METHOD AND APPARATUS FOR IMPROVING EFFICIENCY OF UHLE BOXES IN THE PROCESS OF PAPER PRODUCTION BY APPLYING A HOMOGENEOUS MIXTURE OF SUPERHEATED HUMID AIR

The invention comprises a method for improving efficiency of uhle boxes in the process of paper manufacturing. The essence of the invention is the use of a homogeneous mixture of superheated humid air in the press section of a paper machine. A very intense mixing of air and steam takes place in venturi injector which creates a uniform mixture, with appropriate composition and temperature, directed to a blowing nozzle. The mixture is then used in the forced flow through felt to a suction slot installed under the felt. The correct mixture composition ensures its minimum density, maximum speed and minimum time of flow through felt. It is important because the flow takes place when felt is running fast. The time ratio of the flow of homogeneous mixture of superheated humid air versus longitudinal movement of felt equals the actual working surface area of the suction slot. Extended working area directly influences the quality of felts conditioning and paper dewatering in the press section.
METHOD AND APPARATUS FOR IMPROVING EFFICIENCY OF UHLE BOXES IN THE PROCESS OF PAPER PRODUCTION BY APPLYING A HOMOGENEOUS MIXTURE OF SUPERHEATED HUMID AIR

BACKGROUND OF THE INVENTION

[0001] Currently, so called uhle boxes are used in the paper making process to condition press felts. These boxes are in fact vacuum pipes with slots of different size and shape directed towards the inside. The air flows through felt, which is moving over slots, and is then sucked off to a vacuum pump. During the process water and other contaminants from felt are sucked away together with air. This is a crucial stage for appropriate paper dewatering in the press section. Current paper machines are running at a speed much higher than the speed of air flowing through felt.

[0002] The cross-directional movement of a fast moving felt versus airflow leads to a deflection of the air stream in the direction of running felt and therefore causes considerable reduction in the working surface of uhle box.

[0003] In case of very fast paper machines this leads to a total cancellation of the open airflow surface and consequently hinders any felt conditioning.

[0004] The presented method improves the currently employed technologies in order to enhance paper production process.

BRIEF SUMMARY OF THE INVENTION

[0005] The objective of the invention is to provide an improved felts conditioning method for paper machines with the use of a specifically prepared homogeneous mixture of superheated humid air and steam which enhances functioning of existing systems of uhle boxes used for felts cleaning and dewatering.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a schematic view of uhle box with press felt moving above it; in fact, it is a commonly used device in the paper manufacturing industry.

[0007] FIG. 1A is a side elevation view of the situation taking place inside the vacuum slot of uhle box for atmospheric air penetrating felt.

[0008] FIG. 2 is a schematic view of uhle box with the presented invention system installed.

[0009] FIG. 2A is a side elevation view in uhle box vacuum slot for homogeneous mixture of superheated humid air penetrating felt.

DETAILED DESCRIPTION OF THE INVENTION

[0011] In the paper manufacturing process there is a need to dewater and dry the end product. The degree to which paper is dewatered is of great importance because it directly impacts how much energy is saved further in the production process, particularly in the drying process. The invention comprises the method for improving efficiency of uhle boxes. Contemporary paper machines are running at a speed much higher than the speed of atmospheric air flowing through felt [FIG. 1]. The cross-directional movement of a fast moving felt versus airflow leads to a deflection of the airstream in the direction of running felt and therefore causes considerable reduction in the working surface (3) of uhle box (1) [FIG. 1A]. The essence of felt conditioning with the presented system [FIG. 2] is the increase in the working surface (3) of existing uhle boxes (1) thanks to a higher speed of homogeneous superheated humid airflow through felt (3). The method is based on the Darcy–Weisbach equation: \(W_a = \sqrt{\frac{1}{K}} \cdot \sqrt{2 \Delta P/d} \), \(W_a \) — air speed inside the felt, \(K \) — density of air, \(\Delta P \) — vacuum level, \(K \) — Darcy friction factor (depending on dwell time, contamination, felt compaction, water content). The homogeneous superheated humid air is around 2.5 times less dense than atmospheric air. According to the suggested equation the speed of mixture flow through felt is inversely proportional to the square root of the density. Reducing the density will therefore increase the flow velocity of the mixture in relation to clean air \(\sqrt{2.5} = 1.58 \) times. This in turn will shorten the time of the mixture flow and will reduce the deviation of the stream through moving felt [FIG. 2A]. In consequence, the working surface (3) of uhle box (1) is larger and because of that felt (2) conditioning improves.

[0012] Homogeneous superheated humid air from blowing nozzle is sucked into uhle box (1) [FIG. 2] through felt (2) which is being dewatered in the process. A homogeneous mixture of superheated humid air is generated in a mixer (4). A mixer, for example venturi injector (4) [FIG. 2], is powered by steam with a pressure of 45 to 200 PSI and it sucks air. Temperature and amount of air and steam is measured before and after venturi injector. By regulating the steam quantity it is possible to determine the appropriate temperature of the mixture from the mixer such that it is at least 20 F. above the temperature of saturated air for the same composition. This homogeneous mixture of superheated humid air is directed towards a blowing nozzle (5) and then is sucked in by felt (2) into linear or herringbone slots (3) of uhle box (1).

[0013] The dwell time of felt in the open area of uhle box is crucial because it directly impacts water and contaminants removal from felt. A portion of moisture evaporates and is sucked away. The remainder of water in the liquid form is substantially easier to suck off in higher temperature due to decrease in its viscosity and density. As a consequence, simultaneous sucking and preheating of felt by means of air-steam flow impacts the intensification of paper dewatering in the press section of the paper machine. As a result, paper web subjected to thermal drying is characterized by higher dryness.

The invention claimed is:

1. The method of improving efficiency of uhle boxes in the process of paper production by blowing a homogeneous mixture of superheated humid air through the felt to the Uhle Box, wherein:
 said mixture (not pure steam and not hot dry air) is homogeneous and superheated by a minimum of 20 F. above the saturation point and is created in the mixing process of air with superheated steam;
 temperature of said mixture is between 175-260 F;
 absolute pressure of said mixture is between 15.5-16.5 PSI.

* * * * *