发明名称
一种复合纤维及其制备方法

摘要
本发明涉及一种木棉纤维粉体与纤维素的复合纤维及其制备方法，特别涉及一种木棉纤维粉体改性纤维素复合纤维的制备方法。本发明提供的一种复合纤维粉体的制备方法包括：将木棉纤维粉体清洗，将清洗后的木棉纤维粉体与纤维素聚合物、各种添加剂、溶剂制备成纺丝液，采用湿法纺丝经过凝固浴纺丝成型得到木棉纤维粉体与纤维素复合纤维。本发明通过向纺丝液中加入不同含量的木棉纤维粉体和改变工艺条件，制备出生产成本低、具有优良性能的木棉纤维粉体与纤维素复合纤维。本发明的木棉纤维粉体与纤维素复合纤维制备方法，将解决木棉纤维纺纱的问题，并且保持木棉纤维中空保暖、天然抗菌等优点，有效利用木棉纤维拓宽其服用应用领域。
权利要求书

1. 一种复合纤维，其特征是，包含以下组分及其重量含量：
A. 木棉纤维粉体溶液，所述木棉纤维粉体溶液包含木棉纤维粉体和氢氧化钠水溶液，
且它们之间按 1 : 2 ～ 4 的重量比例，将木棉纤维粉体浸泡在氢氧化钠水溶液中；所述木棉
纤维粉体在复合纤维中的重量含量比为 10 ～ 40%，所述木棉纤维粉体平均粒径为 50 ～
100μm；
B. 纤维素粘胶纺丝原液组成为：α 纤维素 8.8%，含碱 4.5%；
还包括以下制备步骤：
①按重量含量比，分别预制木棉纤维粉体溶液和纤维素粘胶纺丝原液，备用；
②将上述预制好的木棉纤维粉体溶液和纤维素粘胶纺丝原液混合；
③将上述混合液在凝固浴中纺丝成型；
④最后，经精炼烘干，制成复合纤维。

2. 根据权利要求 1 所述复合纤维，其特征是，所述氢氧化钠水溶液中氢氧化钠的质量
含量为 30% ～ 50%。

3. 根据权利要求 1 所述复合纤维，其特征是，所述纤维素粘胶纺丝原液中，纤维素的聚
合度为 450 ～ 1000，纤维素采用棉纤维素、木纤维素、竹纤维素、麻纤维素和粘杆纤维素中
的一种，或数种混合。

4. 一种制备上述权利要求 1 所述复合纤维的方法，其特征是，包括如下步骤：
①按重量含量比，分别预制木棉纤维粉体溶液和纤维素粘胶纺丝原液，备用；
②将上述预制好的木棉纤维粉体溶液和纤维素粘胶纺丝原液混合；
③将上述混合液在凝固浴中纺丝成型；
④最后，经精炼烘干，制成复合纤维。

5. 根据权利要求 4 所述复合纤维的制备方法，其特征是，所述预制木棉纤维粉体溶液，
系先将木棉纤维粉体清洗，再按 1 : 2 ～ 4 的重量比例，将木棉纤维粉体浸泡在 30%～50%
的氢氧化钠水溶液中，置于超声波震荡器震荡混合均匀，其水浴温度为 25±2℃，时间为 4 ～
6h，制得木棉纤维粉体溶液。

6. 根据权利要求 4 所述复合纤维的制备方法，其特征是，所述预制纤维素粘胶纺丝原
液，系采用聚合度为 450 ～ 1000 的一种纤维素，或数种纤维素混合，经碱液、压榨、粉碎、老
成、黄化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纺丝原
液，并控制该粘胶纺丝原液的组成为 α 纤维素 8.8%，含碱 4.5%。

7. 根据权利要求 4 所述复合纤维的制备方法，其特征是，所述混合液在凝固浴中纺丝
成型系指将木棉纤维粉体溶液和纤维素纺丝原液混合，并在静态混合器中经不少于 10° 次
均匀混合，经预过滤、脱气输入计量泵，进入含硫酸、硫酸锌、硫酸钠，湿气 48℃凝固浴中纺
丝成型；而精炼烘干系指，凝固浴中纺丝成型，再经脱硫、水洗、上油、漂白、烘干，制得木棉
纤维粉体与纤维素的复合纤维。
一种复合纤维及其制备方法

技术领域
[0001] 本发明涉及一种功能性纤维材料，尤其涉及一种木棉纤维粉体与纤维素的复合纤维，以及该复合纤维的制备方法。

背景技术
[0002] 纤维素纤维作为最早的人造纤维已有百年的历史，现有纤维素纤维产量已达到260多万吨，进入21世纪以来，随着世界人口增长，能源危机，资源枯竭，可以由大自然产生的纤维素纤维倍受关注。然而，由于传统的棉、麻天然纤维素纤维在发展规模方面有一定局限，如棉花的“与纲争地”的问题，人们把眼光越来越多的集中在于新型天然、再生纤维素纤维的开发和利用上。
[0003] 木棉纤维是一种木本植物木棉树的果实纤维，附着于木棉蒴果壳体内壁，由内壁细胞发育、生长而成。其纤维与果实附着作用力小，因而一般不需专门的初加工设备，只需篧篩筛动，木棉种子便自行沉底，即可获得木棉纤维。木棉纤维是一种天然纤维素纤维，与棉纤维同属单细胞纤维。木棉纤维具有系列独特的特点：它的细度仅有棉纤维的1/2，中空率却达到86%以上，是一般棉纤维的2~3倍，也就是说，木棉服装比一般纤维制成的服装更轻、更薄、保暖效果反而更高。木棉纤维长度较短，为8~34mm，纤维中段直径范围20~45μm，线密0.9~1.2dtex。在强度与伸长方面，木棉纤维的强力较低，伸长能力小。单纤维平均强1.4~1.7cN，纤维比强度为0.8~1.3cN/dtex，断裂伸长率1.5%~3.0%。
[0004] 本发明具有一系列优良特性如：光洁、抗菌、防蛀、防霉、轻柔、不易缠结、不透水、不导热等。其主要生长在国内的云南、海南岛、广东、广西、福建南部等热带省区，以及国外的印度尼西亚、尼日利亚、泰国、非洲等热带国家。我国的木棉纤维主要来自于木棉属的木棉种，使用少。一株成年期的木棉树可产5~8kg的木棉纤维，目前包括我国在内的木棉纤维的全球年产量约19.5万吨，但是木棉纤维存在以下不足之处：(1)木棉纤维的有效利用与使用率很低，在纺织领域也鲜有在市场上应用的产品，消费者基本上不知道还有这样一种类似棉、性能又优于棉的天然纤维素纤维产品；(2)木棉纤维因长度较短，强度较低，表面较光滑，相对扭角度大，抱合力差，因此纺纱难度大，成纱质量较低，而且其上染率不高；因此，这些缺点使木棉很难用加工棉或毛的纺纱方法单独纺纱；(3)长期以来，由于木棉纤维产量和纤维可加工性、上染率不高等问题，木棉只被用来做低档絮片制品，影响了木棉在纺织服装产品中的开发应用。

发明内容
[0005] 本发明的目的在于克服上述现有技术存在的种种不足，而提供一种生产成本低、具有优良性能的木棉纤维粉体与纤维素的复合纤维；解决木棉纤维纺纱难的问题，并且保持木棉纤维中空保暖、天然抗菌等优点，有效利用木棉纤维拓展其服用应用领域。
[0006] 本发明的另一目的在于提供一种生产工艺简单，便于实施的木棉纤维粉体与纤维素的复合纤维制备方法。
说明书

[0007] 本发明的目的是这样实现的：一种复合纤维，其特征是，包括以下组分及其重量含量：A：木棉纤维粉体溶液，重量含量比为20%～35%；B：纤维素粘胶纺丝原液组成为：a：纤维素8.8%，含碱4.5%。

[0008] 作为更具体方案，所述木棉纤维粉体溶液包含木棉纤维粉体和氢氧化钠水溶液，且它们之间按1：2～4的重量比例，将木棉纤维粉体浸泡在氢氧化钠水溶液中。

[0009] 其中，上述氢氧化钠水溶液中氢氧化钠的质量含量为30%～50%。

[0010] 而所述木棉纤维粉体在复合纤维中的重量含量比为10～40%，当粉体含量低于10%时，木棉纤维粉体在复合纤维中的强化和提高性能作用体现不出来；当粉体含量高于40%时，得到的复合纤维强度反而降低，复合纤维的脆性大大增加，这样使得复合纤维无法正常使用。

[0011] 所述木棉纤维粉体平均粒径最好在50～100μm，粒径低于50μm时，木棉纤维粉体加工成本增加，并且会对木棉纤维的结构产生一定的破坏，粒径大于100μm时，木棉纤维粉体不能和纤维素纺丝液均匀的混合，所以纤维素的平均粒径在50～100μm最为合适。

[0012] 所述纤维素粘胶纺丝原液中，纤维素的聚合度为450～1000；纤维素采用棉纤维素、木纤维素、竹纤维素、麻纤维素和秸秆纤维素中的一种，或数种混合。

[0013] 本（木棉纤维素与纤维素）复合纤维是由纤维素粉体和纤维素所组成的，木棉纤维素体的重量含量为10～40%。这样由于纤维素中加入木棉纤维素粉体，纤维素粉体均匀分散在复合纤维中，改善了纤维的亲水性、透气性能，并且由于木棉纤维天然的大中空结构，复合纤维的保暖性能亦会得到提高，并且在一定的抗虫性能。并且可以根据实际的需要来调整木棉纤维素粉体在复合纤维中的含量，在生产中为了提高复合纤维的性能，木棉纤维素体的平均粒径控制在50～100μm，而纤维素的聚合度为450～1000；并且纤维素可以采用棉纤维素、木纤维素、竹纤维素、麻纤维素和秸秆纤维素中的一种或一种以上，以方便产业化生产。

[0014] 本发明的另一目的是这样实现的：一种制备上述复合纤维的方法，其特征是，包括如下步骤：

[0015] ①按重量含量比，分别预制木棉纤维粉体溶液和纤维素粘胶纺丝原液，备用；

[0016] ②将上述预制好的木棉纤维粉体溶液和纤维素粘胶纺丝原液混合；

[0017] ③将上述混合液在凝固液中纺丝成型；

[0018] ④最后，经烘炼烘干，制成复合纤维。

[0019] 作为更具体之方案，所述预制木棉纤维粉体溶液，系先将木棉纤维粉体清洗，再加入1：2～4的重量比例，将木棉纤维粉体浸泡在30～50%的氢氧化钠水溶液中，并置于超声波震荡器震荡混合均匀，其水浴温度

[0020] 为25±2℃，时间为4～6h，制得木棉纤维粉体溶液。

[0021] 作为更具体之方案，所述预制纤维素粘胶纺丝原液，系采用聚合度为450～1000的一种纤维素，或数种纤维素混合，经碱液、压榨、粉碎、老成、熟化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶纺丝制备程序制得纤维素粘胶纺丝原液，并控制该粘胶纺丝原液的组成：a：纤维素8.8%，含碱4.5%。

[0022] 所述混合液在凝固液中纺丝成型系指将木棉纤维粉体溶液和纤维素粘胶纺丝原液混合，并在静态混合器中经不少于10次搅拌均匀，经预过滤、脱气输入计量泵，进入含硫酸、
硫酸锌、硫酸钠，温度 48℃凝固浴中纺丝成型；而精炼烘干系指凝固浴中纺丝成型，再经脱硫、水洗、上油、漂白、烘干，制得木棉纤维粉末与纤维素的复合纤维。

本发明的制备方法，具有工艺方法简单，生产方便，适宜木棉纤维粉末与纤维素复合纤维的大规模生产的木棉纤维粉末与纤维素复合纤维的制备方法。就是将木棉纤维粉末添加到纤维素纺丝溶液中，采用粘胶湿法纺丝经过凝固浴纺丝成型，并经过精炼烘干等后处理工序得到木棉纤维粉末与纤维素复合纤维。木棉纤维粉末的存在对纺丝液的热力学性质以及在成丝过程中的动力学各组分扩散速率有一定的影响，若对凝固浴过程的微观相分离行为有影响，最终对复合纤维的微观结构形态有一定的影响，但是对复合纤维的宏观性能影响较大，尤其对复合纤维的力学性能、亲疏水性能、透气性能及其保暖性能和抗菌性能。本发明的特点就是，将木棉纤维粉末应用到纤维素复合纺丝领域中来，将根据所制备纤维的亲水性、透气性能及其保暖性能和抗菌性能要求，选择不同含量的木棉纤维粉末来制备复合纤维。

本发明对纤维粉末进行表面清洗，这是由于木棉纤维和木棉纤维粉末在制备过程中经过很多工序，避免不了要和很多其他物质接触，纤维粉末表面存在一些有机无机的油渍和粉尘等其他污染物，如果纤维粉末不进行表面清洗，那么纤维粉末表面的这些污染物一方面将影响纤维粉末在纺丝液中的均匀分散，另一方面会使得纤维丝的组成发生变化，最终影响复合纤维成形过程中各组份的相互传递速度，于是最终影响复合纤维的微观结构和性能。因此本发明中提出采用无水乙醇结合超声波震荡清洗的方法。

木棉纤维同所有天然或合成纤维一样，存在一个天然的皮层结构，皮层的存在对纤维起到一个保护作用，也是皮层的存在，使得纤维粉末在纤维素纺丝液中分散均匀，存在困难，纤维粉末容易发生团聚。本发明将纤维粉末与溶剂在超声波作用下震荡一段时间，这样大量的溶剂对纤维粉末表面进行了一定的刻

纤维素浆料聚合物与纤维素粉末之间的作用力大大增强，于是木棉纤维粉末能够均匀稳定的分散在纺丝液中，不易发生团聚和沉淀。

纤维素浆料装置则采用聚合度为 450～1000 的棉纤维素、木纤维素、竹纤维素、麻纤维素和粘杆纤维素经过浆粕的碱液、压榨、粉碎、老成、黄化、溶解、混合、滤洗、熟成和脱泡等工序制得，并可根据实际生产的需要，调整纤维素浆液内的 α 纤维素含量和含碱量，这是本领域公知的技术。

本发明中将用无水乙醇清洗过的木棉纤维粉末加入到 30～50% 氢氧化钠水溶液中，置于超声波震荡器震荡混合均匀，其水温先为 25±2℃，时间为 4～6h，形成木棉纤维粉末溶液。木棉纤维粉末溶液加入到纤维素纺丝溶液中后，搅拌混合转速至静态混合器，在静态混合器中与纤维素浆液溶液不少与 10^6 次混合以混合均匀。

而为了能够适应各种生产环境，以适应生产的需要，纺丝成型时所用凝固浴的凝
固化剂采用硫酸、硫酸铵、硫酸铝、硫酸钠或硫酸、硫酸钠或凝固剂采用硫酸溶液，用固定酸溶液配置的溶液，对于改进型线状纤维其使用量约为相对纤维素量的1%；而对于高湿模量的聚酯纤维的生产其使用量约为相对纤维素量的2%～4%。这是本领域公知的技术。

[0031] 这样在生产木棉纤维粉末与纤维素复合纤维，即可采用将木棉纤维粉末与纤维素共混纺丝原液输送至入口剂量泵进入凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干等后处理，即得到成品木棉纤维粉末与纤维素复合纤维。并且可调整木棉纤维粉末溶液中木棉纤维粉末含量通过入口计量泵比来调整复合纤维中木棉纤维粉末含量。

[0032] 本发明的有益效果如下：

（1）本发明中，各原料均为当前人们在生产中常用产品，均可市购得到，而生产中所用的各种设备，也为当前生产中所用的设备；

（2）本发明的方法制备木棉纤维粉末与纤维素复合纤维，各工序可以采用通常的纤维生产工艺，生产简单，便于实施。并且通过向纺丝液中加入不同含量的木棉纤维粉末和改变工艺条件，制备出生产成本低、性能优良的木棉纤维粉末与纤维素复合纤维。

（3）本发明的木棉纤维粉末与纤维素复合纤维制备方法，将解决木棉纤维纺纱难的问题，并且保持木棉纤维中空保暖、天然抗菌等优点，有效利用木棉纤维拓展其服用应用领域。

具体实施方式

[0036] 以下实施例对本发明作更详细的描述，但所述实施例不构成对本发明的限制。

[0037] 实施例1

[0038] 采用已清洗的木棉纤维粉末平均粒径为68.5μm，以1:2.5的比例浸泡在35%的氢氧化钠水溶液中。

[0039] 使木棉纤维粉末充分混合，放在超声波震荡器中分散4.5h，温度为26℃，得到木棉纤维粉末溶液。

[0040] 将聚合度550的纤维素竹浆粉经碱洗、压榨、粉碎、造粒、溶解、脱水、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纤维原液。控制该粘胶纤维原液的组成为a纤维素8.8%，含碱4.5%。

[0041] 然后按生产需要取制得木棉纤维粉末溶液和纤维素粘胶纤维原液，混合并在动态混合器中经不少于10次混合后，经预过滤、脱气输入计量泵，进入含硫酸氢钠325g/L，硫酸氢铵11.5g/L，温度48℃凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉末含量为25%的复合纤维。

[0042] 实施例2

[0043] 采用已清洗的木棉纤维粉末平均粒径为72.8μm，以1:3的比例浸泡在30%的氢氧化钠水溶液中，使木棉纤维粉末充分混合，放在超声波震荡器中分散5h，温度为25℃，得到木棉纤维粉末溶液。

[0044] 将聚合度为580的纤维素竹浆粉和聚合度为750的纤维素竹浆粉经碱洗、压榨、粉碎、造粒、溶解、脱水、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纤维原液。控制该粘胶纤维原液的组成为a纤维素8.8%，含碱4.5%。
然后按生产需要取制得木棉纤维粉体溶液和纤维素纤维原液，混合并在静态混合器中经不少于10次混合以混合均匀，经预过滤、脱气输入计量泵，进入含硫酸133g/L、硫酸铝11.5g/L、硫酸钠325g/L，温度50℃凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉体含量为35%的复合纤维。

实施例3

采用已清洗的木棉纤维粉体平均粒径为72.8μm，以1:3的比例浸泡在30%的氢氧化钠水溶液中，使木棉纤维粉体充分混合，放在超声波震荡器中分散5h，温度为25℃。得到木棉纤维粉体溶液。

另将聚合度为780的纤维素竹浆粕和聚合度为450的纤维素秸秆浆粕经碱液、压榨、粉碎、老成、黄化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纺丝原液，控制该粘胶纺丝原液的组成为α纤维素8.8%，含碱4.5%。

然后按生产需要取制得木棉纤维粉体溶液和纤维素纤维原液，混合并在静态混合器中经不少于10次混合以混合均匀，经预过滤、脱气输入计量泵，进入含硫酸133g/L、硫酸铝11.5g/L、硫酸钠325g/L，温度52℃凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉体含量为40%的复合纤维。

实施例4

采用已清洗的木棉纤维粉体平均粒径为91.5μm，以1:3的比例浸泡在30%的氢氧化钠水溶液中，使木棉纤维粉体充分混合，放在超声波震荡器中分散5h，温度为25℃。得到木棉纤维粉体溶液。

另将聚合度为580的纤维素棉浆粕经碱液、压榨、粉碎、老成、黄化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纺丝原液，控制该粘胶纺丝原液的组成为α纤维素8.8%，含碱4.5%。

然后按生产需要取制得木棉纤维粉体溶液和纤维素纤维原液，混合并在静态混合器中经不少于10次混合以混合均匀，经预过滤、脱气输入计量泵，进入含硫酸133g/L、硫酸铝11.5g/L、硫酸钠325g/L，温度50℃凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉体含量为35%的复合纤维。

实施例5

采用已清洗的木棉纤维粉体平均粒径为78.2μm，以1:3的比例浸泡在30%的氢氧化钠水溶液中，使木棉纤维粉体充分混合，放在超声波震荡器中分散5h，温度为25℃。得到木棉纤维粉体溶液。

另将聚合度为580的纤维素棉浆粕经碱液、压榨、粉碎、老成、黄化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纺丝原液，控制该粘胶纺丝原液的组成为α纤维素8.8%，含碱4.5%。

然后按生产需要取制得木棉纤维粉体溶液和纤维素纤维原液，混合并在静态混合器中经不少于10次混合以混合均匀，经预过滤、脱气输入计量泵，进入含硫酸133g/L、硫酸铝11.5g/L、硫酸钠325g/L，温度50℃凝固浴中纺丝成形，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉体含量为20%的复合纤维。

实施例6

采用已清洗的木棉纤维粉体平均粒径为61.5μm，以1:3的比例浸泡在30%的氢氧
化钠水溶液中，使木棉纤维粉体充分混合，放在超声波震荡器中分散 5h，温度为 25℃。得到木棉纤维粉体溶液。

【0060】将聚合度为 580 的纤维素麻浆粕经碱溃、压榨、粉碎、老成、黄化、溶解、混合、过滤、熟成和脱泡等常规纤维素粘胶制备工序制得纤维素粘胶纺丝原液，控制该粘胶纺丝原液的组成为：纤维素 8.8%，含碱 4.5%。

【0061】然后按生产需求取制得木棉纤维粉体溶液和纤维素纺丝原液，混合并在静态混合器中经不少于 10⁴ 次混合以混合均匀，经预过滤、脱气输入计量泵，进入含硫酸 132g/L、硫酸锌 11.5g/L、硫酸钠 325g/L，温度 48℃凝固浴中纺丝成型，再经脱硫、水洗、上油、漂白、烘干，制得纤维中木棉纤维粉体含量为 15% 的复合纤维。