生产流感疫苗的方法

摘要

本发明涉及一种工业规模的方法，其用于生产预防、诊断、免疫治疗或治疗目的用的流感病毒或者抗原。特别地，本发明提供了马-达氏犬肾 (MDCK) 衍生的细胞系和用于流感疫苗生产和更特别用于含有流感类型 A 和 B 的人疫苗生产的基于细胞培养的方法。
1. 一种马-犬肾（MDCK）衍生的细胞系，特征在于其对病毒感染具有比其亲本 MDCK 细胞系更高的敏感性。

2. 根据权利要求 1 的细胞系，其中所述的更高的敏感性被定义为至少是所述亲本细胞系中生产病毒滴度的大约 1.2 倍。

3. 根据权利要求 2 的细胞系，其中所述的病毒选择由下列组成的组：流感、呼吸道合胞病毒、乳多空病毒、副流感病毒、水泡性口炎、牛痘、柯萨奇病毒、呼肠孤病毒、细小病毒、腺病毒、脊髓灰质炎、麻疹、狂犬病，和疱疹病毒。

4. 根据权利要求 3 的细胞系，其中所述的病毒是流感或者呼吸道合胞病毒。

5. 根据权利要求 4 的细胞系，其中所述的流感病毒包括人，马，猪或者禽类株。

6. 根据权利要求 5 的细胞系，其中所述的流感病毒选自人流感病毒类型 A，B，或者 C。

7. 根据权利要求 6 的细胞系，其中所述的流感病毒选自类型 A 或者 B。

8. 根据权利要求 7 的细胞系，其中所述的细胞系对流感病毒类型 A 和 B 都高度敏感。

9. 一种 MDCK 衍生的细胞系，特征在于其是非致瘤性的。

10. 根据权利要求 1—8 任何一项的细胞系，特征在于其是非致瘤性的。

11. 根据权利要求 10 的细胞系，其中所述的非致瘤性被定义为在大约 3 个月的观察后在裸鼠中没有可触知的结节。

12. 一种细胞系，其具有 ATCC CRL-12042 的生物学特性。

13. 一种细胞系，定义为 ATCC CRL-12042。

14. 根据权利要求 1—13 任何一项的细胞系，特征还在于其是贴壁依赖的。

15. 根据权利要求 1—14 任何一项的细胞系在生产用于预防、诊断、免疫治疗或者治疗目的的病毒颗粒或者病毒蛋白中的用途。
16. 根据权利要求 15 的用途，其中所述的病毒颗粒或者蛋白用于生产用来预防病毒感染的疫苗。
17. 根据权利要求 16 的用途，其中所述的病毒感染是由流感病毒引起的。
18. 根据权利要求 17 的用途，其中所述的流感病毒包括人、马、猪、或者禽类株。
19. 根据权利要求 18 的用途，其中所述的流感病毒选自人流感病毒类型 A、B 或者 C。
20. 根据权利要求 19 的用途，其中所述的病毒是人流感病毒类型 A 或者 B。
21. 被定义为 ATCC CRL-12042 的细胞系在生产病毒颗粒或者病毒蛋白中的用途，所述的病毒颗粒或者病毒蛋白用于预防流感病毒感染用的疫苗的制造。
22. 根据权利要求 21 的用途，其中所述的病毒感染是由人流感病毒类型 A 或者 B 引起的。
23. 根据权利要求 21 的用途，其中所述的病毒感染是由人流感病毒 A 和 B 引起的。
24. 一种生产流感病毒颗粒或者蛋白的方法，其包括
 a. 生长能够复制所述流感病毒的马-达犬肾 (MDCK) 细胞系；
 b. 用流感病毒株感染所述细胞系；和
 c. 培育以容许该病毒复制；和收获所述复制的病毒。
25. 根据权利要求 24 的方法，还包括从中纯化病毒颗粒或者蛋白。
26. 根据权利要求 24 的方法，其中所述的 MDCK 细胞系被定义为具有 ATCC No. CRL-12042 的生物学活性。
27. 根据权利要求 24 的方法，其中所述的 MDCK 细胞系被定义为 ATCC No. CRL-12042。
28. 根据权利要求 24 的方法，其中所述的流感病毒包括人、马、猪、或者禽类株。
29. 根据权利要求 24 的方法，其中所述的病毒选自由人流感病毒类型 A、B 和 C 组成的组。
30. 根据权利要求 24 的方法，其中所述的方法在生物反应器中进行。
31. 根据权利要求 30 的方法，其中所述的生物反应器的大小为大约 5 升。
32. 根据权利要求 30 的方法，其中所述的生物反应器的大小为大约 5～5000 升。
33. 根据权利要求 24 的方法，其中在步骤 a 中，所述的细胞生长在含有微载体装置的培养基内；并且在步骤 b 中，所述的培育在灌流装置中进行。
34. 根据权利要求 33 的方法，其中所述的灌流装置含有倾析器以避免所述收获物中微载体的泄露。
35. 根据权利要求 33 的方法，其中所述的微载体装置包含浓度为大约 5～25 g/L 的微载体珠。
36. 根据权利要求 35 的方法，其中所述的微载体珠的浓度范围为大约 10～25 g/L。
37. 根据权利要求 35 的方法，其中所述的微载体珠的浓度范围为大约 15～20 g/L。
38. 根据权利要求 34 的方法，其中所述的灌流是以大约 0.5～4.0 生物反应器体积/天的速率进行的。
39. 根据权利要求 24 的方法，其中在步骤 b 中，以大约 10：1～1：10^{10} 的多重感染种植所述的流感病毒。
40. 根据权利要求 24 的方法，其中以大约 1：10～1：10^{8} 的多重感染种植所述的流感病毒。
41. 根据权利要求 24 的方法，其中以大约 1：10^{4}～1：10^{7} 的多重感染种植所述的流感病毒。
42. 根据权利要求 24 的方法，其中以大约 1：10^{5}～1：10^{6} 的多重感染种植所述的流感病毒。
43. 根据权利要求 24 的方法，其中在步骤 a 中，所述的 MDCK 细胞系生长了大约 7 天。
44. 根据权利要求 43 的方法，其中所述的 MDCK 细胞系在大约 33～40℃ 的温度范围下生长。
45. 根据权利要求 43 的方法，其中所述的 MDCK 细胞系在大约 36－38℃的温度范围内生长。
46. 根据权利要求 24 的方法，其中在步骤 b 中，所述的流感病毒在大约 30－37℃的温度复制。
47. 根据权利要求 43 的方法，其中所述的流感病毒在大约 32－34℃的温度复制。
48. 根据权利要求 43 的方法，其中所述的流感病毒在大约 33℃的温度复制。
49. 根据权利要求 24 的方法，其中所述的纯化的病毒颗粒或者蛋白被用于生产用来预防流感病毒感染的疫苗。
50. 一种用来在哺乳动物中预防流感病毒感染的疫苗，其如权利要求 49 的方法制造。
51. 根据权利要求 50 的疫苗，其中所述的哺乳动物是人。
52. 一种用来在哺乳动物中预防流感感染的方法，包括给予权利要求 50 或者 51 的疫苗的步骤。
53. 一种用于在哺乳动物中预防流感病毒感染的疫苗，包含混合有防腐剂的根据权利要求 24 分离的病毒颗粒或者病毒蛋白。
54. 根据权利要求 24 的方法的用途，其用于疫苗生产。
55. 根据权利要求 24 的方法，其中所述的纯化的病毒颗粒或者蛋白被用于生产检测流感病毒感染的诊断试剂盒。
56. 根据权利要求 24 分离的大量病毒颗粒或者蛋白的用途，其用于生产在哺乳动物中检测和诊断流感病毒感染的试剂盒。
生产流感疫苗的方法

本申请要求2004年5月20日提交的美国临时申请60/572,612的利益，在此将其加入作为参考。

发明领域

本发明一般性地涉及一种工业规模的方法，其用于生产预防、诊断、免疫治疗或治疗目的用的流感病毒或者抗原。特别地，本发明提供一种用于流感疫苗生产和特别用于含有流感类型A和B的人疫苗生产的衍生自马达氏犬肾（Madin–Darby Canine Kidney）（MDCK）的、基于细胞培养的方法。

发明背景

传统上，通过在含胚的鸡蛋中生长疫苗病毒株来生产商用流感疫苗。从尿囊液中收集该病毒并进行加工来制造疫苗。但是，该方法的缺点是劳动密集且每个鸡蛋的产量低，这些因素在流行病发期间会存在严重的限制。因此需要克服含胚鸡蛋法的费用、时间和产量方面的缺点，大规模生产流感病毒疫苗。

一种上述方法的备选方法涉及使用细胞培养来生产流感病毒颗粒或者病毒蛋白。

已经在许多组织培养系统中证实了流感A和B病毒的繁殖，这些系统
包括切碎的鸡胚胎，人胚胎肺和肾，猴肾和牛胚胎肾。

特别地，尽管产量低，即不足以满足疫苗生产目的，犬肾细胞被建议用于生产流感病毒。

在 1975 年，Tobita 等首先描述了在含胰蛋白酶的涂覆培养基中建立的 MDCK 细胞系中多种流感 A 病毒的生长。尽管存在以前的传代，该病毒繁殖仍然形成了界限分明的菌斑，而且据建议，胰蛋白酶切割 HA 多肽并因此加速了流感病毒的成熟。但是尽管使用提供的胰蛋白酶有如此优点，在琼脂培养基中分离该病毒无法提供实现大规模病毒生长的手段。在相同的文献中，还成功地使用 MDCK 细胞从患者咽喉洗出物中初级分离流感 A 病毒。

U. S. 专利 4, 500, 513（Brown 等）描述了一种通过在病毒培养过程中在培养物中包含入一种例如胰蛋白酶的蛋白水解酶而在相同液体培养物的连续数量的细胞中复制流感病毒的方法。
需要蛋白水解酶造 HA 有功能并且从而克服过去液体培养技术的一步生长循环。这是对从液体细胞培养中“工业”生产流感疫苗可能的首次描述。

然而，目前考虑溶液中存在胰蛋白酶具有引起一定比例 MDCK 细胞被从其固体支持物中“提起”的缺点。因此，尽管该被专利保护的方法的潜在有效性，对胰蛋白酶的要求对流感疫苗的工业生产是一个严重的限制。因此仍然需要用于流感疫苗生产的工业的基于细胞培养的方法。这一需求可以被如下 Kodihalli 等在 (J. Virol. 69 (8): 4888, 1995): "Embryonated chicken eggs are currently the only host in which sufficient quantities of virus can be cultivated economically and within the short time necessary to ensure a vaccine supply" 中的陈述所支持。

对于研究目的的细胞培养中的病毒生长，MDCK 和 Vero 细胞最常被认为是几种病毒的良好生产者。但是，对于大规模生产目的，几种因素影响着对特殊细胞系选择，例如对一种或者多种病毒的敏感性，病毒滴度的产出，贴壁依赖，致瘤性等等。

尽管 MDCK 细胞对几种病毒株敏感，但是得到的较差的滴度可能限制了该细胞系在大规模生产的中的有用性。

已经对 MDCK 系的特性进行了一些研究。在 1970 年，Leighton 等（Cancer 26: 1022）报道 MDCK 细胞在胶原涂覆的纤维素海绵上的三维组织培养物的组织病理学制剂中呈现乳头状腺癌的形态学模式。当发现被注射到 11 或者 12 天龄小鸡胚胎的细胞悬液产生许多脑转移病灶的时候，证实了细胞系的致瘤性质。

为了评价其被用于生产生物产品的合理性，细胞系的致瘤性评价是重要的。美国食品和药品管理局的生物学评价和研究中心（The Center for Biologics Evaluation and Research of the US Food and Drug
Administration) 公布了考虑将细胞培养物作为基质用于生物学生产的评分（见 Points to Consider in the Characterization of Cell Lines Used to Produce Biologicals, Office of Biologics Research and Review, Center for Drugs and Biologics, FDA (USA), 1993）。一个这样的评分是所用细胞系的致瘤性，并且 FDA 已经设计了用于体内致瘤性测试的指南。包括其它事情在内，该指南还要求在裸鼠（nu/nu）内通过皮下或者肌肉内途径给予来测试细胞。

发明简述

因此，本发明涉及一种用于大规模生产流感病毒颗粒或者蛋白的方法，其包括下列步骤：

a. 生长能够复制所述流感病毒的 MDCK 细胞系；

b. 用流感病毒细胞株感染 MDCK 细胞培养物并培育以容许该病毒复制；

c. 收获所述复制的病毒并且从其中纯化病毒颗粒或者蛋白。

本发明还提供了一种衍生自 MDCK 细胞系的细胞系，其对病毒感染高度敏感并且以高于其亲本细胞系的滴度生产流感病毒。

附图说明

图 1 是本发明灌流装置（perfusing means）中使用的倾斜器的正面剖视图；

图 2 是该倾斜器的顶部正视图；和

图 3 是该倾斜器的底部正视图。

发明详述

在一个实施方中，本发明的 MDCK 衍生的细胞系允许流感病毒的多步复制。在另一个实施方案中，本发明的 MDCK 细胞系是贴壁依赖和非致瘤性的。

本发明提供了对病毒感染超敏感的 MDCK 克隆的衍生物。“超敏感”的描述被用来表明对至少一种病毒高度敏感、因而产生比亲本 MDCK 细胞系
更高病毒颗粒滴度的 MDCK 衍生的细胞系。MDCK.5F1 这一衍生的克隆于 1996 年 2 月 8 日被保藏在美国典型培养物保藏中心（ATCC），保藏号：CRL-12042。在一个实施方案中，在依照 FDA 指南进行的测试中，本发明的 MDCK 衍生的细胞系是非致瘤的，并且因此可适用于制备用于预防、诊断、免疫治疗或者治疗目的的病毒或者抗原。已经对该细胞系进行了是否存在污染微生物的测试并且结果没发现任何污染存在。

本发明还提供了一种用于大规模生产流感病毒颗粒或者蛋白用于疫苗生产的方法。

本发明的一个方面提供了大规模、细胞培养的、基于微载体的工业方法，该方法用于生产用未生产流感疫苗的流感病毒颗粒或者蛋白。

本发明的方法通过使用用于流感病毒多重复制的 MDCK 细胞系来进行。在一个实施方案中，在本发明方法中使用的 MDCK 细胞系具有与 ATCC 细胞系 No. CRL-12042 的那些相同的生物学活性。在一个实施方案中，本方法使用的细胞系是内部命名为 MDCK.5F1、以保藏号 ATCC CRL-12042 保藏的 MDCK 细胞系克隆。

本发明的 MDCK 衍生的细胞系对病毒感染高度敏感。在本发明中，对病毒感染“高度敏感”指的是该细胞系能够对至少一种病毒株产生比亲本细胞系更高的滴度。

在一个实施方案中，“高敏感性”被定义为这样的细胞系，其能够生产的病毒滴度是亲本细胞系生产的病毒滴度的至少 1.2 倍。在一个实施方案中，较高敏感的细胞系是选自由下列组成的组的克隆：3B5, 5F1, 1D11, 5H12, 9C2, 9D9, P79, 9E9, 7C1, 和 P123。

在又一个实施方案中，较高的敏感性被定义为这样的细胞系，对于这些相同的病毒，其能够生产的多个病毒的滴度是亲本细胞系生产的这些病毒的滴度的至少 2 倍。在一个实施方案中，该克隆选自由下列组成的组：3B5, 5F1, 5H12, 9C2, 7C1, 和 P123。

在一个实施方案中，较高的敏感性被定义为这样的细胞系，其能够生产的相同病毒的 2 个不同株的滴度是亲本病毒滴度的至少大约 2 倍。在一个实施方案中，该克隆能够生产 2 倍的呼吸道合胞病毒和流感类型 A 和 B 的亲本病毒滴度。在一个实施方案中，该克隆选自由下列组成的组：5F1
和5H12。

在一个实施方案中，该细胞系能够被选自由下列组成组的病毒感染：流感，呼吸道合胞病毒，乳多空病毒，副流感病毒，水泡性口炎，牛痘，柯萨奇病毒（Coxsackie），呼肠孤病毒，细小病毒，腺病毒，脊髓灰质炎，麻疹，狂犬病，疱疹，和其它病毒。

在一个实施方案中，病毒选自由下列组成的组：流感类型A, B, 和C;呼吸道合胞病毒;乳多空病毒;水泡性口炎（印度株）;柯萨奇病毒B-5;呼肠孤病毒类型2, 和3; 和腺病毒类型4, 和5。

在一个实施方案中，病毒选自由下列组成的组：流感类型A, B, 和C，和呼吸道合胞病毒。

在一个实施方案中，病毒选自人、马、猪或者禽类流感株。

在一个实施方案中，病毒选自人流感类型A, B 或者C。

在一个实施方案中，本发明的细胞系能被人流感病毒类型A或者B感染。

在一个实施方案中，本发明的细胞系能够被人流感病毒类型A 和B感染。

在一个实施方案中，本发明的细胞系容许添加蛋白水解酶的流感病毒的多步复制，所述的蛋白水解酶例如胰蛋白酶、糜蛋白酶、胃蛋白酶、胰酶、木瓜蛋白酶、链霉蛋白酶和羧肽酶。在一个实施方案中，这样的细胞系容许添加胰蛋白酶的流感病毒的多步复制。

或者，本发明的细胞系容许不需要添加蛋白水解酶的流感病毒的多步复制，所述的蛋白水解酶例如胰蛋白酶、糜蛋白酶、胃蛋白酶、胰酶、木瓜蛋白酶、链霉蛋白酶和羧肽酶。在一个实施方案中，这样的细胞系容许不需要添加胰蛋白酶的流感病毒的多步复制。

本领域的技术人员明显知晓哪种病毒或者病毒株可能需要使用蛋白水解酶。

尽管可能在悬液中培养本发明的细胞系，优选其以贴壁依赖的方式生长。在一个实施方案中，其也能够生长在微载体珠上，从而容许在细胞培养中获得高密度的细胞。

在一个实施方案中，本发明的MDCK衍生的细胞系是非致瘤的。在本发
明的一个实施方案中，本发明的细胞系在软琼脂中以最小的效率生长（即＜1%效率）。在一个实施方案中，本发明的细胞系在裸鼠中至少 3 个月观察不到结节产生。

本发明还考虑将本发明的细胞系用来大量生长病毒颗粒或者病毒蛋白。

这样的病毒颗粒或者蛋白可以被用来生产用于在宿主中预防病毒感染的疫苗。在一个实施方案中，所述的宿主是哺乳动物。哺乳动物包括例如人、马、猪种类。在另一个实施方案中，所述的宿主是人。在另一个实施方案中，所述的宿主是禽类（例如鸡或者鸭）。

本发明的方法可以在有或者没有胰蛋白酶的存在的情况下进行。只要胰蛋白酶的存在不影响贴壁依赖 MDCK 在培养物中生长的能力。在一个实施方案中，本方法在大约或者小于 4μg/ml 胰蛋白酶浓度存在时进行。或者，本发明可以在没有胰蛋白酶存在时进行。

本发明描述的方法意欲用于生产呼吸道合胞病毒以及许多流感病毒例如流感病毒的人、马、猪和禽株。在一个实施方案中，本发明描述的方法意欲用于人流感类型 A，B，或者 C 的生产。在一个实施方案中，本发明描述的方法意欲用于人流感类型 A 或者 B 的生产。在一个实施方案中，本发明描述的方法意欲通过使用可能被其任一类型病毒感染的 MDCK 细胞系用于人流感类型 A 或者 B 的生产。

本发明方法提供的产量范围为 4μg HA/10^8 MDCK 细胞。如实施例 9 所描述，该方法产出的病毒蛋白量高于 4μgHA/10^8 MDCK 细胞，更特别地，范围为 9μg HA/10^8 MDCK 细胞。

“大规模方法”指的是用于生长大量流感病毒的过程。这样的过程通常在生物反应器中进行而不是在培养瓶中。这样的生物反应器的大小不同，取决于需要的最终产量/剂量。例如，这样的生物反应器可以是大约 5 升大小（工作体积为大约 4 升），或者，其可以高达 5000 升。当然，大规模基于细胞培养的疫苗生产领域的技术人员显然会根据生物反应器的大小调节所有反应物、培养基、养分、细胞浓度、微载体浓度、灌流率等等。

本发明的方法可以在悬浮培养中执行，但是优选在微载体装置上进行
以增加细胞浓度（并从而增加病毒输出）。例如，可以选择本领域通常知晓的微载体珠如聚糖聚合物（Cytodex™）。可以以大约 10-25 g/L 的浓度范围使用这些微载体。在一个实施方案中，所述微载体的浓度范围是大约 15-20 g/L。

将灌流装置引入以最大化所述方法中的细胞生长和病毒复制。灌流容器在恒定供应养分的同时提供装置来避免培养基中潜在毒性副产品的累积。通过灌流，养分的类型和量在所述过程的各种阶段可以是变化的。例如，可以将血清在生长期引入到细胞，但是理想地，血清应该在细胞连片生长时和病毒引入前被清除。在细胞生长过程中逐步增加灌流流速以提供足够的养分供应。在病毒复制过程中连续灌流。

取决于所述过程的阶段，灌流率被调节到大约 0.5 到 4 生物反应器体积/天。

将灌流装置加入到生物反应器。其包括将培养基连续引入生物反应器的入口装置和两个将用过的培养基连续从生物反应器中移除的出口装置（从而使培养基连续流过生物反应器中的微载体悬浮液），以及与出口装置相连的倾斜器。这里描述和本发明方法中使用的倾斜器是被特别设计用于 5L（3.7L 工作体积）生物反应器的，这是因为意识到当使用上面建议的灌流装置并使用超过 10g/L 的微载体浓度时，细胞生长被微载体向上移动并且或逃出或阻塞出口装置的趋势所限制。因此，为了实现更高的微载体浓度，建造具有下列特点的倾斜器，其能够将在倾斜器内的湍流最小化并实现了快于悬浮向上流动速度的微载体沉降速度。

按照本发明优选的实施方案，倾斜器 10 示于图 1 中，其含有通过辐板 3 连接到较大上室 2 的下室 1。两个出口装置 4 连接到倾斜器顶部的上室 2。下室 1 和上室 2 的形状是半圆柱体并且环绕一个轴向中心的圆腔 5，该腔意欲容纳生物反应器的中心转轴以及各种引入生物反应器来监测反应过程的各种探试剂。固体的金属壁将该倾斜器整体配齐。

图 2 图解了上述元件 2，4，和 5 的顶部正视图。

图 3 显示了倾斜器下室 1 的底部正视图。该下室 1 具有多个规则分布的纵向通道 6，这些通道被辐向纵向隔板 7 分开，这些纵向通道通过倾斜器的上室 2 和辐板 3 相互连接。在一个实施方案中，纵向通道 6 是相同的
并且每个都具有圆的横截面。此外，多个纵向通道 6 规则分布在轴向中心圆腔 5 周围，周围的纵向通道 6 被轴向纵向隔板 7 相互分开。

在感染时，将灌流装置的出口装置由废物槽转换为收集器。连续收集直到复制完成（大约 4 - 5 天）。

本发明的方法是通过将病毒以 10:1-1:10^9 的多重感染（multiplicity of infection）（M.O.I.）植于 MDCK 细胞培养物而进行的。在一个实施方案中，该方法以 1:10-1:10^8 的 M.O.I. 进行。在一个实施方案中，该方法以 1:10^1-1:10^7 的 M.O.I. 进行。在一个实施方案中，该方法以约 1:10^5-1:10^6 的 M.O.I. 进行。

在一个实施方案中，本发明方法中 MDCK 细胞的生长在大约 33 - 40°C 下进行大约 7 - 10 天。在一个实施方案中，本发明方法中 MDCK 细胞的生长在大约 36 - 38°C 下进行大约 7 天。

在一个实施方案中，本发明方法中 MDCK 细胞的生长在大约 37°C 下进行大约 7 天。在一个实施方案中，本发明方法中病毒复制在大约 30 - 37°C 下进行大约 4 - 6 天。在一个实施方案中，本发明方法中病毒复制在大约 32 - 34°C 下进行大约 5 天。在一个实施方案中，本发明方法中病毒复制在大约 33°C 下进行。

以如下方法纯化病毒颗粒或者蛋白。病毒收获物滤过后用甲醛使滤过得失活。随后将所得的失活病毒悬液离心并选择富集的病毒分级用于疫苗制备。

还提供了一种用于在哺乳动物中预防流感感染的方法，包含给予本发明的疫苗的步骤。

还提供了一种方法，其中使用纯化的病毒颗粒或者蛋白来生产用于检测流感病毒感染的诊断试剂盒。

还提供了分离的大量病毒颗粒或者蛋白在生产用来在哺乳动物中检测和诊断流感病毒感染的试剂盒的应用。

以下讨论本发明的方法以及选择的人流感病毒类型 A 和 B 的株的繁殖的具体实例。很明显在不离开本发明精髓和范围或者以丧失本发明重要优点为代价的情况下，可以改变本发明的组成和安排方式，下面的描述仅仅是优选的或者例举性的实施方案。
实施例

实施例1描述了克隆MDCK.5F1的衍生。实施例2涉及MDCK.5F1细胞系的纯度。实施例3描述了有和没有胰蛋白酶处理时流感病毒在MDCK.5F1细胞系上的生长。实施例4是对MDCK.5F1致瘤性研究的总结。实施例5讨论在用MDCK.5F1细胞悬液接种无胸腺裸鼠后的结果。实施例6逐步描述了所述方法的具体实施方案。实施例7描述了使用亲本MDCK细胞和流感株A/Shanghai/11/87和胰蛋白酶进行测试的结果。实施例8描述了使用MDCK.5F1细胞和流感株A/Shanghai/11/87但是没有胰蛋白酶时进行测试的结果。实施例9描述了使用MDCK.5F1细胞和流感株B/Harbin/7/94但是没有胰蛋白酶时进行测试的结果。

实施例1
克隆MDCK.5F1衍生

MDCK细胞No. CCL 34获自美国典型培养物保藏中心Rockville, Maryland。收到1ml含3.4 x 10^6细胞的安瓿中冷冻状态的贮存液。该细胞系在其第54代。

传代后，在64代收集MDCK细胞并在有营养成分的培养基中稀释，所述的培养基由1:1比例的 Dulbecco 改良的 Eagle 培养基（DMEM）和培养基199组成（DMEM-199），其含有10%（v/v）的胎牛血清（FBS）。随后将稀释的细胞悬液等分到96孔板中，从而使每个孔接受少于1个细胞，认为细胞均匀地分布在溶液中。将板置于37℃的二氧化碳孵箱中并且为了评价这些孔的生长得分，在光学显微镜下以每周的间隔对其进行检查。

在克隆中寻求的特性选自如下：

1. 对病毒感染具有比亲本细胞系更高的敏感性（即：克隆比亲本细胞系产生更高的病毒滴度）；
2. 对超过一种病毒的更高的敏感性（在一个实施方案中，对流感病毒的几种株敏感）；
3. 容许流感病毒多步复制而不需要加入蛋白水解酶如胰蛋白酶的能力；和，任选地，
4. 贴壁依赖（即：在培养物中获得更高细胞浓度）。

表1描述了没有加胰蛋白酶的情况下，几种克隆对流感病毒类型A和B病毒感染的敏感性。

<table>
<thead>
<tr>
<th>克隆编号*</th>
<th>对类型A的敏感性（TCID₅₀）</th>
<th>对类型B的敏感性（TCID₅₀）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B5</td>
<td>ND</td>
<td>5.6X</td>
</tr>
<tr>
<td>5F1</td>
<td>5.5X</td>
<td>3.6X</td>
</tr>
<tr>
<td>1D11</td>
<td>0.5X</td>
<td>2.4X</td>
</tr>
<tr>
<td>5H12</td>
<td>8.5X</td>
<td>2.2X</td>
</tr>
<tr>
<td>9C2</td>
<td>0.5X</td>
<td>2.0X</td>
</tr>
<tr>
<td>9D9</td>
<td>ND</td>
<td>1.5X</td>
</tr>
<tr>
<td>P79</td>
<td>1.0X</td>
<td>1.0X</td>
</tr>
<tr>
<td>8H7</td>
<td>ND</td>
<td>0.6X</td>
</tr>
<tr>
<td>9E9</td>
<td>0</td>
<td>1.2X</td>
</tr>
<tr>
<td>7C1</td>
<td>0.3X</td>
<td>2.0X</td>
</tr>
<tr>
<td>P123</td>
<td>ND</td>
<td>2.8X</td>
</tr>
<tr>
<td>对照**（亲本MDCK）</td>
<td>1X</td>
<td>1X</td>
</tr>
</tbody>
</table>

ND=未检测出

对照=亲本敏感性，当用TCID₅₀评价时定义为1X

*=确定克隆敏感性，不在细胞培养基中加入胰蛋白酶

**=确定对照敏感性，加入了胰蛋白酶

“高敏感的”被定义为当用TCID₅₀评价时，至少为亲本细胞系敏感性的约1.2倍。克隆3B5, 5F1, 1D11, 5H12, 9C2, 9D9, P79, 9E9, 7C1, 和P123被鉴定为高度敏感。克隆3B5, 5F1, 1D11, 5H12, 9C2, 9D9, 7C1, 和P123被鉴定为至少为亲本细胞系敏感性的两倍。

克隆5F1和5H12被选为两种最高敏感的，5F1被选择来建立内部命名
为 MDCK.5F1 的细胞系。

在克隆时，细胞世代数被定义为零，并且在每个随后的细胞培养中通过细胞计数来计算世代数。培养物最初在多孔培养板中传代并最后转移到塑料烧瓶中。

另外，用呼吸道合胞病毒的实验来测定亲本 MDCK 细胞系和 MDCK.5F1 克隆对这种病毒感染的敏感性。病毒滴度表明虽然 MDCK 细胞系对病毒的感染要比呼吸道合胞病毒宿主 Hep2 细胞系敏感得多，但是 MDCK.5F1 克隆对该病毒感染的敏感性要比亲本 MDCK 细胞系大约 10 倍。

实施例 2

MDCK.5F1 克隆性（clonality）的确定

由于在该克隆中 5%的孔显示生长，细胞系 MDCK.5F1 衍生自单细胞的概率是 ≅ 97.5%。

从 MDCK.5F1 细胞系制备 299 安瓿 Master 细胞库 (MCB) 和 283 安瓿生产商的 Working 细胞库 (WCB)。这些库按照加拿大的对食品生产实践原则指南来制备，并且评价是否污染了真菌、酵母、支原体、细菌和病毒制剂。没有发现任何一种污染。

从制备的细胞库和细胞系中获得持续、可存活的培养物，其被测定了 WCB 外 50 个种群对的产品生产的稳定性、形态学、致瘤性、和同工酶特性。结果显示，所述细胞系的这些特性是稳定的。

实施例 3

阐述 MDCK.5F1 克隆中的流感病毒在有和没有添加胰蛋白酶时的生长的实验

进行实验以确定在有或者没有胰蛋白酶存在的时候，流感病毒在克隆 MDCK.5F1 培养物中繁殖的能力。三个使用流感病毒株 A/Johannesburg,
A/Texas 和 B/Harbin 的结果见表 2。

表 2：有和没有胰蛋白酶的 MDCK.5F1 克隆培养物
中不同流感株的生长

<table>
<thead>
<tr>
<th>感染后天数</th>
<th>A/Johannesburg</th>
<th>A/Texas</th>
<th>B/Harbin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*HA</td>
<td>*HA</td>
<td>*HA</td>
</tr>
<tr>
<td></td>
<td>+ 潘蛋白酶</td>
<td>+ 潘蛋白酶</td>
<td>+ 潘蛋白酶</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>24</td>
<td>128</td>
</tr>
<tr>
<td>感染后天数</td>
<td>A/Johannesburg</td>
<td>A/Texas</td>
<td>B/Harbin</td>
</tr>
<tr>
<td></td>
<td>*HA</td>
<td>*HA</td>
<td>*HA</td>
</tr>
<tr>
<td></td>
<td>+ 潘蛋白酶</td>
<td>+ 潘蛋白酶</td>
<td>+ 潘蛋白酶</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>96</td>
<td>128</td>
</tr>
</tbody>
</table>

*血细胞凝集 (HA) = 红细胞加入后表达为最终稀释倒数的 0.5% 鸡红细胞的两个读数的均值。

这些结果揭示，如血细胞凝集 (HA) 滴度值所示，当使流感病毒在有与没有胰蛋白酶的细胞培养物中复制时，没有实质差别。

实施例 4

体外致瘤性研究总结

按照 Furesz 等 (Develop. Biol. Stand. vol. 70, pp. 233–243, S. Kargel ed., Basel, 1989) 描述的方法，将 4ml 含 10% (v/v) FBS, 0.6% 琼脂的 DMEM-199 培养基置于包含 6 个 35mm 直径孔的组织培养皿中。安置后，用 3ml 含有 0.3% W/V 的保持在 42℃的未胶凝的琼脂和 60,000 细胞
细胞系的浓度的培养基覆盖这些孔。将板在 37℃用 5% 的二氧化碳培育。在 3，7，10 和 14 天进行光学显微镜观察，集落由 4 个或者多个在软琼脂中形成球状组细胞组成。百分比效率通过用计算的细胞克隆数除以接种的总细胞数得到的比率来确定。

<table>
<thead>
<tr>
<th>细胞系</th>
<th>%效率</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEP2</td>
<td>22.90</td>
</tr>
<tr>
<td>VERO(129 代)</td>
<td>12.70</td>
</tr>
<tr>
<td>MDCK（亲本系）</td>
<td>0.70</td>
</tr>
<tr>
<td>MDCK.5F1(12 代)</td>
<td>0.42</td>
</tr>
<tr>
<td>MDCK.5F1(30 代)</td>
<td>0.51</td>
</tr>
<tr>
<td>MRC-5(阴性对照)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

表 3 软琼脂中的克隆形成

表 3 的结果显示 MDCK.5F1 细胞系在软琼脂中以最小的效率生长，这表明其在动物中非致瘤的。这一性质保留到 18 代以后，表明其表型是稳定的。

为了进一步支持这一非致瘤性的结果，我们还测试了 MDCK.5F1 细胞系在无胸腺裸鼠中的肿瘤形成潜力。

实施例 5
在用 MDCK.5F1 克隆细胞悬液皮下接种无胸腺裸鼠（nu/nu）后肿瘤形成评价

裸（nu/nu）无胸腺小鼠不能发动细胞介导的指向外来物质的应答，因此将支持同种异型或者不同种（heterogeneic）肿瘤细胞系的生长。这样容许评价接种物在体内形成瘤的能力。

将大约 1×10^7 细胞的试验样品 MDCK.5F1 皮下注射接种给 6 周龄的雌性裸鼠，临床随诊 84 天并且进行尸检。类似处理用阳性对照细胞和阴性对照细胞接种的裸鼠。对接种点（皮肤）、肺、肩胛淋巴结和总损害进行处理、切片、染色和显微检查。实验的进一步细节如下所示。
接种测试和对照材料

对每只笼子中的所有小鼠进行相同处理。

如下所描述，对每只小鼠经皮下在肩胛骨之间接种 0.2ml 适当的接种物。将 22 口径的针用于接种并且所有动物同一天接种。

组 1 和 2: 试验样品，MDCK. 5F1（浓度 5 x 10^7 细胞/ml）。

组 3 和 4: 阳性对照（18C1-10T 细胞，浓度 5 x 10^7 细胞/ml）。

组 5 和 6: 阴性对照（SHE 细胞，浓度 1 x 10^7 细胞/ml）。

所有动物每隔一工作日进行观察并且每周两次地对接种点进行触诊达 84 天的阶段。

结果：

临床结果

处死所有的阳性对照小鼠并且在接种后 14 天进行尸检，因为其都在接种位点具有至少一个尺寸大于 1cm 的大胞块。

将所有阴性对照小鼠处死并在接种后 84 天进行尸检。

将 10 只试验样品(5F1)小鼠中的 9 只处死并在接种后 84 天进行尸检。处死 5F1 接种小鼠中的一只并在接种后 33 天尸检，因为在接种位点有损害，其进展开始恢复。后来揭示该损害是囊肿。

触诊

用阳性对照样品接种的 10 只裸鼠有可触知的损害，在接种后 14 天至少一个尺寸大于 1cm。

小的不进展的损害在 10 只阴性对照样品接种的裸鼠的接种位点是可触知的。这些损害首先在接种后 4 天被注意到，在观察期的过程中，在 10 只阴性对照小鼠中的 8 只中，损害继续存在。

触诊的结果总结在表 4。

自接种后 4 天，所有 10 只 5F1 小鼠均有损害。在 10 只 5F1 小鼠中的 9 只中，损害小且不发展。接种后 56 天，试验样品小鼠中有 8 只没有可触知的损害。一只 5F1 接种小鼠在接种位点有损害，该损害在 25—28 天
在尺寸上进展显著，并且在接种后32天大小显著降低。该损害通过显微检查被鉴定为囊肿（见表6）。另一只出现损害的小鼠有局部发炎。
表 4: 触诊结果

接种后天数	4	7	11	14	18	21	25	28	32	35	39	41	46	49	53	56	60	63	68	70	74	70	81	84				
SF1 损害最大尺寸范围（mm）	4-9	4-9	4-7	4-7	2-9	2-9	3-6	3-10	3-5	3-6	2-5	2-5	4-5	3-4	3-4	4	3	3	2	2	3	3	2-3					
阳性对照 损害发生率	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10					
阴性对照 损害发生率	10/10	10/10	10/10	9/10	8/10	10/10	10/10	10/10	10/10	9/10	9/10	7/10	7/10	7/10	7/10	8/10	6/10	7/10	7/10	8/10	9/10	9/10	8/10	7/10	8/10			
阴性对照 损害最大尺寸范围（mm）	4-10	3-9	3-6	2-6	2-7	1-7	1-6	2-6	2-6	2-6	2-6	2-5	2-5	2-5	4	3-5	2-5	3-5	2-5	3-5	2-5	4-5	1-5	1-5	2-5	2-5	2-5	2-5
总尸检结果

在表 5 中总结了治疗相关的总尸检结果。

<table>
<thead>
<tr>
<th>器官/损害</th>
<th>5F1</th>
<th>阳性对照</th>
<th>阴性对照</th>
</tr>
</thead>
<tbody>
<tr>
<td>皮肤接种位点</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
</tr>
<tr>
<td>（No. 检查的）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>胞块或者结节</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

在所有阳性对照动物中的接种位点发现了胞块。在 10 只 5F1 小鼠中有 3 只，在 10 只阴性对照小鼠中有 6 只发现了胞块或者结节。

显微结果

在表 6 中总结了有关的损害。

<table>
<thead>
<tr>
<th>器官/损害</th>
<th>5F1</th>
<th>阳性对照</th>
<th>阴性对照</th>
</tr>
</thead>
<tbody>
<tr>
<td>皮肤接种位点</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
</tr>
<tr>
<td>（No. 检查的）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>纤维肉瘤</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>骨增殖</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>发炎，亚急性</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>囊肿</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>没监测到结果变化</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

在所有阳性对照小鼠的接种位点诊断出瘤形成（纤维肉瘤）。纤维肉瘤是由交织模式的可变密度的束排列的纺锤样（spindoid）细胞组成的。胶原沉积是最小的。临近的组织虽然受压，但是很少被瘤侵袭。
在任何阴性对照小鼠中没有诊断出瘤。但是，在两个阴性对照样品小鼠中的接种位点处注意到骨增殖病灶。这被认为代表作为阴性对照接种的SHE细胞的选择分化和生长。

在任何 5F1 小鼠中没有诊断出瘤。但是，在一只小鼠中注意到囊肿并且在一只另外的 5F1 小鼠中注意到亚急性炎症。

结论

在所有 10 只阳性对照小鼠的接种位点诊断出纤维肉瘤。

在任何阴性对照或者试验样品小鼠中均不存在瘤。

在上述研究的条件下，试验样品 MDCK. 5F1 不认为是致瘤的。

实施例 6

总体步骤

a. 细胞繁殖

在接种入生物反应器前，将 MDCK. 5F1 (ATCC No. CRL-12042) 细胞传代几次用于细胞扩增。将大约 5-10 x 10^6 细胞融化在 37℃的水浴中，并将其转移到具有营养培养基的聚苯乙烯细胞培养瓶中并培育在 37℃。3-4 天后，分离该瓶中的细胞并用于植入 5 个其它烧瓶。随后用这 5 个烧瓶去以相同方式种植 20 个烧瓶。用于细胞生长的营养培养基是去离子水中制备的 1:1 的 Dulbecco 改良的 Eagle 培养基和培养基 199，其含有 4.5 g/L 的葡萄糖，0.58 g/L 的谷氨酰胺和 1 g/L 的碳酸氢钠 (DMEM-199)。该营养培养基补充有 10% γ照射的胎牛血清 (I-FBS)。分离烧瓶中细胞以用于细胞传代的溶液是在不含镁和钙的磷酸缓冲液 (PBS) 中制备的具有 0.02% 乙二胺四乙酸 (EDTA) 的 0.25% 胰酶溶液。

使 20 个烧瓶中的细胞生长 3-4 天，胰蛋白酶消化，收集并用于种植含有 3-5 g/L 微载体珠的 1000ml spinner 烧瓶中的 3 个微载体细胞培养物。将 spinner 烧瓶培育在 37℃，保持大约 50rpm 的搅拌。连续生长细胞 5-7 天，然后将细胞从微载体上用胰蛋白酶消化下来用于种植 5L 生物反应器 (CelliGen™ by New Brunswick of Edison, N.J.)。

以如下方式将细胞从微载体上胰蛋白酶消化下来。用 PBS 和 0.02%
EDTA 溶液清洗微载体细胞培养物两遍。在第二次细胞清洗后，将大约 200ml 的胰蛋白酶溶液倒入烧瓶并在 37℃下搅动保持大约 20 分钟。用光学显微镜确定细胞分离完成后，使用含 2% FBS 的 DMEM-199 将细胞从自由的微载体上回收，随后沉淀并重悬于含 10% FBS 的 DMEM-199 中。进行细胞计数并且用适当数量的细胞（大约 10^6）种植生物反应器。

用于细胞培养的球形珠或者微载体由 Pharmacia (Sweden) 生产，并且以商品名 Cytodex1 销售。Cytodex1 微载体的密度是 1.03 (0.9%NaCl 中 g/ml)，其大小介于 131-220μm，平均 180μm。细胞生长的大约表面积是 4,500cm²/g 微载体（干重），1g 含有大约 6.8 x 10^8 个微载体。

b. 生物反应器中的细胞种植和生长

将 15-25 g/L Cytodex 1 浓度的微载体引入 5L 生物反应器中（3.7 L 工作体积）。如下种植生物反应器。将大约获得自先前准备的贮存液（参见上文）中的 4 x 10^8 -1 x 10^9 的细胞置于管形玻璃瓶中。从 20 g/L 微载体的无菌溶液，用 DMEM-199 清洗 55.5-92.5 g（取决于培养物中需要的浓度）的微载体两遍并且将细胞加入到玻璃瓶中。随后用含有 10% FBS 的 DMEM-199 填充瓶得到 3.7L 的终体积。随后将瓶中的物质（DMEM-199 中的细胞和微载体）倒入生物反应器容器中，用中心杆以约 20rpm 搅动。当容器被填满时，将搅动增加到 50rpm，将温度调节到 37℃并且将溶解的氧含量保持在 5-50% 空气饱和度。培养物的 pH 也保持在 6.8-7.4。在第一天，使用含 2.5% FBS 和 0.5 g/L 磷酸镁的 DMEM-199 以 0.5 体积/天开始灌流微载体细胞培养物。连续生长细胞大约 7-10 天并且将灌流流动力率逐步增加到 2 体积/天。

c. 病毒感染

在病毒加入微载体细胞培养物之前，灌流在感染那天被增加到 4 无血清体积/天。温度降低到 33℃并且将氧分压控制在 15% 空气饱和度。细胞连片生长时和病毒感染前立刻（在同一天），用相同的无血清培养基代替培养基，并且将灌流率增加到 4 体积/天 7 小时。这可以保证培养物的血清物质在感染前被降低到最小水平。在该阶段后，停止灌流并且将人流感
病毒类型 A 或者 B 引入到微载体细胞培养物中。在引入生物反应器前，用营养培养基（含 6.5g 葡萄糖/L 的 DMEM-199）正常稀释病毒以获得范围为 1:10—1:10^6 的 M. O. I.。第二天，将灌流保持在 2 体积/天直到完成细胞病变效应。通常在 5 天内观察到 MDCK 细胞整个破坏。随后收集含有流感病毒悬液的流出物，并进而进行疫苗生产，这在本领域是熟知的。

d. 灭活和纯化

以如下方式进行单效价流感病毒的纯化。收集自通常为 15-30L 的生物反应器的病毒收获物首先通过 1.2μm 的滤器（Sartorius Sartopure GF®，长 10 英寸，0.6 m²）净化以移除大的细胞碎片。随后通过加入 0.125%（V/V）甲醛（终浓度）16 个小时使含有流感病毒的净化的悬液失活。随后将失活的病毒悬液通过离子交换、DNA 酶处理和凝胶过滤纯化。

选择富集的病毒级分，其代表用于疫苗制备的优质材料。随后将这些级分聚集在一起并进行稀释以得到作为目前国际权威推荐的 15μg HA/株/剂量的终浓度。

e. 疫苗制备

病毒蛋白被稀释到 15μg/剂量疫苗。加入硫柳汞（0.01%）分别用于防腐和稳定，从而完成疫苗制备。

对于标准的三效价疫苗，三个循环株中每个的单效价剂量将被混和并如上所述加入防腐剂和稳定剂。

其它已知的防腐剂例如氨基甲基丙醇，山梨酸和聚氨基丙基双胍，硝酸苯汞（phenymercuric nitrate），硼酸苯汞，2-苯氧乙醇与甲醛，酚，苯索氯铵，和 2 苯基乙醇可以用于疫苗制备。这些防腐剂的浓度需要符合工业标准。

实施例 7
使用株 A/Shanghai/11/87 并添加胰蛋白酶感染亲本细胞系

将来自亲本系的 MDCK 细胞在 CelliGen™生物反应器中生长。该生物反应器的工作体积是 3.7L，微载体浓度是 25g/L，并在 50rpm 搅动。在第七
天，用名为 A/Shanghai/11/87 的人流感株感染培养物。M. O.I. 是 1: 133,000 并且将 2.5μg/ml 的胰蛋白酶加入以提高病毒复制。表 7 列出了测试的相关数据，表 8 概括了结果。疫苗产量是 15μg HA 的 9,828 单效价剂量，这基于 18L 总收获体积和 7.38 μg HA/ml 和 9 μg HA/ml 的放射扩散（SRD）测定值。（见表 8。）

表 7 使用亲本细胞系和株 A/Shanghai/11/87 并添加

| 表 7 使用亲本细胞系和株 A/Shanghai/11/87 并添加
| 胰蛋白酶进行测试的数据 |
|---|---|---|---|---|---|---|---|---|
| 培养（天） | 感染后 | 温度 | PH | 溶解的氧气（%） | 空气压力（psi） | 氧气压力（psi） | 灌流（vol/天） | %血清 | 细胞浓度（X10⁶） |
| | (天) | ℃ | | | | | | |
| 0 | 37 | 6.40 | 5 | ▶1 | ▶1 | 10 | 1.45 |
| 0.16 | 37 | 6.40 | 5 | ▶1 | ▶1 | 1 | 5 |
| 1 | 37 | 6.53 | 5 | ▶1 | ▶1 | 2 | 5 | 1.38 |
| 2 | 37 | 6.90 | 5 | ▶1 | ▶1 | 2 | 5 | 1.67 |
| 3 | 37 | 7.01 | 5 | ▶1 | ▶1 | 3 | 5 |
| 4 | 37 | 6.95 | 2 | ▶1 | ▶1 | 3 | 5 |
| 5 | 37 | 6.96 | 3 | ▶1 | 2.5 | 3 | 5 | 6.26 |
| 6 | 37 | 6.70 | 3 | ▶1 | 2.5 | 3 | 0 | 7.69 |
| 7 | 0 | 34 | 6.50 | 5 | ▶1 | 1.5 | 3 | 0 | 9.34 |
| 8 | 1 | 34 | 6.80 | 5 | ▶1 | 1.5 | 2 | 0 |
| 9 | 2 | 34 | 6.70 | 5 | ▶1 | 1.5 | 2 | 0 |
| 10 | 3 | 34 | 7.20 | 5 | ▶1 | 1.5 | 2 | 0 |
| 11 | 4 | 25 | 7.24 | 68 | ▶1 | 1.51 |
| 12 | 5 | 25 | 7.40 | 57 | ▶1 | 1.5 |

以如下方式计算感染时刻细胞的总数：9.34 x 10⁶ MDCK 细胞/ml x 3700 ml 等于 34,558 x 10⁶ 细胞。
表8 使用亲本细胞系和株A/Shanghai/11/87 并添加胰蛋白酶进行测试的

<table>
<thead>
<tr>
<th></th>
<th>HA</th>
<th>TCID_{50}/ml (10^5)</th>
<th>SRD (μg HA/ml)</th>
<th>体积 (L)</th>
<th>剂量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>种植</td>
<td>1.92</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

生物反应器样品（感染后时间）

<table>
<thead>
<tr>
<th>时间</th>
<th>HA</th>
<th>SRD</th>
<th>体积 (L)</th>
<th>剂量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>17小时</td>
<td>Neg.</td>
<td>≤2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2天</td>
<td>192</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3天</td>
<td>512</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5天</td>
<td>192</td>
<td>3.2</td>
<td>13.2</td>
<td></td>
</tr>
</tbody>
</table>

收获样品（感染后时间）

<table>
<thead>
<tr>
<th>时间</th>
<th>HA</th>
<th>SRD</th>
<th>体积 (L)</th>
<th>剂量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-24小时</td>
<td>Neg.</td>
<td>≤1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2天</td>
<td>64</td>
<td>4.0</td>
<td></td>
<td>Neg.</td>
</tr>
<tr>
<td>2-3天</td>
<td>512</td>
<td>3.9</td>
<td>7.38</td>
<td>9</td>
</tr>
<tr>
<td>3-4天</td>
<td>384</td>
<td>3.9</td>
<td>9.00</td>
<td>9</td>
</tr>
</tbody>
</table>

共计 | 18 | 9,828 |

以如下方式计算 HA 的总量：9,828 剂量 x 15μg/剂量 = 总共 147,420μg HA。再除以 34558 x 10^6 细胞 = 4.26μg HA/10^6 MDCK 细胞。

实施例 8

使用株 A/Shanghai/11/87 并不添加胰蛋白酶感染 MDCK.5F1 克隆

在微载体浓度为 25g/L 的 CelliGen™ 生物反应器中生长衍生自克隆 MDCK.5F1 (ATCC 保藏号 CRL-12042) 的细胞。该生物反应器的工作体积是 3.7L 并且在 50-55rpm 搅动。在第七天，用名为 A/Shanghai/11/87 的人流感病毒株感染培养物。生物反应器中不加入胰蛋白酶来提高病毒生长。M.O.I. 是 1:133,000 并且该测试生产出了 32L, 其 SRD 值为 9.2 μg HA/ml, 得到 19,626 单效价剂量。表 9 总结了该测试的数据并且表 10 列出了结果。
表 9 使用 MDCK.5F1 克隆和株 A/Shanghai/11/87 在没有胰蛋白酶时进行测试的数据

<table>
<thead>
<tr>
<th>培养（天）</th>
<th>感染后（天）</th>
<th>温度（℃）</th>
<th>PH</th>
<th>溶解的氧气（%空气饱和）</th>
<th>空气压力（psi）</th>
<th>氧气压力（psi）</th>
<th>灌流（vol/天）</th>
<th>%血清</th>
<th>细胞浓度（X10⁴细胞/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>5</td>
<td><1</td>
<td><1</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>6.88</td>
<td>5</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>5</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>6.94</td>
<td>5</td>
<td><1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>6.59</td>
<td>5</td>
<td><1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>6.85</td>
<td>5</td>
<td><1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>6.84</td>
<td>4</td>
<td><1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>6.82</td>
<td>4</td>
<td><1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>33</td>
<td>6.83</td>
<td><1</td>
<td>3.5</td>
<td>3-4</td>
<td>0</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>33</td>
<td>6.93</td>
<td><1</td>
<td>3.5</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>33</td>
<td>6.95</td>
<td><1</td>
<td>3.5</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>33</td>
<td>7.23</td>
<td><1</td>
<td>3.5</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>33</td>
<td>7.31</td>
<td><1</td>
<td>3.5</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以如下方式计算感染时刻细胞的总数：16,8 x 10⁶ MDCK 细胞/ml x 3700 ml 等于 62,160 x 10⁶ 细胞。

表 10 使用 MDCK.5F1 克隆和株 A/Shanghai/11/87 在没有胰蛋白酶时进行测试的结果

<table>
<thead>
<tr>
<th></th>
<th>HA</th>
<th>TCID₅₀/ml (10⁻⁹)</th>
<th>SRD（μg HA/ml）</th>
<th>体积（L）</th>
<th>剂量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>种植</td>
<td>512</td>
<td>14.21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
生物反应器样品（感染后时间）

<table>
<thead>
<tr>
<th>时间</th>
<th>阴性（Neg.）</th>
<th>3.4</th>
<th>7.63</th>
<th>13.94</th>
<th>6.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>17小时</td>
<td>Neg.</td>
<td>3.4</td>
<td>7.63</td>
<td>13.94</td>
<td>6.87</td>
</tr>
<tr>
<td>2天</td>
<td>384</td>
<td>6.1</td>
<td>13.94</td>
<td>6.87</td>
<td></td>
</tr>
<tr>
<td>3天</td>
<td>512</td>
<td>5.1</td>
<td>32</td>
<td>19,626</td>
<td></td>
</tr>
<tr>
<td>4天</td>
<td>128</td>
<td>5.2</td>
<td>32</td>
<td>19,626</td>
<td></td>
</tr>
</tbody>
</table>

收获样品（感染后时间）

<table>
<thead>
<tr>
<th>时间</th>
<th>阴性（Neg.）</th>
<th>3.4</th>
<th>7.63</th>
<th>13.94</th>
<th>6.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4天</td>
<td>192</td>
<td>5.2</td>
<td>32</td>
<td>19,626</td>
<td></td>
</tr>
</tbody>
</table>

共计 | 32 | 19,626 |

以如下方式计算 HA 的总量：19,626 剂量 x 15μg/剂量 = 总共 294,390μg HA。再除以 62,160 x 10^6 细胞 = 4.73μg HA/10^6 MDCK 细胞。

实施例 9

用株 B/Harbin/7/94 在没有胰蛋白酶的情况下感染 MDCK.5F1 克隆

衍生自克隆 MDCK.5F1 的细胞如实施例 3 所述的那样生长，只是微载体的浓度是 15g/L。在第八天，用名为 B-Harbin/7/94 的人流感病毒接种培养物。M.O.I. 是 1：10,000。没有加入胰酶以促进病毒复制。来自该测试的数据和结果见表 11 和 12。基于 35L 的收获物和 16.35 μg HA/ml 的 SRD 值，产量是 38,150 剂量。

表 11. 使用 MDCK.5F1 克隆和株 B-Harbin/7/94 在没有胰蛋白酶时进行测试的数据

<table>
<thead>
<tr>
<th>培养（天）</th>
<th>感染后（天）</th>
<th>温度（℃）</th>
<th>PH</th>
<th>溶解氧气的浓度（%）</th>
<th>空气压力（psi）</th>
<th>氧气压力（psi）</th>
<th>灌流（vol/天）</th>
<th>%血清</th>
<th>细胞浓（X10^6）</th>
<th>细胞/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>6.87</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>2.5</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td><7</td>
<td>5</td>
<td>0.5</td>
<td>2.5</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37 ≈ 7.0</td>
<td>37 ≈ 7.0</td>
<td>37 ≈ 7.0</td>
<td>37 ≈ 7.0</td>
<td>33 ≈ 7.1</td>
<td>33 ≥ 7.2</td>
<td>33 ≥ 7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>2.3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以如下方式计算感染时刻细胞的总数：$16.7 \times 10^6 \text{MDCK细胞/mL} \times 3700 \text{ml}$ 等于 $61,790 \times 10^6$ 细胞。

表 12. 使用 MDCK.5F1 克隆和株 B-Harbin/7/94 在没有胰蛋白酶时进行测试的结果

<table>
<thead>
<tr>
<th></th>
<th>HA</th>
<th>TCID_{50}/ml (10^6)</th>
<th>SRD（μg HA/ml）</th>
<th>体积（L）</th>
<th>剂量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>种植</td>
<td>128</td>
<td>7.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物反应器样品（感染后时间）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 小时</td>
<td>Neg.</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 天</td>
<td>2048</td>
<td>8.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 天</td>
<td>1024</td>
<td>7.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 天</td>
<td>96</td>
<td>5.97</td>
<td><7.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>收获样品（感染后时间）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 天</td>
<td>512</td>
<td>7.88</td>
<td>16.35</td>
<td>35</td>
<td>38,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>38,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>38,150</td>
</tr>
<tr>
<td>共计</td>
<td>35</td>
<td>38,150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
以如下方式计算 HA 的总量：38,150 剂量 x 15μg/剂量 = 总共 572,250μg HA。再除以 61,790 x 10^6 细胞 = 9.26μg HA/10^6 MDCK 细胞。

再一次，这里表明本发明方法得到的产量等于或者高于任何需要胰酶存在的现有技术方法所得到的产量。
图 1