FOLDABLE MULTI-COMPARTMENT CONTAINER

Applicant: Steven Scaba, New York, NY (US)

Inventor: Steven Scaba, New York, NY (US)

Appl. No.: 14/943,030

Filed: Nov. 17, 2015

Publication Classification

Int. Cl.
B65D 21/08 (2006.01)
B65D 21/02 (2006.01)

U.S. Cl.
CPC B65D 21/086 (2013.01); B65D 21/02 (2013.01)

ABSTRACT

Disclosed is a method, a device and/or a system of a foldable multi-compartment container. In one embodiment, a first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section. The multi-compartment container also includes a second inner section expandable based on a second pressure placed near a second center area of the second inner section by the human hand from the closed state of the second inner section to the open state of the second inner section. A rigid enclosure having a hinge encompasses the first inner section and the second inner section. The hinge pivots at an angle between approximately zero and one-hundred-eighty degrees between a folded state and an unfolded state of the multi-compartment container.
FIG. 1
Foldable Multi-Compartment Container

Field of Technology

This disclosure relates generally to storage containers and, more particularly, to a method, a device and/or a system of a foldable multi-compartment container.

Background

A container may be a vessel in which food and/or water may be stored for consumption by a mammal (e.g., a human, a dog, a cat). A specific type of container may be a bowl. The bowl may be a round, open-top container used in many cultures to serve hot and cold food and/or liquids (e.g., water). For example, the bowl may be small and shallow, as in the case of bowls used for single servings of soup and/or cereal.

Sometimes, it may be inconvenient to have multiple containers (e.g., bowls) during a meal to separate water from a solid food. However, multiple containers can take up added volume and may not be convenient to store when carrying (e.g., in a backpack, a suitcase). For this reason, it may be inconvenient and/or cumbersome to carry multiple containers.

Summary

Disclosed are a method, a device and/or a system of a system of a foldable multi-compartment container.

In one aspect, a multi-compartment container includes a first rigid enclosure (e.g., having a first shape). A first inner section is encompassed by the first rigid enclosure. The first inner section is expandable based on a first pressure placed near a first center area of the first inner section (e.g., by a human hand) from a closed state of the first inner section to an open state of the first inner section.

The multi-compartment container also includes a second rigid enclosure (e.g., having a second shape). The second inner section is encompassed by the second rigid enclosure. The second inner section is expandable based on a second pressure placed near a second center area of the second inner section (e.g., by the human hand) from a closed state of the second inner section to an open state of the second inner section. A hinge between the first rigid enclosure and the second rigid enclosure permits the first rigid enclosure to fold vertically adjacent to the second rigid enclosure when a force of the human hand pivots the hinge from an unfolded state of the multi-compartment container to a folded state of the multi-compartment container.

The second inner section may be aligned on a common level plane as the first rigid enclosure in the unfolded state of the multi-compartment container. The hinge may pivot at an angle between approximately zero degrees and approximately one-hundred-eighty degrees between the folded state and the unfolded state of the multi-compartment container responsive to a motion of the human hand.

The first inner section may be collapsible based on a third pressure of the human hand at the first center area when the first inner section is in the open state. The second inner section may be collapsible based on a fourth pressure of the human hand at the second center area when the second inner section is in the open state.

The first inner section and/or the second inner section may each form a cavity in which an item is storable when in the open state. A series of semi-flexible ridges of the first inner section and/or the second inner section may enable the first inner section and/or the second inner section to collapse (and/or expand) along each of the series of semi-flexible ridges. When the multi-compartment container is in the folded state, the semi-flexible ridges may position the first inner section and/or the second inner section substantially planar to the first rigid enclosure and/or the second rigid enclosure.

At least one interlocking assembly may enable the multi-compartment container to clasp the first rigid enclosure with the second rigid enclosure when the multi-compartment container is in the unfolded state. Any one of the first shape of the first rigid enclosure and the second shape of the second rigid enclosure may be a circular shape, an oval shape, a rectangular shape, a square shape, a bone shape, a custom shape and/or a triangular shape.

The first inner section and the second inner section may have the circular shape, the oval shape, the rectangular shape, the square shape, the bone shape, another custom shape, and/or the triangular shape.

The first rigid enclosure and/or the second rigid enclosure may include a curved holding grip to provide a convenient carrying capability of the multi-compartment container. The first inner section may form a first container when in the open state. The second inner section may form a second container when in the open state. The first container may optionally detach from the second container when the multi-compartment container is in the unfolded state. The multi-compartment container may be a foldable dog bowl, a foldable pet bowl, a foldable kitchen bowl, a foldable carry bowl, a foldable garden bowl, and/or a foldable cat bowl. The multi-compartment container may be washable and dryable in a standard washing machine apparatus.

In another aspect, a multi-compartment container includes a first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section. The multi-compartment container also includes a second inner section that is expandable based on a second pressure placed near a second center area of the second inner section by the human hand from a closed state of the second inner section to an open state of the second inner section. A rigid enclosure having a hinge encompasses the first inner section and the second inner section. A hinge pivots at an angle between approximately zero degrees and approximately one-hundred-eighty degrees between a folded state and an unfolded state of the multi-compartment container.

In yet another aspect, a multi-compartment container includes a first rigid enclosure having a first shape. A first inner section is encompassed by the first rigid enclosure. The first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section. The multi-compartment container also includes a second rigid enclosure having a second shape. The second inner section is encompassed by the second rigid enclosure. The second inner section is expandable based on a second pressure placed near a second center area of the second inner section by the human hand from a closed state of the second inner section to an open state of the second inner section. The second inner section is encompassed by the second rigid enclosure.
aligned on a common level plane as the first rigid enclosure in an unfolded state of the multi-compartment container. [0013] The methods and systems disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of a non-transitory machine-readable medium embodying a set of instructions that, when executed by a machine, cause the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawings and from the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The embodiments of this invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:

[0015] FIG. 1 is a folded state of a multi-compartment container, according to one embodiment.

[0016] FIG. 2 is an unfolded state of the multi-compartment container of FIG. 1, according to one embodiment.

[0017] FIG. 3 is a pivot view of the multi-compartment container of FIG. 1, according to one embodiment.

[0018] FIG. 4 is a closed state of a first inner section of the multi-compartment container of FIG. 1, according to one embodiment.

[0019] FIG. 5 is an open state of the first inner section of the multi-compartment container of FIG. 1, according to one embodiment.

[0020] FIG. 6 is a closed state of the second inner section of the multi-compartment container of FIG. 1, according to one embodiment.

[0021] FIG. 7 is an open state of the second inner section of the multi-compartment container of FIG. 1, according to one embodiment.

[0022] FIG. 8 is an expanded view state of the multi-compartment container of FIG. 1 with an expanded first container and a second container, according to one embodiment.

[0023] FIG. 9 is a detach view of the multi-compartment container of FIG. 1, according to one embodiment.

[0024] Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.

DETAILED DESCRIPTION

[0025] Example embodiments, as described below, may be used to provide a method, a system and/or a device of a foldable multi-compartment container.

[0026] In one embodiment, a multi-compartment container 100 of FIG. 1 includes a first rigid enclosure 200 of FIG. 2 (e.g., having a first shape). A first inner section 202 of FIG. 2 is encompassed by the first rigid enclosure 200 of FIG. 2. The first inner section 202 of FIG. 2 is expandable based on a first pressure 400 (e.g., as shown in FIG. 4) placed near a first center area 203 of the first inner section 202 of FIG. 2 (e.g., by a human hand 300) from a closed state (e.g., the closed state of the first inner section 450 as shown in FIG. 4) of the first inner section 202 of FIG. 2 to an open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5) of the first inner section 202 of FIG. 2.

[0027] The multi-compartment container 100 of FIG. 1 also includes a second rigid enclosure 206 (e.g., having a second shape). The second inner section 208 is encompassed by the second rigid enclosure 206. The second inner section 208 is expandable based on a second pressure 600 placed near a second center area 209 of the second inner section 208 (e.g., by the human hand 300) from the closed state (e.g., the closed state of the first inner section 450 as shown in FIG. 4) of the second inner section 208 to the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5) of the second inner section 208. A hinge 102 (e.g., as shown in FIG. 1) between the first rigid enclosure 200 of FIG. 2 and the second rigid enclosure 206 permits the first rigid enclosure 200 of FIG. 2 to fold vertically adjacent to the second rigid enclosure 206 when a force (e.g., creating the motion 301 of FIG. 3) of the human hand 300 pivots the hinge 102 (e.g., as shown in FIG. 1) from an unfolded state 250 (e.g., as shown in FIG. 2) of the multi-compartment container 100 of FIG. 1 to a folded state 150 (e.g., as shown in FIG. 1) of the multi-compartment container 100 of FIG. 1.

[0028] The second inner section 208 may be aligned on a common level plane 260 as the first rigid enclosure 200 of FIG. 2 in the unfolded state 250 (e.g., as shown in FIG. 2) of the multi-compartment container 100 of FIG. 1. The hinge 102 (e.g., as shown in FIG. 1) may pivot at an angle (e.g., creating the motion 301) between approximately zero degrees and approximately one-hundred-eighty degrees between the folded state 150 (e.g., as shown in FIG. 1) and the unfolded state 250 (e.g., as shown in FIG. 2) of the multi-compartment container 100 of FIG. 1 responsive to a motion of the human hand 300. The first inner section 202 may be collapsible based on a third pressure of the human hand 300 at the first center area 203 when the first inner section is in the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5). The second inner section may be collapsible based on a fourth pressure of the human hand 300 at the second center area 209 when the second inner section is in the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5).

[0029] The first inner section 202 and/or the second inner section 208 may each form a cavity 510 in which an item is storable when in the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5). A series of semi-flexible ridges 520 of the first inner section and/or the second inner section may enable the first inner section 202 and/or the second inner section 208 to collapse (and/or expand) along each of the series of semi-flexible ridges 520. When the multi-compartment container 100 is in the folded state 150 (e.g., as shown in FIG. 1), the series of semi-flexible ridges 520 may position the first inner section 202 and/or the second inner section 208 substantially planar to the first rigid enclosure 200 of FIG. 2 and/or the second rigid enclosure 206.

[0030] At least one interlocking assembly 310 may enable the multi-compartment container 100 of FIG. 1 to clasp the first rigid enclosure 200 of FIG. 2 with the second rigid enclosure 206 when the multiple-compartment container is in the unfolded state 250 (e.g., as shown in FIG. 2). Any one of the first shape of the first rigid enclosure 200 of FIG. 2 and the second shape of the second rigid enclosure 206 may be a circular shape, an oval shape, a rectangular shape, a square shape, a bone shape, a custom shape and/or a triangular shape. The first inner section 202 of FIG. 2 and the second inner section 208 may have the circular shape, the oval
shape, the rectangular shape, the square shape, the bone shape, another custom shape, and/or the triangular shape.

[0031] The first rigid enclosure 200 of FIG. 2 and/or the second rigid enclosure 206 may include a curved holding grip to provide a convenient carrying capability of the multi-compartment container 100 of FIG. 1. The first inner section 202 of FIG. 2 may form a first container 800 when in the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5). The second inner section 206 may form a second container 810 when in the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5). The first container 800 may optionally detach (e.g., as shown in FIG. 9 using the detach mechanism 900) from the second container 810 when the multi-compartment container 100 of FIG. 1 is in the unfolded state 250 (e.g., as shown in FIG. 2). The multi-compartment container 100 of FIG. 1 may be a foldable dog bowl, a foldable pet bowl, a foldable kitchen bowl, a foldable carry bowl, a foldable garden bowl, and/or a foldable cat bowl. The multi-compartment container 100 of FIG. 1 may be washable and dryable in a standard washing machine apparatus.

[0032] In another embodiment, a multi-compartment container 100 of FIG. 1, includes a first inner section 202 of FIG. 2 is expandable based on a first pressure 400 (e.g., as shown in FIG. 4) placed near a first center area 203 of the first inner section 202 of FIG. 2 by a human hand 300 from a closed state (e.g., the closed state of the first inner section 450 as shown in FIG. 4) of the first inner section 202 of FIG. 2 to an open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5) of the first inner section 202 of FIG. 2. The multi-compartment container 100 of FIG. 1 also includes a second inner section 208 that is expandable based on a second pressure 600 placed near a second center area 209 of the second inner section 208 by the human hand 300 from the closed state (e.g., the closed state of the first inner section 450 as shown in FIG. 4) of the second inner section 208 to the open state (e.g., the closed state of the first inner section 550 as shown in FIG. 5) of the second inner section 208. The second inner section 208 is aligned on a common level plane 260 as the first rigid enclosure 200 of FIG. 2 in an unfolded state 250 (e.g., as shown in FIG. 2) of the multi-compartment container 100 of FIG. 1.

[0034] FIG. 1 is a folded state 150 of a multi-compartment container, according to one embodiment. FIG. 1 illustrates a multi-compartment container 100 and a hinge 102 in a folded state 150. The multi-compartment container 100 may be an object that can be used to hold and/or transport something. For example, the multi-compartment container 100 may be a foldable receptacle in which material can be held and/or carried when in the multi-compartment container is open. The hinge 102 may be a movable joint and/or mechanism that opens and/or closes. The hinge 102 may attach and/or connect a first bowl with a second bowl of the multi-compartment container 100. The folded state 150 may be formed when the multi-compartment container 100 is collapsed for storage and/or easy transport. In FIG. 1, a roughly elliptical object is shown in which a upper section is depressed downward. FIG. 1 is designed to illustrate that the multi-compartment container 100 can be stored in a very small form by folding it over such that both containers are collapsed into the body of the multi-compartment container 100.

[0035] FIG. 2 is an unfolded state 250 of the multi-compartment container 100 of FIG. 1, according to one embodiment. FIG. 2 illustrates a first rigid enclosure 200, a first inner section 202, a first center area 203, a first shape 204, a second rigid enclosure 206, a second inner section 208, a second center area 209, a second shape 210, a curved holding grip 220, and a common level plane 260, according to one embodiment. FIG. 2 is illustrated as being in the unfolded state 250 of the multi-compartment container 100 of FIG. 1, according to one embodiment. The first rigid enclosure 200 may be a hard material (e.g., ABS plastic, metal, wood that may encase the first inner section 202. The first inner section 202 may be a flexible material (e.g., silicone, rubber, fabric) that may expand and/or collapse. The first center area 203 may be a surface region within the first inner section 202 to which a human hand 300 may apply pressure upon and cause the first inner section 202 to collapse and/or expand. The first shape 204 may be a circular shape, an oval shape, a rectangular shape, a square shape, a bone shape, a triangular shape, and/or another custom shape. The second rigid enclosure 206 may be a hard material (e.g., ABS plastic, metal, wood) that may encase the second inner section 208. The second inner section 208 may be a flexible material (e.g., silicone, rubber, fabric) that may expand and/or collapse. The second center area 209 may be a surface region within the second inner section 208 to which a human hand 300 may apply pressure upon and cause the second inner section 208 to collapse and/or expand. The second shape 210 may be a may be a circular shape, an oval shape, a rectangular shape, a square shape, a bone shape, a triangular shape, and/or another custom shape. The curved holding grip 220 may be a hard material with a curvature that may be gripped by a human hand 300 when carrying, holding, folding, and/or unfolding the multi-compartment container 100. The common level plane 260 may be formed...
when the top plane of the first rigid enclosure 200 is flush with top plane of the second rigid enclosure 206. The unfolded state 250 may be formed when the multi-compartment container 100 is opened and/or the first rigid enclosure 200 is swung around the axis of the hinge 102 away from the second rigid enclosure 206.

[0036] In FIG. 2, two adjacent roughly elliptical objects horizontally aligned with each other are shown in which an inner section of each roughly elliptical object is depressed downward according to one embodiment. FIG. 2 is designed to illustrate that the multi-compartment container 100 can be opened by unfolding it such that both containers are exposed in the unfolded state 250 according to one embodiment.

[0037] FIG. 3 is a pivot view of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 3 illustrates a human hand 300, a motion of the human hand 301, and an interlocking assembly 310, according to one embodiment. FIG. 3 is illustrated as being in the pivot view 350 of the multi-compartment container 100 of FIG. 1, according to one embodiment. The human hand 300 may be an external force that causes the first rigid enclosure 200 and/or the second rigid enclosure 206 to swing back and forth around the axis of hinge 102. For example, the human hand 300 may be a limit, an extension of a person and/or animal, and/or a mechanical hand that grips the multi-compartment container 100 and/or causes the hinge 102 to open and/or close. The motion of the human hand 301 may be a movement where the first rigid enclosure 200 and/or the second rigid enclosure 206 is swung from one angle between approximately zero degrees and approximately one-hundred-eighty degrees to another angle between approximately zero degrees and approximately one-hundred-eighty degrees. The interlocking assembly 310 may be a mechanism that latches between the first rigid enclosure 200 and the second rigid enclosure 206 so that the multi-compartment container 100 remains in the unfolded state 250. The pivot view 350 may be formed when the multi-compartment container 100 is being unfolded from its folded state 150 to be used as a receptacle. The pivot view 350 may also be formed when the multi-compartment container 100 is being folded from its unfolded state 250 to be stored and/or transported.

[0038] In FIG. 3, two roughly elliptical objects are shown in which an inner section of each roughly elliptical object is depressed downward according to one embodiment. The two roughly elliptical objects may be positioned from each other at an angle between zero and one-hundred-eighty degrees and connected by a hinge that may be round with a protruding straight segment. A straight horizontal bar (e.g., the interlocking assembly 310) is shown under one of the roughly elliptical objects adjacent to the hinge, according to one embodiment. A human hand is shown gripping the curved handle causing one of the roughly elliptical objects to swing toward the second roughly elliptical object according to one embodiment. FIG. 3 is designed to illustrate that the multi-compartment container 100 can be folded and/or unfolded, and the interlocking assembly can maintain the multi-compartment container 100 in the unfolded state 250 according to one embodiment.

[0039] FIG. 4 is a closed state of a first inner section of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 4 illustrates a first pressure 400, according to one embodiment. FIG. 4 may be illustrated as being in the closed state of the first inner section 450 of the multi-compartment container 100. The first pressure 400 may be a force applied on the first center area 203 causing the bowl to expand. For example, a human hand 300 may push downward into the bowl to cause the bowl to expand and/or able to store material. The closed state of first inner section 450 of the multi-compartment container 100 may be formed when the multi-compartment container 100 is unfolded and/or before the first pressure 400 is applied downward into the first center area 203.

[0040] In FIG. 4, two roughly elliptical objects adjacently aligned with each other are shown in which an inner section of each roughly elliptical object is depressed downward, according to one embodiment. A human hand is shown pushing a finger downward into the inner section of one of the roughly elliptical objects, according to one embodiment. FIG. 4 is designed to illustrate that a container of the multi-compartment container 100 may be collapsed and/or subject to being expanded upon application of external pressure downward into the container, according to one embodiment.

[0041] FIG. 5 is an open state of the first inner section of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 5 illustrates a third pressure 500, a cavity 510, and a series of semi-flexible ridges 520. FIG. 5 is illustrated as being in the open state of the first inner section 550 of the multi-compartment container 100. The third pressure 500 may be a force applied on the first center area 203 causing the bowl to collapse. For example, a human hand 300 may push the bowl inward to make the multi-compartment container 100 collapse. The cavity 510 may be a receptacle in which material can be held. For example, the cavity 510 may be a small bowl, a medium bowl, and/or a large bowl. The series of semi-flexible ridges 520 may be multiple pleats and/or corrugations that line the container. For example, the series of semi-flexible ridges may allow the container to be in an expanded position when the series of semi-flexible ridges is unpleated (e.g., stretched, straightened, uncreased), according to one embodiment. The series of semi-flexible ridges 520 may allow the container to be in a collapsed position when the series of semi-flexible ridges is pleated (e.g., folded in accordion style, creased), according to one embodiment. The open state of the first inner section 550 of the multi-compartment container 100 may be formed when an external force pushes downward into the first center area 203 and/or before the external force pushes upward into the first center area 203. In FIG. 5, two roughly elliptical objects adjacently aligned with each other are shown in which an inner section of one roughly elliptical object is depressed downward and the inner section of the other roughly elliptical object is extended downward to form an open bowl, according to one embodiment. The open bowl may be shown as being lined with a series of parallel lines. A human hand may be shown as pushing a finger downward into the inner section of one of the roughly elliptical objects. FIG. 5 is designed to illustrate that a container of the multi-compartment container 100 can be expanded and/or subject to being collapsed upon application of external pressure upward against the container, according to one embodiment.

[0042] FIG. 6 is a closed state of the second inner section of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 6 illustrates a second pressure 600, according to one embodiment. FIG. 6 is illustrated as being in the closed state of second inner section 650 of the
multi-compartment container 100, according to one embodiment. The second pressure 600 may be a force applied on the second center area 209 causing the bowl to expand. For example, a human hand 300 may push down into the bowl to cause the bowl to expand and/or to store material. The closed state of second inner section 750 of the multi-compartment container 100 may be formed when the multi-compartment container 100 is unfolded and/or before the second pressure 600 is applied downward into the second center area 209. In FIG. 6, two roughly elliptical objects adjacently aligned with each other are shown in which an inner section of each roughly elliptical object is depressed downward, according to one embodiment. A human hand 300 is shown pushing a finger downward into the inner section of one of the roughly elliptical objects, according to one embodiment. FIG. 6 may be designed to illustrate that a container of the multi-compartment container 100 can be collapsed and/or Subject to being expanded upon application of external pressure downward into the container.

FIG. 7 is an open state of the second inner section of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 7 illustrates a fourth pressure 700. FIG. 7 is illustrated as being in the open state of the second inner section 750 of the multi-compartment container 100, according to one embodiment. The fourth pressure 700 may be a force applied on the second center area 209 causing the bowl to collapse. For example, a human hand 300 may push the bowl inward to make the multi-compartment container 100 collapse. The cavity 510 may be a receptacle in which material can be held. The series of semi-flexible ridges 520 may be multiple pleats and/or corrugations that line the container. For example, the series of semi-flexible ridges may allow the container to be in an expanded position when the series of semi-flexible ridges is unpleated (e.g., stretched, straightened, uncreased), according to one embodiment. The series of semi-flexible ridges 520 may allow the container to be in a collapsed position when the series of semi-flexible ridges is pleated (e.g., folded in accordion style, creased), according to one embodiment. The open state of the second inner section 750 of the multi-compartment container 100 may be formed when an external force pushes downward into the second center area 209 and/or before the external force pushes upward into the second center area 209, according to one embodiment.

In FIG. 7, two roughly elliptical objects adjacently aligned with each other are shown in which an inner section of one roughly elliptical object is depressed downward and the inner section of the other roughly elliptical object is extended downward to form an open bowl, according to one embodiment. The open bowl is shown as being lined with a series of parallel lines, according to one embodiment. A human hand may be shown pushing a finger downward into the inner section of one of the roughly elliptical objects. FIG. 7 is designed to illustrate that a container of the multi-compartment container 100 can be expanded and/or Subject to being collapsed upon application of external pressure upward against the container, according to one embodiment.

FIG. 8 is an expanded view state of the multi-compartment container of FIG. 1 with an expanded first container and a second container, according to one embodiment. FIG. 8 illustrates a first container 800 and a second container 810, according to one embodiment. FIG. 8 may be illustrated as being in the expanded view 850. The first container 800 may be an object that can be used to hold items. For example, the first container 800 may be a receptacle and/or a bowl in which material can be stored. The second container 810 may be an object that can be used to hold items. For example, the second container 810 may be a receptacle and/or a bowl in which material can be stored. The expanded view 850 of the multi-compartment container 100 may be formed in FIG. 8, two adjacent roughly elliptical objects horizontally aligned with each other are shown in which an inner section of each roughly elliptical object is extended downward to form an open bowl, according to one embodiment. FIG. 8 is designed to illustrate that the containers of the multi-compartment container 100 can be expanded to be used for storing items, according to one embodiment.

FIG. 9 is a detach view of the multi-compartment container of FIG. 1, according to one embodiment. FIG. 9 illustrates detach mechanism 900. FIG. 9 is illustrated as being in the detach view 950, according to one embodiment. The detach mechanism 900 may be a force that removes the first container 800 from the first rigid enclosure 200. The detach mechanism 900 may be a force that removes the second container 810 from the second rigid enclosure 206. For example, the containers may be pulled out of the rigid enclosures to be used for storing materials and/or to be washed and/or dried and/or safely placed in a dishwasher. In FIG. 9, two adjacent roughly elliptical objects horizontally aligned with each other are shown in which an inner section of each roughly elliptical object is hollow, according to one embodiment. Two bowl shapes are shown separate from the two adjacent roughly elliptical objects, according to one embodiment. FIG. 9 may be designed to illustrate that the containers of the multi-compartment container 100 can be removed to be used for storing items and/or to be washed and/or dried.

Now, an example embodiment will be described. Jacelyn, an avid runner in Des Moines, Iowa may enjoy running every Wednesday at the local Widerley Park with her beloved dog Sammy. Jacelyn may purchase the multi-compartment container, e.g., as described in FIGS. 1-9 and take it with her on runs in the park each Wednesday. This way, it may be convenient for Jacelyn to have just one foldable multi-compartment container (e.g., as described in FIGS. 1-9) having separate bowls to separate water from a Sammy’s favorite food, Whole Foods Chow-Wow. The multi-compartment container may not take up added volume and may be convenient to store when carrying (e.g., in Jacelyn’s backpack during runs). For this reason, it may be convenient and space efficient for Jacelyn to carry just one foldable multi-compartment container (e.g., as described in FIGS. 1-9) instead of multiple bulky bowls.

Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. In addition, it will be appreciated that the various operations, processes and methods disclosed herein may be embodied in a non-transitory machine-readable medium and/or a machine-accessible medium compatible with a data processing system (e.g., data processing device 100). Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the claimed invention. The structures and modules in the figures may be shown as distinct and communicating with only a few specific structures and not others. The structures may be merged with each other, may perform overlapping functions, and may communicate with other structures not shown to be connected in the figures. Accordingly, the specification and/or drawings may be regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A multi-compartment container, comprising:
 a first rigid enclosure having a first shape;
 wherein the first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section;
 a second rigid enclosure having a second shape;
 wherein the second inner section is expandable based on a second pressure placed near a second center area of the second inner section by the human hand from the closed state of the second inner section to the open state of the second inner section; and
 a hinge between the first rigid enclosure and the second rigid enclosure to permit the first rigid enclosure to fold vertically adjacent to the second rigid enclosure when a force of the human hand to pivot the hinge from an unfolded state of the multi-compartment container to a folded state of the multi-compartment container.

2. The multi-compartment container of claim 1 wherein the second inner section is aligned on a common level plane as the first rigid enclosure in the unfolded state of the multi-compartment container.

3. The multi-compartment container of claim 1 wherein the hinge to pivot at an angle between approximately zero degrees and approximately one-hundred-eighty degrees between the folded state and the unfolded state of the multi-compartment container responsive to a motion of the human hand.

4. The multi-compartment container of claim 1 wherein the first inner section is collapsible based on a third pressure of the human hand at the first center area when the first inner section is in the open state.

5. The multi-compartment container of claim 1 wherein the second inner section is collapsible based on a fourth pressure of the human hand at the second center area when the second inner section is in the open state.

6. The multi-compartment container of claim 1 wherein at least one of the first inner section and the second inner section to each form a cavity in which an item is storable when in the open state.

7. The multi-compartment container of claim 1 wherein a series of semi-flexible ridges of at least one of the first inner section and the second inner section to enable at least one of the first inner section and the second inner section to collapse and expand along each of the series of semi-flexible ridges, such that when the multi-compartment container is in the folded state the semi-flexible ridges to position at least one of the first inner section and the second inner section substantially planar to at least one of the first rigid enclosure and the second rigid enclosure.

8. The multi-compartment container of claim 1 wherein at least one interlocking assembly to enable the multi-compartment container to clasp the first rigid enclosure with the second rigid enclosure when the multiple-compartment container is in the unfolded state.

9. The multi-compartment container of claim 1 wherein any one of the first shape of the first rigid enclosure and the second shape of the second rigid enclosure is a circular shape, an oval shape, a rectangular shape, a square shape, a bone shape, a custom shape and a triangular shape.

10. The multi-compartment container of claim 9 wherein at least one of the first inner section and the second inner section to have the circular shape, the oval shape, the rectangular shape, the square shape, the bone shape, another custom shape, and the triangular shape.

11. The multi-compartment container of claim 1 wherein at least one of the first rigid enclosure and the second rigid enclosure to include a curved holding grip to provide a convenient carrying capability of the multi-compartment container.

12. The multi-compartment container of claim 1 wherein the first inner section to form a first container when in the open state, and wherein the second inner section to form a second container when in the open state, and wherein the first container to optionally detach from the second container when the multi-compartment container is in the unfolded state.

13. The multi-compartment container of claim 1 wherein the multi-compartment container is at least one of a foldable dog bowl, a foldable pet bowl, a foldable kitchen bowl, a foldable carry bowl, a foldable garden bowl, and a foldable cat bowl.

14. The multi-compartment container of claim 1 wherein the multi-compartment container is washable and dryable in a standard washing machine apparatus.

15. A multi-compartment container, comprising:
 a first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section;
 a second inner section is expandable based on a second pressure placed near a second center area of the second inner section by the human hand from the closed state of the second inner section to the open state of the second inner section; and
 a rigid enclosure having a hinge to encompass the first inner section and the second inner section, wherein the hinge to pivot at an angle between approximately zero degrees and approximately one-hundred-eighty degrees between the folded state and an unfolded state of the multi-compartment container.

16. The multi-compartment container of claim 15 wherein the second inner section is aligned on a common level plane as the rigid enclosure in the unfolded state of the multi-compartment container.
17. The multi-compartment container of claim 15 wherein the first inner section is collapsible based on a third pressure at the first center area when the first inner section is in the open state.

18. A multi-compartment container, comprising:
 a first rigid enclosure having a first shape;
 a first inner section encompassed by the first rigid enclosure,
 wherein the first inner section is expandable based on a first pressure placed near a first center area of the first inner section by a human hand from a closed state of the first inner section to an open state of the first inner section;
 a second rigid enclosure having a second shape;
 a second inner section encompassed by the second rigid enclosure,
 wherein the second inner section is expandable based on a second pressure placed near a second center area of the second inner section by the human hand from the closed state of the second inner section to the open state of the second inner section, wherein the second inner section is aligned on a common level plane as the first rigid enclosure in an unfolded state of the multi-compartment container.

19. The multi-compartment container of claim 18 further comprising:
 a hinge between the first rigid enclosure and the second rigid enclosure to permit the first rigid enclosure to fold vertically adjacent to the second rigid enclosure when a force of the human hand to pivot the hinge from the unfolded state of the multi-compartment container to a folded state of the multi-compartment container.

20. The multi-compartment container of claim 18 wherein the first inner section is collapsible based on a third pressure of the human hand at the first center area when the first inner section is in the open state.

* * * * *