(21) 申请号 201510269939.2
(22) 申请日 2015.05.25
(71) 申请人 广州市尤特新材材料有限公司
地址 510880 广东省广州市花都区花山镇华侨工业园
(72) 发明人 吴晓兵 周昭寅 朱鑫
(74) 专利代理机构 广州嘉权专利商标事务所有限公司 44205
代理人 胡辉
(51) Int.Cl.
C09J 175/14 (2006.01)
C09J 11/08 (2006.01)
C09J 11/10 (2006.01)
(54) 发明名称
一种 UV 快速固化温水快速水解胶及其制备方法
(57) 摘要
本发明公开了一种 UV 快速固化温水快速水解胶及其制备方法，该水解胶是由以下质量份数的原料组成：50～70 份的柔性聚氨酯丙烯酸改性树脂，10～15 份的水性增塑剂，2～5 份的保湿剂，1～5 份的吸水剂，10～40 份的水溶性活性单体，1～3 份的光引发剂，0.5～1 份的消泡剂。其制备方法为：将各成分混合均匀即可。本发明的 UV 水解胶无需加热，只需在 UV 灯照射下可以在 2～5 秒左右即达到一定之强度，以便进行下一个制程的操作，比如切割打磨、钻孔等加工，当所有制程完成后即可在 50～90℃水中进行分解，2～10min 胶层整体脱落，不会留下残胶。
1. 一种 UV 快速固化温水快速水解胶，其特征在于：其是由以下质量份数的原料组成：
50-70 份的柔性聚氨酯丙烯酸改性树脂、10-15 份的水性增塑剂、2-5 份的保湿剂、1-5 份的
吸水剂、10-40 份的水溶性活性单体、1-3 份的光引发剂、0.5-1 份的消泡剂。

2. 根据权利要求 1 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的柔性
聚氨酯丙烯酸改性树脂的粘度为 10000-50000 cps/25℃。

3. 根据权利要求 1 或 2 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的
柔性聚氨酯丙烯酸改性树脂选自 CN966H90 NS、CN969NS、CN980NS、6118、615-100、6152B-80
中的至少一种。

4. 根据权利要求 3 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的水性
增塑剂为聚乙二醇。

5. 根据权利要求 4 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的聚乙
二醇为聚乙二醇 400、聚乙二醇 600、聚乙二醇 1000 中的至少一种。

6. 根据权利要求 1 或 5 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的
保湿剂为丙二醇、丙三醇、二丙二醇、二丙三醇、月桂醇、鲸醇、硬脂醇中的至少一种。

7. 根据权利要求 6 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的吸水
剂为淀粉。

8. 根据权利要求 1 或 7 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的
水溶性活性单体为聚乙二醇丙烯酸酯类单体。

9. 根据权利要求 1 所述的一种 UV 快速固化温水快速水解胶，其特征在于：所述的光
引发剂为 2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮、2-甲基-2-(4-甲基
苯基)-1-[4-(甲苯基)苯基]-1-丙酮、2.4.6-三甲基苯甲酰基-二苯基氧化膦、2.二甲氨基
基-2-苯基-1-[4-(4-甲基苯基)苯基]-1-丁酮、苯甲酰甲酸甲酯、a.a-二甲氧基-a-苯基
苯乙酮中的至少一种；所述的消泡剂为有机硅消泡剂、聚醚消泡剂、有机硅改性聚醚消泡剂
中的至少一种。

10. 权利要求 1 所述的一种 UV 快速固化温水快速水解胶的制备方法，其特征在于：步
骤为：将各成分混合均匀即可。
一种 UV 快速固化温水快速水解胶及其制备方法

技术领域
[0001] 本发明涉及一种 UV 快速固化温水快速水解胶及其制备方法。

背景技术
[0002] 对于需要临时性粘接的场合，例如针对玻璃、铝合金、不锈钢、高档玻璃、水晶、珠宝、光学镜片、高档工艺品、电子加工等产业研磨制造过程中的临时性粘接，覆盖和密封，通常需要一种胶剂，将欲加工的基材或相关部件固定，完成加工后，再水解去除胶，目前的技术中，水解胶往往固化后，强度偏弱，不能实现较好的固定功能，且在固定后，进行水解时，往往需要加热，在 pH 为碱性的条件下水解，水解条件苛刻，也不环保。

发明内容
[0003] 本发明的目的在于提供一种 UV 快速固化温水快速水解胶及其制备方法。
[0004] 本发明所采取的技术方案是：
一种 UV 快速固化温水快速水解胶，其是由以下质量分数的原料组成：50-70 份的柔性聚氨酯丙烯酸改性树脂、10-15 份的水性增塑剂、2-5 份的保湿剂、1-5 份的吸水剂、10-40 份的水溶性活性单体、1-3 份的光引发剂、0.5-1 份的消泡剂。
[0005] 所述的柔性聚氨酯丙烯酸改性树脂的粘度为 10000-50000 cps/25℃。
[0006] 所述的柔性聚氨酯丙烯酸改性树脂选自 CN966H90 NS、CN969NS、CN980NS、6118、615-100、61528-80 中的至少一种。
[0007] 所述的水性增塑剂为聚乙二醇。
[0008] 所述的聚乙二醇为聚乙二醇 400、聚乙二醇 600、聚乙二醇 1000 中的至少一种。
[0009] 所述的保湿剂为丙三醇、丙三醇、丙二醇、丙三醇、月桂醇、鲸醇、硬脂醇中的至少一种。
[0010] 所述的吸水剂为淀粉。
[0011] 所述的水溶性活性单体为聚乙二醇丙烯酸酯类单体。
[0012] 所述的光引发剂为 2-羟基-2-甲基-1-苯基丙酮，1-羟基环己基苯基甲酮，2-甲基-2-(4-甲氧基苯基)-1-[4-(甲硫基)苯基]-1-丙酮，2,4,6-三甲基苯甲酰基-二苯基氧化膦，2-二甲基氨基-2-苯基-1-[4-(4-甲氧基苯基)苯基]-1-丁酮，苯甲酰甲酸甲酯，a-a-二甲氧基-苯基苯基甲醚中的至少一种；所述的消泡剂为有机硅消泡剂、聚醚消泡剂、有机硅改性聚醚消泡剂中的至少一种。
[0013] 一种 UV 快速固化温水快速水解胶的制备方法，步骤为：将各成分混合均匀即可。
[0014] 本发明的有益效果是：
本发明的 UV 水解胶无需加热，只需在 UV 灯照射下可以在 2-5 秒左右即达到一定之强度，以便进行下一个制程的操作，比如切割打磨，钻孔等加工，当所有制程完成后即可在 50-90℃水中进行分解，2-10min 胶层整体脱落，不会留下残胶。
具体实施方式

[0015] 一种 UV 颗集固化温水快速水解胶，其是由以下质量份数的原料组成：50-70 份的柔性聚氨酯丙烯酸改性树脂、10-15 份的水性增塑剂、2-5 份的湿润剂、1-5 份的吸水剂、10-40 份的水溶性活性单体、1-3 份的光引发剂、0.5-1 份的消泡剂。

[0016] 优选的，一种 UV 颗集固化温水快速水解胶，其是由以下质量份数的原料组成：55-70 份的柔性聚氨酯丙烯酸改性树脂、10-12 份的水性增塑剂、2-2.5 份的湿润剂、1.5-2 份的吸水剂、1.4-27 份的水溶性活性单体、1.5-2 份的光引发剂、0.5-1 份的消泡剂。

[0017] 优选的，所述的柔性聚氨酯丙烯酸改性树脂的粘度为 10000~50000 cps/25℃。

[0018] 进一步优选的，所述的柔性聚氨酯丙烯酸改性树脂选自沙多玛 CN966H90 NS、CN969NS、CN980NS、长兴化工 6118、615-100、6152B-80 中的至少一种。

[0019] 优选的，所述的水性增塑剂为聚乙二醇；进一步优选的，所述的聚乙二醇为聚乙二醇 400、聚乙二醇 600、聚乙二醇 1000 中的至少一种。

[0020] 优选的，所述的湿润剂为丙二醇、丙三醇、二丙二醇、二丙三醇、月桂醇、鲸鱼醇、硬脂醇中的至少一种；进一步优选的，所述的湿润剂为丙二醇、丙三醇中的至少一种。

[0021] 优选的，所述的吸水剂为淀粉；进一步优选的，为食品级和/或工业级淀粉。

[0022] 所述的水溶性活性单体为聚乙二醇丙烯酸酯类单体；进一步优选的，为聚乙二醇 (200) 二丙烯酸酯、聚乙二醇 (400) 二丙烯酸酯、聚乙二醇 (600) 二甲基丙烯酸酯、聚乙二醇 (600) 二丙烯酸酯中的至少一种。

[0023] 优选的，所述的光引发剂为 2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮、2-甲基-2-(4-吗啉基)-1-[4-(2-甲基苯并噁唑基)-2-二苯基丙烯酸酯、3-甲基苯甲酰基 - 二苯基氧化膦、2-甲基丙烯酸甲酯 -1-[4-(2-甲基苯并噁唑基)苯基]-1-丁酮、苯甲酰甲酸甲酯、a.a.- 二甲基苯甲酰基苯基乙酮中的至少一种。

优选的，所述的消泡剂为有机硅消泡剂、聚醚消泡剂或有机硅改性聚醚消泡剂中的至少一种；进一步优选的，为有机硅消泡剂。

[0024] 一种 UV 颗集固化温水快速水解胶的制备方法，步骤为：将各成分混合均匀即可。

[0025] 下面结合具体实施例对本发明做进一步的说明：

实施例 1：

沙多玛 CN966H90 NS 66g，水性增塑剂聚乙二醇 1000 10g，湿润剂丙二醇 2g，吸水剂食品及淀粉 2g，水溶性活性单体聚乙二醇 (200) 二丙烯酸酯 20g，光引发剂 2-羟基-2-甲基-1-苯基-1-丙酮 1.5g，消泡剂 BYK-024 0.5g。

[0026] 将树脂、活性单体、消泡剂和光引发剂放入搅拌中，在低转速（500 转 / 分钟）下搅拌 5 分钟，将光引发剂溶解后，再加入水性增塑剂，湿润剂和吸水剂在（1000 转 / 分钟）下搅拌 20 分钟，在搅拌过程中进行冷却。温度在 60℃以下后，将搅拌均匀的 UV 水解胶抽真空 5-10min 或自然放置 2-3 小时左右消泡，即可包装制成 UV 水解胶。

[0027] 实施例 2：

沙多玛 CN966H90 NS 55g，水性增塑剂聚乙二醇 600 12g，湿润剂丙三醇 2g，吸水剂食品级淀粉 2g，水溶性活性单体聚乙二醇 (600) 二甲基丙烯酸酯 27g，光引发剂 1-羟基环己基苯基甲酮 1.5g，消泡剂 BYK-024 0.5g。

[0028] 将树脂、活性单体、消泡剂和光引发剂放入搅拌中，在低转速（500 转 / 分钟）
下搅拌5分钟，再加入水性增塑剂，保湿剂和洗水剂在（1000转/分钟）下搅拌20分钟，在搅拌过程中进行冷却，温度在60℃以下后，将搅拌均匀的UV水解胶抽真空5-10min或自然放置2-3小时左右消泡，即可包装制成UV水解胶。

【0029】实施例3：

长兴化工6152B-80 70g，水性增塑剂聚乙二醇600 10g，保湿剂丙二醇 2.5g，吸水剂食品级淀粉 1.5g，水溶性活性单体聚乙二醇(600)二丙烯酸酯 14g，光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦 1.5g，消泡剂BYK-025 0.5g。

【0030】将树脂、活性单体、消泡剂和光引发剂放入搅拌器中，在低转速（500转/分钟）下搅拌5分钟，再加入水性增塑剂，保湿剂和洗水剂在（1000转/分钟）下搅拌20分钟，在搅拌过程中进行冷却，温度在60℃以下后，将搅拌均匀的UV水解胶抽真空5-10min或自然放置2-3小时左右消泡，即可包装制成UV水解胶。

【0031】实施例4：

长兴化工6152B-80 70g，水性增塑剂聚乙二醇600 10g，保湿剂丙二醇 2.5g，吸水剂食品级淀粉 1.5g，水溶性活性单体聚乙二醇(600)二丙烯酸酯 14g，光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦 2g，消泡剂BYK-025 1g。

【0032】将制备的UV水解胶取3-5g放置在70mm×100mm的玻璃基板上，将另一块同样大小的玻璃基板轻轻的盖在上面，放置3分钟胶体均匀分布在接触面，经UV固化机300mj/cm²能量固化，即可将玻璃粘结好，测试粘结强度。再将粘接好的玻璃70℃的温水观察玻璃水解分离的时间，测试对比检测结果列于表1：

表1：

<table>
<thead>
<tr>
<th>实施例</th>
<th>外观</th>
<th>UV固化能量 mJ/cm²</th>
<th>粘结强度 Mpa</th>
<th>水解温度 ℃</th>
<th>水解时间 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>透明液体</td>
<td>300</td>
<td>＞15</td>
<td>70</td>
<td>3.5</td>
</tr>
<tr>
<td>实施例2</td>
<td>透明液体</td>
<td>300</td>
<td>＞13</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>实施例3</td>
<td>透明液体</td>
<td>300</td>
<td>＞18</td>
<td>70</td>
<td>5</td>
</tr>
</tbody>
</table>