METHOD OF PRODUCING MULTI-PANEL MAILING ENVELOPE FORMS IN SIDE-BY-SIDE INTERCONNECTED SERIES

Inventor: Harold W. Huffman, 2100 John Gray Rd., Fairfield, Ohio 45014

Filed: May 13, 1974

Appl. No.: 469,673

U.S. Cl. 229/69; 229/85; 229/92.1; 229/92.7
Int. Cl. B65D 27/10
Field of Search 229/69, 85, 92.1, 92.3, 229/92.7

References Cited
UNIVERSAL STATES PATENTS
3,197,121 7/1965 Hayes .. 229/92.1
3,228,586 1/1966 Hayes .. 229/69 X
3,319,871 5/1967 Hayes .. 229/69

Primary Examiner—William I. Price
Assistant Examiner—Stephen P. Garbe
Attorney, Agent, or Firm—J. Warren Kinney, Jr.

The methods of the present invention provide for the manufacture of a series of side-by-side interconnected, single-ply, multi-panel envelope forms from a continuously advancing web of sheet material. The forms are adapted to be continuously fan-folded into sealed, envelope-defining relationship, and to be thereafter severed from the series as individual items for distribution. A stubber-insert, such as a circular or the like, may be inserted in the interior of the envelope prior to sealing thereof.

4 Claims, 28 Drawing Figures
1

METHOD OF PRODUCING MULTI-PANEL MAILING ENVELOPE FORMS IN SIDE-BY-SIDE INTERCONNECTED SERIES

CROSS-REFERENCE TO RELATED APPLICATION

The present application is related to my copending application entitled: MULTI-PANEL ENVELOPE FORM AND METHOD OF PRODUCING SAME, Ser. No. 469,672, filed on even date herewith, in which I have disclosed a single-ply, multi-panel envelope form and the methods of producing an end-to-end interconnected series of said forms from an endless web of sheet material. The envelope forms therein disclosed are produced from a continuously advancing web of sheet material which is transversely subdivided into a plurality of end-to-end interconnected forms, each of which comprises a pair of end-adjustable, coplanar, envelope-defining panels separated by at least one end-connected, intermediate panel. The end-to-end interconnected forms are each adapted to be sequentially zig-zag folded into sealed, envelope-defining relationship.

The methods disclosed in the present application are readily distinguishable therefrom, wherein a continuously advancing, endless web of sheet material is transversely subdivided into a plurality of side-by-side interconnected forms which are adapted to be continuously fan-folded into sealed, envelope-defining relationship. The present application is specifically limited and directed to the methods disclosed herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to the methods of producing a series of side-by-side interconnected, single-ply, multi-panel mailing envelope forms from a continuously advancing, endless web of sheet material and to the methods of producing the stuffed, sealed envelopes resulting therefrom. Generally, the forms comprise a pair of coplanar, envelope-defining panels separated by at least one intermediate panel disposed between said envelope-defining panels and in end-connected relationship therewith, wherein the forms are adapted to be continuously fan-folded into stuffed, sealed mailing envelopes, each containing at least one integral, interior panel. The methods of the present invention also provide for the selective insertion of a stubber-insert, such as a circular or the like, in the interior of the envelope prior to sealing thereof.

2. Description of the Prior Art

It is known to produce a series of interconnected envelope forms or assemblies from one or more continuously advancing, endless webs of sheet material. For example, U.S. Pat. Nos. 3,104,700; 3,312,385; 3,411,699; 3,544,438; and 3,608,816 each disclose a series of end-to-end interconnected envelope forms produced from a plurality of collated, continuous webs, wherein the front, back and various insert plies of each envelope are separate, independent sheets of material. U.S. Pat. No. 3,482,780 discloses a series of end-to-end interconnected envelope forms produced from one web of sheet material, wherein each form comprises a pair of panels defining the front and back of a mailing envelope.

U.S. Pat. Nos. 3,337,120 and 3,339,827 each disclose a series of interconnected envelope forms produced from a plurality of collated endless webs. It should be noted that FIGS. 11–14 of U.S. Pat. No. 3,339,827 illustrate a form wherein the front and back of a mailing envelope are defined by a single web. However, the interior sheets thereof are separate, collated webs.

U.S. Pat. No. 3,802,618 discloses a single, independent envelope form comprising three interconnected panels, wherein the outer panels define the front of a send and return envelope, respectively, and the intermediate panel defines the back of both the send and return envelope.

The present invention differs from each of the foregoing in that the disclosed method provides for the manufacture of a series of side-by-side interconnected, single-ply, multi-panel envelope forms which are adapted to be presented in coplanar relationship to a printing mechanism or the like for the application of original, directly applied indicia to the various surfaces thereof. The forms are adapted to be thereafter continuously fan-folded into stuffed, sealed mailing envelopes.

SUMMARY OF THE INVENTION

The present invention provides methods of producing a series of side-by-side interconnected forms from a continuously advancing, endless web of sheet material. The web is transversely subdivided into a plurality of forms, each of which comprises a pair of coplanar, web-edge-adjacent envelope-defining panels separated by at least one end-connected, intermediate panel integral and coplanar therewith. A pair of opposed, transversely extending side edges are delineated in each of the panels of said forms, wherein the side edges of each intermediate panel are disposed inwardly of the corresponding side edges of the envelope-defining panels and interconnected therewith.

The forms are adapted to be subsequently continuously fan-folded into stuffed, sealed envelope-defining relationship wherein each envelope contains at least one integral, intermediate panel disposed between the front and back panels of the envelope.

A modification of the method provides a form compatible for use with imprint printing techniques, where such is desired. Further, the methods of the present invention provide for the insertion of insert material, such as a circular or the like, in the interior of the envelope prior to sealing thereof.

Therefore, it is a primary object of the present invention to provide a method for manufacturing a series of side-by-side interconnected, single-ply, multi-panel envelope forms which are adapted to be thereafter continuously fan-folded into stuffed, sealed envelope-defining relationship wherein each envelope contains at least one integral, intermediate panel disposed between the front and back panels thereof.

It is, further, an object of the present invention to provide a series of side-by-side interconnected single-ply, multi-panel envelope forms which are adapted to be presented to a printer or the like in coplanar, interconnected relationship.

Another object of the present invention is to provide a method for inserting insert material, such as a circular or the like, in the interior of the envelope prior to sealing thereof.

Other objects and features of the present invention will be readily apparent from the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1–3 diagrammatically illustrate steps in the method of making a continuous series of envelope forms incorporating the features of the present invention, wherein an odd number of intermediate panels are disposed between each set of envelope-defining panels. FIG. 3A diagrammatically illustrates steps in a modified method of making a continuous series of envelope forms incorporating the features of the present invention, wherein an even number of intermediate panels are disposed between each set of envelope-defining panels.

FIGS. 4–18 illustrate an embodiment of the form produced by the method of FIGS. 1, 2 and 3A. FIGS. 21–23 diagrammatically illustrate steps in the method of making a continuous series of envelope forms similar to the forms of FIGS. 4–18, adapted for use with transfer imprint printing techniques. FIGS. 24–27 illustrate the resulting record sheet and sealed envelope obtained from the form produced by the method of FIGS. 21–23.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The methods of the present invention provide for the manufacture of single-ply, multi-panel envelope forms in a side-by-side interconnected series from a continuously advancing endless web of sheet material. The forms are adapted to be subsequently continuously fan-folded into sealed, envelope-defining relationship wherein each envelope contains at least one intermediate panel disposed between the front and back envelope panels. While the forms and resulting stuffed, sealed mailing envelopes are similar to the forms and envelopes of my aforementioned application, it should be understood that the methods thereof are readily distinguishable from those disclosed herein. My pending application discloses the methods of producing a series of end-to-end interconnected forms which are adapted to be thereafter sequentially zig-rag folded into stuffed, sealed mailing envelopes, whereas the present application is limited and directed to the methods of producing a series of side-by-side interconnected forms which are adapted to be thereafter continuously fan-folded into stuffed, sealed mailing envelopes.

A first embodiment of the present invention is illustrated in FIGS. 1–18, wherein each form is defined by a pair of envelope-defining panels P and R separated by one intermediate data panel Q. The form is produced from the endless web of sheet material 10 which is continuously advanced through the steps of the method diagrammatically illustrated in FIG. 1, wherein repetitive indicia such as, by way of example, address 12, postage permit 14, box 16, and lines 18, see FIG. 4, are conventionally printed at station 20; stripes 22–29 of self-seal, dry or other suitable adhesive are applied at station 30; line holes 32 are punched at station 34; diagonal perforated lines 36–39 and notches 48, 49 are cut by a typical corner-cut unit at station 40; transverse perforated lines 58–63 are supplied at cross perforating station 50; transverse score lines 57 are supplied at cross scoring station 56; and longitudinal perforated lines 42–46 as well as longitudinal score lines 52 and 54 are supplied at station 64. The continuous series of forms is suitably accumulated in a convenience pack at station 66, which it will be noted, provides a method for storing the forms in sequential order while such are maintained as an integral part of the advancing web. Generally, the forms are sequentially accordion folded at preseleced transverse score lines 97 as illustrated. It should, of course, be understood where self-seal, dry adhesive or the like is utilized, care should be taken to preclude premature contact of the various adhesive bearing areas of the form.

Broadly speaking, the web is transversely subdivided at lines 97 into a plurality of forms, each of which are subdivided by continuous score lines 52 and 54 into three panels P, Q and R, the upper surfaces of which are identified A, B, C, respectively, (FIG. 4) and the lower surfaces of which are identified AA, BB, CC, respectively, (FIG. 5). Interconnected transverse perforation lines 36, 37, 38, 59 and 50 delineate one side edge of panels P, Q and R and interconnected transverse perforation lines 38, 39, 50, 61, 62 and 63 delineate the other side edge thereof, wherein the opposite side edges 57, 62 of panel Q are disposed inwardly of the corresponding side edges 58, 60 and 61, 63 of panels R and P, respectively. Trim strip 98, which comprises segments 98P, 98Q and 98R is defined by the space between interconnected lines 38, 39, 61–63 and boundary line 97. Trim strip 99, which comprises segments 99P, 99Q and 99R, is similarly defined by the space between interconnected lines 36, 37, 58–60 and boundary line 97.

The forms accumulated at 66 are adapted to be subsequently advanced through printing station 68 or the like, see FIG. 2, wherein variable indicia unique to each form such as, by way of example, invoice block 70, account number 72, name and address 74, 75 and bar code 76 is applied. The printed forms are thereafter accumulated at station 78 in a convenience pack similar to that at station 66.

Once printed, the forms are thereafter adapted to be advanced through the final processing steps as illustrated in FIG. 3, wherein the web is advanced through fold station 89 where the forms are continuously fan-folded at lines 52 and 54 disposing panels P, Q and R in registered relationship, as particularly shown in FIG. 8. The corresponding, mated adhesive stripes 22, 25 and 26, 29 are pressed into permanent, contacting relationship at station 102, sealing the panels to one another as shown in FIG. 16. The resulting, continuous series of side-by-side, sealed envelopes are then severed from the web at station 104.

Trim strips 98 and 99, particularly segments 98Q and 99Q thereof, preclude contact between the corresponding, mated adhesive stripes 23, 27 and 24, 28 adjacent the side edges of each form, see FIG. 17. Therefore, as the forms are severed from the web at station 104, trim strips 98, 99 are also removed and the stripes are disposed in contacting relationship as shown in FIG. 18, forming a plurality of independent, stuffed, sealed envelopes for distribution as shown at 106. Where desired, stuffer-insert 88 is disposed between two adjacent panels of the forms at station 89, wherein for example, panels Q and R are maintained in open relationship and the stuffer-insert, comprising a circular, an advertising brochure or the like, is inserted therebe-
3,902,655

tween. The panels are thereafter closed at 90, housing the stuffer-insert in the interior of the resulting envelope. Generally, the stuffer-insert will be of a dimension such that the peripheral edges thereof are disposed inwardly of any adhesive stripes on the various panels on the form.

It should be noted that tractor feed mechanism 80, 80 may be utilized to properly advance the series of forms through the final steps illustrated in FIG. 3, wherein sprocket gears or the like subsequently engage line holes 32 and properly advance the series of forms toward fold mechanism 89. This is particularly advantageous when the web is not advanced through the steps of FIG. 3 while under tension, but is loosely unfurled from the convenience pack at station 78. In the event line holes 32 and tractor feed mechanism 80, 80 are utilized, the line holes are conveniently placed in boundary strips 96, 96 which are severed from the web along lines 46, 46 at station 100. It should, of course, be understood that when the web is continuously under tension, tractor feed 80, 80 and line holes 32 are not required.

It should also be noted that a number of alternate steps may be incorporated in the method of FIGS. 1–3 without departing from the scope and spirit of the present invention. In particular, it should be understood that the sequence of events should not be considered limiting and that several of the various steps may be performed in any suitable order. For example, it is often desirable to utilize a printing apparatus wherein the variable indicia may be applied to the moving web at high speeds, eliminating the necessity of accumulating the form at 66, subsequent advancement through printer 68, and further accumulation of the forms at 78. This modification is illustrated in phantom in FIG. 1, wherein jet controlled printer 108 is adapted to apply variable indicia 70, 72, 74, 75 and 76 in advance of station 66, as illustrated in FIG. 7. Essentially, jet controlled printing combines high speed printer 108 with computer control 101 or the like wherein computer produced program media such as, by way of example, tape 112 provides variable input to the printer, generating a controlled, variable indicia output therefrom. When jet printing methods, as such, are utilized the continuous series of forms advances directly from station 64 (FIG. 1) to fold mechanism 89 (FIG. 3).

It should, of course, be understood that the self-seal dry adhesive applied at station 30 is but one of the many well-known adhesive means which may be incorporated in the form of the present invention. For example, a hot-melt glue of the type having affinity for the surface of the web 10 when applied, and thereafter quickly dried to a non-tacky, non-adhesive state, may be applied in lieu of stripes 22, 23, 24 and 29, eliminating the necessity of complementary stripes 26, 27, 28 and 25, respectively. Of course, pressure roll 102 would then be replaced with a heat-seal mechanism in order to effect a sealing relationship between abutting surfaces of the various panels. Further, a heat-seal mechanism in combination with dry-seal paper of the type wherein contacting portions of each panel are maintained in self-sealing relationship by the application of heat to selected portions thereof would altogether eliminate the need for station 30. In the event dry-seal paper is utilized, heat would be selectively applied at station 102 to effect a seal between abutting panels in areas corresponding to the various stripes of adhesive. It should, of course, be understood that a cold glue could be used, in which event the web speed would, in some instances, be reduced to allow a longer drying time to effect a proper seal between abutting plates.

The resulting stuffed, sealed envelope, including means and methods for opening same, is illustrated in FIGS. 9–15. By incorporating diagonals 36, 37 and 38, 39 with transverse lines 59 and 62, respectively, intermediate data panel Q is of a lesser width than either of the envelope panels P and R. Specifically, data panel Q is of a width such that the side edges thereof are disposed inwardly of adhesive stripes 23, 24 and 27, 28 on envelope panel P and R. As shown in FIGS. 17 and 18, here greatly enlarged, the panels are fan-folded at lines 52, 54 and when trim strip 99, particularly segment 990 thereof, is removed stripe 23 is disposed in contacting relationship with corresponding stripe 27, forming a sealing relationship at corresponding side edges 58, 60 of the envelope panels P and R, wherein side edge 59 of intermediate panel Q is disposed inwardly thereof. It should, of course, be understood that removal of trim strip 98 similarly disposes stripes 24 and 28 in adhesive contact, wherein side edge 62 of panel Q is disposed inwardly thereof. Therefore, side edges 59 and 62 of data panel Q are disposed inwardly and are free of connection with the sealed side edges of the envelope.

Tear lines 42, 44 and 45 are disposed inwardly of the adhesive stripes 22 and 25 along the top edge of the envelope and with corresponding notches 48 and 49 defining stub 114 for gaining access to the interior of the envelope, see FIG. 16. Tear line 43 on data panel Q provides means for separating the remaining edge of the data panel from the envelope assembly.

As illustrated in FIGS. 11–15, several alternate methods utilizing stub 114 and modifications thereof are provided for gaining access to the interior of the envelope. Preferably, the top of the envelope will be grasped as in FIG. 11 with the thumb and forefinger engaging notches 48, 49 inwardly of line 44 on data panel Q. By similarly holding the bottom of the envelope and applying a quick, snap action the stub will break loose along lines 42 and 45 and the data panel will break loose along line 43, permitting removal thereof in one single act. It should be noted that stuffer-insert 88 will also be removed by this act if the upper edge 120 thereof is in overlapping relationship with notches 48, 49. If such is not the case, the stuffer-insert may by manually removed once the envelope has been opened.

With particular reference to FIG. 13 it can be seen that the stub may also be removed by tearing along lines 42, 44 and 45 without damage to the contents of the envelope, i.e., data panel Q and, where included, stuffer-insert 88. The data panel is then separated from the envelope at line 43 and withdrawn therefrom. It may be desirable in some instances to provide stub 115 without notches 48, 49 (FIG. 14) wherein the preferred means of entry is by tearing, as shown. It should, of course, be understood that the envelope can also be opened by slitting or cutting the assembly at line 116 (FIG. 15) as with automatic letter-opening machinery or the like, after which the data panel may be removed as described in reference to FIG. 13.

FIGS. 19 and 29 illustrate a modified form produced generally by the method of FIGS. 1–3, wherein each set of envelope-defining panels P and R are separated by
a plurality of intermediate panels Q, S and T. Printing station 20 is modified to provide additional repetitive indicia 278 on surface B of panel Q, and repetitive indicia 280 and 292 on surface E of panel T. Station 64 provides longitudinal perforated line 250 separating panels Q and S, longitudinal score line 252 separating panels S and T, and score line 254 defining a foldline in the return envelope. Station 50 supplies additional transverse perforated lines 258 and 260 connecting line 59 with diagonal 36 and transverse perforated lines 262 and 264 connecting line 62 with diagonal 38. Station 30 is modified to apply additional strips of dry, self-seal adhesive 266–271, wherein stripes 266, 267 and stripes 268, 269 are disposed in contacting sealed relationship when the envelope is fan-folded at station 89 to define an integral return envelope within the interior of the final envelope. The resulting stuffed, sealed mailing and return envelope is similar to that which is fully disclosed in my aforementioned co-pending application.

The method thus modified produces the form as illustrated in FIGS. 19 and 20, wherein the upper surface of each of panels P, Q, R, S and T is denoted A, B, C, D and E, and the corresponding lower surface thereof is denoted AA, BB, CC, DD and EE respectively. The forms are subsequently advanced through printing station 68, and thereafter through the final processing steps of FIG. 3 wherein the various panels are continuously fan-folded at lines 52, 252, 250 and 54 to define a sealed mailing envelope having at least one intermediate panel Q and an integral return envelope defined by panels S and T. As in the previous embodiment, trim strips 98, 99 and boundary strips 96, 96 (where utilized) are removed and the various complementary adhesive stripes are disposed in contacting, sealed relationship with one another at stations 100, 102 and 104 of FIG. 3.

FIG. 3A illustrates a modified method for producing a series of side-by-side interconnected forms wherein an even number of intermediate panels such as, by way of example, two panels Q and U as shown, are disposed between each set of envelope-defining panels P and R. The elements of FIGS. 1 and 2 are essentially the same as in the previous embodiments, after which the web is continuously fan-folded at modified fold station 289 into envelope-defining status as illustrated at 306 thereof. As in the previous embodiments, stuffer-insert 88 may be disposed between two adjacent panels of each form prior to sealing thereof in envelope-defining relationship.

As illustrated, panels P, Q, U and R are continuously fan-folded into registered, overlying relationship, after which trim strips 96 are removed at station 300, the web-edge-adjacent adhesive stripes are permanently sealed at station 302, and trim strips 98, 99 are removed, the side edges are sealed and the individual envelopes are severed from the form at station 304.

Since a number of institutions presently utilize imprint printing techniques, I have provided a modified method for manufacturing a series of side-by-side interconnected, single-ply, multi-panel forms which are compatible for use with imprint printing techniques, as illustrated in FIGS. 21–23. As there shown, the method of FIG. 1 is duplicated through station 64 after which web 10 is advanced to modified fold station 389 wherein transfer web 400 comprising carbon paper or the like, is collated with panel Q. Collating station 390 is in partial overlapping relationship with fold station 389, and includes sprocket chain 391 or the like which is adapted to sequentially engage line holes 432 in web 400 to ensure proper collation thereof with the continuous series of forms.

It will be noted, of course, that web 400 requires additional stripes of adhesive 426 and 429 adjacent the line hole boundary thereof to permit proper sealing of the resulting envelope, see FIG. 27. As panels P, Q and R are continuously fan-folded into registered relationship and web 400 is collated therewith, adhesive stripes 26, 426; 29, 429; and 22, 25 are disposed in contacting, sealed relationship in a manner similar to that of the previous embodiments. A second transfer web of carbon paper, or the like, is collated with the folded web at station 390, wherein sprocket chain 391 sequentially engages line holes 532 thereof and registers same with line holes 32 and 432 of webs 10 and 400, respectively. Record web 600 is similarly collated via line holes 632 after which the forms are accumulated in a convenience pack at station 366.

It should, of course, be understood that webs 400, 500 and 600 are each transversely subdivided by lines 497, 597 and 597, respectively into a plurality of side-by-side interconnected panels each of which correspond to the width of one form as defined by lines 97 in panels P, Q and R. Further, trim strips 498, 499, 598, 599 and 698, 699 are provided in webs 400, 500 and 600 to facilitate severance of the forms from the series at station 304 of FIG. 23. The accumulated forms are subsequently advanced through printing station 368, wherein indicia is directly applied to the upper surface of web 600 and imprint printed on panels P and Q via transfer webs 400 and 500, after which the forms are again accumulated at station 378.

The continuous series of side-by-side interconnected forms is thereafter advanced through the final processing steps of FIG. 23, thereby generating the stuffed sealed envelope of FIG. 24 and the separate record and transfer sheets of FIG. 25. As in each of the previous embodiments, the boundary strips including the various line holes are removed at station 301, a permanent seal is effected between contacting adhesive stripes 26, 426; 29, 429; and 22, 25 at station 302, see FIG. 27, and the various trim strips 98, 99, 498, 499, 508, 599, 698 and 699 are removed at station 304 where a seal is effected between the adhesive stripes 23, 27 (FIG. 26) and 24, 28 as in the previous embodiments, producing a plurality of individual, stuffed, sealed envelopes for distribution at 306.

Where desired, stuffer-insert 88 may be inserted in the interior of the envelope prior to final sealing thereof at station 311, as shown in FIG. 23. In this event, adhesive stripe 426 is not supplied on web 400 prior to collation thereof with web 10, precluding sealing of panel P thereon in advance of station 311. Panel P is lifted from the advancing series of forms, as shown at 313, after which stuffer-insert 88 is disposed between panels P and Q at 314 and adhesive stripe 426 is added to web 400 at station 315. Thereafter, the forms are sealed as previously described, housing insert 88 between panel P and web 400 as shown in FIGS. 26 and 27.

It should, of course, be understood that spot carbon or the like could be directly applied to webs 10 and 500, eliminating the need for webs 400 and 500. Of course, the various other modifications, such as jet
3,902,655

Therefore, from the foregoing, it can be seen that I have provided the methods of producing a continuous series of side-by-side interconnected forms each of which comprise the front and back panels of a mailing envelope and at least one integral panel disposed intermediate thereof. The forms may be presented in coplanar relationship to a printer or the like, or where desired may be adapted for use in conjunction with imprint printing techniques when carbon or the like is interposed between the various panels thereof. Each of the forms are adapted to be fan-folded into stuffed, sealed mailing envelopes, and where desired, insert material such as a circular or the like may be inserted in the interior of the envelope prior to sealing thereof.

What is claimed is:

1. A new article of manufacture, a continuous series of side-interconnected stuffed-envelope-defining forms fabricated from a single, endless web, wherein each form comprises a series of at least three end-interconnected panels collectively spanning the width of the web, wherein the web-edge-adjacent panels define the front and rear panels of mailing envelopes and wherein the intermediate panels define envelope stuffers; a removable tear-strip integral with and extending along each side-edge of the panels of each form, said strips having an inner edge which, when severed from the form, defines the overall width of the various panels thereof, wherein the overall width of each of the envelope-defining panels exceeds the overall width of each of the intermediate panels; a series of side-interconnected transfer panels fabricated from an endless web of transfer material, secured to, carried by and in corresponding registry with one intermediate panel of each form; a removable tear-strip integral with and extending along each side edge of said transfer panels, said strips having an inner edge which, when severed from said transfer panels, defines the overall width thereof, wherein the overall width of each transfer panel corresponds with the overall width of the corresponding intermediate panel, adhesive along the side surfaces of the envelope-defining panels and along the end-adjacent surfaces of those panels of the form and of the transfer panels which are disposed in abutting contact when the panels of the form are disposed in fan-folded relationship for disposing the envelope-defining panels in overlying relationship and externally of the intermediate and transfer panels; said form being further characterized in that the side edges of the intermediate and transfer panels are spaced inwardly from and free of connection with the side edges of the envelope-defining panels.

2. An article of manufacture as called for in claim 1, which includes an insert disposed between each transfer panel and the adjacent envelope-defining panel.

3. An article of manufacture as called for in claim 1, wherein one end-edge of each transfer panel is releasably connected to the corresponding end-edge of each intermediate panel.

4. An article of manufacture as called for in claim 1, wherein a record panel and a second transfer panel are releasably secured to and carried by the outer surface of an envelope-defining panel.

* * * * *