Title: METHOD FOR THE DETERMINATION OF ENZYMES BY DIFFUSION IN A POROUS MATRIX OR BY ELECTROPHORESIS

Abstract

Method for the determination of enzymatic activity in which a sample is added to a basin in or a defined surface of a liquid-saturated porous matrix covering a thin layer of a substance sensitive to enzymatic lysis deposited on the solid surface of a carrier. The sample is permitted to diffuse or migrate electrophoretically in the matrix and react with the substance sensitive to enzymatic lysis. The matrix is then removed wherein lysis can be indicated on the solid surface. The enzym-containing sample can be a bacteria colony on the matrix. Plastic material is preferred for the solid surface.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

| BR  | Brazil     | JP  | Japan     |
| CF  | Central African Empire | LU  | Luxembourg |
| CG  | Congo      | MG  | Madagascar |
| CH  | Switzerland| MW  | Malawi    |
| CM  | Cameroon   | SE  | Sweden     |
| DE  | Germany, Federal Republic of | SN  | Senegal   |
| DK  | Denmark    | SU  | Soviet Union |
| FR  | France     | TD  | Chad      |
| GB  | United Kingdom | US  | United States of America |
An enzymatic indicator system

The present invention relates to an enzymatic indicator system based on a two-phase system, in which an enzyme substrate is bound to the surface of a solid phase and in which the presence and quantity of an enzyme capable of reacting with the compound bound to said surface is determined by permitting the enzyme to diffuse from a basin in a liquid-saturated immobilized phase located on said surface. The presence and quantity of enzyme is then indicated on the solid phase in a suitable manner.

Enzymatic types of testing methods have a central position within the diagnostic techniques of medicine, microbiology and applied biochemistry in general. This is predominantly due to the fact that such methods afford the possibility of determining minute quantities of the specific reactants in question in complex systems.

Enzymatic test methods have been used in diagnosing various diseases by determining enzyme activity in serum, and other biological fluids, as well as enzyme activity generated by microorganisms.

These enzymatic tests are generally effected by various indicator systems involving colour changes, lysis of cells as erythrocytes, or degradation of molecules or the like.

The method according to the invention involves depositing a substrate on a solid surface as a thin layer of a substance sensitive to enzymatic lysis, whereafter there is placed on the thin layer an immobilized matrix in which the enzyme to be determined is permitted to diffuse or electrophoretically migrate during a measured period of time, whereafter the matrix is removed and the lysis reaction surface area on the solid surface is determined by adding an indicator substance, or in some other suitable way. The thin layer of said substance is suitably applied to the solid surface in the following manner: A liquid medium, suitably based on water, is first dispensed on
to the solid surface. A solution containing said substances is then added to the liquid medium to diffuse therein, whereafter the substance is permitted to deposit itself onto the solid surface, becoming bound to the solid surface with a force of such magnitude that said surface, subsequent to the aqueous medium having been removed, can be washed without the layer being removed therefrom.

The solid surface is suitably a transparent material, such as glass or a plastics material, e.g. polystyrene, polyacrylnitrile, polyolefines and copolymers thereof. It has been found in recent years, that plastics surfaces advantageously adsorb macro-molecules to form very uniform and reproducible layers.

A technique for visualizing enzyme reactions is one in which a thin layer of indium particles is vapor-deposited on the solid surface. The enzyme reactions are carried out on the indium layer, whereafter the reactions can be observed as a light-propagation phenomena on the indium surface. The most serious disadvantages with this technique appear to be the requirement of advanced apparatus for producing a uniform and reproducible layer of indium on large surfaces. This restricts the rational use of such surfaces. Furthermore, it is difficult to classify in a reaction as a positive or a negative one in borderline cases, since this indicator system has a flat amplitude and the indication can only be judged subjectively.

Another much simpler technique for visualizing enzymatic reactions on solid surfaces is one employing the condensation of water vapor. This technique involves exposing the dried surface to vapor, whereupon it is possible to determine whether a reaction has taken place and the extent of any such reaction from the pattern formed by the condensation. The principles of this technique were described by Langmuir in 1936. This method is as sensitive as the method employing an indium layer, but
has a steeper indication-amplitude. Moreover, it permits the objective analysis by contact-copying of the condensation pattern on the surfaces by irradiation of photographic paper and development thereof.

The indication of biological surface reactions is thus best effected with vapour condensation on the plastics surface (Vapour condensation on surface, VCS, see Adams, Klings, Fisher and Vroman, Journal of Immunological Methods, 3, (1973) pages 227-232), which, because of its simplicity, is the preferred method. Other known methods can also be used, such as the so-called ELISA-method (Enzyme-linked immunosorbent assay, J. Immun. 109:129 (1972), or particle adsorption technique, using a slurry of barium sulphate for example, and various colouring techniques.

The reason why it is possible to observe a change in the thin layer on the solid transparent surface as a result of vapour condensation is due to the fact that the so-called Zeta-potential or surface tension against water is changed on the surface when a reaction has taken place. In principle, all hydrophobic surfaces have a surface-tension angle of from 90 to 170°. Those plastics surfaces which normally have such properties include polystyrene, polyacrylnitril, polyethylene and copolymers thereof.

The substance bound to the plastics surface is able to react selectively with a further substance, either on reacted parts or on unreacted parts of the substance, and the reaction in question can be shown visually in situ even when it is difficult to make the reaction directly visible on the substrate after the enzyme reaction.

An immobilized matrix through which the unknown substance shall diffuse is then applied to the surface having the antigen thereon. Such immobilized matrices are well known within the technique of analysis, and may comprise aqueous gels or various types of sediment or fibrous substances. The most conventional method is
one in which a gel is used, in particular an agar gel, suitably
comprising a buffered 1% solution of agar which is permitted to
solidify. A basin is then formed in the matrix, there being sup-
plied to the basin a solution containing the unknown substance. The
unknown substance may also be supplied in cellulose plates or the
like, which have been saturated with the solution. The system
is left at a suitable temperature of between 5 and 50°C, for the
unknown substance to diffuse from the basin.

Compared with previously known methods of obtaining quan-
titative measurements of minute quantities of biological materials,
the novel method exhibits a simplicity which has not previously
been achieved, and therewith a subsequent increase in capacity
and decrease of costs. Thus, it is relatively simple to obtain
uniform, thin component layers on plastics surfaces, the adhesion
of the layer to the plastics surface being independent of the
concentration of the substance forming the layer in the solution
applied to the surface in a sufficient quantity, as compared to
the adhesion forces obtained in respect of glass surfaces.

The method according to the invention is thus used for en-
zymatic analysis of substances sensitive thereto, the plastics
surface having applied to it a thin layer of an enzyme substrate
and an immobilized matrix over said substrate, whereafter an
enzyme-containing sample quantity is applied to the matrix and
permitted to diffuse therein; whereafter the matrix is removed
and those parts of the enzyme substrate which have been affected
by the enzyme are indicated by lysis being obtained in this re-
gion. The method is much simpler to carry out than known methods,
the latter employing reactions in a mass and chromatographic
systems. A high degree of sensitivity is achieved, which can be
subscribed to the fact that a high substrate concentration is ob-
tained in the thin layer. The method provides information con-
cerning the diffusion properties of the enzyme, it being possible
to determine the molecular weight from the diffusion rate, if
the concentration and temperature are known at the same time.
The method enables the extra-cellular enzyme activity of bac-
teria to be examined in a simple and reliable manner.
CLAIMS:

1. A method of determining enzymatic activity, characterized in that there is deposited on a solid surface a thin layer of a substance which is sensitive to enzymatic lysis, whereafter an immobilized matrix is applied to the thin layer and in that there is supplied to the immobilized matrix a quantity of an enzyme-containing sample, which is permitted to diffuse or migrate electrophoretically in the matrix and react with the substance sensitive to enzymatic lysis, whereafter the matrix is removed for allowing the lysis to be indicated on the solid surface.

2. A method according to claim 1, characterized in that extracellular enzymes formed upon bacterial growth are permitted to diffuse through an immobilized matrix comprising a nutrient for bacterial growth, and in that a lysis of the substance deposited on the solid surface is allowed to be indicated subsequent to removing the matrix.

3. A method according to claim 1, characterized in that the solid surface constitutes a plastics material selected from the group polystyrene, polyacrylnitrile, polyolefines and copolymers thereof.
### I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or both National Classification and IPC:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 01 N 31/14; C 12 K 1/00 // G 01 N 31/08, 33/16</td>
<td>IPC</td>
<td>G 01 N 31/14, 33/16, 31/08; C 12 K 1/00, 1/04 .../...</td>
</tr>
</tbody>
</table>

### II. FIELDS SEARCHED

- **Minimum Documentation Searched**

  - IPC: G 01 N 31/14, 33/16, 31/08; C 12 K 1/00, 1/04 .../...

- **Documentation Searched other than Minimum Documentation**

  - to the Extent that such Documents are Included in the Fields Searched:

### III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SE, B, 360 177 published 1973, September 17, Boehringer Mannheim GmbH</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3730843 published 1973, May 5, Pfizer Inc</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Chem Abstr 77(1972), 30 705r</td>
<td>1-2</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
  - "A" document defining the general state of the art
  - "E" earlier document but published on or after the International filing date
  - "L" document cited for special reason other than those referred to in the other categories
  - "O" document referring to an oral disclosure, use, exhibition or other means
  - "P" document published prior to the international filing date but on or after the priority date claimed
  - "T" later document published on or after the international filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention
  - "X" document of particular relevance

### IV. CERTIFICATION

- **Date of the Actual Completion of the International Search**
  - 1978-10-17

- **Date of Mailing of this International Search Report**
  - 1978-10-19

- **International Searching Authority**
  - Swedish Patent Office

- **Signature of Authorized Office**
  - Carl Olof Gustafsson
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

II Continuation classification system.

Deutsche classification: 30h: 6, 10; 421:3/54
US classification: 23-230, 253; 195-99, 103,5; 424-12

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (b) for the following reasons:

1. [ ] Claim numbers ______ because they relate to subject matter not required to be searched by this Authority, namely:

2. [ ] Claim numbers ______ because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This international Searching Authority found multiple inventions in this international application as follows:

1. [ ] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. [ ] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. [ ] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

Remark on Protest:
[ ] The additional search fees were accompanied by applicant's protest.
[ ] No protest accompanied the payment of additional search fees.