矩阵 \(K_k \) 及姿态角速率 \(\hat{\omega}_k \)，记录导航星点的行号 \(m_k \)；

(S32) 提取第 \(k+1 \) 个导航星点，其所在的行为 \(m_{k+1} \)，根据 \(\hat{\omega}_k \) 及当前帧导航星点行号 \(m_k \) 与上一次姿态矩阵估计所用导航星点的时间差，计算转移矩阵 \(\Phi_{k+1/k} \)；

(S33) 估计当前导航星点对应时刻的姿态四元数对应的特征矩阵 \(K_{k+1/k} \)：

\[
K_{k+1/k} = \Phi_{k+1/k} K_{k} \Phi_{k+1/k}^T
\]

(S34) 根据当前提取的导航星点矢量观测值及矢量参考值，将提取出的第 \(k+1 \) 颗星的测量矢量和参考矢量作为参数加入到该星敏感器的所述姿态矩阵的估计计算。根据式 12、式 13 计算出第 \(k+1 \) 个导航星点 \(\delta K_{k+1} \)，根据本发明的一个实施例，该导航星点 \(\delta K_{k+1} \) 可以通过下式获得：

\[
\delta K_{k+1} = \begin{bmatrix} S_{Z} - \sigma I_3 & z_{k+1} \\ z_{k+1}^T & \sigma_{k+1} \end{bmatrix}
\]

星敏感器测量得到第 \(k+1 \) 颗导航星 \(s_{k+1} \) （其对应天球坐标系下的方向矢量为 \(v_{k+1} \）），在星敏感器坐标系内的方向矢量为，其中：

\[
B_{k+1} = \alpha_{k+1} w_{k+1} v_{k+1}^T
\]

\[
S_{k+1} = B_{k+1} + B_{k+1}^T
\]

\[
z_{k+1} = \alpha_{k+1} w_{k+1} \times v_{k+1}
\]

\[
\sigma_{k+1} = |r(B_{k+1})|
\]

其中， \(0 < \alpha_{k+1} < 1 \)，为第 \(k+1 \) 颗导航星的权重系数；

(S35) 融合步骤 S33 和 S34 中所获得的数据，计算包含当前导航星点的四元数对应的特征矩阵 \(K_{k+1/k} \) ：
\[K_{k+1|k-1} = (1 - \rho) K_{k-1|k} + \rho \delta K_{k-1} \]
式 21

其中，\(0 < \rho < 1\)，表示当前导航星点矢量的权重系数；

(S 36) 根据 \(K_{k+1|k-1}\) 计算最优的姿态四元数 \(q_{k+1|k-1}^*\) 及 \(\hat{\omega}_{k+1}\)，返回步骤 (S32)，进行下一次的递推及姿态矩阵估计。

根据本发明的一个实施例，在步骤 (32) 中，根据四元数差分方程与角速率的关系，可以获得如下：

\[\dot{q} = \frac{1}{2} \Omega q \]

\[\Omega = \begin{bmatrix} -[\omega \times] & \omega \\ -\omega \times & 0 \end{bmatrix} \]

式 22

其中，\([\omega \times]\) 定义为：

\[[\omega \times] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \]

\(\omega = [\omega_1, \omega_2, \omega_3]\) 为星敏感器的三轴角速率。

根据图 5 的导航星点图像，假定提取出第 \(k\) 颗星时估计的姿态四元数为 \(q_k\)，角速率为 \(\hat{\omega}_k = [\omega_1, \omega_2, \omega_3]^T\)，导航星点位于图像中第 \(m_k\) 行，相邻两行之间的时间间隔为 \(t_n\)，假定提取了第 \(k+1\) 颗星，其位于图像中 \(m_{k+1}\) 行，则从第 \(k\) 颗星到第 \(k+1\) 颗星的时间间隔为 \((m_{k+1} - m_k)t_n\)，得到

\[\Phi_{k+1|k} = \exp \left(\frac{1}{2} \Omega t_n (m_{k+1} - m_k) \right) \]

式 23

根据本发明的一个实施例，所述步骤 (36) 中：

通过计算 \(K_{k+1|k-1}\) 的特征值和特征向量，得到第 \(k+1\) 颗星参与计算的最优姿态四元数 \(q_{k+1|k-1}^*\)，满足：

\[K_{k+1|k-1}, q_{k+1|k-1}^* = \hat{\omega}_{k+1|k-1}, \hat{q}_{k+1|k-1} \]

式 24

计算第 \(k+1\) 颗星参与姿态矩阵估计后的角速度如下：

\[\begin{bmatrix} \hat{\omega}_{k+1} \\ 0 \end{bmatrix} = \frac{2}{(m_{k+1} - m_k)t_n} \begin{bmatrix} -e_{k+1} \\ q_{k+1|k-1} \end{bmatrix} \otimes \begin{bmatrix} e_{k+1} \\ q_{k+1|k-1} \end{bmatrix} - \frac{2}{(m_{k+1} - m_k)t_n} \begin{bmatrix} -e_k \\ q_{k|k} \end{bmatrix} \otimes \begin{bmatrix} e_k \\ q_{k|k} \end{bmatrix} \]

式 25

其中，\(e_k\) 表示姿态四元数 \(q\) 的矢量部分，\(q_{k|k}\) 表示四元数 \(q\) 的标量部分，通过获得 \(K_{k+1|k-1}\)
和 \(\hat{\omega}_{k+1}\)，以进行下一次的预测递推。

本发明中涉及的基于卷帘曝光的星敏感器成像参数优化方法，通过对星图中不同行之间成像时刻的精密控制，实现不同导航星点曝光时刻的精确分离，弥补单帧星图中所有导航星点曝光时刻相同导致动态信息缺失的不足，并采用读出与曝光流数工作模式，省去传
统的星敏感器读出时间。基于此提出连续高动态的导航星点预测提取算法，并提出卷帘曝光模式下的单星递推姿态估计方法，达到每提取一颗星完成一次当前时刻的姿态，突破星敏感器姿态确定以帧图像多矢量为基础的算法约束，使更新率相对于传统算法提高一个量级，同时可以实现短时间内视场内只有1颗星甚至无星时的姿态估计。

本发明突破了传统星敏感器工作过程中受到曝光与读出时间长、动态性能差、瞬时视场精度不足、系统更新率低的局限，显著地提高星敏感器的性能。

在本说明书的描述中，参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中，对上述术语的示意性描述不一定指的是相同的实施例或示例。而且，描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

尽管已经示出和描述了本发明的实施例，本领域的普通技术人员可以理解：在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型，本发明的范围由权利要求及其等同物限定。
权利要求书

1、一种基于卷帘曝光成像的星敏感器的姿准确定方法，其特征在于，包括如下步骤：

S1：利用所述星敏感器内的图像传感器的、基于行的卷帘曝光成像模式，对用于卷帘曝光成像的图像的曝光时间 t_{br} 、行读出时间 t_{rd} 、行间积分间隔时间 t_{n} 和帧处理时间 t_{fr} 之间的关系进行优化；

S2：基于优化后的所述曝光时间 t_{br} 、所述行读出时间 t_{rd} 、所述行间积分间隔时间 t_{n} 和帧处理时间 t_{fr} 之间的关系，预测和提取所述星敏感器内的星图中所含有的 M 个导航星点的星点位置，其中每个所述导航星点的星点位置可用于确定导航星点在所述星敏感器上的航号以及

S3：根据所述导航星点的星点位置并基于卷帘曝光的单星递推姿态估计，每当提取一颗导航星点像，则更新一次所述星敏感器的姿准确定矩阵和角速度，并将所述星敏感器的姿准确定矩阵递推到下一颗导航星点的姿准确定矩阵计算中，将下一颗导航星点的提取信息与递推获得的所述姿准确定矩阵进行融合，形成更新的所述星敏感器的姿准确定矩阵和所述角速度，并依次向下传递所述姿准确定矩阵和所述角速度，直至获得所述星敏感器的最终姿准确定矩阵和最终角速度。

2、根据权利要求 1 所述的姿准确定方法，其特征在于，在所述步骤 S1 中，所述图像传感器为设置在所述星敏感器内的具有卷帘曝光模式的 APS 图像传感器。

3、根据权利要求 2 所述的姿准确定方法，其特征在于，所述图像传感器的总传感器行数目为 n，且所述图像的每行的所述行读出时间 t_{rd} 和所述行间积分间隔时间 t_{n} 相同，且所述图像的所述曝光时间 t_{br} 满足下述公式：

$$t_{br} \leq (n-1)t_{rd}$$

4、根据权利要求 3 所述的姿准确定方法，其特征在于，在所述步骤 S1 中，所述图像传感器基于行依次进行循环曝光，且将经过曝光所获得的所述图像以所述行读出时间 t_{rd} 进行依次循环读取，并且对经过曝光所获得的所述图像的读取与对所述图像的曝光同步进行，其中

经过曝光所获得的所述图像的第一次读取时刻与所述图像传感器进行的所述图像的第 n 行的曝光的曝光时刻相同。

5、根据权利要求 4 所述的姿准确定方法，其特征在于，在所述步骤 S2 中进一步包括：

S21：将所述星敏感器的姿准确定矩阵与提取第 k 个导航星点的时间 t_{ik} 组合，以构成组合变量 AR_k：

$$AR_k = [A_k \ t_{ik}] = [A_k \ m_k t_n]$$
其中，\(A_k \) 表示提取第 \(k \) 个导航星点后计算得到的所述星敏感器的所述姿态矩阵，\(t_k \) 表示被提取的第 \(k \) 个导航星点对应的曝光时刻，\(m_k \) 表示第 \(k \) 个导航星点在所述图像传感器上对应的行号；

S22：预测所述星敏感器的视场中的全部的所述 \(M \) 个导航星点的星点位置；以及
S23：基于所述 \(M \) 个导航星点的预测位置，设定 ROI 窗口，以对所述图像进行信号提取。

6. 根据权利要求 5 所述的姿态确定方法，其特征在于，所述步骤 S22 进一步包括：
S221：设定上一帧图像中第 \(M \) 个星位于第 \(m \) 行，提取导航星点后获得的所述星敏感器的所述姿态矩阵为 \(A_k \)，估计得到所述星敏感器的所述角速度为 \(\omega_k \)；
S222：当前帧图像的第 1 个星位于所述图像的 \(m \) 行，提取该第 1 个星后获得的所述星敏感器的所述姿态矩阵为 \(A_k \)，估计得到所述星敏感器的所述角速度为 \(\omega_k \) 为：

\[
\tilde{\omega}_k = \left[I - A_k A_k^T \right] \left[(n - m_i + m_j) l_n \right],
\]

通过对当前图像中第 \(M \) 个星在所述图像传感器上的星点位置进行估计，获得与所述第 \(M \) 个星相对应的预测位置 \((\hat{x}_{m1-M}, \hat{y}_{m1-M}) \)；

S223：依次获得所述第 \(M \) 个导航星点的、与所述第 \(2^M-1 \) 个导航星点相对应的预测位置 \((\hat{x}_{m2-M}, \hat{y}_{m2-M}) \sim (\hat{x}_{(M-1)+M}, \hat{y}_{(M-1)+M}) \)；
S224：基于所述 \(\omega_k \) 和所述预测位置，对当前帧图像中的第 \(M \) 个星的行号进行估计；
S225：根据与步骤 S221-S224 相似的步骤，依次获得其余的导航星点的预测位置。

7. 根据权利要求 1 所述的姿态确定方法，其特征在于，所述步骤 S3 包括：
(S31) 根据先期捕获算法获取所述图像的初始帧的姿态矩阵 \(q_k \)、特征矩阵 \(K_k \) 及姿态角速度 \(\tilde{\omega}_k \)，记录所述导航星点的行号 \(m_k \)；
(S32) 提取第 \(k + 1 \) 个导航星点，所述导航星点所在的行号为 \(m_{k+1} \)，根据 \(\tilde{\omega}_k \) 及当前帧导航星点行号 \(m_k \)、当前帧导航星点与上一次姿态矩阵估计所用导航星点的曝光时间差，计算转移矩阵 \(\Phi_{k+1/k} \)；
(S33) 估计当前导航星点对应时刻的所述姿态量元对应的特征矩阵 \(K_{k+1/k} \)：

\[
K_{k+1/k} = \Phi_{k+1/k} K_{k+1/k} \Phi_{k+1/k}^T;
\]

(S34) 根据当前提取的导航星点矢量观测值及矢量参考值，将提取出的第 \(k + 1 \) 个星的测量矢量和参考矢量作为参数加入到所述星敏感器的所述姿态矩阵的估计，并计算出第 \(k + 1 \) 个导航星点 \(\delta K_{k+1} \)。
（S35）融合步骤 S33、S34 中的数据，以计算包含当前导航星点的四元数对应的特征矩阵 \(K_{k+1/k+1} \):

\[
K_{k+1/k+1} = (1 - \rho) K_{k+1/k} + \rho \delta K_{k-1}
\]

其中，\(0 < \rho < 1 \)，且表示当前导航星点矢量的权重系数；

（S36）根据 \(K_{k+1/k+1} \) 计算最优姿态四元数 \(q_{k+1/k+1}^* \) 及 \(\bar{o}_{k+1} \)，返回执行步骤 S32，以进行所述星传感器的下一次的递推及姿态矩阵估计。

8. 根据权利要求 7 所述的姿态确定方法，其特征在于，所述步骤 S32 中，根据四元数差分方程与角速度满足下述公式：

\[
\dot{q} = \frac{1}{2} \Omega q \quad \Omega = \begin{bmatrix}
-\omega^x \\
\omega^y \\
-\omega^z
\end{bmatrix}
\]

其中，\([\omega^x]\)定义为：

\[
[\omega^x] = \begin{bmatrix}
0 & -\omega_3 & \omega_2 \\
\omega_3 & 0 & -\omega_1 \\
-\omega_2 & \omega_1 & 0
\end{bmatrix}
\]

\(\omega = [\omega_1, \omega_2, \omega_3] \)为星敏感器的三轴角速度。

9. 根据权利要求 8 所述的姿态确定方法，其特征在于，设置提取出第 \(k \) 颗星时估计的姿态四元数为 \(q_k \)，角速度为 \(\bar{o}_k = [\omega_1, \omega_2, \omega_3]^T \)，所述导航星点位于图像中第 \(m_k \) 行，设置提取了第 \(k+1 \)颗星。其位于图像中 \(m_{k+1} \)行，则从第 \(k \)颗星到第 \(k+1 \)颗星的时间间隔为 \((m_{k+1} - m_k) t_{in} \)，得到

\[
\Phi_{k+1/k} = \exp \left(\frac{1}{2} \Omega_k (m_{k+1} - m_k) t_{in} \right)
\]

10. 根据权利要求 8 所述的姿态确定方法，其特征在于，在所述步骤 S36 中：

通过计算 \(K_{k+1/k+1} \)的特征值和特征向量，得到第 \(k+1 \)颗导航星点参与计算的最优姿态四元数 \(q_{k+1/k+1}^* \)，且满足：

\[
K_{k+1/k+1} q_{k+1/k+1}^* = \lambda_{k+1/k+1} q_{k+1/k+1}^*
\]

其中第 \(k+1 \)颗导航星点参与姿态矩阵估计后的新角速度为：

\[
\begin{bmatrix}
\bar{o}_{k+1} \\
0
\end{bmatrix} = \frac{2}{(m_{k+1} - m_k) t_{in}} \begin{bmatrix}
-e_{k+1} \\
e_{k+1}
\end{bmatrix} \otimes \begin{bmatrix}
q_{k+1} \\
q_{k+1}
\end{bmatrix} - \frac{2}{(m_{k+1} - m_k) t_{in}} \begin{bmatrix}
-e_{k+1} \\
e_{k+1}
\end{bmatrix} \otimes \begin{bmatrix}
q_{k+1} \\
q_{k+1}
\end{bmatrix},
\]

其中，\(e_i \)表示姿态四元数 \(q \)的矢量部分，\(q_{si} \)表示四元数 \(q \)的标量部分。
图 6

优化用于卷帘曝光成像的图像的曝光时间、行读出时间、行间积分间隔时间和帧处理时间

基于APS卷帘成像，预测和提取所述星敏感器的星点位置

基于卷帘曝光的单星递推姿态估计，获得所述星敏感器的最终姿态矩阵和最终角速率
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G01C 21/02 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G01C 21, G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CNABS, CNKI, CNTXT: star sensor, star tracker, star detector, roller shutter, exposure, imaging, attitude, posture, parallel, APS
VEN: star, solar, sens+, detect+, track+, roll+, imag+, picture+, attitude?, posture?, calculate+, determine+, acquire+, measure+, estimate+, row?, line?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LUO, Changzhou et al., Improving Data Update Speed of Star Sensor, JOURNAL OF APPLIED OPTICS, January 2013 (01.2013), volume 34, number 1, pages 111-116, ISSN 1002-2082</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 102117199 A (HARBIN INSTITUTE OF TECHNOLOGY), 06 July 2011 (06.07.2011), the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 101435704 A (HARBIN INSTITUTE OF TECHNOLOGY), 20 May 2009 (20.05.2009), the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
14 November 2013 (14.11.2013)

Date of mailing of the international search report
05 December 2013 (05.12.2013)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jinningqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer
YANG, Shilin
Telephone No.: (86-10) 62085717

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101907463 A (NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY), 08 December 2010 (08.12.2010), the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006010418 A (NIPPON DENKI ENG KK.), 12 January 2006 (12.01.2006), the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 102117199 A</td>
<td>06.07.2011</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101435704 A</td>
<td>20.05.2009</td>
<td>CN 101435704 B</td>
<td>16.06.2010</td>
</tr>
<tr>
<td>CN 101907463 A</td>
<td>08.12.2010</td>
<td>CN 101907463 B</td>
<td>30.05.2012</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
A. 主题的分类

G01C 21/02 (2006.01)

B. 检索领域

检索的最低限度文献(标明分类系統和分类号)

IPC: G01C 21, G06F

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库(数据库的名称, 和使用的检索词（如使用）)

CNABS, CNKI, CNTXT: 星敏感器，星跟踪器，星探测器，导航，成像，姿态，位置，并行，APS

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>王科 等，CMOS APS 图像传感器驱动时序的设计与实现，中国宇航学会深空探测技术专业委员会第四届学术年会论文集，6 月 2007 (06.2007)，第 21 页，增刊，第 213-218 页</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>罗长洲 等，提高星敏感器数据刷新速率研究，应用光学，1 月 2013 (01.2013)，第 34 卷，第 1 期，第 111-116 页，ISSN 1002-2082</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>毛晓鹏 等，基于并行运算体系结构的星敏感器图像的处理算法，宇航学报，3 月 2011 (03.2011)，第 32 卷，第 3 期，第 613-619 页，ISSN 1000-1328</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 102117199 A（哈尔滨工业大学）06.7 月 2011（06.07.2011），全文</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 101455704 A（哈尔滨工业大学）20.5 月 2009（20.05.2009），全文</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* 引用文件的具体类型。
- “A” 认为不特别相关的表示了现有技术一般状态的文件。
- “E” 认为在国际申请日的当天或之后批准的根据申请或专利。
- “L” 可能对优先权要求构成疑问的文件，或为确定另一篇引用文件的公布日而引用的或其他有特殊理由而引用的文件（如具体说明的）。
- “O” 涉及口头公开、使用、展览或其他方式公开的文件。
- “P” 公布日先于国际申请日但迟于所要求的优先权日的文件。
- “T” 在申请日或优先权日之后批准，与申请不相抵触，但为了理解发明之理论或原理的在后文件。
- “X” 特别相关的文件，单独考虑该文件，认定要求保护的发明不新颖的或不具有创造性。
- “Y” 特别相关的文件，当该文件与另一篇或者多篇该类文件结合并且这种结合对于本领域技术人员为易见时，要求保护的发明不具有创造性。
- “&” 同属专利文件。

国际检索完成的日期
14.11 月 2013（14.11.2013）

国际检索报告邮寄日期
05.12 月 2013 (05.12.2013)

ISA/CN 的名称和邮寄地址：
中华人民共和国国家知识产权局
中国北京市海淀区蓟门桥西土城路 6 号 100088

受权官员
杨士林

传真号：(86-10)62019451
电话号码：(86-10)62085717
<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101907463 A（中国人民解放军国防科技大学）08.12 月 2010（08.12.2010），全文</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006010418 A（NIPPON DENKI ENG KK.）12.1 月 2006（12.01.2006），全文</td>
<td>1-10</td>
</tr>
<tr>
<td>检索报告中引用的专利文件</td>
<td>公布日期</td>
<td>同族专利</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>CN 102117199 A</td>
<td>06.07.2011</td>
<td>无</td>
</tr>
<tr>
<td>CN 101435704 A</td>
<td>20.05.2009</td>
<td>CN 101435704 B</td>
</tr>
<tr>
<td>CN 101907463 A</td>
<td>08.12.2010</td>
<td>CN 101907463 B</td>
</tr>
</tbody>
</table>