wo 2013/048826 A1 |1 I} NN TP OO0 Y A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

4 April 2013 (04.04.2013)

(10) International Publication Number

WO 2013/048826 A1l

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 15/167 (2006.01)

International Application Number:

PCT/US2012/055942 (81)

International Filing Date:
18 September 2012 (18.09.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/541,051 29 September 2011 (29.09.2011) US
13/414,593 7 March 2012 (07.03.2012) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, California 94065 (US).

Inventors: SHEN, Xugang; 11-3-401, No. 30 Ma Jia Pu
Xi Lu, Fengtai District, Beijing (CN). LI, Xiangdong; 9-5-
1, Changchunjiexili, Xuanwu District, Beijing (CN).

(84)

(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,

650 California Street, Fourteenth Floor, San Francisco,
California 94108 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SUPPORTING A SELF-TUNING LOCKING MECHANISM IN A TRANSACTION-
AL MIDDLEWARE MACHINE ENVIRONMENT

Transactional Application 101

Transaction A Transaction B
111 12

Process B Process C
114 115

Transactional Server 102
Process A
113

Semanhore Test-And-Set (TAS) ¢ ospin Yy
10% Assembly ------4 Gount ‘}
107 \o105

Shared Memory 103

pa—

Operating System (0S) 104

CPU CPU CPU
131 132 133

CPU
134

FIGURE 1

(57) Abstract: A lock mechanism can be supported in a trans-
actional middleware system to protect transaction data in a
shared memory when there are concurrent transactions. The
transactional middleware machine environment comprises a
semaphore provided by an operating system running on a
plurality of processors. The plurality of processors operates to
access data in the shared memory. The transactional middle-
ware machine environment also comprises a test-and-set
(TAS) assembly component that is associated with one or
more processes. Each said process operates to use the TAS as-
sembly component to perform one or more TAS operations in
order to obtain a lock for data in the shared memory. Addi-
tionally, a process operates to be blocked on the semaphore
and waits for a release of a lock on data in the shared
memory, after the TAS component has performed a number of
TAS operations and failed to obtain the lock.

WO 2013/048826 A1 |IIWAT 00TV VAT 0N O RO

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

SYSTEM AND METHOD FOR SUPPORTING A SELF-TUNING LOCKING MECHANISM IN
A TRANSACTIONAL MIDDLEWARE MACHINE ENVIRONMENT

Copyright Notice:
[0001] A portion of the disclosure of this patent document contains material which is subject

to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0003] The present invention is generally related to computer systems and software such as
middleware, and is particularly related to supporting a transactional middleware machine

environment.

Background:
[0004] A transactional middleware system, or a transaction oriented middleware, includes

enterprise application servers that can process various transactions within an organization. With
the developments in new technologies such as high performance network and multiprocessor
computers, there is a need to further improve the performance of the transactional middleware.

These are the generally areas that embodiments of the invention are intended to address.

Summary:
[0005] Described herein is a lock mechanism that can be supported in a transactional

middleware system for protecting transaction data in a shared memory when there are
concurrent transactions. The transactional middleware machine environment includes an
operating system running on a plurality of processors, each of which operates to access data in
a shared memory. The transactional middleware machine environment also comprises a
semaphore that is provided by the operating system, and a test-and-set (TAS) assembly
component that is associated with one or more processes. Each process can use the TAS
assembly component to perform one or more TAS operations in order to obtain a lock for data in
the shared memory. Furthermore, a process can block the semaphore and wait for a release of a
lock on data in the shared memory, after the TAS component has failed to obtain the lock after

performing a specified number of TAS operations.

Brief Description of the Figures:

[0006] Figure 1 shows an illustration of a transactional middleware machine environment
that supports a self-tuning lock mechanism, in accordance with an embodiment of the invention.

[0007] Figure 2 illustrates an exemplary flow chart for supporting a self-tuning lock

-1-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

mechanism in a transactional middleware machine environment, in accordance with an
embodiment of the invention.

[0008] Figure 3 is a functional block diagram of a system for supporting a locking
mechanism in a transactional middleware machine environment, in accordance with an

embodiment of the invention.

Detailed Description:

[0009] Described herein is a system and method for supporting a transactional middleware
system, such as Tuxedo, that can take advantage of fast machines with multiple processors, and
a high performance network connection. A lock mechanism can be supported in a transactional
middleware system to protect transaction data in a shared memory when there are concurrent
transactions. The transactional middleware machine environment comprises a semaphore
provided by an operating system running on a plurality of processors. The plurality of processors
can access data in the shared memory. The transactional middleware machine environment also
comprises a test-and-set (TAS) assembly component that is associated with one or more
processes. Each said process operates to use the TAS assembly component to perform one or
more TAS operations in order to obtain a lock for data in the shared memory. Additionally, a
process operates to be blocked on the semaphore and wait for a release of a lock on data in the
shared memory, after the TAS component has performed a number of TAS operations and failed
to obtain the lock.

[00010] In accordance with an embodiment of the invention, the system comprises a
combination of high performance hardware, e.g. 64-bit processor technology, high performance
large memory, and redundant InfiniBand and Ethernet networking, together with an application
server or middleware environment, such as WebLogic Suite, to provide a complete Java EE
application server complex which includes a massively parallel in-memory grid, that can be
provisioned quickly, and can scale on demand. In accordance with an embodiment, the system
can be deployed as a full, half, or quarter rack, or other configuration, that provides an
application server grid, storage area network, and InfiniBand (IB) network. The middleware
machine software can provide application server, middleware and other functionality such as, for
example, WebLogic Server, JRockit or Hotspot JVM, Oracle Linux or Solaris, and Oracle VM. In
accordance with an embodiment, the system can include a plurality of compute nodes, IB switch
gateway, and storage nodes or units, communicating with one another via an IB network. When
implemented as a rack configuration, unused portions of the rack can be left empty or occupied
by fillers.

[00011] Inaccordance with an embodiment of the invention, referred to herein as “Sun Oracle
Exalogic” or “Exalogic”, the system is an easy-to-deploy solution for hosting middleware or

application server software, such as the Oracle Middleware SW suite, or Weblogic. As

-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

described herein, in accordance with an embodiment the system is a “grid in a box” that
comprises one or more servers, storage units, an |B fabric for storage networking, and all the
other components required to host a middleware application. Significant performance can be
delivered for all types of middleware applications by leveraging a massively parallel grid
architecture using, e.g. Real Application Clusters and Exalogic Open storage. The system
delivers improved performance with linear I/O scalability, is simple to use and manage, and
delivers mission-critical availability and reliability.

[00012] In accordance with an embodiment of the invention, Tuxedo is a set of software
modules that enables the construction, execution, and administration of high performance,
distributed business applications and has been used as transactional middleware by a number of
multi-tier application development tools. Tuxedo is a middleware platform that can be used to
manage distributed transaction processing in distributed computing environments. It is a proven
platform for unlocking enterprise legacy applications and extending them to a services oriented
architecture, while delivering unlimited scalability and standards-based interoperability.
[00013] In accordance with an embodiment of the invention, a transactional middleware
system, such as a Tuxedo system, can take advantage of fast machines with multiple
processors, such as an Exalogic middleware machine, and a high performance network

connection, such as an Infiniband (IB) network.

A Self-tuning lock mechanism

[00014] Inaccordance with an embodiment of the invention, a self-tuning lock mechanism can
be supported in a transactional middleware system to protect transaction data in a shared
memory when there are concurrent transactions. Using the self-tuning lock mechanism, the
transactional middleware machine environment can achieve significant throughputimprovement
in transactional application scenarios such as applications with massive concurrent transactions.
[00015] Figure 1 shows an illustration of a transactional middleware machine environment
that supports a self-tuning lock mechanism, in accordance with an embodiment of the invention.
As shown in Figure 1, a transactional middleware machine comprises multiple CPUs 131-134
that support an operating system (OS) 104, and a shared memory 103 that includes various
transactional data 121-123. A transactional application 101 with multiple concurrent transactions
111-112 can run on a plurality of processes 113-115 in a transactional server 102, each of which
can use an atomic TAS (Test-And-Set) assembly 107 to implement an effective locking
mechanism. The locking mechanism can protect the transaction data in the shared memory
when there are concurrent transactions. In addition, a process in the transactional application
can use a semaphore mechanism 106 provided by the OS to obtain a lock on data 122 if
necessary.

[00016] In accordance with one embodiment, when a process wants to get a lock on data

-3-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

122, the process can perform a TAS operation for a number of rounds. The system can specify a
target spin count, which is the number of rounds of TAS operation that are allowed. The target
spin count can be either preconfigured or dynamically determined.

[00017] Ifthe lock becomes available before the target spin count is reached, the process can
obtain the lock with much less cost than the semaphore mechanism provided by the OS. On the
other hand, if the lock is not available during this period, then the process can be configured to
block the semaphore, and wait until the lock owner wakes up and releases the lock.

[00018] In accordance with an embodiment of the invention, the target spin count value can
be decided in the context of the hardware configuration and the application scenario. Users can
fine tune the spin count value manually in order to find an optimized value. The decision may not
be obvious in some situations, since there is a trade-off between the CPU usage and the time to
get a lock. For example, users may have to spend more CPU power to perform more TAS
operations in order to get the lock in a shorter time frame. Hence, there may not be an optimized
target spin count value that is obvious for every case.

[00019] One drawback of user level semaphore implementation is that the transactional
application may not be able to dynamically adjust the target spin count in real time depending on
the specific machine type. In general, the user level semaphore only uses a statically configured
target spin count value, and users can adjust the target spin count value manually only by
experimental practices. Since the optimal spin count value is machine dependent, and there is
no one-fit-in-all value for all platforms, a more suitable approach is to employ a mechanism to
calculate the target spin count value dynamically and in real time.

[00020] In accordance with an embodiment of the invention, the target spin count value can
be stored in a shared memory. A special process, such as a Tuxedo daemon process, can
periodically change the spin count value according to operation information collected in the
previous period. For example, the Tuxedo daemon can update the target spin count value once
per 5 seconds by default.

[00021] In accordance with one embodiment, an algorithm can be used to configure the target
spin count value. The algorithm can increase the target spin count value, if the CPU idle ratio is
low, or too many TAS operations have failed to obtain the lock and the system switched to the
semaphore. Furthermore, the algorithm can decrease the target spin count value if the CPU idle
ratio is too high.

[00022] Figure 2 illustrates an exemplary flow chart for supporting a self- tuning lock
mechanism in a transactional middleware machine environment, in accordance with an
embodiment of the invention. As shown in Figure 2, at step 201, the system can provide a
semaphore associated with an operating system running on a plurality of processors, wherein
the plurality of processors operate to access data in a shared memory . Then, at step 202, a

process of one or more processes can use a test-and-set (TAS) assembly component to perform

-4-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

one or more TAS operations in order to obtain a lock for data in the shared memory. Finally, at
step 203, the process can be blocked on the semaphore and wait for a release of a lock on data
in the shared memory, after the TAS component has performed a specified number of TAS

operations and failed to obtain the lock.

Configuring the SPINCOUNT value in Tuxedo

[00023] In accordance with an embodiment of the invention, metadata, such as a
SPINCOUNT parameter in the Tuxedo configuration file, can be used to specify the target spin
count. SPINCOUNT can be either a static configured value, or a dynamic one.

[00024] Forexample, Tuxedo can use a statically set value of SPINCOUNT to determine how
many times the bulletin board lock waits are spinning before getting blocked on system level
semaphore. The drawback of this algorithm is that the value set by user is not the optimal value
of SPINCOUNT on the specific platform, because the optimal value of SPINCOUNT is
dependent upon many dynamic factors such as the CPU amounts, workload, number of waits for
the Bulletin Board (BB) lock etc..

[00025] Additionally, Tuxedo can dynamically tune the value of SPINCOUNT while taking the
runtime environment into consideration. An algorithm can be used to determine an appropriate
value for the SPINCOUNT parameter. The system can increase the SPINCOUNT, if too many
TAS operations have failed in the previous period and the system switched to the semaphore,
and there was an enough CPU idle ratio. On the other hand, the system can decrease the
SPINCOUNT, if the CPU idle ratio was too high.

[00026] The above algorithm is based on the CPU usage, e.g. CPU idle rate, and the ratio of
SPIN failure, e.g. a ratio of SPIN failure in every 10000 operations to obtain a lock. The ratio of
SPIN failure can indicate how many times locks are obtained via the semaphore instead of via
the TAS operation.

[00027] A process can be in a SPIN mode, when the process is in an active status. The
process can be blocked on the semaphore, if the process fails to obtain the lock after trying to
perform the TAS operations for a number of times, which is referred to as a SPIN failure. The
process can try to perform a TAS operation again and again in order to get the lock before a
SPIN failure happens. A configurable parameter, e.g. SPINCOUNT, can be used to specify the
number of rounds of TAS operation to be invoked and performed.

[00028] In accordance with an embodiment of the invention, the minimum idle CPU rate and
the SPIN failed rate can be defined using metadata in a configuration file. For example, in the
Tuxedo configuration file, there can be a MINIDLECPU parameter for defining the minimum idle
CPU rate, the value of which has a range of 1-100 with 20 as default. Additionally, there can be
a FACTOR parameter for defining the SPIN failed rate, the value of which has a range of 1-
10000 with 1000 as default.

10

15

20

25

30

35

40

45

WO 2013/048826 PCT/US2012/055942

[00029] When a minimum idle CPU rate and SPIN failed rate are given, the system can tune
the SPINCOUNT in each scan unit. Then, the system can increase the SPINCOUNT if the SPIN
failure rate is too high (e.g. the SPIN failure rate is set to be greater than (1/FACTOR*1.1)), or
the idle CPU time is enough (e.g., idle rate > MINIDLECPU% +0.05), with the new SPINCOUNT
= old SPINCOUNT + old SPINCOUNT * (cpu_idletime/cpu_usertime) and the maximum
SPINCOUNT can to be set as10,000,000. Otherwise, the system can decrease the SPINCOUNT
when the idle CPU ratio is too low (e.g., idle rate < MINIDLECPU% - 0.05), with the new
SPINCOUNT=0ld SPINCOUNT/4 and the minimum SPINCOUNT to be set as 50000.
[00030] The following Listing 1 is a Tuxedo example for SPINTUNING configuration.

*RESOURCES

IPCKEY 123456
DOMAINID simpapp
MASTER ALLEN

MAXACCESSERS 10
MAXSERVERS 5
MAXSERVICES 10

MODEL SHM

LDBAL N

OPTIONS EXALOGIC,SPINTUNING
*MACHINES

ALLENHOST LMID="ALLEN"
APPDIR="/home/allen/Workspace/Tuxedo11gR1PS2/simpdir"
TUXCONFIG="/home/allen/Workspace/Tuxedo11gR1PS2/simpdir/tuxconfig"
TUXDIR="/home/allen/Software/OraHome/tuxedo11gR1PS2"
SPINTUNING_TARGET=1000

SPINTUNING_MINIDLECPU=20

*GROUPS

GROUP1

LMID=ALLEN GRPNO=1 OPENINFO=NONE

*SERVERS

DEFAULT:

CLOPT="-A"

simpserv SRVGRP=GROUP1 SRVID=1

*SERVICES
TOUPPER
Listing 1

[00031] As shown in the above example, the "MACHINES section of the configuration file
includes an attribute “SPINTUNING_TARGET” that is used for configure tuning target. The value
of “SPINTUNING_TARGET” is numeric, which can be greater than or equal to “0” and less than
or equal to e.g. “10000”. A value of 0 indicates that the value built into the binary is used. The
built-in value is 1000. The default value of “SPINTUNING_TARGET” is 0.

-6-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

[00032] In the above example, the value of SPINTUNING_ TARGET means that there is at
most one time for the bulletin board to be locked via system semaphore per every thousand
locks. The system can increase the value of SPINCOUNT with more CPU spent to meet a larger
value of SPINTUNING_TARGET. The attribute can be set with a nonzero value only if the option
SPINTUNING is specified.

[00033] As shown in the above example, the "MACHINES section of the configuration file
includes an attribute “SPINTUNING_MINIDLECPU” ” that is used for specifying idle CPU rate.
The idle CPU rate can be used by the system to find a proper SPINCOUNT dynamically. The
larger SPINCOUNT is, the more CPU that the system uses. User can set the minimum idle CPU
rate via “SPINTUNING_MINIDLECPU” to avoid spending too much CPU.

[00034] The value of “SPINTUNING_ MINIDLECPU” is numeric and in percentages. It can be
greater than or equal to “0” and less than or equal to “100”. A value of 0 indicates that the value
built into the delivered binary should be used. For example, in Tuxedo, the built-in value can be
set as 20, and the default value of “SPINTUNING_ MINIDLECPU” is 0. The attribute can be set
with a nonzero value only if the option SPINTUNING is specified.

[00035] Inaccordance with some embodiments, Figure 3 shows a functional block diagram of
a system 1000 for supporting a locking mechanism in a transactional middleware machine
environment configured in accordance with the principles of the invention as described above.
The functional blocks of the system 1000 may be implemented by hardware, software, or a
combination of hardware and software to carry out the principles of the invention. It is
understood by persons of skill in the art that the functional blocks described in Figure 3 may be
combined or separated into sub-blocks to implement the principles of the invention as described
above. Therefore, the description herein may support any possible combination or separation or
further definition of the functional blocks described herein.

[00036] As shown in Figure 3, the system 1000 for supporting a locking mechanism in a
transactional middleware machine environment comprises a providing unit 1100 and a TAS
assembly component 1200. The providing unit 1100 provides a semaphore associated with an
operating system running on a plurality of processors, wherein the plurality of processors
operate to access data in a shared memory. The TAS assembly component 1200 is associated
with one or more processes, wherein each said process operates to use the TAS assembly
component 1200 to perform one or more TAS operations in order to obtain a lock for data in the
shared memory. A process operates to be blocked on the semaphore and waits for a release of a
lock on data in the shared memory, after the TAS component 1200 has performed a specified
number of TAS operations and failed to obtain the lock.

[00037] In some embodiments, the system 1000 further comprises a protecting unit 1300 for
protecting transaction data in the shared memory when there are multiple concurrent

transactions.

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

[00038] In some embodiments, the system 1000 further comprises an allowing unit 1400 for
allowing the lock mechanism to use a spin count, which is the specified number of maximum
rounds of TAS operations allowed.

[00039] Insome embodiments, the system 1000 further comprises a preconfiguring unit 1500
for preconfiguring the spin count in metadata.

[00040] Insome embodiments, the system 1000 further comprises a dynamically determining
unit 1600 for dynamically determining the spin count based on both a hardware configuration
and an application scenario.

[00041] Insome embodiments, the system 1000 further comprises a periodically determining
unit 1700 for periodically determining the spin count using a special process.

[00042] Insome embodiments, the spin count is dynamically determined using an algorithm,
wherein the algorithm specifies that the spin count is increased from the spin count of a previous
period, if a number of spin failures in the previous period exceeds a spin failure limitand a CPU
idle ratio in the previous period is below a CPU idle ratio limit, and the spin count is decreased
from the spin count of a previous period, if the CPU idle ratio exceeds a CPU idle ratio limit.
[00043] In some embodiments, a spin failure happens when a process fails to obtain a lock on
data after attempting the TAS operation for a specified number of times.

[00044] In some embodiments, the system 1000 further comprises a using unit 1800 for using
the semaphore to obtain the lock when a lock owner wakes up and releases the lock.

[00045] In some embodiments, the system 1000 further comprises a fine tuning unit 1900 for
fine tuning the spin count manually to find an optimized value.

[00046] Other embodiments include an apparatus for supporting a locking mechanism in a
transactional middleware machine environment, comprising a means for providing a semaphore
associated with an operating system running on a plurality of processors, wherein the plurality of
processors operate to access data in a shared memory; a means for using, via a process of one
or more processes, a test-and-set (TAS) assembly component to perform one or more TAS
operations in order to obtain a lock for data in the shared memory; a means for blocking on the
semaphore via the process and waiting for a release of a lock on data in the shared memory,
after the TAS component has performed a specified number of TAS operations and failed to
obtain the lock.

[00047] In another embodiment, the apparatus further comprises means for protecting
transaction data in the shared memory when there are multiple concurrent transactions.
[00048] Inanother embodiment, the apparatus further comprising means for allowing the lock
mechanism to use a spin count, which is the specified number of maximum rounds of TAS
operations allowed.

[00049] In another embodiment, the apparatus further comprises means for preconfiguring

the spin count in metadata.

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

[00050] In another embodiment, the apparatus further comprises means for dynamically
determining the spin count based on both a hardware configuration and an application scenario.
[00051] In another embodiment, the apparatus further comprises means for periodically
determining the spin count using a special process.

[00052] In an embodiment further comprises an apparatus wherein the spin count is
dynamically determined using an algorithm, wherein the algorithm specifies that the spin count is
increased from the spin count of a previous period, if a number of spin failures in the previous
period exceeds a spin failure limit and a CPU idle ratio in the previous period is below a CPU idle
ratio limit, and the spin count is decreased from the spin count of a previous period, if the CPU
idle ratio exceeds a CPU idle ratio limit.

[00053] In another embodiment, the apparatus wherein a spin failure happens when a
process fails to obtain a lock on data after attempting the TAS operation for a specified number
of times.

[00054] In another embodiment, the apparatus further comprising means for using the
semaphore to obtain the lock when a lock owner wakes up and releases the lock.

[00055] In another embodiment, the apparatus further comprises means for fine tuning the
spin count manually to find an optimized value.

[00056] And yet another embodiment includes a system for supporting a locking mechanism
in a transactional middleware machine environment, comprising a unit for providing a semaphore
associated with an operating system running on a plurality of processors, wherein the plurality of
processors operate to access data in a shared memory; a test-and-set (TAS) assembly
component that is associated with one or more processes, wherein each said process operates
to use the TAS assembly component to perform one or more TAS operations in order to obtain a
lock for data in the shared memory, wherein a process operates to be blocked on the semaphore
and waits for a release of a lock on data in the shared memory, after the TAS component has
performed a specified number of TAS operations and failed to obtain the lock;

[00057] Inanother embodiment the system further comprises a unit for protecting transaction
data in the shared memory when there are multiple concurrent transactions.

[00058] In another embodiment the system further comprises a unit for allowing the lock
mechanism to use a spin count, which is the specified number of maximum rounds of TAS
operations allowed.

[00059] In another embodiment the system further comprises a unit for preconfiguring the
spin count in metadata.

[00060] In another embodiment the system further comprises a unit for dynamically
determining the spin count based on both a hardware configuration and an application scenario.
[00061] In another embodiment the system further comprises a unit for periodically

determining the spin count using a special process.

-9-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

[00062] Another embodiment includes a system wherein the spin count is dynamically
determined using an algorithm, wherein the algorithm specifies that the spin count is increased
from the spin count of a previous period, if a number of spin failures in the previous period
exceeds a spin failure limit and a CPU idle ratio in the previous period is below a CPU idle ratio
limit, and the spin count is decreased from the spin count of a previous period, if the CPU idle
ratio exceeds a CPU idle ratio limit.

[00063] Another embodiment includes a system wherein a spin failure happens when a
process fails to obtain a lock on data after attempting the TAS operation for a specified number
of times.

[00064] Another embodiment includes a system further comprising a unit for using the
semaphore to obtain the lock when a lock owner wakes up and releases the lock.

[00065] And yet another embodiment includes a system further comprising a unit for fine
tuning the spin count manually to find an optimized value.

[00066] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[00067] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMSs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory |Cs), or any type of media or device
suitable for storing instructions and/or data.

[00068] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical application, thereby enabling others skilled
in the art to understand the invention for various embodiments and with various modifications
that are suited to the particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalence.

-10-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

Claims:

What is claimed is:

1. A system for supporting a locking mechanism in a transactional middleware machine
environment, comprising:

a semaphore provided by an operating system running on a plurality of processors,
wherein the plurality of processors operate to access data in a shared memory;

a test-and-set (TAS) assembly component that is associated with one or more
processes, wherein each said process operates to use the TAS assembly component to perform
one or more TAS operations in order to obtain a lock for data in the shared memory,

wherein a process operates to be blocked on the semaphore and waits for a release of a
lock on data in the shared memory, after the TAS component has performed a specified number

of TAS operations and failed to obtain the lock.

2. The system of claim 1, wherein the lock mechanism protects transaction data in the

shared memory when there are multiple concurrent transactions.

3. The system of claim 1, wherein the lock mechanism use a spin count, which is the

specified number of maximum rounds of TAS operations allowed.

4, The system of claim 3, wherein the spin count is preconfigured in metadata.

5. The system of claim 3, wherein the spin count is dynamically determined based on both a

hardware configuration and an application scenario.

6. The system of claim 3, wherein the spin count is periodically determined using a special
process.
7. The system of claim 6, wherein the spin count is dynamically determined using an

algorithm, wherein the algorithm specifies that
the spin count is increased from the spin count of a previous period, if a number
of spin failures in the previous period exceeds a spin failure limit and a CPU idle ratio in
the previous period is below a CPU idle ratio limit, and
the spin count is decreased from the spin count of a previous period, if the CPU

idle ratio exceeds a CPU idle ratio limit.

-11-

10

15

20

25

30

35

WO 2013/048826 PCT/US2012/055942

8. The system of claim 7, wherein a spin failure happens when a process fails to obtain a

lock on data after attempting the TAS operation for a specified number of times.

9. The system of claim 1, wherein, using the semaphore, the process operates to obtain the

lock when a lock owner wakes up and releases the lock.

10. The system of claim 1, wherein the spin count is fine tuned manually to find an optimized

value.

11. A method for supporting a locking mechanism in a transactional middleware machine
environment, comprising:

providing a semaphore associated with an operating system running on a plurality of
processors, wherein the plurality of processors operate to access data in a shared memory;

using, via a process of one or more processes, a test-and-set (TAS) assembly
component to perform one or more TAS operations in order to obtain a lock for data in the
shared memory;

blocking on the semaphore via the process and waiting for a release of a lock on data in
the shared memory, after the TAS component has performed a specified number of TAS

operations and failed to obtain the lock.

12. The method of claim 11, further comprising protecting transaction data in the shared

memory when there are multiple concurrent transactions.

13. The method of claim 11, further comprising allowing the lock mechanism to use a spin

count, which is the specified number of maximum rounds of TAS operations allowed.

14. The method of claim 13, further comprising preconfiguring the spin count in metadata.

15. The method of claim 13, further comprising dynamically determining the spin count based

on both a hardware configuration and an application scenario.

16. The method of claim 13, further comprising periodically determining the spin count using

a special process.

17. The method of claim 16, wherein the spin count is dynamically determined using an
algorithm, wherein the algorithm specifies that

the spin count is increased from the spin count of a previous period, if a number

-12-

WO 2013/048826 PCT/US2012/055942

of spin failures in the previous period exceeds a spin failure limit and a CPU idle ratio in
the previous period is below a CPU idle ratio limit, and
the spin count is decreased from the spin count of a previous period, if the CPU

idle ratio exceeds a CPU idle ratio limit.

18. The method of claim 17, wherein a spin failure happens when a process fails to obtain a

lock on data after attempting the TAS operation for a specified number of times.

19. The method of claim 11, further comprising using the semaphore to obtain the lock when

10 alock owner wakes up and releases the lock.

20. The method of claim 11, further comprising fine tuning the spin count manually to find an

optimized value.

15 21. A program that causes a computer to perform the method of any of claim 11 to 20.

22. A computer readable non-volatile media that stores the program of claim 21.

-13-

WO 2013/048826 PCT/US2012/055942

1/3

Transactional Application 101

Transaction A Transaction B
111 112
\‘ "
4 Transactional Server 102 N
Process A Process B Process C
113 114 115
| |
"1' . \\‘
Semaphore Test-And-Set (TAS) ! Spin \
106 Assembly ~ pe=---- 1 Count :
107 \ 105 J
\\‘ ”[
19 T J

r x “
Data A w (ata Data C

121 J L 122 123

Shared Memory 103

e ’
Operating System (OS) 104
\ 7

CPU CPU CPU CPU
131 132 133 134

FIGURE 1

WO 2013/048826 PCT/US2012/055942

2/3

Providing a semaphore by an operating system runn ing on a plurality of
processors, wherein the plurality of processors operate t o access data in a /\/201
shared memory

'

Using, via a process of one or more processes, a test-and-set (TAS) assembly 202
component to perform one or more TAS operations in order to obtain a lock for /_/
data in the shared memory

'

Blocking on the semaphore via the process and waiting for a release of a lock 203
on a data in the shared memory, after the TAS compone nt has performed a /\/
specified number of TAS operations and faile d to obtain the lock

FIGURE 2

WO 2013/048826

PCT/US2012/055942

3/3

System for supporting a lockin g mechanism
1100

Providing Unit
1100

TAS Assembly component
1200

Protecting Unit
1300

Allowing Unit
1400

Proconfiguring Unit
1500

Dynamically Determining Unit
1600

Periodically Deter mining Unit
1700

Using Unit
1800

Fine Tuning Unit
1900

FIGURE 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/55942

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/167 (2012.01)
USPC - 709/214

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8): GO6F 15/167 (2012.01)
USPC: 709/214

Minimum documentation searched (classification system followed by classification symbols)

terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
IPC(8): GO6F 15/167 (2012.01); USPC: 709/201, 213, 214; 711/147, 149, 150, 151, 152; 718/1, 100, 104; 726/1 (keyword limited, see

processor, idle, load, measure, increase, decrease, tally, tries, etc.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Google Scholar; Google Patents; PatBase(All). Search terms: semaphore, TAS, test, set, test-and-set, spin, failure, exceed, limit,
number, iteration, count, lock, success, obtain, attempt, cycle, dynamic, adjust, optimize, change, madify, tune, compare, swap, CPU,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 7,594,234 B1 (Dice) 22 September 2009 (22.09.2009), entire document, especially fig. 2-3; | 1-22
col 1, In 7-15; col 2, In 51-59; col 4, In 40-46; col 5, In 57-60; col 6, In 7-9, 24-28, 39-49, 61-67;
col 7, In 22-32; col 8, In 3-8; col 12, In 27-32

Y US 6,549,961 B1 (Kloth) 15 April 2003 (15.04.2003), entire document, especially col 3, In 18-20; | 1-22
abstract

Y US 2007/0239943 A1 (Dice et al.) 11 October 2007 (11.10.2007), entire document, especially 2,12, 21-22
para [0035];[0010];[0080]

A US 7,747,805 B2 (McKenney) 29 June 2010 (29.06.2010), entire document 1-22

A US 5,050,072 A (Earnshaw et al.) 17 September 1991 (17.09.1991), entire document 1-22

A US 2006/0143511 A1 (Huemiller) 29 June 2006 (29.06.2006), entire document 1-22

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlicr application or patent but published on or after the international
filing datc

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
mcans

“P” document published prior to the intemational filing date but later than

the priority date claimed

“T” later document published after the international filing datc or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 November 2012 (08.11.2012)

Date of mailing of the international search report

06 DEC 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - wo-search-report

