Title: APPLICATION OF SUPEROXIDE DISMUTASE IN LIPOSOMES

Bezeichnung: APPLIKATION VON SOD IN LIPOSOMEN

Abstract

Superoxide dismutase (SOD), preferably rhSOD, is used in liposomes, optionally mixed with hyaluronic acid and/or at least one physiologically acceptable carrier, and other optional additives, to prepare a pharmaceutical composition useful against increased concentrations of superoxide radicals and/or the damage caused thereby. These compositions can be administered topically, orally and/or parenterally to prevent and/or heal in particular burns, skin lesions due to radiation, inflammations, rheumatic and arthritic diseases, bronchitis, ARDS, emphysema, allergic oedemas and other inflammatory processes, possibly triggered by microbial infections. They may also be used in the cosmetic treatment of furuncles, acne and the like. Also disclosed is a process for improving the preservability of organic, preferably biogenic, materials, in particular organ transplants and liquids with organic components, as well as foodstuffs, by using the disclosed compositions.

Zusammenfassung

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>AT</th>
<th>Österreich</th>
<th>GA</th>
<th>Gabon</th>
<th>MR</th>
<th>Mauritänien</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GE</td>
<td>Georgien</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IT</td>
<td>Italien</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>KE</td>
<td>Kenia</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KR</td>
<td>Republik Korea</td>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LI</td>
<td>Lichtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
<td>LU</td>
<td>Luxemburg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LV</td>
<td>Lettland</td>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>MC</td>
<td>Monaco</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MD</td>
<td>Republik Moldau</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>MG</td>
<td>Madagaskar</td>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
<td>ML</td>
<td>Mali</td>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
<td>MN</td>
<td>Mongolei</td>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Applikation von SOD in Liposomen

Superoxidradikale sind ausserordentlich reaktive Zwischenformen des natürlichen Sauerstoffmoleküls und können durch diese Eigenschaft organische Verbindungen in den Zellen des menschlichen Körpers irreversibel schädigen. Als Schutz vor der gefährlichen Wirkung dieser Superoxid-Radikale verfügen die Zellen über ein Enzym, welches in der Lage ist, solche Superoxid-Radikale rasch in das schneller metabolisierbare und weniger giftige Wasserstoffperoxid (H₂O₂) umzuwandeln.

\[
\begin{align*}
\text{(I)} & \quad 2 [\ddot{\text{O}}_2^-] + 2\text{H}^+ \xrightarrow{\text{SOD}} \text{H}_2\text{O}_2 + \text{O}_2 \\
\text{Im Anschluss daran wird normalerweise das noch immer giftige Wasserstoffperoxid durch das Enzym Katalase in die ungefährlichen Bestandteile Wasser und Sauerstoff zerlegt.}
\end{align*}
\]

\[
\begin{align*}
\text{(II)} & \quad 2\text{H}_2\text{O}_2 \xrightarrow{\text{Katalase}} 2\text{H}_2\text{O} + \text{O}_2
\end{align*}
\]

Das Enzym Superoxiddismutase (SOD) kommt sowohl im menschlichen und tierischen Körper als auch in Pflanzen und vermutlich allen Mikroorganismen vor, welche mit Luftsaerstoff direkt in Kontakt kommen (aerobe Bakterien und Pilze). In den Zellen höherer Organismen (Eukaryonten) gibt es hauptsächlich zwei Typen dieser SOD: eine Mangan enthaltende SOD, die in den Mitochondrien lokalisiert ist und der bakteriellen SOD sehr ählich ist, und eine zweite, welche im Zytoisol frei vorliegt und Kupfer- und Zinkatome enthält.
Im nachfolgenden soll - soweit nicht anders erwähnt - unter dem Begriff SOD hauptsächlich Cu,Zn-SOD, ausgenommen jene aus Rinderblut-Erythrozyten, sowie bakterielle oder mitochondriale Mn-SOD und/oder Fe-SOD, sowie rekombinante humane Cu,Zn-SOD (rhSOD) verstanden werden.

Superoxid-Dismutase ist unter dem Namen Orgotein bereits seit 1939 bekannt, die Dismutase-Aktivität wurde hingegen erst 1969 von McCord und Fridovich entdeckt und beschrieben. Ihre praktische Verwendung war in der Vergangenheit insbesondere durch die Kurzlebigkeit bzw. kurze biologische Verfügbarkeit des Proteins unter natürlichen Umständen begrenzt, was sich natürlich auf die Häufigkeit der Dosierintervalle, die zu wählenden Therapiedosen und die damit verbundenen Kosten nachteilig auswirkt.

Primäres Ziel der vorliegenden Erfindung ist es, pharmazeutische Zubereitungen zur Verfügung zu stellen um SOD, vorzugsweise rhSOD
eingeschlossen in schützenden Liposomen, schonend, effektiv und mit einer
besseren Bioverfügbarkeit an die zu behandelnden Stellen des Körpers
heranzubringen. Insbesondere ist es den Erfindern gelungen, trotz eines noch
immer bestehenden allgemeinen Vorurteils der Fachwelt, liposomal verpackte
SOD erfolgreich bei Verbrennungen und Verbrühungen sowie bei
Strahlenschäden, hervorgerufen beispielsweise durch UV-Strahlen oder
ionisierende Strahlen, einzusetzen, insbesondere durch äußerliche
Anwendung. Im Falle der Strahlenexposition ist neben dem therapeutischen
Einsatz auch eine prophylaktische Anwendung, beispielsweise zusammen mit
einem strahlenfilternden oder strahlenabsorbierenden Schutzmittel, möglich.

Ein weiteres Ziel ist es, eine pharmazeutische Zubereitung auf Basis SOD in
Liposomen zur Verfügung zu stellen, die die genannten Nachteile des Standes
der Technik überwindet und damit zusätzliche Anwendungsgebiete,
insbesondere im Bereich der Kosmetik, eröffnet.

Ebenso ist es ein Ziel der vorliegenden Erfindung, SOD, vorzugsweise rhSOD
ingeschlossen in schützenden Liposomen, schonend, effektiv und mit einer
besseren Haltbarkeit sowie länger anhaltender Wirkung an die zu
behandelnden organischen Materialien, beispielsweise pflanzliche oder
tierische Gewebe, Organe, Organ- oder Gewebetransplantate, kosmetische
Präparate auf organischer Basis und/oder Lebensmittel heranzubringen.

Ein besonderes Ziel der vorliegenden Erfindung ist die Nutzung des
synergistischen Effektes einer Mischung von Hyaluronsäure und SOD.
Hyaluronsäure ist in der Fachwelt seit kurzem auch für ihre "Radikalfänger-
Eigenschaften" bekannt, und ihr Einsatz in der Wundbehandlung ist wiederholt
beschrieben worden (Amgen, WO 9214480, 1992). Auch die Verwendung
von Hyaluronsäure zusammen mit Colony Stimulating Factor (CSF) oder
Platelet Derived Growth Factor (PDGF) zur Beschleunigung der Wundheilung
wurde in der Literatur beschrieben (Zymogenetics, US 5128321, 1992),
ebenso wie Hyaluronsäure als Zusatz in Kosmetika und pharmazeutischen

Bislang nicht beschrieben ist hingegen - erstaunlicherweise - eine Kombination
von Hyaluronsäure und SOD, insbesondere eine Mischung von Hyaluronsäure
und liposomal inkorporierter SOD. Inwieweit hier ein Vorureil der Fachwelt
besteht oder bestanden hat, kann zum gegenwärtigen Zeitpunkt nicht
hinreichend beurteilt werden. Jedenfalls hat sich im Zuge der Experimente, die
schließlich zur vorliegenden Erfindung geführt haben, überraschend herausgestellt, dass Hyaluronsäure in fast idealer Weise die Wirkung von SOD, auch von liposomaler inkorporierter SOD, unterstützt und verstärkt.

Es ist daher mehr als erstaunlich, dass SOD in Liposomen bislang zur lokalen, äusserlichen Sofort-Wundbehandlung - ausser in Form von Injektionen direkt in die Wunde - weder in der Tiermedizin noch in der Humanmedizin eingesetzt wird, zumal SOD in Liposomen bereits seit mehr als 5 Jahren bekannt ist (J03101626, 1989).

Trotz dieser Nachteile des Standes der Technik und dem möglichen Vorurteil der Fachwelt gegenüber liposomalen dargebotenen Wirkstoffen zur topischen, insbesondere äusserlichen, Anwendung am Körper bzw. an der Körperoberfläche, ist es den Erfindern dank ihren erfinderischen Annahmen in unerwarteter Weise gelungen, SOD in Liposomen erfolgreich gegen thermische und strahleninduzierte Haut- und Gewebeschädigungen einzusetzen.

Folgende Überlegungen spielten dabei eine Rolle: durch das Trauma selbst, auch im Falle des intensiven Sonnenbrandes, fällt die Barriere der Hornschicht mehrheitlich oder sogar völlig weg, d.h. vor der Entwicklung einer Ödemformation bestünde die Chance zur optimalen Wirkstoffentfaltung in
Richtung Lederhaut und subcutan unter das Corium, insbesondere im Falle einer frühzeitigen Applikation von SOD, vorzugsweise rhSOD, in Liposomen.

Der überraschende Erfolg bei der äußerlichen topischen Behandlung der erwähnten Gewebeschädigungen ist vermutlich weiters darauf zurückzuführen, dass durch die Gewebeverletzung verstärkt Makrophagen gebildet werden, welche im Zuge ihrer immunologischen Schutzfunktion (Infektionsabwehr, Beseitigung von Zellbruchstücken) mit den Liposomen in Kontakt treten, deren Lipidschicht auflösen und dabei den Inhalt - die SOD-Moleküle - freisetzen, worauf diese wiederum ihre Superoxid abbauende und damit auch gewebsschützende Aktivität entfalten können.

Im Zuge der Experimente, die schliesslich zur vorliegenden Erfindung geführt haben, konnte ausserdem überraschend herausgefunden werden, dass dank des Einschlusses der SOD-Moleküle in Liposomen nicht nur deren Haltbarkeit und Bioverfügbarkeit verlängert, sondern auch die zur Erreichung des gewünschten Effektes nötige Konzentration an SOD - gegenüber SOD-Zubereitungen ohne Liposomen - um bis zu einem Faktor 10 reduziert werden konnte, ohne dabei Wirkungsverluste in Kauf nehmen zu müssen. Darüber hinaus wird durch die liposomale Darreichungsform auch eine physiologisch günstigere Dosierung des Wirkstoffes am Ort des Bedarfes erreicht, was sich natürlich auf die Menge und/oder Häufigkeit der Dosierungen und die damit verbundenen Kosten sehr vorteilhaft auswirkt. Dieser vorteilhafte Effekt der physiologisch günstigere Dosierung liposomaler inkorporierter SOD vor Ort kommt auch bei Entzündungen und entzündlichen Prozessen an der Körperoberfläche und im Inneren des Körpers, sowie bei Verfahren zur Verbesserung der Haltbarkeit organischer Materialien zum Tragen.

Im Rahmen der Experimente, welche der vorliegenden Erfindung zugrunde liegen, hat sich außerdem unerwarteterweise herausgestellt, dass sich bei Verwendung einer Zubereitung von Hyaluronsäure in einer Mischung mit SOD, insbesondere rhSOD in Liposomen, ein synergistischer Effekt insofern ergibt, als eine im Vergleich zur SOD-Behandlung ohne Hyaluronsäure signifikant längere Haltbarkeit bzw. Wirkungsdauer der Zubereitung selbst und damit auch eine längere Haltbarkeit der behandelten Materialien resultiert; dieser Effekt zeigt sich insbesondere dann, wenn die SOD frei in der Zubereitung, d.h. nicht in Liposomen eingeschlossen, vorliegt. Sowohl SOD allein als auch Hyaluronsäure allein waren in dieser Hinsicht einer Mischung beider Komponenten deutlich unterlegen.

Dieser synergistische Effekt einer Mischung von SOD und Hyaluronsäure wird möglicherweise dadurch begünstigt, dass die Hyaluronsäure sowohl die Phospholipidschichten der Liposomen und/oder die empfindlichen SOD-Moleküle vor schädigenden, d.h. vornehmlich oxidierenden, Einflüssen von aussen schützt, als auch nach Inaktivierung der SOD noch einen eigenen, wenn auch nur geringen, Beitrag zur Superoxiddradikal-Beseitigung leistet.
Die vorliegende Erfindung enthält mehrere verschiedene Ausführungsformen der Anwendung von SOD, insbesondere rhSOD in Liposomen, mit oder ohne Hyaluronsäure und gegebenenfalls in Kombination mit Trägerstoffen und/oder weiteren Zusätzen, für die Herstellung von pharmazeutischen Zubereitungen gegen eine Reihe von Indikationen.

Eine Ausführungsform bzw. ein Merkmal der Erfindung bezieht sich auf die Verwendung von SOD, insbesondere von rekombinanter humaner SOD (rhSOD) in Liposomen, gegebenenfalls in einer Mischung mit Hyaluronsäure und/oder einem physiologisch akzeptablen Träger sowie gegebenenfalls weiteren, für galenische Formulierungen üblichen Zusätzen, zur Herstellung von pharmazeutischen Zubereitungen gegen Verbrennungen, Verbrühungen und Strahlenschädigungen, insbesondere solchen, die durch UV-Strahlen verursacht werden.

Gerade bei Brandwunden hat es sich auch als besonders vorteilhaft erwiesen, wenn man die SOD-haltigen Liposomen, in flüssiger Form durch Aufsprühen aus einer Spraydose oder Sprühflasche auf die verletzte Stelle aufbringt. Man vermeidet dadurch den direkten Kontakt der Wunde mit den Fingern oder einem sonstigen Hilfsmittel zur Auftragung, beispielsweise eines Gels, und reduziert damit die Gefahr einer zusätzlichen Infektion.

In einer anderen Ausführungsform wird liposomal inkorporierte SOD, gegebenenfalls mit Hyaluronsäure und/oder weiteren Zusätzen, auf - vorzugsweise - sterile Wundpflaster und/oder Wundabdeckungen aufgebracht, um auf diese Weise ein rasch verfügbares und leicht handhabbares Mittel zur effektiven Behandlung und/oder Selbst-Behandlung, von kleineren und mittelgrossen Brandwunden bzw. Hautverbrennungen bereits am Ort des
Geschehens an der Hand zu haben. Der besondere Vorzug dieser
Anwendungsform besteht in der einfachen Art und Weise der Anwendung, wie
sie auch von medizinisch ungeschulten Personen sicher vorgenommen werden
cann, beispielsweise von Eltern, deren Kind sich am Herd die Finger verbrannt
oder mit heissem Wasser verbrüht hat.

Ein besonderer Aspekt der vorliegenden Erfindung ist die Verwendung von
SOD, insbesondere rhSOD in Liposomen, zur Herstellung von Zubereitungen,
die vor, während oder nach einer Strahlenexposition eingesetzt werden. Für
rein therapeutische Anwendungen, d.h. nach bereits erfolgter überräumlicher
Strahlenbelastung, beispielsweise bei einem Sonnenbrand, empfiehlt sich zur
Milderung der Folgen der Strahleninwirkung der Einsatz der
erfindungsgemässen SOD-Zubereitungen, vorzugsweise rhSOD in Liposomen,
gegebenenfalls in einer Mischung mit mindestens einem physiologisch
akzeptablen Träger und/oder Hyaluronsäure, sowie gegebenenfalls weiteren
Zusätzen, in Form von Emulsionen, Suspensionen, Lösungen, Lotions oder
allenfalls niedrigviskosen Salben oder Gelen.

Besonders vorteilhaft sind die Zubereitungen, welche mittels einer
Sprühvorrichtung, beispielsweise einem Spray, auf die geschädigten
Hautpartien aufgebracht werden können. Einerseits wird dadurch der direkte
Kontakt und damit eine mögliche Infektion der verletzten Haut mit
möglicherweise unreinen Fingern oder sonstigen Hilfsmitteln zur Auftragung
der Zubereitung vermieden und andererseits erspart man sich dadurch eine
mehr oder weniger schmerzhafte Auftragung durch Verreiben beispielsweise
eines höherviskosen Gels.

Zur prophylaktischen und gleichzeitig therapeutischen Anwendung vor und
während einer Strahlenexposition eignen sich vor allem jene
erfindungsgemässen Zubereitungen, welche neben SOD und gegebenenfalls
Hyaluronsäure auch noch mindestens ein strahlenfilterndes oder
strahlenabsorbierendes Schutzmittel, vorzugsweise einen Lichtfilter oder UV-
Absorber, insbesondere einen UVB-Filter, enthalten. Zusätzlich können auch
noch weitere Substanzen, vor allem Hautpflegefaktoren, vorhanden sein.

Durch die Anwesenheit von SOD und gegebenenfalls Hyaluronsäure neben
üblichen Lichtfilter-Substanzen können die unangenehmen Folgen eines
Sonnenbrandes erheblich vermindert werden. Derartige prophylaktisch und
therapeutisch wirkende Sonnenschutzpräparate können vorteilhaft bei jeder Art des Sonnenbadens, ob am Strand, im Gebirge, auf See, auf der Schipiste oder in einem Solarium, eingesetzt werden. Insbesondere Menschen mit empfindlicher Haut und jene Hauttypen, bei denen eine Hautbräunung durch UV-Strahlen nicht erfolgt, profitieren am meisten von dieser Anwendungsform der vorliegenden Erfindung.

Eine andere Ausführungsform bezieht sich auf die Herstellung von Zubereitungen zur therapeutischen und/oder prophylaktischen Anwendung bei akuten und chronischen Entzündungen und entzündlichen Prozessen, bei rheumatischen Erkrankungen, insbesondere bei rheumatischen Gelenkserkrankungen und/oder Osteoarthritis, aber auch bei Entzündungen der Atemwege, insbesondere bei Bronchitis, Schocklunge (Acute Respiratory Distress Syndrome, ARDS), Emphysemen, und anderen

Entzündungsvorgängen, erfolgreich anwendbar. Speziell für den Bereich kosmetischer Anwendungen zur prophylaktischen und/oder therapeutischen Behandlung von lokalen Entzündungen der Haut wie beispielsweise Furunkeln oder Akne, die bekanntermaßen für viele Menschen eine erhebliche kosmetische Beeinträchtigung darstellen, eröffnen sich dadurch vielversprechende Möglichkeiten.

Gerade bei oberflächlichen Entzündungen hat es sich auch als besonders vorteilhaft erwiesen, wenn man die SOD-haltigen Liposomen in flüssiger Form durch Aufsprühen aus einer Spraydose, Sprühflasche oder sonstigen

In einer weiteren Ausführungsform der vorliegenden Erfindung wird liposomaler inkorporierter SOD, insbesondere rhSOD, zusammen mit Hyaluronsäure und gegebenenfalls mindestens einem zusätzlichen fettarmen oder fettfreien, Trägerstoff, insbesondere aus der Gruppe der organischen und anorganischen Hydrogele, und gegebenenfalls weiteren Zusätzen, als Injektionslösung formuliert und bei rheumatologischen und/oder orthopädischen Indikationen, beispielsweise rheumatischen Gelenksentzündungen oder Osteoarthriti, erfolgreich angewendet. Dabei kann die Injektion sowohl direkt in die betroffenen Gelenke (intraartikulär) oder Körperregionen oder auf sonstige parenterale, vorzugsweise intravenöse, Weise erfolgen.

In einer weiteren Ausführungsform konnten bestimmte degenerative Erscheinungen wie Emphyseme, insbesondere Hautemphyseme, durch die erfindungsgemässe Anwendung von SOD in Liposomen, gegebenenfalls in einer Mischung mit Hyaluronsäure und/oder mindestens einem physiologisch akzeptablen Träger, erfolgreich abgeschwächt und eingedämmt werden. Möglicherweise spielen auch hier neben der rein enzymatischen Wirkung der SOD noch zusätzliche, phagocytosestimulierende Effekte der SOD-Aggregate in den Liposomen eine synergistische Rolle.

Ähnliches dürfte auch für die erfolgreiche therapeutische Anwendung der pharmazeutischen Zubereitungen der vorliegenden Erfindung bei Entzündungen der Atemwege und der Lunge, wie z.B. Bronchitis, Schocklunge (ARDS) und Lungenemphysem, zum Tragen kommen. In diesem Falle hat sich speziell die Applikation einer Lösung oder Emulsion von liposomaler inkorporierter SOD per Inhalation als besonders gut geeignet erwiesen.

Bei Verwendung einer Mischung von liposomaler SOD und Hyaluronsäure erfolgt ausserdem die Abheilung der Entzündung(en) unter Neubildung eines elastischeren und vor allem glatteren Gewebes im Vergleich zu Hyaluronsäure-freien Zubereitungen. Speziell für kosmetische Anwendungen an sichtbaren Körperstellen, also beispielsweise im Gesicht, ist dies ein erheblicher Vorteil.

Die erfindungsgemässe Zubereitungen der vorliegenden Erfindung sind im allgemeinen dann am wirksamsten, wenn die SOD, je nach Anwendungsfall und Art der Applikation, in einer Konzentration von ≥ 0.01 Gew.%, insbesondere von 0.01 bis 5 Gew.% und die gegebenenfalls zusätzlich
vorhandene Hyaluronsäure in einem Anteil von \(\geq 0.05 \text{ Gew.\%} \), insbesondere 0.1 bis 5 Gew.\% der fertigen, anwendungsbe reiten Zubereitung vorliegt. Für topische Anwendungen hat sich eine Menge von 0.01 bis 1 mg SOD/cm\(^2\) Läsionsfläche bzw. Körperoberfläche als am besten geeignet erwiesen. Orale oder parenterale Applikationen werden hingegen vorteilhaft mit SOD-Dosen von 0.5 bis 50 mg/kg Körpergewicht durchgeführt, wobei für wiederholte SOD-Gaben im Rahmen einer Therapie die Dosis vorteilhafterweise bei 0.5 bis 10 mg/kg\(\times\)Tag eingestellt wird.

Die vorliegende Erfindung bezieht sich weiters auf die Anwendung von SOD zur Herstellung von Zubereitungen, die zur Verbesserung der Haltbarkeit von verschiedenen organischen, vorzugsweise biogenen, Materialien eingesetzt werden können, sowie auf Verfahren zur Verbesserung der Haltbarkeit solcher organischer Materialien unter Verwendung der erfindungsgemäßen Zubereitungen.

Wesentlich für den erfindungsgemäßen Einsatz der Zubereitungen, beispielsweise im Rahmen eines Verfahrens zur Verbesserung der Haltbarkeit der organischen Materialien gemäß der vorliegenden Erfindung, ist jedoch, dass das organische Material zumindest teilweise mit wenigstens einer der hierin beschriebenen Zubereitungen in Kontakt gebracht wird.

Erfreulicherweise hat sich gezeigt, dass in diesem Fall durch Beimischung von Hyaluronsäure, beispielsweise in Konzentrationen von ca. 0.05 - 2.5 Gew.%, zur bestehenden Emulsion aus liposomaler SOD und Puffer ein zusätzlich synergistischer Effekt der oben beschriebenen Art erzielt werden konnte.

Auch Tauchbäder, welche wenigstens eine der erfindungsgemässen Zubereitungen enthalten und in welche die organischen Materialien, beispielsweise verschiedene Lebensmittel, über einen gewünschten Zeitraum eingetaucht oder eingelegt werden, sind geeignet, um die Wirkstoffe SOD und gegebenenfalls Hyaluronsäure mit dem organischen Material in Kontakt zu bringen.

Eine weitere Ausführungsform der vorliegenden Erfindung bezieht sich auf den Einsatz von freier SOD, insbesondere rhSOD, oder liposomaler SOD, in einer Mischung mit Hyaluronsäure und gegebenenfalls mindestens einem weiteren geeigneten Träger zur Verbesserung der Haltbarkeit von kosmetischen Präparaten auf organischer Basis, insbesondere von Hautpflegemitteln. Versuche haben gezeigt, dass sowohl SOD in Liposomen allein als auch freie oder liposomal inkorporierte SOD in einer Mischung mit Hyaluronsäure, hervorragend geeignet ist, als Zusatz zu dem organischen Material in
kosmetischen Präparaten wie Salben, Crèmes, Gelen, Ölen, Lotions, Wässern, Milks und dgl. deren Haltbarkeit zu verbessern. Insbesondere im Falle der Mischung mit Hyaluronsäure ergibt sich noch ein zusätzlich positiver Effekt in Hinblick auf eine gewisse Erhöhung der Geschmeidigkeit und Glättung der Haut nach Anwendung solcherart verbesserter Kosmetika.

Die Konzentration an SOD liegt in diesem Anwendungsfall bevorzugt zwischen 0.1 und 5 Gew.%, der Anteil an gegebenenfalls vorhandener Hyaluronsäure wird hingegen am besten mit 0.5-5 Gew.%, bezogen auf die endfertige Zubereitung, gewählt. Falls ausserdem ein oder mehrere Trägersubstanzen dazugemischt werden sollen, dann sollen diese vorzugsweise fettarm oder fettfrei sein und gegebenenfalls aus der Gruppe der organischen und anorganischen Hydrogene stammen.

Zum Zwecke der Verbesserung der Haltbarkeit von organischen Materialien wie beispielsweise pflanzlichen und tierischen Geweben, Organtransplantaten, Lebensmitteln, insbesondere leichtverderblichen Fleisch- und Wurstwaren, oder Kosmetika auf organischer Basis, haben sich SOD-Konzentrationen von 0.1 bis 100 mg/kg organisches Material als sinnvoll erwiesen.

Um die erfindungsgemässen Einsatzmöglichkeiten und die Wirkungsweise der hierin beschriebenen Zubereitungen noch weiter zu erläutern, werden im folgenden einige Beispiele angeführt. Die Beispiele dienen dem besseren Verständnis und sollen in keiner Weise den Inhalt oder Umfang der vorliegenden Erfindung einschränken.

Beispiel 1: Anwendung bei Verbrühungen

Die Liposomen mit inkorporierter rhSOD wurden folgendermassen hergestellt:
Für die Endformulierung wird das Carbogel (Carbopol®, stark saure Acrylsäure-Polymerisate mit hohem Molekulargewicht, DAB9) in aqua dest. rehydriert und der pH-Wert auf 7.5 eingestellt. Die Liposomenlösung und das rehydridierte Gel werden homogen vermiscbt und bei 4°C gelagert. Der gesamte Herstellungsprozess wird mit sterilen Lösungen und im Laminarflow (sterile Reinraumbank) durchgeführt.

Herstellung des liposomalen inkorporierten rhSOD-Hyaluronsäure-Gels:
Lyophilisierte Hyaluronsäure wird in der wässrigen Liposomenlösung rehydriert und das fertige Gel bei 4°C gelagert.

Die Gruppe F blieb als Kontrollgruppe unbehandelt. Die übrigen Gruppen wurden nach folgendem Schema behandelt:
Tabelle 1

<table>
<thead>
<tr>
<th>Testgruppe</th>
<th>Anzahl der Tiere</th>
<th>Identifizierungsnummern</th>
<th>Dosis und Verabreichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>1 - 10</td>
<td>0.1 mg rhSOD/cm² der Läsion, in Liposomen; 2x am ersten Tag appliziert</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>11 - 20</td>
<td>1 mg rhSOD/cm² der Läsion, in Gel ohne Liposomen; 1x am ersten Tag appliziert</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>21 - 30</td>
<td>1 mg rhSOD/cm² der Läsion; intraläsional injiziert</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>31 - 40</td>
<td>Kontrollgruppe: Gel mit leeren Liposomen; 1x am ersten Tag appliziert</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>41 - 50</td>
<td>Kontrollgruppe: Gel ohne Liposomen; 1x appliziert am ersten Tag</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>51 - 60</td>
<td>Kontrollgruppe: ohne Behandlung</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>61 - 70</td>
<td>0.1 mg rhSOD in Liposomen/cm² der Läsion, mit Hyaluronsäure; 2x am ersten Tag appliziert</td>
</tr>
</tbody>
</table>

Statistisch ausgewertet wurden die Grösse der Wunden (Planimetrie, fotografische Dokumentation), der Lokalstatus (Farbe, Vorliegen von Nekrosen, Epithelisierungszeichen, Kontraturen, Behaarung, Kutimetrie, Granulationsgewebe), histopathologische Hautuntersuchungen und makroskopisch der allgemeine Heilungsverlauf (Photodokumentation).

Für die untersuchten Parameter konnte ein positiver Einfluss der in Liposomen inkorporierten rhSOD auf die Heilungs- und Regenerationsprozesse bei den behandelten Versuchstieren festgestellt werden. Am deutlichsten war die Wirkung der rhSOD 24 Stunden nach der Läsionssetzung. So gab es

- die Läsionsgröße war im Vergleich zu den anderen Testgruppen nach 24 Stunden unverändert;
- die Breite des Ödems war hingegen deutlich reduziert, es erfolgte eine beschleunigte Rückbildung;
- es gab keine Restnekrosen im Corium;
- Testgruppe G zeigte außerdem eine glattere und elastischere Gewebeneubildung im Vergleich zu allen übrigen Testgruppen.

In einem Beobachtungszeitraum von 24 Stunden konnte eindeutig der positive Einfluss der in Liposomen inkorporierten rhSOD gezeigt werden, obwohl die Dosis der rhSOD in den Testgruppen A und G zehnmal geringer war als bei den Testgruppen B und C. Die Nachbrennerscheinungen der Verbrühungswunden sowie insbesondere auch das Ödem, bildeten sich am schnellsten und deutlichsten in den mit liposomaler Inkorporierter rhSOD behandelten Gruppen zurück.

Beispiel 2: Anwendung bei Verbrennungen

Die Ratten wurden in 4 Gruppen zu je 10 Tieren eingeteilt (Tabelle 2).

<table>
<thead>
<tr>
<th>Tabelle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testgruppe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Die Herstellung der Liposomen und der Gele erfolgte analog zu Beispiel 1. Die Ratten wurden innerhalb von 48 Stunden sechsmal in regelmäßigen Abständen behandelt, wobei die erste Behandlung wenige Minuten nach der Läsionssetzung erfolgte. Liposomal verpackte rhSOD wurde in einer Menge von 0,05 mg/cm² der Läsion eingesetzt, der Anteil an Hyaluronsäure in der verwendeten Zubereitung betrug 3 Gew.%.

Beispiel 3: Anwendung bei Strahlenschäden

<table>
<thead>
<tr>
<th>Testgruppe</th>
<th>Anzahl der Tiere</th>
<th>Verabreichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Kontrollgruppe: ohne Behandlung</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Trägergel mit leeren Liposomen</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>Gel mit rhSOD in Liposomen</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>rhSOD in Liposomen mit Hyaluronsäure im Trägergel</td>
</tr>
</tbody>
</table>

Die Liposomen und Gele wurden analog zu Beispiel 1 hergestellt. Das Gel wurde unmittelbar (2-3 min.) nach der Strahlenexposition und dann noch zweimal in regelmäßigen Abständen von 4 Stunden aufgetragen. Das Gel in der verwendeten Zubereitung enthielt 0.5 Gew.-% Hyaluronsäure, die verabreichte Dosis an rhSOD betrug 0.5 mg/cm² bestrahlter Körperoberfläche. Als Beurteilungskriterium wurde ein visueller Farbvergleich aller Tiere in regelmäßigen Zeitabständen durchgeführt. Weiters wurde das Auftreten von "sunburn-cells" getestet.

BERIGHTIGTES BLATT (REGEL 91)
ISA/EP
Beispiel 4: Vergleich verschiedener Applikationsformen

140 männliche OF1 (outbred) Mäuse (vom Institut für Versuchstierzucht und -haltung, Himberg, Österreich), alle zwischen 8 - 10 Wochen alt, wurden nach dem Zufallsprinzip in 14 Gruppen (A-N) eingeteilt. Die Mäuse wurden unter Ethernarkose mit 50 µl PBS-Lösung, welche 1x10^5 PFU/Maus (= 2-2.5 x LD50) des Influenzavirus A/WSN/33 (nachfolgend als WSN bezeichnet) enthielt, intranasal inkuliert. Die Behandlung der WSN-infizierten Mäuse begann am Tag 4 nach der Infektion, d.h. am Beginn des Auftretens klinischer Symptome der Influenza-Erkrankung der Mäuse. Die Mäuse wurden 1x täglich bis zum Tag 11 nach der Infektion behandelt. Sie wurden topisch, subkutan, intravenös und intranasal mit Präparaten behandelt, welche rhSOD in folgenden liposomalen Vesikelnarteen beinhalteten:

a) rhSOD in kleinen, unilamellaren Vesikeln (SUV), Grösse ≤ ca. 100 nm,
b) rhSOD in Injektionsvesikeln (IV), Durchmesser ≤ ca. 200 nm, und
c) rhSOD in multilamellaren Vesikeln (MLV), Durchmesser ≤ ca. 500 nm.

Tabelle 4 zeigt die Versuchsanzahlordnung und die erzielten Ergebnisse. Zur topischen Behandlung wurde ein liposomales rhSOD-Gel auf der ventralen Seite der Mäuse, speziell im Brustbereich, durch Einschmieren 1x pro Tag aufgetragen. Es wurde dadurch ein Hautbereich von ca. 10 cm² mit einer ungefähr 2 mm dicken Gel-Schicht bedeckt. Die Konzentrationsangaben in Tabelle 4 beziehen sich dabei auf die behandelte Fläche in cm². Die intranasale Applikation von rhSOD fand unter Ethernarkose der Tiere statt. Es wurden dabei 0.05 ml einer Suspension mit rhSOD in IV (1 mg/ml) mittels einer Mikropipette in die Nasenlöcher der Mäuse eingebracht.

Zur intravenösen Verabreichung der rhSOD-Suspensionen (siehe Tabelle 4) wurde in die Schwanzvene injiziert, während zur subkutanen Applikation dieselben Suspensionen wie bei der i.v. Injektion in den Hals- und/oder Schulumbereich subkutan injiziert wurden.

Die Pathogenese einer Influenzavirus-Infektion bei Mäusen zeigt eher eine Überrektion der Immunabwehr des Wirtsorganismus als einen direkten Effekt bezüglich der Virusvermehrung. Die Entstehung freier Sauerstoffradikale im

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Applikationsform und Dosis</th>
<th>Überlebende je 10 Mäuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>topische Applikation eines Gels von rhSOD inkorporiert in SUV; Dosis: 0,15 mg rhSOD/cm² Behandlungsfläche</td>
<td>4 von 10</td>
</tr>
<tr>
<td>B</td>
<td>topische Applikation eines Gels von rhSOD inkorporiert in IV; Dosis: 0,15 mg rhSOD/cm² Behandlungsfläche</td>
<td>4 von 10</td>
</tr>
<tr>
<td>C</td>
<td>topische Applikation eines Gels von rhSOD inkorporiert in MLV; Dosis: 0,42 mg rhSOD/cm² Behandlungsfläche</td>
<td>3 von 10</td>
</tr>
<tr>
<td>D</td>
<td>topische Applikation eines Gels mit IV ohne rhSOD</td>
<td>2 von 10</td>
</tr>
<tr>
<td>E</td>
<td>s.c. Applikation einer Suspension von rhSOD inkorporiert in SUV; Dosis: 0,5 ml; Suspension: 1 mg rhSOD/ml</td>
<td>8 von 10</td>
</tr>
<tr>
<td>F</td>
<td>s.c. Applikation einer Suspension von rhSOD inkorporiert in IV; Dosis: 0,5 ml; Suspension: 1 mg rhSOD/ml</td>
<td>8 von 10</td>
</tr>
<tr>
<td>G</td>
<td>s.c. Applikation einer Suspension von rhSOD inkorporiert in MLV; Dosis: 0,5 ml; Suspension: 3 mg rhSOD/ml</td>
<td>5 von 10</td>
</tr>
<tr>
<td>H</td>
<td>s.c. Applikation von 0,5 ml einer IV-Suspension ohne rhSOD</td>
<td>1 von 10</td>
</tr>
<tr>
<td>I</td>
<td>i.v. Applikation einer Suspension von rhSOD inkorporiert in SUV; Dosis: 0,5 ml; Suspension: 1 mg rhSOD/ml</td>
<td>9 von 10</td>
</tr>
<tr>
<td>J</td>
<td>i.v. Applikation einer Suspension von rhSOD inkorporiert in IV; Dosis: 0,5 ml; Suspension: 1 mg rhSOD/ml</td>
<td>10 von 10</td>
</tr>
<tr>
<td>K</td>
<td>i.v. Applikation einer Suspension von rhSOD inkorporiert in MLV; Dosis: 0,5 ml; Suspension: 3 mg rhSOD/ml</td>
<td>4 von 10</td>
</tr>
<tr>
<td>L</td>
<td>i.v. Applikation von 0,5 ml einer IV-Suspension ohne rhSOD</td>
<td>1 von 10</td>
</tr>
<tr>
<td>M</td>
<td>i.n. Applikation einer Suspension von rhSOD inkorporiert in IV; Dosis: 0,05 ml; Suspension: 1 mg rhSOD/ml</td>
<td>8 von 10</td>
</tr>
<tr>
<td>N</td>
<td>Kontrollgruppe ohne Behandlung</td>
<td>1 von 10</td>
</tr>
</tbody>
</table>
Resultat:
Mäuse, die parenteral (s.c., i.v. und i.n.) mit rhSOD in SUV oder IV-Liposomen behandelt wurden, überlebten in den meisten Fällen (Gruppen E, F, I, J, M) im Vergleich mit den Kontrollgruppen, welche entweder überhaupt nicht oder nur mit Liposomen ohne SOD behandelt wurden (Gruppen H, L, und N). Es zeigte sich überraschenderweise ausserdem, dass Mäuse, die mit rhSOD in MLV behandelt wurden, weniger gut gegen die tödliche Influenza-Infektion geschützt waren, obwohl in diesen Liposomenpräparationen eine höhere rhSOD-Menge eingesetzt wurde (Gruppen C, G, und K). Der Grund dafür liegt wahrscheinlich in der Vesikelgröße (im Bereich von 500 nm; zum Vergleich: IV ≤ ca. 200 nm; SUV ≤ ca. 100 nm), schlechterer Verteilung und geringerer Fusionsfähigkeit der MLV mit den Zellen, wie anhand eines in vitro-Fusionsassays festgestellt werden konnte (Fusions assay: CHO-Zellen wurden über Nacht mit 20 µmol rhSOD-haltigen IV und MLV-Liposomen inkubiert, rhSOD wurde durch Immunfloureszenz nach Behandlung mit 1% Triton X100 detektiert).

Die topische Behandlung der Influenza-infizierten Mäuse mit rhSOD-Gel erzeugte nur einen teilweisen Schutz gegen die tödlichen Folgen der Erkrankung; dennoch war dieser Schutz signifikant in den Gruppen, die mit SUV oder IV-Präparationen (Gruppen A und B) behandelt wurden. Die Resultate zeigen, dass freie Sauerstoffradikale eine bedeutende Rolle in Hinblick auf die tödlichen Auswirkungen der Influenzainfektion bei Mäusen spielen und dass rhSOD, inkorporiert in kleine liposomale Vesikel (SUV und IV), ein beachtliches therapeutisches Potential gegenüber dieser Virusinfektion besitzt.

Die Resultate zeigen ausserdem, dass rhSOD, inkorporiert in kleine Liposomen (SUV, IV) mit einem Durchmesser von rund 200 nm und darunter, offensichtlich die Hautbarriren selbst bei im wesentlichen gesunder, intakter Haut überwinden und in tiefere Gewebeschichten penetrieren kann, um so seine schützende Wirkung gegenüber der Virusinfektion im Lungenbereich (Lungenentzündung) zu entfalten. Liposomal inkorporierte rhSOD kann daher nicht nur für i.v., s.c. und i.n. Applikationen, sondern auch in Form von Salben, Gelen, Crèmes oder anderen geeigneten Formulierungen, gegebenenfalls in Kombination mit anderen Wirkstoffen und/oder inklusive weiterer Zusatzstoffe, als ein wirksames Therapeutikum zur Behandlung von
Krankheiten eingesetzt werden, die im Zusammenhang mit freien Sauерstoffradikal verursachten - Entzündungen, insbesondere der oberen Atemwege und der Lunge.

Beispiel 5: Topische Anwendung bei Herpes labialis

In einem Humanversuch wurde rhSOD, inkorporiert in kleine, unilamellare Vesikeln ("small unilamellar vesicles", SUV) mit einem Vesikeldurchmesser von rund 100 nm oder darunter, gegen eine lokale Hautentzündung im Mundbereich, verursacht durch Fieberbläschen auf der Lippe (herpes labialis), getestet. Herpesinfektionen und Herpeserkrankungen sind bekanntermaßen schwierig zu behandeln und für die Betroffenen zumeist sehr unangenehm, da sie häufig Schmerzen (z.B. bei herpes zoster), Jucken, Brennen, Nässeln und/oder kosmetisch unvorteilhafte Auswirkungen, speziell im Gesichtsbereich, verursachen.

Die liposomale rhSOD-Präparation auf Basis des Carbopol®-Gels hatte eine hautcremeartige Konsistenz und wurde in einer Konzentration von rund 0.15 mg rhSOD pro cm² Behandlungsfläche ein- bis zweimal pro Tag direkt auf den entzündeten Bereich aufgetragen. Bereits nach der ersten Anwendung zeigte sich innerhalb weniger Stunden eine spürbare Erleichterung und schon nach 3-tägiger Behandlung waren die typischen Symptome weitestgehend abgeklungen.

Beispiel 6: Topische Anwendung gegen Allergie

Das rhSOD-Gel wurde, analog zu Beispiel 5, in einer Konzentration von ca. 0.15 mg rhSOD pro cm² Behandlungsfläche im gesamten betroffenen
Gesichtsbereich wie eine Hautcreme aufgetragen. Das Ergebnis war beeindruckend: Bereits nach einmaligem Auftragen gingen die Schwellungen fast vollständig zurück; sicherheitshalber wurde am darauf folgenden Tag zwar noch ein zweites Mal eingecremt, eine weitere Behandlung war jedoch nicht mehr nötig. Die Beschwerden sind praktisch vollständig abgeklungen.

Beispiel 7: Anwendung gegen Psoriasis

In einem weiteren Versuch wurde das rhSOD-Gel aus Beispiel 5 an einem kindlichen Patienten gegen Psoriasis eingesetzt. Das Präparat wurde, analog zu Beispiel 5, in einer Konzentration von ca. 0.15 mg rhSOD pro cm² Behandlungsfläche an allen betroffenen Körperstellen 2x täglich (am Morgen und am Abend) wie eine Hautcreme aufgetragen.

1. Verwendung von rekombinanter humaner SOD (rhSOD) in Liposomen, in Mischung mit Hyaluronsäure und/oder mindestens einem physiologisch akzeptablen Träger, sowie gegebenenfalls weiteren Zusätzen, für die Herstellung einer pharmazeutischen Zubereitung zur prophylaktischen und/oder therapeutischen Anwendung gegen erhöhte Konzentrationen an Superoxidradikalen und/oder dadurch verursachte Schädigungen.

5. Verwendung von SOD in Liposomen, vorzugsweise rekombinanter humaner SOD (rhSOD), gegebenenfalls in Mischung mit Hyaluronsäure und/oder mindestens einem physiologisch akzeptablen Träger, sowie
gegebenenfalls weiteren Zusätzen, für die Herstellung einer Zubereitung zur Verbesserung der Haltbarkeit von organischen, vorzugsweise biogenen, Materialien.

7. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die pharmazeutische Zubereitung ausserdem auf eine, vorzugsweise sterile, Wundabdeckung aufgebracht wird, insbesondere zur raschen und einfachen Behandlung und/oder Selbst-Behandlung bei kleineren und mittelgrossen Brandwunden, äusserlichen Entzündungen und rheumatischen Gelenksentzündungen.

8. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die pharmazeutische Zubereitung ausserdem durch Aufsprühen aus einer Sprühflasche oder einer sonstigen Sprühvorrichtung appliziert wird.

10. Verwendung nach Anspruch 1 oder 4 für die Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen rheumatische Gelenksentzündungen und/oder Osteoarthritis.

11. Verwendung nach Anspruch 1 oder 4 für die Herstellung einer pharmazeutischen Zubereitung zur Anwendung, vorzugsweise per Inhalation, gegen Entzündungen der Atemwege und der Lunge, insbesondere gegen Bronchitis, Schocklunge (ARDS) und/oder Lungenemphysem.
12. Verwendung nach einem der Ansprüche 1 bis 4 für die Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen lokale Entzündungen der Haut, Hautemphyseme, Furunkeln oder Akne.

13. Verwendung nach Anspruch 1, 5 oder 6 für die Herstellung einer Zubereitung zur Anwendung bei organischen Geweben, insbesondere tierischen Geweben, Organen, und Organ- bzw. Gewebetransplantaten.

14. Verwendung nach Anspruch 1, 5 oder 6 für die Herstellung einer Zubereitung zur Anwendung bei Lebensmitteln, vorzugsweise leichtverderblichen Fleisch- und Molkereiprodukten.

15. Verwendung nach Anspruch 1, 5 oder 6 für die Herstellung einer Zubereitung zur Verbesserung der Haltbarkeit von kosmetischen Präparaten auf organischer Basis, vorzugsweise von Hautpflegemitteln, insbesondere von Salben, Crémes, Gelen, Wäsichern, Ölen, Lotions und dergleichen.

16. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SOD für äusserliche Anwendungen - vorzugsweise als Salbe, Crème, oder Gel - in einer Dosis von 0.01-1 mg/cm² behandelter Körperoberfläche, für orale oder parenterale Applikationen - vorzugsweise als Suspension - in einer Dosis von 0.5-50 mg/kg Körpergewicht eingesetzt wird.

17. Verwendung nach einem der vorhergehenden Ansprüche mit einem physiologisch akzeptablen Träger, dadurch gekennzeichnet, dass ein fettärmer oder fettfreier Träger, vorzugsweise aus der Gruppe der organischen und anorganischen Hydrogel, eingesetzt wird.

18. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SOD in einer Konzentration von grösser oder gleich 0.01 Gew.%, insbesondere von 0.01 bis 5 Gew.%, der Zubereitung verwendet wird.

19. Verwendung nach einem der vorhergehenden Ansprüche mit Hyaluronsäure, dadurch gekennzeichnet, dass die Hyaluronsäure in einer
Konzentration von grösser oder gleich 0.05 Gew.%, insbesondere von 0.1 bis 5 Gew.%, der Zubereitung eingesetzt wird.

22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die Zubereitung flüssig ist und mittels einer Sprühvorrichtung auf das organische Material aufgesprüht wird.

23. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die Zubereitung flüssig ist und das organische Material in die flüssige Zubereitung eingetaucht oder eingelegt wird.

26. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die Zubereitung zu organischem Material in einem kosmetischen Präparat hinzugefügt wird.

27. Verfahren nach einem der Ansprüche 20 bis 26 mit mindestens einem physiologisch akzeptablen Träger in der Zubereitung, dadurch gekennzeichnet, dass ein fettärmer oder fettfreier Träger, vorzugsweise aus der Gruppe der organischen und anorganischen Hydrogele, verwendet wird.

28. Verfahren nach einem der Ansprüche 20 bis 27, dadurch gekennzeichnet, dass die SOD in einer Konzentration von größer oder gleich 0.01 Gew.-%, insbesondere von 0.01 bis 5 Gew.-%, der Zubereitung eingesetzt wird.

29. Verfahren nach einem der Ansprüche 20 bis 28 mit Hyaluronsäure in der Zubereitung, dadurch gekennzeichnet, dass Hyaluronsäure in einer Konzentration von größer oder gleich 0.05 Gew.-%, insbesondere von 0.1 bis 5 Gew.-%, der Zubereitung verwendet wird.

30. Verfahren nach einem der Ansprüche 20 bis 29, dadurch gekennzeichnet, dass die SOD in einer Menge von 0.1 - 100 mg/kg organisches Material angewendet wird.

31. Verwendung nach Anspruch 1 oder 4 zur Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen mikrobiell, insbesondere durch Viren, verursachte Entzündungen.

32. Verwendung nach Anspruch 31 zur Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen Entzündungen, die durch Influenzavirus verursacht werden, insbesondere im Bereich der Atemwege und der Lunge.

33. Verwendung nach Anspruch 31 zur Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen Entzündungen, die durch Herpesvirus verursacht werden, insbesondere im Bereich von Mund und Lippen (herpes labialis).
34. Verwendung nach Anspruch 1 oder 4 zur Herstellung einer pharmazeutischen Zubereitung zur Anwendung gegen - insbesondere allergisch bedingte - Rötungen und Schwellungen der Haut.

35. Verwendung nach Anspruch 1 oder 4 zur Herstellung einer pharmazeutischen Zubereitung zur - vorzugsweise externen, topischen - Anwendung gegen Psoriasis.

36. Verwendung nach einem der Ansprüche 1 bis 6 mit SOD, vorzugsweise rhSOD, in Liposomen, wobei die Liposomen eine durchschnittliche Größe von weniger als 600 nm, vorzugsweise weniger als 300 nm, insbesondere weniger als 150 nm, aufweisen.

37. Verwendung nach Anspruch 36, dadurch gekennzeichnet, dass die Liposomen unilamellar sind.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K38/44 A23L1/015

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61K A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE WPI Week 8820 Derwent Publications Ltd., London, GB; AN 88-136325 & JP,A,63 077 824 (TOYO SODA MFG KK), 8 April 1988 see abstract</td>
<td>2,10,17</td>
</tr>
<tr>
<td>X</td>
<td>C.R. SEANCES SOC. BIOL. FIL., vol. 179, no. 4, 1985 pages 429-439, A.M. MICHELSON ET AL. 'La superoxide dismutase et la pathologie des radicaux libres.' see page 435 - page 436</td>
<td>2,12</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

* Special categories of cited documents:
' A' document defining the general state of the art which is not considered to be of particular relevance
' E' earlier document but published on or after the international filing date
' L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
' O' document referring to an oral disclosure, use, exhibition or other means
' P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
' X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
' Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
'

Date of the actual completion of the international search
14 March 1996

Date of mailing of the international search report
22.03.96

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HZ Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Facs (+31-70) 340-3016

Authorized officer
Klaver, T

Form PCT/ISA/218 (second sheet) (July 1992)

page 1 of 3
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE WPI
Week 9320
Derwent Publications Ltd., London, GB;
AN 93-164366
& JP,A,05 097 694 (DENKI KAGAKU KOGYO KK)
, 20 April 1993
see abstract</td>
<td>2,3,17</td>
</tr>
<tr>
<td>X</td>
<td>DATABASE WPI
Week 9006
Derwent Publications Ltd., London, GB;
AN 90-041606
& JP,A,01 319 427 (MIZUSHIMA), 25
December 1989
see abstract</td>
<td>2,3,8, 12,18</td>
</tr>
<tr>
<td>X</td>
<td>EP,A,0 207 039 (OLEOFINA SA) 30 December 1986
see claims</td>
<td>21,24</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0 457 910 (JAPAN TOBACCO INC.) 27 November 1991</td>
<td>---</td>
</tr>
<tr>
<td>Y</td>
<td>AM. REV. RESPIR DIS.,
vol. 132, no. 1, 1985
pages 164-167, XP 000566027
R.V. PADMANABHAN ET AL. 'Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase.'
see the whole document</td>
<td>1,11</td>
</tr>
<tr>
<td>Y</td>
<td>W0,A,87 01387 (SYN-TEK AB) 12 March 1987
see page 20 - page 28; examples 7-14</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>BULL. CANCER,
vol. 80, no. 9, 1993
pages 799-807,
J.L. LEFAIX ET AL. 'La fibrose cutanéo-musculaire radio-induite: efficacité thérapeutique majeure de la superoxide dismutase Cu/Zn liposomiale.'</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>DERMATOLOGICA,
vol. 179, no. SP.1, 1989
pages 101-106,
Y. NIWA 'Lipid peroxides and superoxide dismutase (SOD) induction in skin inflammatory diseases, and treatment with SOD preparations.'</td>
<td>---</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>A</td>
<td>AM. REV. RESPIR. DIS., vol. 131, no. 4, 1985 pages 633-637, XP 000565349 R.J. MCDONALD ET AL. 'Effect of superoxide dismutase encapsulated in liposomes or conjugated with polyethylene glycol on neutrophil bactericidal activity in vitro and bacterial clearance in vivo.'</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>FREE RADICAL BIOLOGY & MEDICINE, vol. 16, no. 6, 1994 pages 821-824, XP 000565354 D.B. JACOBY ET AL. 'Influenza virus inducec expression of antioxidant genes in human epithelial cells.'</td>
<td>---</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP-A-0207039</td>
<td>30-12-86</td>
<td>LU-A- 85910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1261674</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 61271959</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4957749</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2045550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9107416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9206987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR-B- 9400166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 3218389</td>
</tr>
<tr>
<td>WO-A-8701387</td>
<td>12-03-87</td>
<td>AU-B- 598256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 6370886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3682506</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A,B 0236385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE-B- 59078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-A- 79926</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 63501473</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU-A- 1779263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5472691</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 A61K38/44 A23L1/015

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationszeichen)

IPK 6 A61K A23L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter den recherchierten Gebieten fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>C.R. SEANCES SOC. BIOL. FIL., Bd. 179, Nr. 4, 1985 Seiten 429-439, A.M. MICHELSON ET AL. 'La superoxide dismutase et la pathologie des radicaux libres.' siehe Seite 435 - Seite 436</td>
<td>2,12</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen und der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 'A' Veröffentlichung, die dem allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 'L' Veröffentlichung, die gernacht ist, einen Prioritätsanspruch zweifelhaft er- schenen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenericht genannten Veröffentlichung beeinflußt wird, soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung,
 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

'X' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nur auf Grund seiner Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

'X' Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

'&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendetermin des internationalen Recherchenberichts 22. 03. 96

Name und Postanschrift der Internationale Recherchebehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Bevollmächtigter Beidensetzer Klaver, T

Formblatt: PCT/ISA/218 (Blatt 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| X | DATABASE WPI
Week 9320
Derwent Publications Ltd., London, GB;
AN 93-164366
& JP,A,05 097 694 (DENKI KAGAKU KOGYO KK)
, 20.April 1993
siehe Zusammenfassung
--- | 2,3,17 |
| X | DATABASE WPI
Week 9006
Derwent Publications Ltd., London, GB;
AN 90-041606
& JP,A,01 319 427 (MIZUSHIMA),
25.Dezember 1989
siehe Zusammenfassung
--- | 2,3,8, 12,18 |
| X | EP,A,0 207 039 (OLEOFINA SA) 30.Dezember 1986
siehe Ansprüche
--- | 21,24 |
| A | EP,A,0 457 910 (JAPAN TOBACCO INC.)
27.November 1991 | --- |
| Y | AM. REV. RESPIR DIS.,
Bd. 132, Nr. 1, 1985
Seiten 164-167, XP 000566027
R.V. PADMANABHAN ET AL. 'Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase.'
siehe das ganze Dokument
--- | 1,11 |
siehe Seite 20 - Seite 28; Beispiele 7-14
--- | 1,11 |
| A | BULL. CANCER,
Bd. 80, Nr. 9, 1993
Seiten 799-807,
J.L. LEFAIX ET AL. 'La fibrose cutanéo-musculaire radio-induite: efficacité thérapeutique majeure de la superoxide dismutase Cu/Zn liposomiale.'
--- | --- |
| A | DERMATOLOGICA,
Bd. 179, Nr. SP.1, 1989
Seiten 101-106,
Y. NIWA 'Lipid peroxides and superoxide dismutase (SOD) induction in skin inflammatory diseases, and treatment with SOD preparations.'
--- | --- |
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AM. REV. RESPIR. DIS., Bd. 131, Nr. 4, 1985, Seiten 633-637, XP 000565349 R. J. MCDONALD ET AL. 'Effect of superoxide dismutase encapsulated in liposomes or conjugated with polyethylene glycol on neutrophil bactericidal activity in vitro and bacterial clearance in vivo.' ---</td>
</tr>
<tr>
<td>A</td>
<td>EUR. J. DERMATOL., Bd. 4, Nr. 5, 1994, Seiten 389-393, XP 000565353 A. A. YOUSSEFI ET AL. 'Oxiradical involvement in puva-induced skin reactions. Protection by local application of SOD.' ---</td>
</tr>
<tr>
<td>A</td>
<td>FREE RADICAL BIOLOGY & MEDICINE, Bd. 16, Nr. 6, 1994, Seiten 821-824, XP 000565354 D. B. JACOBY ET AL. 'Influenza virus inducec expression of antioxidant genes in human epithelial cells.' ---</td>
</tr>
<tr>
<td>A</td>
<td>DRUGS EXP. CLIN. RES., Bd. 17, Nr. 2, 1991, Seiten 127-131, XP 000565350 Y. MIZUSHIMA ET AL. 'Topical application of superoxide dismutase cream.' -----</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>EP-A-0207039</td>
<td>30-12-86</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WO-A-8701387</td>
<td>12-03-87</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>