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VIDEO COMPRESSION REPOSITORY AND MODEL REUSE
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U.S. Provisional Application No. 60/598,085, filed July 30, 2004. U.S. Application
No. 11/396,010 also claims priority to U.S. Provisional Application No. 60/667,532,
filed March 31, 2005 and U.S. Provisional Application No. 60/670,951, filed April
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This application is also related to U.S. Patent Application No. 13/725,940,
filed on December 21, 2012 which claims the benefit of U.S. Provisional
Application Nos. 61/707,650 filed on September 28, 2012 and 61/615,795 filed on
March 26, 2012.

The entire teachings of the above applications are incorporated herein by

reference.

BACKGROUND

[0002] Video compression can be considered the process of representing digital
video data in a form that uses fewer bits when stored or transmitted. Video
compression algorithms can achieve compression by exploiting redundancies and
irrelevancies in the video data, whether spatial, temporal, or color-space. Video
compression algorithms typically segment the video data into portions, such as
groups of frames and groups of pels, to identify areas of redundancy within the
video that can be represented with fewer bits than the original video data. When
these redundancies in the data are reduced, greater compression can be achieved.
An encoder can be used to transform the video data into an encoded format, while a
decoder can be used to transform encoded video back into a form comparable to the
original video data. The implementation of the encoder/decoder is referred to as a
codec.

[0003] Standard encoders divide a given video frame into non-overlapping
coding units or macroblocks (rectangular regions of contiguous pels) for encoding.
The macroblocks are typically processed in a traversal order of left to right and top
to bottom in the frame. Compression can be achieved when macroblocks are
predicted and encoded using previously-coded data. The process of encoding

macroblocks using spatially neighboring samples of previously-coded macroblocks
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within the same frame is referred to as intra-prediction. Intra-prediction attempts to
exploit spatial redundancies in the data. The encoding of macroblocks using similar
regions from previously-coded frames, together with a motion estimation model, is
referred to as inter-prediction. Inter-prediction attempts to exploit temporal
redundancies in the data.

[0004] The encoder may generate a residual by measuring the difference
between the data to be encoded and the prediction. The residual can provide the
difference between a predicted macroblock and the original macroblock. The
encoder can generate motion vector information that specifies, for example, the
location of a macroblock in a reference frame relative to a macroblock that is being
encoded or decoded. The predictions, motion vectors (for inter-prediction),
residuals, and related data can be combined with other processes such as a spatial
transform, a quantizer, an entropy encoder, and a loop filter to create an efficient
encoding of the video data. The residual that has been quantized and transformed
can be processed and added back to the prediction, assembled into a decoded frame,
and stored in a framestore. Details of such encoding techniques for video will be
familiar to a person skilled in the art.

[0005] H.264/MPEG-4 Part 10 AVC (advanced video coding), hereafter referred
to as H.264, is a codec standard for video compression that utilizes block-based
motion estimation and compensation and achieves high quality video representation
at relatively low bitrates. This standard is one of the encoding options used for Blu-
ray disc creation and within major video distribution channels, including video
streaming on the internet, video conferencing, cable television, and direct-broadcast
satellite television. The basic coding units for H.264 are 16X16 macroblocks. H.264
is the most recent widely-accepted standard in video compression.

[0006] The basic MPEG standard defines three types of frames (or pictures),
based on how the macroblocks in the frame are encoded. An I-frame (intra-coded
picture) is encoded using only data present in the frame itself. Generally, when the
encoder receives video signal data, the encoder creates I frames first and segments
the video frame data into macroblocks that are each encoded using intra-prediction.

Thus, an I-frame consists of only intra-predicted macroblocks (or “intra
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macroblocks”). I-frames can be costly to encode, as the encoding is done without
the benefit of information from previously-decoded frames. A P-frame (predicted
picture) is encoded via forward prediction, using data from previously-decoded I-
frames or P-frames, also known as reference frames. P-frames can contain either
intra macroblocks or (forward-)predicted macroblocks. A B-frame (bi-predictive
picture) is encoded via bidirectional prediction, using data from both previous and
subsequent frames. B-frames can contain intra, (forward-)predicted, or bi-predicted
macroblocks.

[0007] As noted above, conventional inter-prediction is based on block-based
motion estimation and compensation (BBMEC). The BBMEC process searches for
the best match between the target macroblock (the current macroblock being
encoded) and similar-sized regions within previously-decoded reference frames.
When a best match is found, the encoder may transmit a motion vector. The motion
vector may include a pointer to the best match’s frame position as well as
information regarding the difference between the best match and the corresponding
target macroblock. One could conceivably perform exhaustive searches in this
manner throughout the video “datacube” (height X width X frame) to find the best
possible matches for each macroblock, but exhaustive search is usually
computationally prohibitive. As a result, the BBMEC search process is limited, both
temporally in terms of reference frames searched and spatially in terms of
neighboring regions searched. This means that “best possible” matches are not
always found, especially with rapidly changing data.

[0008] A particular set of reference frames is termed a Group of Pictures (GOP).
The GOP contains only the decoded pels within each reference frame and does not
include information as to how the macroblocks or frames themselves were originally
encoded (I-frame, B-frame or P-frame). Older video compression standards, such as
MPEG-2, used one reference frame (the previous frame) to predict P-frames and two
reference frames (one past, one future) to predict B-frames. The H.264 standard, by
contrast, allows the use of multiple reference frames for P-frame and B-frame

prediction. While the reference frames are typically temporally adjacent to the
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current frame, there is also accommodation for the specification of reference frames
from outside the set of temporally adjacent frames.

[0009] Conventional compression allows for the blending of multiple matches
from multiple frames to predict regions of the current frame. The blending is often
linear, or a log-scaled linear combination of the matches. One example of when this
bi-prediction method is effective is when there is a fade from one image to another
over time. The process of fading is a linear blending of two images, and the process
can sometimes be effectively modeled using bi-prediction. Some past standard
encoders such as the MPEG-2 interpolative mode allow for the interpolation of
linear parameters to synthesize the bi-prediction model over many frames.

[0010] The H.264 standard also introduces additional encoding flexibility by
dividing frames into spatially distinct regions of one or more contiguous
macroblocks called slices. Each slice in a frame is encoded (and can thus be
decoded) independently from other slices. I-slices, P-slices, and B-slices are then
defined in a manner analogous to the frame types described above, and a frame can
consist of multiple slice types. Additionally, there is typically flexibility in how the
encoder orders the processed slices, so a decoder can process slices in an arbitrary
order as they arrive to the decoder.

[0011] Historically, model-based compression schemes have been proposed to
avoid the limitations of BBMEC prediction. These model-based compression
schemes (the most well-known of which is perhaps the MPEG-4 Part 7 standard)
rely on the detection and tracking of objects or features in the video and a method
for encoding those features/objects separately from the rest of the video frame.
These model-based compression schemes, however, suffer from the challenge of
segmenting video frames into object vs. non-object (feature vs. non-feature) regions.
First, because objects can be of arbitrary size, their shapes need to be encoded in
addition to their texture (color content). Second, the tracking of multiple moving
objects can be difficult, and inaccurate tracking causes incorrect segmentation,
usually resulting in poor compression performance. A third challenge is that not all
videos are composed of objects or features, so there needs to be a fallback encoding

scheme when objects/features are not present.
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[0012] While the H.264 standard allows a codec to provide better quality video
at lower file sizes than previous standards, such as MPEG-2 and MPEG-4 ASP
(advanced simple profile), “conventional” compression codecs implementing the
H.264 standard typically have struggled to keep up with the demand for greater
video quality and resolution on memory-constrained devices, such as smartphones
and other mobile devices, operating on limited-bandwidth networks. Video quality
and resolution are often compromised to achieve adequate playback on these
devices. Further, as video resolution increases, file sizes increase, making storage of

videos on and off these devices a potential concern.

SUMMARY

[0013] Co-pending U.S. Application No. 13/725,940 by Applicant (herein "the
'940 Application") presents a model-based compression scheme that avoids the
segmentation problem noted above. While the model-based compression framework
(MBCF) of Applicant's co-pending '940 Application also detects and tracks
objects/features to identify important regions of the video frame to encode, it does
not attempt to encode those objects/features explicitly. Rather, the objects/features
are related to nearby macroblocks, and it is the macroblocks that are encoded, as in
“conventional” codecs. This implicit use of modeling information mitigates the
segmentation problem in two ways: it keeps the sizes of the coding units
(macroblocks) fixed (thus avoiding the need to encode object/feature shapes), and it
lessens the impact of inaccurate tracking (since the tracking aids but does not dictate
the motion estimation step). Additionally, the MBCF of the co-pending '940
Application applies modeling to video data at multiple fidelities, including a fallback
option to conventional compression when objects/features are not present; this
hybrid encoding scheme ensures that modeling information will only be used where
needed and not incorrectly applied where it is not needed.

[0014] US Patent No. 6,088,484 to Mead proposed an extension of the standard
model-based compression schemes where objects detected in one video could be
stored and then reused to aid compression of similar objects in another video.

However, the model-reuse compression scheme of this Mead patent involves explicit
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or direct encoding of objects/features in the new video and thus is faced with the
same segmentation problems noted above (i.¢., the challenge of accurately
segmenting objects/features from non-objects/non-features). The present invention
proposes a model-reuse compression scheme within the framework of the co-
pending '940 Application, whose implicit use of object/feature models to indicate
important macroblocks to encode avoids the segmentation problem while retaining
most of the benefits of modeling to improve encoder prediction.

[0015] The present invention recognizes fundamental limitations in the inter-
prediction process of conventional video codecs and applies higher-level modeling
to overcome those limitations and provide improved inter-prediction, while
maintaining the same general processing flow and framework as conventional
encoders.

[0016] The present invention builds on the model-based compression approach
presented in the co-pending '940 Application, where features are detected, modeled,
and tracked within a video, and the feature information is used to improve prediction
and encoding of later data within the same video. This “online” feature-based
prediction of the '940 Application, where feature information is generated and used
to help encode video segments later in the same video, is extended in the present
invention to “offline” feature-based prediction, where feature information from one
video is persisted or saved into a model library, to be reused to identify target
macroblocks and thus help encode data from another video. This is accomplished in
a manner free of feature segmentation in the target video. While standard
compression techniques as well as the online prediction in the '940 Application
attempt to exploit temporal redundancies within a single video, the offline prediction
presented by the present invention attempts to exploit redundancies across multiple
videos.

[0017] The four major components of an offline feature-based compression
scheme of the present invention are: (i) generating the feature models and
associated information from an input video or videos and saving the feature
information; (i1) reusing the saved feature information to improve compression of

another video (different from or unrelated to the input videos) in a manner avoiding
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feature segmentation in that video; (iii) forming a feature model library out of the
feature information from a large set of input videos; and (iv) using the feature model
library in decoding the unrelated or target videos. The formation of model libraries
can be specialized to include personal, “smart” model libraries, differential libraries,
and predictive libraries. Predictive model libraries can be modified to handle a

variety of demand scenarios.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The foregoing will be apparent from the following more particular
description of example embodiments of the invention, as illustrated in the
accompanying drawings in which like reference characters refer to the same parts
throughout the different views. The drawings are not necessarily to scale, emphasis
instead being placed upon illustrating embodiments of the present invention.

[0019] FIG. 1 is a block diagram depicting feature modeling according to an
embodiment of the invention.

[0020] FIG. 2 is a block diagram depicting feature tracking according to an
embodiment of the invention.

[0021] FIG. 3 is a flow diagram of a process of model extraction and generating
feature models employed by an example embodiment of the repository.

[0022] FIG. 4A is a screenshot of a feature-based compression tool in
accordance with example implementations.

[0023] FIG. 4B is a screenshot of a feature-based compression tool in
accordance with example implementations.

[0024] FIG. 5 is a block diagram illustrating the processing elements of
modeling macroblocks as features that are aligned with macroblock boundaries.
[0025] FIG. 6A is a flow diagram of a process of generating an index employed
by the repository.

[0026] FIG. 6B is a flow diagram of a process of using an index employed by
the repository.

[0027] FIG 7 is a block diagram of a normalization cube. The normalization

cube is a collection of correlation tables.
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[0028] FIG. 8A is a flow diagram of an example embodiment of a process to
generate an index.

[0029] FIG. 8B is a flow diagram of an example embodiment of process to look
up a feature using the index.

[0030] FIG. 8C is a flow diagram illustrating another process employed by an
example embodiment of the repository.

[0031] FIG. 8D is a flow diagram illustrating a process employed by an example
embodiment of the repository.

[0032] FIG. 9A is a block diagram of an example embodiment of a repository
operatively connected with a client device over a network.

[0033] FIG. 9B is a block diagram of another example embodiment of a
repository configured to communicate with the client device over the network.
[0034] FIG. 10 is a block diagram illustrating an example embodiment of the
repository operatively connected to the client device over the network.

[0035] FIG. 11A is a schematic diagram of a computer network environment in
which embodiments are deployed.

[0036] FIG. 11B is a block diagram of the computer nodes in the network of
FIG. 11A.

DETAILED DESCRIPTION

[0037] The teachings of all patents, published applications and references cited
herein are incorporated by reference in their entirety. A description of example
embodiments of the invention follows.

[0038] The invention can be applied to various standard encodings and coding

units. In the following, unless otherwise noted, the terms “conventional” and

2% ¢ 2% ¢

“standard” (sometimes used together with “compression,” “codecs,” “encodings,” or
“encoders”) will refer to H.264, and “macroblocks” will be referred to without loss
of generality as the basic H.264 coding unit.

[0039] Generating and Saving Feature Models

[0040] Definition of features
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[0041] Example elements of the invention may include video compression and
decompression processes that can optimally represent digital video data when stored
or transmitted. The processes may include or interface with a video
compression/encoding algorithm(s) to exploit redundancies and irrelevancies in the
video data, whether spatial, temporal, or spectral. This exploitation may be done
through the use and retention of feature-based models/parameters. Moving forward,
the terms “feature” and “object” are used interchangeably. Objects can be defined,
without loss of generality, as “large features.” Both features and objects can be used
to model the data.

[0042] Features are groups of pels in close proximity that exhibit data
complexity. Data complexity can be detected via various criteria, as detailed below,
but the ultimate characteristic of data complexity from a compression standpoint is
“costly encoding,” an indication that an encoding of the pels by conventional video
compression exceeds a threshold that would be considered “efficient encoding.”
When conventional encoders allocate a disproportionate amount of bandwidth to
certain regions (because conventional inter-frame search cannot find good matches
for them within conventional reference frames), it becomes more likely that the
region is “feature-rich” and that a feature model-based compression method will
improve compression significantly in those regions.

[0043] Feature detection

[0044] FIG. 1 depicts a feature whose instances 10-1, 10-2,...,10-n have been
detected in one or more frames of the video 20-1, 20-2,...,20-n. Typically, such a
feature can be detected using several criteria based on both structural information
derived from the pels and complexity criteria indicating that conventional
compression utilizes a disproportionate amount of bandwidth to encode the feature
region. Each feature instance can be further identified spatially in its frame 20-1,
20-2, ...,20-n by a corresponding spatial extent or perimeter, shown in FIG. 1 as
“regions” 30-1, 30-2, ..., 30-n. These feature regions 30-1, 30-2, ..., 30-n can be
extracted, for instance, as simple rectangular regions of pel data. In one
embodiment of the current invention, the feature regions are of size 16X16, the same

size as H.264 macroblocks.
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[0045] Many algorithms have been proposed in the literature for detecting
features based on the structure of the pels themselves, including a class of
nonparametric feature detection algorithms that are robust to different
transformations of the pel data. For example, the scale invariant feature transform
(SIFT) [Lowe, David, 2004, “Distinctive image features from scale-invariant
keypoints,” Int. J. of Computer Vision, 60(2):91-110] uses a convolution of a
difference-of-Gaussian function with the image to detect blob-like features. The
speeded-up robust features (SURF) algorithm [Bay, Herbert et al., 2008, “SURF:
Speeded up robust features,” Computer Vision and Image Understanding,
110(3):346-359] uses the determinant of the Hessian operator, also to detect blob-
like features. In one embodiment of the present invention, the SURF algorithm is
used to detect features.

[0046] Other feature detection algorithms are designed to find specific types of
features, such as faces. In another embodiment of the present invention, the Haar-
like features are detected as part of frontal and profile face detectors [Viola, Paul and
Jones, Michael, 2001, “Rapid object detection using a boosted cascade of simple
features,” Proc. of the 2001 IEEE Conf. on Computer Vision and Pattern
Recognition, 1:511-518].

[0047] In another embodiment, discussed in Applicant's co-pending U.S.
Application No., 13/121,904, filed October 6, 2009, which is incorporated herein by
reference in its entirety, features can be detected based on encoding complexity
(bandwidth) encountered by a conventional encoder. Encoding complexity, for
example, can be determined through analysis of the bandwidth (number of bits)
required by conventional compression (e.g., H.264) to encode the regions in which
features appear. Restated, different detection algorithms operate differently, but
cach are applied to the entire video sequence of frames over the entire video data in
embodiments. For a non-limiting example, a first encoding pass with an H.264
encoder is made and creates a “bandwidth map.” This in turn defines or otherwise
determines where in each frame H.264 encoding costs are the highest.

[0048] Typically, conventional encoders such as H.264 partition video frames

into uniform tiles (for example, 16X16 macroblocks and their subtiles) arranged in a
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non-overlapping pattern. In one embodiment, each tile can be analyzed as a
potential feature, based on the relative bandwidth required by H.264 to encode the
tile. For example, the bandwidth required to encode a tile via H.264 may be
compared to a fixed threshold, and the tile can be declared a “feature” if the
bandwidth exceeds the threshold. The threshold may be a preset value. The preset
value may be stored in a database for easy access during feature detection. The
threshold may be a value set as the average bandwidth amount allocated for
previously encoded features. Likewise, the threshold may be a value set as the
median bandwidth amount allocated for previously encoded features. Alternatively,
one could calculate cumulative distribution functions of the tile bandwidths across
an entire frame (or an entire video) and declare as “features” any tile whose
bandwidth is in the top percentiles of all tile bandwidths.

[0049] In another embodiment, video frames can be partitioned into overlapping
tiles. The overlapping sampling may be offset so that the centers of the overlapping
tiles occur at the intersection of every four underlying tiles’ corners. This over-
complete partitioning is meant to increase the likelihood that an initial sampling
position will yield a detected feature. Other, possibly more complex, topological
partitioning methods are also possible.

[0050] Small spatial regions detected as features can be analyzed to determine if
they can be combined based on some coherency criteria into larger spatial regions.
Spatial regions can vary in size from small groups of pels to larger areas that may
correspond to actual objects or parts of objects. However, it is important to note that
the detected features need not correspond to unique and separable entities such as
objects and sub-objects. A single feature may contain elements of two or more
objects or no object elements at all. For the current invention, the critical
characteristic of a feature is that the set of pels comprising the feature can be
efficiently compressed, relative to conventional methods, by feature model-based
compression techniques.

[0051] Coherency criteria for combining small regions into larger regions may
include: similarity of motion, similarity of appearance after motion compensation,

and similarity of encoding complexity. Coherent motion may be discovered through
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higher-order motion models. In one embodiment, the translational motion for each
individual small region can be integrated into an affine motion model that is able to
approximate the motion model for each of the small regions. If the motion for a set
of small regions can be integrated into aggregate models on a consistent basis, this
implies a dependency among the regions that may indicate a coherency among the
small regions that could be exploited through an aggregate feature model.

[0052] Feature model formation

[0053] After feature(s) have been detected in multiple frames of a video, it is
important that multiple instances of the same feature be related together. This
process is known as feature association and is the basis for feature tracking
(determining the location of a particular feature over time), described below. To be
effective, however, the feature association process must first define a feature model
that can be used to discriminate similar feature instances from dissimilar ones.
[0054] In one embodiment, the feature pels themselves can be used to model a
feature. Feature pel regions, which are two-dimensional, can be vectorized and
similar features can be identified by minimizing mean-squared error (MSE) or
maximizing inner products between different feature pel vectors. The problem with
this is that feature pel vectors are sensitive to small changes in the feature, such as
translation, rotation, scaling, and changing illumination of the feature. Features
often change in these ways throughout a video, so using the feature pel vectors
themselves to model and associate features requires some accounting for these
changes. In one embodiment, the invention accounts for such feature changes in the
simplest way, by applying standard motion estimation and compensation algorithms
found in conventional codecs (e.g., H.264), which account for translational motion
of features. In other embodiments, more complex techniques can be used to account
for rotations, scalings, and illumination changes of features from frame to frame.
[0055] In an alternate embodiment, feature models are compact representations
of the features themselves (“‘compact” meaning “of lower dimension than the
original feature pels vectors”) that are invariant (remain unchanged when
transformations of a certain type are applied) to small rotations, translations,

scalings, and possibly illumination changes of the feature — meaning that if the
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feature changes slightly from frame to frame, the feature model will remain
relatively constant. A compact feature model of this type is often termed a
“descriptor.” In one embodiment of the current invention, for example, the SURF
feature descriptor has length 64 (compared to the length-256 feature pel vectors) and
is based on sums of Haar wavelet transform responses. In another embodiment, a
color histogram with 5 bins is constructed from a colormap of the feature pels, and
this 5-component histogram acts as the feature descriptor. In an alternate
embodiment, feature regions are transformed via a 2-D discrete cosine transform
(DCT). The 2-D DCT coefficients are then summed over the upper triangular and
lower triangular portions of the coefficient matrix. These sums then comprise an
edge feature space and act as the feature descriptor.

[0056] When feature descriptors are used to model features, similar features can
be identified by minimizing MSE or maximizing inner products between the feature
descriptors (instead of between the feature pel vectors).

[0057] Feature association and tracking

[0058] Once features have been detected and modeled, the next step is to
associate similar features over multiple frames. Each instance of a feature that
appears in multiple frames is a sample of the appearance of that feature, and multiple
feature instances that are associated across frames are considered to “belong” to the
same feature. Once associated, multiple feature instances belonging to the same
feature may either be aggregated to form a feature track or gathered into an
ensemble matrix 40 (FIG. 1).

[0059] A feature track is defined as the (x,y) location of a feature as a function
of frames in the video. One embodiment associates newly detected feature instances
with previously tracked features (or, in the case of the first frame of the video, with
previously detected features) as the basis for determining which features instances in
the current frame are extensions of which previously-established feature tracks. The
identification of a feature's instance in the current frame with a previously
established feature track (or, in the case of the first video frame, with a previously

detected feature) constitutes the tracking of the feature.
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[0060] FIG. 2 demonstrates the use of a feature tracker 70 to track features 60-1,
60-2, ..., 60-n. A feature detector 80 (for example, SIFT or SURF) is used to
identify features in the current frame. Detected feature instances in the current
frame 90 are matched to previously detected (or tracked) features 50. In one
embodiment, prior to the association step, the set of candidate feature detections in
the current frame can be sorted using an auto-correlation analysis (ACA) metric that
measures feature strength based on an autocorrelation matrix of the feature, using
derivative-of-Gaussian filters to compute the image gradients in the autocorrelation
matrix, as found in the Harris-Stephens corner detection algorithm [Harris, Chris and
Mike Stephens, 1988, “A combined corner and edge detector,” in Proc. of the 4th
Alvey Vision Conference, pp. 147-151]. Feature instances with high ACA values are
given priority as candidates for track extension. In one embodiment, feature
instances lower in the ACA-sorted list are pruned from the set of candidate features
if they are within a certain distance (e.g., one pel) of a feature instance higher in the
list.

[0061] In different embodiments, feature descriptors (e.g., a SURF descriptor) or
the feature pel vectors themselves may serve as the feature models for the purpose of
determining track extensions. In one embodiment, previously-tracked features,
depicted as regions 60-1, 60-2, ..., 60-n in FIG. 2, are tested one at a time for track
extensions from among the newly detected features in the current frame 90. In one
embodiment, the most recent feature instance for cach feature track serves as a focal
point (or “target feature”) in the search for a track extension in the current frame.

All candidate feature detections in the current frame within a certain distance (e.g.,
16 pels) of the location of the target feature are tested, and the candidate having
minimum MSE with the target feature (either in pel space or descriptor space) is
chosen as the extension of that feature track. In another embodiment, a candidate
feature is disqualified from being a track extension if its MSE with the target feature
is larger than some threshold.

[0062] In a further embodiment, if no candidate feature detection in the current
frame qualifies for extension of a given feature track, a limited search for a matching

region in the current frame is conducted using either the motion compensated
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prediction (MCP) algorithm within H.264 or a generic motion estimation and
compensation (MEC) algorithm. Both MCP and MEC conduct a gradient descent
search for a matching region in the current frame that minimizes MSE (and satisfies
the MSE threshold) with respect to the target feature in the previous frame. If no
matches can be found for the target feature in the current frame, either from the
candidate feature detection or from the MCP/MEC search process, the
corresponding feature track is declared “dead” or “terminated.”

[0063] In a further embodiment, if two or more feature tracks have feature
instances in the current frame that coincide by more than some threshold (for
example, 70% overlap), all but one of the feature tracks are pruned, or dropped from
further consideration. The pruning process keeps the feature track that has the
longest history and has the largest total ACA, summed over all feature instances.
[0064] In another embodiment, mid-point normalization can be performed on
feature tracks by calculating a “smoothed” set of track locations and then adjusting
the locations of features that are “far” from the normalized mid-points, a process
termed center adjustment.

[0065] Summarizing the above, the following steps are common to many
embodiments of the invention: feature detection (SURF or face), feature modeling
(SUREF descriptors, spectral histograms), ACA-based sorting of candidate features,
and feature association and tracking via minimization of MSE from among
candidate features, supplemented by MCP/MEC searching for track extensions and
by center adjustment of tracks. If the tracking is done using SURF descriptors, the
processing stream is termed the SURF tracker. If the tracking is done using color
histograms, the processing stream is termed the spectral tracker.

[0066] FIG. 3 presents a flow diagram 300 of the basic steps in the feature-based
processing stream (FPS) described above. Given a particular video, the FPS begins
by detecting features in the video 310. The FPS then correlates (associates)
instances of the detected features 320, possibly using compact feature models
instead of the feature pels themselves. The FPS then tracks the detected and
correlated features 312. The FPS also determines similarity in the correlated

instances of the features 322 and performs a mid-point normalization on the similar
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correlated instances of the features 324. Based on the normalized mid-points, the
FPS adjusts the centers of the correlated features 326, which then feed back into the
tracker 312. Based on at least one of the tracked features 312, correlated instances
of features 320, and correlated instances of the features with adjusted centers 326,
the FPS assembles feature sets 314 of associated feature instances. In a further
embodiment, the FPS can split or merge feature sets 316 based on different criteria.
The FPS can also set the state of the model, e.g. to isolation 318. In one
embodiment, an isolated model is a model that should no longer be edited because it
is finalized. In another embodiment, the repository can analyze the complexity of
the video as well during generation of the model 328. A person of ordinary skill in
the art can recognize that the process described above can execute in any order and
does not necessarily occur in the order described above.

[0067] Characteristic features and feature clustering

[0068] The sections above outline how features can be detected, modeled,
associated, and tracked through the frames of a video (termed an “input” video here,
for clarity). The present invention seeks to preserve or “persist” all the feature
information within an input video that is useful for improving compression within
another “target” video (defined as a video to be encoded). In one embodiment, the
feature information is stored in a file. In other embodiments, the feature information
may be stored in a relational database, object database, NoSQL database or other
data structure. More details on the storage of feature information follow below. To
be useful and effective for improving compression in another video, however, the
feature information from the input video must capture the feature content of the
input video comprehensively yet succinctly.

[0069] After the steps of feature detection, modeling, association, and tracking,
the feature information in an input video is contained in a set of feature tracks. To
reduce this information into a suitably compact yet representative form, the first step
is to choose a representative or characteristic feature for each feature track. In one
embodiment, the characteristic feature for a given feature track is the first (earliest)
instance of the feature in the track. In another embodiment, the characteristic feature

for a given feature track is the arithmetic mean of all the feature instances in the
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track. The process of selecting a characteristic feature for each feature track reduces
the feature information for an input video from a set of feature tracks to a set of
characteristic features.

[0070] The next step in reducing the feature information in an input video into a
suitably compact yet representative form is to cluster similar characteristic features
together. Characteristic features can be grouped or clustered together using
techniques well known in the art. In one embodiment where the tracker is the
spectral tracker detailed above, clustering is based on spectral color maps of the
characteristic features. The “U” and “V” (chroma) components from YUV color
space data are treated as a two-component vector. Different values of the U/V
components correspond to different colors in a spectral color map. A histogram is
created from the color map and may contain any number of bins k that summarize
the full range of U/V component values. In one example embodiment, k=5. In
another embodiment where the tracker is the SURF tracker detailed above,
clustering is based on length-64 SURF feature descriptor vectors of the characteristic
features. Once the feature model domain for clustering is established (e.g., color
histograms or SURF descriptors in the examples above), any standard clustering
algorithm can be applied to perform the clustering. In a preferred embodiment,
clustering is done through the k-means clustering algorithm. The k-means algorithm
assigns all characteristic features in the input video to one of m clusters. In one
example embodiment, m=5. For each cluster, the k-means algorithm computes a
centroid that represents the arithmetic mean of the cluster members.

[0071] FIGs. 4A and 4B are screenshots of a feature-based display tool in
accordance with example implementations of the spectral tracker (FIG. 4A) and the
SUREF tracker (FIG. 4B). The upper left displays in each figure show the results after
clustering characteristic features based on their spectral color maps (416 in FIG. 4A)
or on their SURF descriptors (420 in FIG. 4B). Each characteristic feature
represents one or more feature members (24 in 414). Each cluster (ten in 416 and
twelve in 420) is represented by the pels of the cluster centroid as well as the
corresponding feature model (the spectral color map in 416 or the SURF descriptor

in 420) for the centroid. Each cluster has a certain number of characteristic feature
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members. Eight characteristic feature members 418 are depicted for an example
color spectral cluster 418 in FIG. 4A, while twenty plus characteristic feature
members 422 are depicted for an example SURF cluster 420 in FIG. 4B.

[0072] It should be noted that if there are too many members in the m clusters, a
second level of sub-clustering can be performed. In one example embodiment, each
of m color spectral clusters are divided into | sub-clusters, where m is 5 and 1 ranges
from 2 to 4.

[0073] After the initial set of m clusters have been formed, the final step in
reducing the feature information in an input video into a suitably compact yet
representative form is to select a subset of n cluster members to represent each
cluster. The reason this step is necessary is that a cluster can have dozens of cluster
members, whereas the number of representative cluster elements n needs to be
relatively small for effective use in compression; in one example embodiment, n=5.
Selection of representative cluster elements is usually based on the cluster centroid.
In one embodiment, the orthogonal matching pursuit (OMP) algorithm is used to
select n cluster members that best approximate the cluster centroid in the least
redundant way. In another embodiment, the n cluster members are selected to be the
ones having largest inner product with the cluster centroid; cluster members selected
in this fashion are more redundant than those selected using OMP.

[0074] Once the most representative cluster members are selected for each
cluster, the feature information for the input video is ready to be saved. The saved
feature information consists of m clusters of n cluster members, with each cluster
member being a characteristic feature of a particular feature track, and with each
characteristic feature having a set of pels associated with its corresponding feature
region (160116 in one embodiment of the invention). Each cluster has a centroid,
whose pels are saved as well as the associated feature model (e.g., a color histogram
or a SURF descriptor). Also, because of the way the invention uses the saved
feature information for encoding (for “offset processing”; see below for further
details), the saved feature information also consists of the pels from the regions
surrounding the feature region for each cluster member. In one embodiment,

“surrounding” regions are defined as those within one 16X16 macroblock in any



WO 2013/148091 PCT/US2013/029297

10

15

20

25

30

-20 -

direction, so a feature region and its surroundings comprise a 48X48 super-region.
Thus, the saved feature information is comprised of the pels from m clusters of n
super-regions, plus the pels and feature models from the m cluster centroids.

[0075] The feature-based processing stream outlined above (feature detection,
modeling, association, tracking, characteristic feature selection, clustering, cluster
member selection, and saving of feature information) can be extended from one
input video to multiple input videos. In the case of more than one input video,
characteristic features representing feature tracks from all input videos are used to
create the clusters.

[0076] Reusing Feature Models for Offline Feature-Based Compression

[0077] Model-based compression framework

[0078] Once the feature-based processing stream outlined above (by 300 in Fig.
3) has been applied to an input video (or multiple input videos), the saved feature
information can be reused to improve compression in a “target” video (a video to be
encoded, likely different from the input video[s]). This reuse of feature information
for compression takes place within the model-based compression framework
(MBCF) outlined in the co-pending '940 Application, relevant elements of which are
included below (and generally referenced 924).

[0079] The MBCEF begins with similar steps as the feature-based processing
stream outlined above: features are detected, modeled, and associated, but with
respect to the target video. In a preferred embodiment, the features are detected
using the SURF detection algorithm and modeled and associated using SURF
descriptors.

[0080] Next, the MBCF uses feature tracks to relate features to macroblocks, as
depicted in FIG. 5. A given feature track indicates the location of a feature across
frames, and there is an associated motion of that feature across frames. Using the
location of the feature in the two most recent frames prior to the current frame, one
can project the position of the feature in the current frame. This projected feature
position then has an associated nearest macroblock, defined as the macroblock
having greatest overlap with the projected feature position. This macroblock (now

the target macroblock that is being encoded) has been associated to a specific feature
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track whose projected position in the current frame is nearby the macroblock (500 in
FIG. 5). It is possible for a single macroblock to be associated with multiple
features, so one embodiment of the MBCF selects the feature having maximum
overlap with the macroblock as the associated feature for that macroblock.

[0081] Next, the MBCEF calculates an offset 510 between the target macroblock
and the projected feature position in the current frame. When the MBCF operates in
online mode (generating predictions entirely from decoded pels earlier in the same
video), this offset generates predictions for the target macroblock by using earlier
feature instances in the associated feature’s track. Online predictions for the target
macroblock can be generated by finding the regions in the reference frames with the
same offsets (520, 530) from earlier feature instances as the offset between the target
macroblock and the projected feature position in the current frame.

[0082] Given a target macroblock (the current macroblock being encoded), its
associated feature, and the feature track for that feature, the MBCF generates a
primary or key prediction for the target macroblock. Data (pels) for the key
prediction comes from the most recent frame (prior to the current frame) where the
feature appears, henceforth referred to as the key frame. The key prediction is
generated after selecting a motion model and a pel sampling scheme. In one
embodiment of the MBCF, the motion model can be cither “Oth order,” which
assumes that the feature is stationary between the key frame and the current frame,
or “1st order,” which assumes that feature motion is linear between the 2nd-most
recent reference frame, the key frame, and the current frame. In either case, the
motion of the feature is applied (in the backwards temporal direction) to the
associated macroblock in the current frame to obtain the prediction for the
macroblock in the key frame. In one embodiment of the MBCF, the pel sampling
scheme can be either “direct,” in which motion vectors are rounded to the nearest
integer and pels for the key prediction are taken directly from the key frame, or
“indirect,” in which the interpolation scheme from conventional compression such
as H.264 is used to derive a motion-compensated key prediction. Thus, the MBCF
invention can have four different types of key prediction, depending on the motion

model (Oth or 1st order) and the sampling scheme (direct or indirect).
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[0083] The MBCF also produces refined key predictions by modeling local
deformations through the process of subtiling. In the subtiling process, different
motion vectors are calculated for different local portions of the macroblock. In one
embodiment of the MBCF, subtiling can be done by dividing the 16716 macroblock
into four 8X8 quadrants and calculating predictions for ecach separately. In another
embodiment, subtiling can be carried out in the Y/U/V color space domain by
calculating predictions for the Y, U, and V color channels separately.

[0084] In addition to the primary/key prediction for the target macroblock, the
MBCF also generates secondary predictions based on positions of the associated
feature in reference frames prior to the key frame. In one embodiment, the offset
from the target macroblock to the (projected) position of the associated feature in the
current frame represents a motion vector that can be used to find secondary
predictions from the feature’s position in past reference frames. In this way, a large
number of secondary predictions can be generated (one for each frame where the
feature has appeared previously) for a given target macroblock that has an associated
feature. In one embodiment, the number of secondary predictions can be limited by
restricting the search to some reasonable number of past reference frames (for
example, 25).

[0085] Once primary (key) and secondary predictions have been generated for a
target macroblock, the overall reconstruction of the target macroblock can be
computed based on these predictions. In one embodiment of the MBCF, following
conventional codecs, the reconstruction is based on the key prediction only,
henceforth referred to as key-only (KO) reconstruction.

[0086] In another embodiment of the MBCF, the reconstruction is based on a
composite prediction that sums the key prediction and a weighted version of one of
the secondary predictions. This algorithm, henceforth referred to as PCA-Lite
(PCA-L), involves the following steps:

[0087] Create the vectorized (1-D) versions of the target macroblock and key
prediction. These can then be denoted as the target vector t and key vector k.

[0088] Subtract the key vector from the target vector to compute a residual

vector r.
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[0089] Vectorize the set of secondary predictions to form vectors si  (Without
loss of generality, assume that these secondary vectors have unit norm.) Then
subtract the key vector from all the secondary vectors to form the key-subtracted set,
si-k. This has the approximate effect of projecting off the key vector from the
secondary vectors.

[0090] For each secondary vector, calculate a weighting c=r"T (s_i-k)

[0091] For each secondary vector, calculate the composite prediction as
t=k+c-(s_i-k).

[0092] In general, the steps in the PCA-Lite algorithm approximate the
operations in the well-known orthogonal matching pursuit algorithm [Pati, Y.C. et
al., 1993, “Orthogonal matching pursuit: Recursive function approximation with
applications to wavelet decomposition,” in Proc. of the 27th Asilomar Conference,
pp. 40-44], with the composite prediction meant to have non-redundant
contributions from the primary and secondary predictions. In another embodiment,
the PCA-Lite algorithm described above is modified so that the key vector in Steps
3-5 above is replaced by the mean of the key and the secondary vector. This
modified algorithm is henceforth referred to as PCA-Lite-Mean.

[0093] The PCA-Lite algorithm provides a different type of composite
prediction than the bi-prediction algorithms found in some standard codecs.
Standard bi-prediction algorithms employ a blending of multiple predictions based
on temporal distance of the reference frames for the individual predictions to the
current frame. By contrast, PCA-Lite blends multiple predictions into a composite
prediction based on the contents of the individual predictions.

[0094] Note that the formation of composite predictions as described above does
not require feature-based modeling; composite predictions can be formed from any
set of multiple predictions for a given target macroblock. Feature-based modeling,
however, provides a naturally-associated set of multiple predictions for a given
target macroblock, and composite predictions provide an efficient way to combine
the information from those multiple predictions.

[0095] Model reuse for offline streams in model-based compression framework
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[0096] The model-based compression framework (MBCF) can also operate in
offline mode, using feature information generated and stored by the feature-based
processing stream as outlined above.

[0097] In one embodiment, the MBCF in offline mode detects features in the
target video using the SURF detection algorithm, models the detected features using
SUREF descriptors, and generates key predictions under the Oth order motion model
(assuming that the feature is stationary between the key frame and the current frame)
and the “direct” interpolation scheme.

[0098] The MBCF in offline mode then reads in the appropriate feature
information from the input video(s) that has been stored by the feature-based
processing stream. (Recall that the saved feature information is comprised of the
pels from m clusters of n super-regions, plus the pels and feature models from the m
cluster centroids.) In one embodiment, the MBCF reads in the cluster elements from
the cluster whose SURF descriptor is closest (has smallest mean-squared error) to
the SURF descriptor of the feature associated with the target macroblock (the
current macroblock being encoded).

[0099] Once a particular cluster has been read in, the MBCF in offline mode
then generates secondary predictions by extracting the pels from each super-region
in the cluster that are offset from the center of the super-region in the same way as
the target macroblock is offset from its associated feature in the target video. In this
way, n secondary predictions are generated, one for each cluster member.

[00100] In one embodiment, the secondary predictions generated by the MBCF in
offline mode are then combined with the key prediction using the PCA-Lite or PCA-
Lite-Mean algorithms as described above.

[00101] In another embodiment, the secondary predictions may be treated as
primary predictions, potentially replacing the within-video key prediction if they
produce lower error or encoding cost. In such an embodiment, where primary
predictions can come from an offline source (outside the target video), a
normalization step (assuming, for example, an affine motion model) may be applied

to the offline predictions to ensure a closer match to the target macroblock.
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[00102] In summary, the MBCEF in offline mode reuses feature models for
compression by following these steps: (1) detect features for each frame in the
target video; (2) model the detected features; (3) associate features in different
frames to create feature tracks; (4) use feature tracks to predict feature locations in
the “current” frame being encoded; (5) associate macroblocks in the current frame
that are nearby the predicted feature locations; (6) generate a key prediction for the
macroblocks in Step 5 based on the location of the features in the most recently
encoded key frame; (7) read in feature information generated from an input video by
determining the cluster whose centroid descriptor is closest to the descriptors of the
target video’s features; (8) generate secondary predictions from the feature
information read in in Step 7.
[00103] Forming Feature Model Libraries
[00104] Simple model libraries: direct saving of feature information only
[00105] As noted above, there is a basic set of feature information that can be
generated from an input video and then preserved. This feature information can then
be re-used within a model-based compression framework (MBCF) for improving the
compression of another “target” video to be encoded. Directly saving the feature
information into files, databases or data stores represents the simplest form of a
feature model library that organizes and catalogs the feature information from one or
more input videos.
[00106] In one embodiment, information from the feature detection and feature
tracking steps is saved into a file, database or data store. This information may
include, but is not limited to:

the name of the input video from which the features were detected;

a list of feature tracks, each with an associated feature ID;

for each feature track, the “length” of the track (equal to the number
of feature instances contained in the track) and its total bandwidth, defined as the
total number of bits required by conventional compression (e.g., H.264) to encode

all the feature instances in the track;
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for each feature instance in a track, the type of detection (e.g., SURF,
face), the frame where the detection occurred, the x/y coordinates of the center of
the feature, and the bandwidth of the feature;

for each feature track, the pels from the track’s characteristic
(representative) feature.
[00107] It is important to note that the information from the feature detection and
tracking steps of the input video is not directly used in the model-based compression
framework for compression of the target video. However, feature detection and
tracking information must be saved if the feature model library needs to accumulate
feature information from more than one input video, because the composition of the
feature clusters that are used for compression changes when tracks from multiple
videos are combined.
[00108] In one embodiment, information from the feature clustering step is
saved into a file, database or data store, separate from the feature detection and
tracking information. The feature clustering information may include, but is not
limited to:

a list of clusters, each with an associated index;

for each cluster, the number of members in the cluster and the pels
and feature model associated with the cluster centroid;

for each cluster member (itself a characteristic feature representing a
feature track), the pels from the “super-region” surrounding the feature, as well as
the associated feature model;

various parameters associated with the way the clustering was
performed (for example, tolerance and iterations from k-means clustering).
[00109] When feature information from multiple input videos needs to be
accumulated by the feature model library, several approaches may be taken. In one
embodiment, feature tracks from all the input videos are simply aggregated, and the
clustering is redone on the aggregate set of feature tracks. However, this approach
becomes problematic as the total number of feature tracks increases, because either

the sizes of the resulting feature clusters will become larger (making the clusters less



WO 2013/148091 PCT/US2013/029297

10

15

20

25

30

_27 -

informative) or the number of feature clusters will increase (thereby increasing the
encoding cost of indexing into the clusters).

[00110] In another embodiment when the feature model library contains multiple
input videos, feature tracks are prioritized prior to clustering. That is, the aggregate
set of feature tracks is pruned prior to clustering such that only the most “important”
feature tracks are retained for clustering. In one embodiment, feature tracks are
prioritized according to their track bandwidth, defined as the total number of bits
required by conventional compression (¢.g., H.264) to encode all the feature
instances in the track. Those features that are difficult for conventional compression
to encode are identified as high-priority. In another embodiment, feature tracks are
prioritized according to redundancy, defined loosely by the repetition (lack of
variability) of a feature in a track. Feature track redundancy may be measured by
calculating various statistics (rank, condition number) associated with an ensemble
matrix comprised of the different feature instances in the track. Highly redundant
features have reoccurred often in an input video and are thus identified as important
for compression. In another embodiment, feature tracks are prioritized according to
similarity to specific types of important features, such as faces. Those features that
belong to a specific feature type are identified as important. In a further
embodiment, the specific feature types may be specialized according to semantic
content, such as a particular sports team, a particular TV show, etc.

[00111] FIG. 6A summarizes the general steps for storing and then accessing
feature information in the feature model library described above, following the
feature-based processing stream (FPS) illustrated in FIG. 3. After feature detection,
modeling, association, and tracking, the FPS generates and stores characteristic
features for the feature tracks 610. The FPS also generates and stores spatial
(SURF) descriptors 612 and spectral (color histogram) descriptors 620 of the
characteristic features. The FPS clusters the spatial descriptors and the spectral
descriptors 614 and calculates the cluster centroids. From the clusters, the FPS
generates a feature index 616, whose elements are the descriptors of the cluster
centroids. The repository then generates a classifier based on the feature index that

can be used to access the features in the cluster 618. In FIG. 6B, when encoding a
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new target video using the model-based compression framework (MBCF) described
above, the FPS responds to a detected feature in the target video by accessing the
index 632 and retrieving the associated result set 634, comprised of cluster
members. The cluster members can then be used within the MBCF, as described
above, to aid compression of the corresponding feature regions in the target video.
A person of ordinary skill in the art can recognize that the process described above
can execute in any order and does not necessarily occur in the order described
above.

[00112] Advanced model libraries: hash-based indexing of video repositories
[00113] Instead of explicitly saving feature information directly into files,
databases or data stores as outlined above for the simplest version of the feature
model library, one can make use of hash-based indexing to form a more advanced
feature model library that accesses data from a video repository. A video repository
contains the data pels from one or more input videos that have been processed 300
with a feature-based processing stream (FPS), in addition to the feature models 980
(Figs. 9A, 9B) generated by the FPS. This is in contrast to the simple feature model
library described in the previous section, which only contains the feature pels and
their associated models — not all the pels in the entire input video(s). Hash-based
indexing provides an efficient way of accessing feature information from a video
repository. Feature-based processing can be thought of as a sparse sampling of the
video datacube 702 in FIG. 7, whose dimensions are frames (704A-704F) by rows
(708A-708F) by columns (706A-706F). Feature instances will usually occur in only
a small percentage of locations in a given video datacube.

[00114] FIG. 8A shows a flow diagram of an example embodiment of a process
to generate a hash-based index. The feature-based processing stream (FPS) in FIG.
8A begins by detecting features in a frame 802 of an input video. The FPS then
applies a hash tag to each of the detected features 804. The hash tag uses a one way
hash function that converts the information that identifies a detected feature (its x/y
location, frame, extent, and associated model 980) into a hash value so that the
feature can be accessed easily from the video repository at a later time. The FPS

then adds each hashed feature and its corresponding hash value to an index 806,
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which is stored in the video repository with the encoded videos themselves. The
FPS then determines whether all frames of the input video have been analyzed 808.
If all frames have been analyzed, the FPS stops generating the index 810. If not all
frames of the input video have been analyzed, then the FPS detects features in the
next frame 802.

[00115] FIG. 8B presents a flow diagram of an example embodiment of a process
to access a feature using the hash-based index. The FPS analyzes a frame of input
video to detect a feature 812. The FPS then applies the hash function to the detected
feature 814 to generate its hash value. The FPS then searches the index with the
hash value of the detected feature to find and extract the corresponding feature (and
its associated feature model 980) in the video repository 816, 818. In another
embodiment, the FPS can extract a plurality of feature models for a given feature
from the video datacube. The FPS then compresses 820 the detected feature based
on the extracted feature model 980 or associated feature information.

[00116] A person of ordinary skill in the art can recognize that the compression
method described above can be applied to multiple frames and that compression
does not have to occur on a frame by frame basis. However, the process shown in
FIG. 8B exemplifies the general principles behind using an index to access feature
information from a sparsely-filled video datacube contained in a repository of
previously-encoded videos; the accessed feature information can then be used to aid
the compression of new target videos.

[00117] Note that the underlying feature-based processing stream (FPS) in FIGs.
8 A-8B is different than the FPS outlined in the above sections (and depicted in
FIGs. 3 and 6A), which includes feature tracking and clustering in addition to
feature detection. More significantly, the FPS in FIGs. 8A-8B accesses feature
information from a video repository, which contains the entirety of pels from its
input videos, rather than from a set of files that contain only the feature pels and
information (as used by the FPS in FIGs. 3-6A).

[00118] FIG. 8C presents a flow diagram 822 illustrating the general steps in the
underlying FPS in FIGs. 8 A-8B, according to an example embodiment of the

invention. The FPS processes an input video 824 and detects features from the
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video, as described in the present application 832. The FPS then generates a hash-
based index of features in the video 834. Using the extracted features 832 and the
generated index 834, the FPS transcodes the video according to compression
techniques known in the art and/or compression techniques described in the present
application 826. The FPS, based on the generated index 834, manages the
distribution of data 836. For example, the encoded video can be stored in a
particular cluster of servers within the video repository. The video may be stored
optionally in a storage structure, database, or other data structure organized for a
large set of videos 828. Upon a request to access the video, the repository loads and
accesses the requested video 830, the repository streams the requested video 840.
After managing data distribution 836, the FPS can distribute modules from the
repository 838 to aid streaming of the video 840. In one embodiment, the FPS
distributes modules from the repository 838 to a client device to aid the streaming of
videos 840 on the device. A person of ordinary skill in the art can recognize that the
process described above can execute in any order and does not necessarily occur in
the order described above.

[00119] Using video repositories with generalized compression processing
streams

[00120] Video repositories do not have to be used together with a feature-based
processing stream. FIG. 8D illustrates the general use of a video repository with a
compression scheme that does not necessarily involve model-based processing. The
generalized processing flow (GPF) 850 of FIG. 8D first accepts a target video to be
stored in the repository 852. The repository transcodes the video according to
compression techniques known in the art (not necessarily model-based) and/or
compression techniques described in the present application 854. The GPF stores
the video, optionally in a storage structure, database, or other data structure
organized for a large set of videos 856. Upon a request to access the video, the GPF
loads and accesses the requested video from the repository 858. The GPF then
streams the requested video 860. A person of ordinary skill in the art can recognize
that the process described above can execute in any order and does not necessarily

occur in the order described above. For example, in one embodiment, the GPF can
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transcode the video 854 after it accesses the video 858 but before it streams the
video 860. In another embodiment, the GPF can initially transcode the video 854
after inputting the video 852, and then it can provide an additional transcoding to the
video 854 after accessing the video 858 but before streaming the video 860.

[00121] Applications of Model Libraries

[00122] Basic operation: global model libraries and (personal) smart model
libraries

[00123]  Aspects of the invention may include a feature model library stored on a
server/cloud. By storing model libraries on the cloud and accessing the feature
information in the libraries when needed, the invention can stream high definition
video at lower bandwidth than conventional codecs, with little or no reduction in
visual quality. The models 980 are reusable not only within a single video (the
“online” mode of the model-based compression framework [MBCF] described
above), but also across different, disparate videos (the “offline” mode of the MBCF).
The system is able to identify, recognize, and reuse models from one high definition
video to process and present video images in another. This reuse of models 980
reduces the file size of the libraries, enabling devices to reduce needed bandwidth
when streaming video data.

[00124] The feature model libraries can reside in a cloud deployment (public or
private) and preferably are only downloaded to a user's mobile device as needed.
Similar in technique to how the Amazon Kindle (Trademark) and Apple iPad
(Trademark) device applications manage content between the cloud and user devices
today, the invention is able to store model libraries offline and deliver relevant
models 980 to user devices as needed to aid video compression/decompression.
[00125] FIG. 9A is a block diagram of an example embodiment of a video
repository 902 operatively connected with a client device 908 over a network 170.
The repository 902 includes a set of encoded videos 904. The set of videos 904
includes a first set of videos 906A, a second set of videos 906B, a third set of videos
906C, and an Nth set of videos 906D. A person of ordinary skill in the art can
recognize that the set of videos 904 can include any number of videos or sets of

videos. The sets of videos 906A-906D within the set of videos 904 can each be
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related to each other. For example, the first set of videos 906A can be a complete
scason of episodes of a first particular television series. The second set of videos
906B can be a complete season of episodes of a second particular television series.
Likewise, the third set of videos 906C and the Nth set of videos 906D can include
other seasons or other television series. A person of ordinary skill in the art can
further recognize that each of the sets of videos 906A-906D can include episodes
from a television series, related movies (e.g., sequels or trilogies), sports broadcasts,
or any other related video.

[00126] The repository 902 is operatively connected over the network 170 to a
client device 908. The client device includes a request generation module 914. The
request generation module 914 sends a request for video 916 over the network 170
to the repository 908. The repository 908 receives the request for video 916 at a
request reception module 918. The request for video 916 is a request for a video
included in the set of videos 904. Upon issuing the request for video 916, the client
device 908 anticipates receiving the requested video and optionally prepares the
appropriate codecs to decode the incoming bitstream responsive to the requested
video.

[00127] The repository 902, in order to send the requested video to the client
device 908, causes the request reception module 918 to issue a lookup for requested
video 920 to the set of videos 904. The lookup for requested video 920 can be a
request to activate a lookup function to the set of videos 904 data structure. The
lookup request for requested video 920 can also be a request to a generated index
that can efficiently find the requested video in the set of videos 904. The set of
videos 904 responds to the lookup for requested video 920 by producing a requested
video 922 to a stream generation module 924.

[00128] The stream generation module 924 produces a generated library 926
associated with requested video, plus the encoding of the requested video 928. The
generated library 926 (also termed a smart model library) includes feature models
needed to decode the requested encoded video 928. In one embodiment, the models

in the generated smart model library 926 are derived from the video repository and a
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hash-based index of feature models 980 referencing the videos contained within the
repository.

[00129] In another embodiment, the models in the generated smart model library
926 are derived from a global model library 980 that includes a set of reusable
models (e.g., feature models). The models in the global library are reusable not only
with a single video, but across different, disparate videos.

[00130] In total, the video repository 902 stores the encoded videos 904, the
global model library 980 or the hash-based index of the models referencing the
videos.

[00131] Both the generated library 926 and the encoded video 928 are transmitted
over the network 170 to the client device 908. The library 926 can be transmitted to
any device, including mobile devices like iPads, smartphones, and tablets. The
client device 908 receives the generated library 926 and encoded video 928 at a
stream decoding module 910. The stream decoding module 910 decodes the
encoded video 928 using the information in the generated library 926 and optionally
other codecs known to the stream decoding module 910. The stream decoding
module 910 outputs a decoded video 911. The decoded video 911 can be
transmitted to at least one of a memory 912A, a display 912B, or a storage module
912C.

[00132] Versioned (personal) model libraries

[00133] FIG. 9B is a block diagram of another example embodiment of a video
repository 902 configured to communicate with a client device 908 over a network
170. The repository 902 and the client device 908 are similar in operation to those
referenced in FIG. 9A. However, additional modules, methods, and features are
described in relation to FIG. 9B. A person of ordinary skill in the art can recognize
that the modules of the repository 902 and the client device 908 are interchangeable
between the embodiments described herein in the present application.

[00134] In one embodiment, the repository 902 and the client device 908 are
configured to version the libraries used to decode videos. The client device 908
includes the request generation module 914. As described above, the request

generation model 914 issues a request for video 916 to the request reception module
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918. The request reception module 918 issues the lookup for requested video 920 to
the set of videos 904, as described above. However, in one embodiment, the request
reception module 918 issues a lookup 952 for a client version of the library for the
requested video, to a versioning module 954. The versioning module determines,
based on the lookup 952, a client version 956 of the library for the requested video.
In many cases, a client device may request and download related videos that include
related codecs or libraries. An example of a related video is a subsequent episode of
a same TV show, which would include similar frames because of commonality
among actors and sets used in the TV show. Another example is a sporting event,
which includes commonality across its frames among fields, stadiums, athletes,
logos, or sports equipment. Therefore, the client device 908 may already have many
or all of the necessary models needed to decode the encoded video 928, if it
previously downloaded a related video and library. In this scenario, an update to the
library may be all that is necessary for the client to decode the encoded video 928.
Sending just an update, instead of a full library, saves bandwidth within the
transmission of data to the client device 908, and it can increase the speed with
which the user of the client device 908 can begin watching the requested video, due
to the smaller download size.

[00135] In one embodiment, the stream generation module 924 includes a
differential library generation module 958 and a video encoding module 960. The
stream generation module 924 receives the requested video 922 from the set of
videos 904. The differential library generation model 958 receives the requested
video and the client version of the library for the requested video 956. In one
embodiment, the differential library generation module 958 determines, based on the
requested video 922, the models 980, and the client version of the library for the
requested video 956, the updates the client device 908 needs to decode the video
within the model-based compression framework.

[00136] In another embodiment the differential library generation module 958
determines, based on the requested video 922, the hash-based index and the client
version of the library for the requested video 956, the updates the client device 908

needs to decode the video within the model-based compression framework.
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[00137] The differential library generation module 958 generates a differential
library 962 that includes only the needed updates (additional feature models) to the
library already stored in the client device 908 at the library storage module 964. The
video encoding module 960 generates the encoded video 928 based on the
differential library 962 and the client version of the library for the requested video
956. Use of client- specific library versions enables video distributors the ability to
offer different levels of viewing experience depending on the models received at the
client. For example, one client’s library model could be used to help increase the
quality of the video being viewed.

[00138] In another embodiment, the video encoding module 960 generates the
encoded video by simply using models that provide an optimal compression. The
differential library generation module 958 generates the differential library 962
based on the models that were used to encode the video and the knowledge of the
client version of the library that is resident on the client device. In this embodiment,
only additional models if any are included in the differential library.

[00139] The client device 908 receives the differential library 962 and the
encoded video 928. The client device 908 receives the differential library 962 at a
library configuration module 966. The library configuration module 966 loads the
client version of the library for the requested video 956 from the library storage
module 964. The library configuration module 966 combines the differential library
962 and the client version of the library for the requested video 956 into a combined
library 970. The stream decoding module 910 then decodes the encoded video 928
using the combined library 970 and generates the decoded video 911, which is
distributed to at least one of the memory 912A, the display 912B, and the storage
module 912C.The system is able to identify, recognize, and reuse models from one
high definition video to process and present video images in another. This reuse of
models potentially reduces the total file size of the libraries needed for the decoding
of multiple videos on the client device 908, since the same models can be reused to
decode multiple videos.

[00140] Predictive model librarics
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[00141] FIG. 10 is a block diagram illustrating another example embodiment of
the video repository 902 operatively connected to the client device 908 over a
network 170. Predictively generating and distributing libraries can be advantageous
to a user of the client device 908, for example, during peak usage periods of the
network 170. For example, should the network experience high traffic, if the
repository does not have to transmit a library because the library was previously
generated and already transmitted to the client device 908, the network 170 may use
less bandwidth during the high usage period.

[00142] The video repository 902 in FIG. 10 includes the stream generation
module 924, which includes a predictive library generation module 1002. The
predictive library generation module 1002 receives a user profile 1006 generated by
a user profile module 1004. The user profile module 1004 stores user information,
such as demographic information, geographic information, social networking
information, or sport or sports team affiliations. The user profile module 1004 may
also include individual preference data for the kinds of videos the user may watch.
One person may like basketball, NASCAR, and Family Guy, while another enjoys
Mad Men and reality TV. User preferences may be derived from video-on-demand
(VOD) data such as listings of videos previously downloaded from the repository
902, from user subscriptions (such as a season pass), from user video queues, from
user pre-release purchases, or from collaborative filtering of any combination of
these data sources. User viewing preferences and behaviors can be used to refine the
feature model libraries that are delivered to individual devices; further refinement
can be achieved by combining user preference data with broadcast schedules.
[00143] The predictive library regeneration module 1002 generates a request to
predictively encode videos 1008 based on the user profile 1006 in order to produce a
model library 1012. For example, the predictive library generation module 1002 can
predictively generate a library for a fan of a particular television show, as indicated
in the user profile 1006.

[00144] Predicting the distribution and caching of the repository can improve

video access, indexing, and archival. Anticipating demand scenarios can facilitate
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prediction of the distribution and caching of videos and libraries associated with the
videos.

[00145] In one embodiment, a demand scenario can be based on a dependency, a
predicted pre-delivery of a VOD, or a scheduled broadcast. The demand scenario
can include: long tail VOD (i.e., requests for videos not commonly chosen), a
recommendation system, a demographic profile, a broadcast schedule, a sport or
sports team affiliation, a social network, a collaborative filter, a queue, a season
pass, or a pre-release purchase. Each scenario has implications on the optimization
of storage requirements and distribution of videos.

[00146] In one embodiment, the demand scenario is a long tail VOD scenario.
Long tail VOD involves a user selecting a video (possibly an unpopular one) from a
set of videos to be streamed to the user. The video selection process is balanced to
allow equal access to any video data in the set. In the long tail VOD scenario, long
tail VOD (videos that are not commonly chosen) can be encoded with high-demand
video feature models, increasing the likelihood that the model data is available at the
client device and making the residual video data easier to distribute (because,
ideally, less residual video data remains after the higher-demand data has been
distributed).

[00147] In another embodiment, the demand scenario is a recommendation
system. Recommendation systems analyze an individual user’s historical video
preferences and drive the user to select video data to download that is likely to fit the
user’s historical video preferences. Feature models can be organized based on the
user’s historical video preferences, supporting the distribution scenarios. Feature
models associated with anticipated user-demand can be pre-delivered to hedge
against high network demand scenarios.

[00148] In another embodiment, the demand scenario is regional preferences
(e.g., from demographic profile information). Traditional preferences can be
derived from demographic profile information, so the repository can drive content to
regional users. Content providers may assume resource costs to drive such content to

the users.



WO 2013/148091 PCT/US2013/029297

10

15

20

25

30

-38 -

[00149] In another embodiment, the demand scenario is a broadcast schedule.
Models can be delivered by or derived based on broadcast schedules (e.g., a planned
network schedule). A model can be created based on a recording from one channel
and reused for the encoding of a program on another channel, or of another program
on the same channel. The model can be derived from video data that is available
from DVD, cable, etc. In one embodiment, transmission of the model may include
enhancement information that increases the quality and/or resolution of the video
data. The repository can provide a derived “quality” service that supplements
existing broadcast models.

[00150] In another embodiment, the demand scenario is a sport or sports team
affiliation. Models based on a user’s sport/team affiliation can have video data
consistency (e.g., faces of the same players, team logos and uniforms, a team’s
stadium, etc.) and can be geographically targeted for distribution. The models can
be based on multi-view browsing, replays, high-temporal resolution, and real-time
demands. Distribution of the models can be tiered.

[00151] In another embodiment, the demand scenario is social networking and/or
collaborative filtering. A social network can anticipate demand by determining
video demand of a user’s peers/connections/friends. A collaborative filter can
indirectly predict user demand based on peers. Models can be derived from the
video that the user is predicted to watch based on the social network or collaborative
filter.

[00152] In another embodiment, the demand scenario is a queue of videos. A
queue can be a user defined prioritization of anticipated demand via a user selection
of video data to be queued or time delayed/shifted. Models can be distributed based
on optimizing model usage relative to the contents of the queue. .

[00153] In another embodiment, the demand scenario is a season pass. As the
monetization and exclusivity of the demanded content increases and is more directly
related to the content itself, a model can be based on add-on extras where the add-on
extra content is not disposable. In this demand scenario, a higher threshold exists

for retaining distributed content and guaranteed delivery of content. Additionally,
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the distribution has a high degree of self-similarity in the data (e.g., same actors,
sets, or graphics across a set of episodes) in the same way sports video data does.
[00154] In another embodiment, the demand scenario is pre-release purchasing.
Pre-release purchasing includes pre-release video data, trailers, shorts, or sample
“webisodes.” Distribution of the video with a library of models can be based on
delivered pre-released purchases.

[00155] Usage scenarios to determine organization of repository data can be
predetermined or non-predetermined. Predetermined usage scenarios focus
processing on general representations of the video data. Non-predetermined usage
scenarios focus on specific representations of the video data.

[00156] In one embodiment, the set of videos 904 in FIG. 10 generates videos for
encoding 1010 responsive to the request to predictively encode videos 1008, along
with providing a hash-based index of associated videos models.

[00157] In another embodiment the predictive library generation module 1002
additionally obtains models 982 from a model library and uses that instead of the
hash-based index. The predictive library generation module 1002 then produces a
predictively generated library 1012. The predictively generated library 1012 is
transmitted over the network 170 to the client device 908, which stores the
predictively generated library 1012 in the library storage module 964. A person of
ordinary skill in the art can recognize that the client device 908 stores the
predictively generated library 1012 and employs the predictively generated library
1012 at a time when it receives an appropriate encoded video to decode. A person
of ordinary skill in the art can also appreciate that other embodiments of the
repository 902 on the client device 908 can be combined with the predictive library
generation embodiment. For example, a library can be predictively generated and
also transmitted differentially to the client device 908, as described in relation to
FIG. 9B.

[00158] Embodiments of the present invention described above can be used with
and without each other to form additional embodiments of the present invention.
[00159] While this invention has been particularly shown and described with

references to example embodiments thereof, it will be understood by those skilled in
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the art that various changes in form and details may be made therein without
departing from the scope of the invention encompassed by the appended claims. For
example, although reference has been made herein to various system components,
e.g. a codec, encoder, and decoder, it should be understood by those of ordinary skill
that any other suitable hardware or software digital processing may be used to
implement the video processing techniques described herein. For example, the
present invention may be implemented in a variety of computer architectures. The
computer network of FIGS. 11A and 11B are for purposes of illustration and not
limitations of the present invention.

[00160] The invention can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing both hardware and
software elements. In one preferred embodiment, the invention is implemented in
software, which includes but is not limited to firmware, resident software,
microcode, etc.

[00161] Furthermore, the invention can take the form of a computer program
product accessible from a computer-usable or computer-readable medium providing
program code for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a computer-usable or
computer readable medium can be any apparatus that can contain, store,
communicate, propagate, or transport the program for use by or in connection with
the instruction execution system, apparatus, or device.

[00162] The medium can be an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system (or apparatus or device) or a propagation medium.
A data processing system suitable for storing and/or executing program code will
include at least one processor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include local memory employed
during actual execution of the program code, bulk storage, and cache memories,
which provide temporary storage of at least some program code in order to reduce
the number of times codes are retrieved from bulk storage during execution.

[00163] Network adapters may also be coupled to the system to enable the data

processing system to become coupled to other data processing systems or remote
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printers or storage devices through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the currently available types of
network adapters.

[00164] In an embodiment, FIG. 11A illustrates one such environment. Client
computer(s)/devices 1110 and a cloud 1112 (or server computer or cluster thereof)
provide processing, storage, and input/output devices executing application
programs and the like. Client computer(s)/devices 1110 can also be linked through
communications network 1116 to other computing devices, including other client
devices/processes 1110 and server computer(s) 1112. Communications network
1116 can be part of a remote access network, a global network (e.g., the Internet), a
worldwide collection of computers, Local arca or Wide area networks, and gateways
that currently use respective protocols (TCP/IP, Bluetooth, etc.) to communicate
with one another. Other electronic device/computer network architectures are
suitable.

[00165] FIG. 11B is a diagram of the internal structure of a computer/computing
node (e.g., client processor/device 1110 or server computers 1112) in the processing
environment of FIG. 11A. Each computer 1110, 1112 contains a system bus 1134,
where a bus is a set of actual or virtual hardware lines used for data transfer among
the components of a computer or processing system. Bus 1134 is essentially a
shared conduit that connects different elements of a computer system (e.g.,
processor, disk storage, memory, input/output ports, etc.) that enables the transfer of
information between the elements. Attached to system bus 1134 is an 1/O device
interface 1118 for connecting various input and output devices (e.g., keyboard,
mouse, displays, printers, speakers, etc.) to the computer 1110, 1112, Network
interface 1122 allows the computer to connect to various other devices attached to a
network (for example the network illustrated at 1116 of FIG. 11A). Memory 1130
provides volatile storage for computer software instructions 1124 and data 1128
used to implement an embodiment of the present invention (e.g., codec, video
encoder/decoder, feature models, model library and supporting code described
throughout Figs. 1-10). Disk storage 1132 provides non-volatile storage for

computer software instructions 1124 (equivalently, "OS program” 1126) and data
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1128 used to implement an embodiment of the present invention; it can also be used
to store the models or to store the video in compressed format for long-term storage.
Central processor unit 1120 is also attached to system bus 1134 and provides for the
execution of computer instructions. Note that throughout the present text,
“computer software instructions” and "OS program” are equivalent.

[00166] In one embodiment, the processor routines 1124 and data 1128 are a
computer program product (generally referenced 1124), including a computer
readable medium capable of being stored on a storage device 1128, which provides
at least a portion of the software instructions for the invention system. The
computer program product 1124 can be installed by any suitable software
installation procedure, as is well known in the art. In another embodiment, at least a
portion of the software instructions may also be downloaded over a cable,
communication, and/or wireless connection. In other embodiments, the invention
programs are a computer program propagated signal product 1114 (in Fig 11A)
embodied on a propagated signal on a propagation medium (e.g., a radio wave, an
infrared wave, a laser wave, a sound wave, or an ¢lectrical wave propagated over a
global network such as the Internet, or other network(s)). Such carrier media or
signals provide at least a portion of the software instructions for the present
invention routines/program 1124, 1126.

[00167] In alternate embodiments, the propagated signal is an analog carrier wave
or digital signal carried on the propagated medium. For example, the propagated
signal may be a digitized signal propagated over a global network (e.g., the Internet),
a telecommunications network, or other network. In one embodiment, the
propagated signal is transmitted over the propagation medium over a period of time,
such as the instructions for a software application sent in packets over a network
over a period of milliseconds, seconds, minutes, or longer. In another embodiment,
the computer readable medium of computer program product 1124 is a propagation
medium that the computer system 1110 may receive and read, such as by receiving
the propagation medium and identifying a propagated signal embodied in the
propagation medium, as described above for computer program propagated signal

product.
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[00168] It should be noted that although the figures described herein illustrate
example data/execution paths and components, one skilled in the art would
understand that the operation, arrangement, and flow of data to/from those
respective components can vary depending on the implementation and the type of

5  video data being compressed. Therefore, any arrangement of data modules/data
paths can be used.
[00169] While this invention has been particularly shown and described with
references to example embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made therein without

10 departing from the scope of the invention encompassed by the appended claims.
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CLAIMS

What 1s claimed is:

A method of providing video data, comprising:

encoding a subject video stream by a feature-based compression
process that utilizes feature models from a global feature model library, said
encoding implicitly using the feature models to indicate macroblocks in the
subject video to encode, resulting in an encoded video data; and

transmitting the encoded video data to a requesting device upon
command, said feature models from the global feature model library being
made accessible to the requesting device and enabling decoding of the
encoded video data at the requesting device;

wherein the global feature model library is formed by:

receiving one or more input videos, each input video being different
from the subject video stream; and

for each of the input videos, generating feature information and a

respective feature model.

A method as claimed in Claim 1 wherein the feature-based compression
process applies feature-based prediction across multiple different video
sources based on the feature models, the multiple different video sources
being at least the input videos of the global feature model library and the

subject video stream.

A method as claimed in Claim 1 wherein the global feature model library is
further formed by storing in a data store or on cloud storage the feature
models generated from the input videos, the data store or cloud storage
providing pertinent feature models to the feature-based compression process

and the requesting device.

A method as claimed in Claim 1 wherein the global feature model library is

further formed by:
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for each input video, identifying and indexing features in the input
video, the indexed features forming the respective feature model, said
indexing including, for each identified feature, indicating location in the
input video of the identified feature; and

wherein the decoding of the encoded video data at the requesting
device uses the indexed features and corresponding feature locations in the
input videos to obtain said feature models and decode the encoded video

data.

A method as claimed in Claim 4 wherein the indexing of features is a hash-

based index.

A method as claimed in Claim 1 wherein the feature models from the global
feature model library form a working model subset library that is specialized

per requesting device or per subject video stream.

A method as claimed in Claim 1 wherein the feature models from the global
feature model library form a working model subset library that is a
differential library with respect to state of any libraries in the requesting

device.

A method as claimed in Claim 1 wherein the feature models from the global
feature model library form a working model subset library that is a predictive
model library storing feature models as a function of profile of an end user of

the requesting device.

A method as claimed in Claim 8 wherein the predictive model library has
modifiable (settable) parameters enabling application to a variety of demand

scenarios.

A video data system comprising:
a repository storing video data and serving as a source of streaming

video; and
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a codec operatively coupled to the repository, and in response to a
request for a certain video, the codec being executed by a processor to (i)
encode stored video data in the repository corresponding to the requested
certain video and to (ii) stream the encoded video data from the repository,
wherein the codec applies feature-based prediction using feature models
from a global feature model library, wherein the global feature model library
is formed by:

receiving one or more input videos, each input video being different
from the stored video data in the repository corresponding to the requested
certain video; and

for each of the input videos, generating feature information and a
respective feature model;

such that the codec applies feature based prediction across multiple
different video data with respect to the stored video data in the repository
corresponding to the requested certain video, the multiple different video

data including the input videos of the global feature model library.

A video data system as claimed in Claim 10 wherein the codec:

encodes the stored video data in the repository by a feature based
compression that applies feature-based prediction based on the feature
models, and

transmits the encoded video data to a requesting device, the encoded

video data being the streamed video data from the repository.

A video data system as claimed in Claim 11 wherein the feature models from
the global feature model library are made accessible to the requesting device

and enable decoding of the encoded video data at the requesting device.

A video data system as claimed in Claim 11 wherein the global feature model
library is further formed by:
for each input video, identifying and indexing features in the input

video, the indexed features forming the respective feature model, said
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indexing including, for each identified feature, indicating location in the
input video of the identified feature; and

wherein decoding of the encoded video data at the requesting device
uses the indexed features and corresponding feature locations in the input

videos to obtain said feature models and decode the encoded video data.

A video data system as claimed in Claim 13 wherein the indexing of features

is a hash-based index.

A video data system as claimed in Claim 10 wherein the feature models are

stored in the repository.

A video data system as claimed in Claim 10 wherein the feature models from
the global feature model library form a working model subset library that is

specialized per requesting device or per streamed encoded video data.

A video data system as claimed in Claim 10 wherein the feature models from
the global feature model library form a working model subset library that is a
differential library with respect to state of any libraries in a requesting

device.

A video data system as claimed in Claim 10 wherein the feature models from
the global feature model library form a working model subset library that is a
predictive model library storing feature models as a function of profile of

end-user.

A video data system as claimed in Claim 18 wherein the predictive model
library has modifiable parameters enabling application to a variety of

demand scenarios.

A computer program product comprising program code means which when
loaded into a computer controls the computer to execute the system specified

in any proceeding claim.
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A computer program product comprising program code means which when
loaded into a computer controls the computer to carry out instructions to

facilitate implementation of the system of Claim 1.

A computer program product comprising program code means which when
loaded into a computer controls the computer to carry out instructions to

facilitate implementation of the system of Claim 10.

A video data system comprising:

a repository means storing video data and serving as a source of
streaming video; and

a codec means operatively coupled to the repository means, and in
response to a request for a certain video, the codec means being executed by
a processor means to (i) encode stored video data in the repository means
corresponding to the requested certain video and to (ii) stream the encoded
video data from the repository means, wherein the codec means applies
feature-based prediction using feature models from a global feature model
library, wherein the global feature model library is formed by:

receiving one or more input videos, each input video being different
from the stored video data in the repository means corresponding to the
requested certain video; and

for each of the input videos, generating feature information and a
respective feature model;

such that the codec means applies feature based prediction across
multiple different video data with respect to the stored video data in the
repository means corresponding to the requested certain video, the multiple
different video data including the input videos of the global feature model

library.
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