LIPOIC ACID CHOLINE ESTER COMPOSITIONS AND METHODS OF USE

LPOIC ACID CHOLINE ESTER compositions and methods of use

Publication Classification

A61K 31/385 (2006.01)
A61K 9/00 (2006.01)
A61K 47/10 (2006.01)
A61K 47/18 (2006.01)

ABSTRACT

Provided herein are pharmaceutical compositions comprising a therapeutically effective amount of lipoic acid choline ester or derivatives thereof and a non-aqueous excipient mixed in an aqueous solution. Also provided herein are non-aqueous compositions prepared by mixing the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient. The non-aqueous compositions can be further mixed with the aqueous solution.
Fig. 1
Fig. 2A

Rabbits Ocular Metabolite Distribution of Dioptin™
(1 drop of 3% formulation at 45 min):
LACE, LA, and Choline (nM/L)

Fig. 2B

LACE (EVD6)
Biodegradable
Cationic Surfactant

Drug "closed" form
Aqueous - Lens

PCHE (cornea)

NADPH (reduction)

(oxidation)

PSH formation

DHFA (active)

BMOA (Clearance)

CHOLINE (methylation source)
## EYE DROP PENETRATION

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LA</th>
<th>DIOPTIN</th>
<th>ENHANCEMENT FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TEST GROUP</strong></td>
<td><strong>Percent Penetration</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RABBIT</td>
<td>3.0%</td>
<td>17.8%</td>
<td>6.0</td>
</tr>
<tr>
<td>MOUSE</td>
<td>3.0%</td>
<td>16.2%</td>
<td>5.92</td>
</tr>
<tr>
<td>HUMAN</td>
<td>0.37% (1)</td>
<td>2.2%</td>
<td>5.96 Estimated</td>
</tr>
</tbody>
</table>

**REFERENCES**

Carlo Cagini et al. "Study of alpha-lipoic acid penetration in the human aqueous humour after topical administration." *Clinical and Experimental Ophthalmology, 1% lipoic acid (LA)*
Fig. 4

Part-1 Insert with EV06 in “non-hydrolytic solvent”

Part-2 Container

Part-2 “Buffer” 4-cc

Long-term Storage Bottle (Sterile)

“Activation”

“lid screw” Part-1 Displacement down

“squeeze” Part-1 seal Displacement up

2-Part “activation” for Patient Short-Term Use

DIOPTIN

Use:

Lid Removal

Drop Dispenser tip “lid screw”

“squeeze”
LIPOID ACID CHOLINE ESTER
COMPOSITIONS AND METHODS OF USE

FIELD OF THE INVENTION

[0001] The present invention generally relates to pharmaceutical compositions comprising lipoic acid choline ester or derivatives thereof and a non-aqueous excipient and uses thereof for treating ocular diseases or disorders (e.g., presbyopia).

BACKGROUND OF THE INVENTION

Presbyopia and Accommodative Amplitude

[0002] As we age, our lenses undergo physiological changes that make it more difficult to focus on near objects. That is why nearly everyone requires reading glasses, even as early as ages 35-40. The ability of the eye to change focal power, also known as accommodative amplitude, decreases significantly with age. The accommodative amplitude is 20 diopters in children and young adults, but it decreases to 10 diopters by age 25 and to <1 diopter by age 60. The age-related inability to focus on near objects is called presbyopia. All of us will develop presbyopia and will use corrective lenses unless a new treatment is found.

[0003] Many factors contribute to the cause of presbyopia. A lens fiber cell fluid layer formed during accommodation by aquaporin-0 (see FIG. 1) has been implicated in presbyopia. As the diagram shows, when the ciliary muscle contracts (Helmholtz theory of accommodation), tension on the zonules is released and the potential energy stored in the lens capsule is released and creates kinetic force at the equatorial plane of the lens. As shown by finite element analysis of the lens, this force originates adjacent to the zonular lens attachments at the periplanar equatorial position. The lens is made-up of long fiber cells with “new” cells made at the surface. These fiber cells form a microfluidic path that resemble “tubes.” This works to maintain lens accommodative function. Dysfunctional “old” fiber cells are displaced inward. This provides an efficient means to move outer “fluid compartment” fluid, when zonular tension is released, toward the middle (central optical axis) of the lens to increase geometric curvature (optical power). This fluid movement is facilitated by a special phenomena similar to that reported for blood flow through microcapillaries (<10 um). A small plasma layer (a phenomenon described by Fahraeus-Lindqvist) is formed along the periphery of blood vessels. This lowers the apparent or effective measured hematocrit viscosity and improves blood flow with lower backpressure.

[0004] Within lens fiber cells (also about 10 um diameter), a similar phenomenon is apparently operational. Abundant aquaporin-0 lining the cell wall/membrane in lens fiber cells allows water flow out of the cell during accommodation for near vision focus. Dissolved micronutrients (including, therapeutic pharmaceuticals) are supplied to the lens occur through these same interstitial water channels. Additionally, part of their undocumented intrinsic function facilitates accommodative amplitude that requires aforementioned fluid movement to change lens geometry. The water layer formed along the intracellular fiber cell membrane wall reduces impedance or resistance and gives “lubrication” to the inner core cytosol protein; a previously overlooked phenomena. Although the protein core (inside the inner portion of the lens fiber cell) may have higher intrinsic viscosity, the “lubrication factor” or microlayer (<1 nm) formed between the core and the inner membrane, significantly lowers the extrinsic viscosity (as with blood hematocrit apparent viscosity). This allows the lens cytosol to move forward to the central visual axis within confines of limited zonular force to increase optical power.

[0005] Loss of this water layer means that a greater force is required to move the fluid from the equatorial to optical path (for increased geometric curvature-optical power). Similarly, when aquaporin-0 structure-function is compromised by disulfide bond formation to the core protein as a result of oxidative stress with age, this function layer is compromised and rendered inoperative.

BRIEF SUMMARY OF THE INVENTION

[0006] The inventors have found that lipoic acid choline ester (“LACE”) (see e.g., U.S. Pat. No. 8,410,462) can restore this critical fluid layer responsible for fluid movement, restore near vision, and reduce the core lens cytosol modulus that is affected by disulfide cross-linking. Thus, LACE formulations are in need for treating ocular diseases or disorders (e.g., presbyopia) where the critical fluid layer is lost or where disulfide cross-linking is an issue.

[0007] In various embodiments, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of lipoic acid choline ester or derivatives thereof and a non-aqueous excipient. In some embodiments, the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient are mixed in an aqueous solution having a pH of 4 to 8 (e.g., 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, or any ranges based on these specified numeric values). In some embodiments, the aqueous solution comprises a buffer agent. In some embodiments, the pharmaceutical composition is free of a buffer agent.

[0008] In some embodiments, the pharmaceutical composition comprises a therapeutically effective amount of lipoic acid choline ester and a non-aqueous excipient, mixed in an aqueous solution having a pH of 4 to 6, wherein at least 95% of the lipoic acid choline ester is present in the pharmaceutical composition, as measured by HPLC, following storage at 25°C under 40% relative humidity for 3 months. In some embodiments, the pharmaceutical composition is characterized in that less than 2% of the lipoic acid choline ester in the composition is degraded following storage at 25°C under 40% relative humidity for 3 months. In some embodiments, the pharmaceutical composition is characterized in that the pharmaceutical composition has less than 12% total drug related impurities based on area-under-the-curve as determined by HPLC following storage at 25°C under 40% relative humidity for 3 months. In some embodiments, the pharmaceutical composition is characterized in that the pharmaceutical composition has less than 7% of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25°C under 40% relative humidity for 3 months, wherein the drug related impurity is characterized by a relative retention time of 1.12 to 1.14. In some embodiments, the pharmaceutical composition is characterized in that the pharmaceutical composition has 4% of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25°C.
C. under 40% relative humidity for 3 months, wherein the drug related impurity is characterized by a relative retention time of 0.65 to 0.66.

In some embodiments, the pharmaceutical composition is characterized by one or more of the following:
(a) having a concentration of the lipoic acid choline ester of 1% to 10% by weight of the composition;
(b) having a concentration of a preservative of 0.005% to 0.1% by weight of the composition;
(c) having a biochemical energy source of 0.1% to 5% by weight of the composition; and
(d) having a concentration of glycerol of 0.5% to 5% by weight of the composition. In some embodiments, the preservative is benzalkonium chloride and the biochemical energy source is alanine. In some embodiments, the lipoic acid choline ester has a counter ion selected from the group consisting of chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tartrate (e.g., (+)-tartrate, (-)-tartrate, or a mixture thereof), succinate, benzoate, and anions of an amino acid such as glutamic acid.

In some embodiments, the pharmaceutical composition is prepared by mixing the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient sequentially or simultaneously with the aqueous solution. In some embodiments, the pharmaceutical composition is prepared by first mixing the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient to form a non-aqueous composition, and then mixing the non-aqueous composition with the aqueous solution. In some embodiments, the non-aqueous composition can be a solution, an emulsion, or a suspension formed by mixing lipoic acid choline ester and the non-aqueous excipient. The mixing can be conducted under heat for a sustained period of time. The pharmaceutical composition prepared by either method can have a shelf-stability of at least 5 months (e.g., 3 months, 6 months, 9 months, 1 year, or more than 1 year).

In some embodiments, the invention provides a non-aqueous composition comprising lipoic acid choline ester or derivatives thereof and a non-aqueous excipient. In some embodiments, the non-aqueous excipient is substantially miscible with water. In some embodiments, the non-aqueous excipient is a non-hygroscopic solvent. In some embodiments, the non-aqueous excipient is an alcohol. In some embodiments, the alcohol is a polyol, e.g., glycerol or propylene glycol. In some embodiments, the non-aqueous excipient is a semi-hydrocarbon alkane.

In some embodiments, the non-aqueous composition comprises a non-aqueous solution obtained by mixing lipoic acid choline ester with the non-aqueous excipient. In some embodiments, the mixing is conducted at a temperature of 20°C to 100°C. In some embodiments, the mixing is conducted at a temperature of 37°C to 80°C.

In some embodiments, the concentration of lipoic acid choline ester or derivatives thereof in the non-aqueous composition is in a range of 0.1% to 40% by weight. In some embodiments, the lipoic acid choline ester has a counter ion selected from the group consisting of chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tartrate (e.g., (+)-tartrate, (-)-tartrate, or a mixture thereof), succinate, benzoate, and anions of an amino acid such as glutamic acid.

In some embodiments, the invention provides an ophthalmic formulation comprising the non-aqueous composition mixed in an aqueous solution. In some embodiments, the aqueous solution comprises a buffer. In some embodiments, the ophthalmic formulation has a pH of 4 to 8. In some embodiments, the ophthalmic formulation has a pH of 4.5. In some embodiments, the ophthalmic formulation comprises at least one ingredient selected from the group consisting of a biochemically acceptable energy source, a preservative, a buffer agent, a toxicity agent, a surfactant, a viscosity modifying agent, and an antioxidant. In some embodiments, the non-aqueous composition is sterilized before mixing in the aqueous solution. In some embodiments, the aqueous solution is a sterilized solution.

In some embodiments, the ophthalmic formulation is characterized by one or more of:
(a) having a concentration of the lipoic acid choline ester or derivatives thereof from 1% to 10% by weight of the formulation;
(b) having a concentration of a preservative of 0.005% to 0.1% by weight of the formulation;
(c) having a pH of 4 to 6;
(d) having a biochemical energy source of 0.1% to 5% by weight of the formulation;
(e) having a concentration of glycerol of 0.5% to 5% by weight of the formulation; and
(f) having a shelf-life stability of greater than 3 months. In some embodiments, the preservative is benzalkonium chloride and the biochemical energy source is alanine.

In some embodiments, the invention also provides a system or method of long-term storage of the pharmaceutical composition by storing the non-aqueous composition separately from the aqueous solution, for example, in a two-part device (e.g., as described herein) or in a kit. The separately stored non-aqueous composition can then be mixed with the aqueous solution prior to use.

In some embodiments, the system comprises a first compartment, a second compartment, and a seal separating the first and second compartments, wherein the first compartment comprises a non-aqueous composition of an active ingredient and a non-aqueous excipient, the second compartment comprises an aqueous solution, and wherein the system is activated upon breaking the seal and mixing the non-aqueous solution with the aqueous solution. In some embodiments, the active ingredient is lipoic acid choline ester or derivatives thereof and the non-aqueous excipient is an ophthalmically acceptable excipient. In some embodiments, the aqueous solution comprises a buffer. In some embodiments, both the non-aqueous composition and the aqueous solution are sterilized. In some embodiments, the active ingredient in the system has a shelf-stability of more than 3 months. In some embodiments, the active ingredient in the system has a shelf-stability of more than 6 months. In some embodiments, the active ingredient in the system has a shelf-stability of more than 3 months.

In some embodiments, the invention provides a method of storing an active ingredient that is susceptible to hydrolysis in an aqueous solution, the method comprising:
(a) providing the active ingredient in a first compartment;
(b) providing the aqueous solution in a second compartment; and
(c) separating the first and second compartments with a seal, wherein the active ingredient in the first compartment is not in contact with the aqueous solution until just prior to usage by breaking the seal. In some embodiments, the active ingredient in the system has a shelf-stability of more than 3 months.
ingredient in the first compartment is a lyophilized powder or mixed with a non-hydrolytic solvent. In some embodiments, the active ingredient is lipoic acid choline ester or derivatives thereof, or a peptide.

In some embodiments, the invention also provides a method of treating or preventing presbyopia in a subject in need thereof, the method comprising administering to a lens or an eye of the subject an effective amount of any of the pharmaceutical composition described herein.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

FIG. 1 shows the formation of a lens fiber cell fluid layer during accommodation by aquaporin-0.

FIG. 2A shows lipoic acid choline ester metabolites distribution in rabbit eyes following treatment of the rabbit eyes each with 1 drop of a 3% lipoic acid choline ester formulation for 45 minutes. FIG. 2B is a schematic drawing of metabolism and clearance of lipoic acid choline ester.

FIG. 3 shows a comparison of delivering of lipoic acid following administration of a lipoic acid formulation and a lipoic acid choline ester formulation.

FIG. 4 shows a design of a two-part eye drop bottle with an insert that can be used for long term storage of lipoic acid choline ester formulations.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

Unless specifically stated or obvious from context, as used herein, the numeric values disclosed herein are understood as within a range of normal tolerance in the art, for example, within 10% of the stated value.

As used herein, the term “EV06,” “LACE,” or “lipoic acid choline ester” is understood to have the following chemical structure:

![Chemical Structure](image)

an optical isomer, or a mixture thereof. The counter ion (i.e., Z-) of LACE can be any pharmaceutically acceptable anions. Non-limiting examples of counter ions include chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tarte (e.g., (+)-tartarate, (-)-tartarate, or a mixture thereof), succinate, benzoate, and anions of an amino acid such as glutamic acid. In some embodiments, the counter ion is chloride. In some embodiments, the counter ion is tartrate.

As used herein, “Diopin™” formulations refer to lipoic acid choline ester formulations. For example, Diopin™ 3% formulation refers to a formulation having 3% lipoic acid choline ester by weight of the formulation.

As used herein, a “derivative” of lipoic acid choline ester is understood as any compound or a mixture of compounds, excluding lipoic acid and choline, formed from reacting lipoic acid choline ester with a non-aqueous pharmaceutical excipient. In some embodiments, the derivative is a product formed from reacting lipoic acid choline ester with propylene glycol. In some embodiments, the derivative is a product formed from reacting lipoic acid choline ester with glycerol.

Unless specifically stated or obvious from context, as used herein, the term “excipient” refers to pharmaceutically acceptable excipient.

Open terms such as “include,” “including,” “contain,” “containing” and the like mean “comprising.”

The term “treating” refers to administering a therapy in an amount, manner, or mode effective to improve a condition, symptom, or parameter associated with a disease or disorder.

The term “preventing” refers to precluding a patient from getting a disorder, causing a patient to remain free of a disorder for a longer period of time, or halting the progression of a disorder, to either a statistically significant degree or to a degree detectable to one skilled in the art.

The term “therapeutically effective amount” refers to that amount of an active ingredient (e.g., LACE or derivatives thereof), which results in prevention or delay of onset or amelioration of symptoms of an ocular disease or disorder (e.g., presbyopia) in a subject or an attainment of a desired biological outcome, such as improved accommodative amplitude or another suitable parameter indicating disease state. Methods for determining the therapeutically effective amount for ocular applications are known, for example, as described in U.S. Pat. No. 8,410,162, the content of which is herein incorporated by reference in its entirety. For example, the therapeutically effective amount for treating or preventing presbyopia can be determined by measuring clinical outcomes including, but not limited to, the elasticity, stiffness, viscosity, density, or opacity of a lens.

As used herein, the term “shelf-stability” or “shelf stable” is understood as a character of or to characterize a composition or an active ingredient (e.g., LACE or derivatives thereof) that is substantially unchanged upon storing at 25°C under 40% relative humidity (RH) for a period of time (e.g., 3 months). Methods for determining such shelf-stability are known, for example, shelf-stability can be measured by HPLC to determine the percentage of the composition or active ingredient (e.g., lipoic acid choline ester) that remains or has been degraded in a formulation following storing the formulation for a certain period of time. For example, shelf stable pharmaceutical composition can refer to a composition, which after being stored at 25°C under 40% RH for 3 months has at least 90% (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater than 99%) of the active ingredient (e.g., lipoic acid choline ester) present in the composition as measured by HPLC. Shelf stable pharmaceutical composition can also refer to a composition, which after being stored at 25°C under 40% RH for 3 months, has 5% or less (e.g., less than 4%, less than 3%, less than 2%, less than 1%, or less than 0.5%) of the active ingredient (e.g., lipoic acid choline ester) being degraded as measured by HPLC.

As used herein, the term “relative retention time” or “RRT” of a compound can be calculated using the equation “RRT=(t_r - t_v)/(t_p - t_v)” wherein t_v=void time, t_r=retention time of lipoic acid choline ester, and t_p=retention time of the compound.
[0035] The term “subject” as used herein generally refers to an animal (e.g., a pet) or human, including healthy human or a patient with certain diseases or disorders (e.g., presbyopia).

LACE Formulations

[0036] In various embodiments, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of lipoic acid choline ester or derivatives thereof. In some embodiments, the pharmaceutical composition comprises a lyophilized powder comprising a therapeutically effective amount of lipoic acid choline ester or derivatives thereof. In some embodiments, the lyophilized powder also includes a non-aqueous excipient. In some embodiments, the lyophilized powder is obtained by lyophilizing any of the pharmaceutical compositions described herein.

[0037] In some embodiments, the pharmaceutical composition comprises a therapeutically effective amount of lipoic acid choline ester or derivatives thereof and a non-aqueous excipient. In some embodiments, the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient are mixed in an aqueous solution having a pH of 4 to 8 (e.g., 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, or any ranges based on these specified numeric values). In some embodiments, the aqueous solution comprises a buffer agent. In some embodiments, the pharmaceutical composition is free of a buffer agent. In some embodiments, the aqueous solution is substantially oxygen free.

[0038] In some embodiments, the pharmaceutical composition is prepared by mixing the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient sequentially or simultaneously with the aqueous solution. In some embodiments, the pharmaceutical composition is prepared by first mixing the therapeutically effective amount of lipoic acid choline ester and the non-aqueous excipient to form a non-aqueous composition, and then mixing the non-aqueous composition with the aqueous solution.

[0039] The pharmaceutical composition prepared by either method can have a shelf-stability of at least 3 months (e.g., 3 months, 6 months, 9 months, 1 year, or more than 1 year). In some embodiments, the pharmaceutical composition, after being stored at 25°C under 40% RH for 3 months, has at least 90% (e.g., at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or greater than 99%) of the lipoic acid choline ester or derivatives thereof present in the composition as measured by HPLC. In some embodiments, the pharmaceutical composition, after being stored at 25°C under 40% RH for 3 months, has 5% or less (e.g., less than 4%, less than 3%, less than 2%, less than 1%, or less than 0.5%) of the lipoic acid choline ester or derivatives thereof been degraded as measured by HPLC.

[0040] The pharmaceutical composition can also have favorable profiles of drug related degradant (e.g., total drug related impurities, or amount of a specific drug related impurity) following storage at 25°C under 40% RH for a certain period of time. Analytical tools (e.g., HPLC) for measuring the amount of drug related degradant in a formulation are known. In some embodiments, the pharmaceutical composition is characterized by having 12% or less (e.g., less than 10%, less than 8%, less than 6%, less than 4%, less than 2%, or less than 1%) total drug related impurities based on area-under-the-curve as determined by HPLC following storage at 25°C under 40% RH for 3 months. In some embodiments, the pharmaceutical composition is characterized by having 7% or less (e.g., less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, or less than 1%) of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25°C under 40% RH for 3 months, wherein the drug related impurity is characterized by a relative retention time of 1.12 to 1.14. In some embodiments, the pharmaceutical composition is characterized by having 4% or less (e.g., less than 3%, less than 2%, or less than 1%) of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25°C under 40% RH for 3 months, wherein the drug related impurity is characterized by a relative retention time of 0.65 to 0.66.

[0041] Concentration of lipoic acid choline ester or derivatives thereof in the pharmaceutical composition can be any concentration of from 1% to 10% (e.g., 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the concentration of the lipoic acid choline ester in the pharmaceutical composition is 1%. In some embodiments, the concentration of the lipoic acid choline ester in the pharmaceutical composition is 3%. In some embodiments, the concentration of the lipoic acid choline ester in the pharmaceutical composition is 4%.

[0042] The non-aqueous excipient can be an ophthalmically acceptable excipient. In some embodiments, the non-aqueous excipient is non-hydrolytic. In some embodiments, the non-aqueous excipient is substantially miscible with water. In some embodiments, the non-aqueous excipient forms an emulsion upon mixing with water. In some embodiments, the non-aqueous excipient is an ionic liquid (e.g., glycerol-choline).

[0043] In some embodiments, the non-aqueous excipient that is substantially miscible with water is an alcohol (e.g., ethanol, sorbitol, propylene glycol, polyethylene glycol, glycerol, or a mixture thereof). In some embodiments, the alcohol is a polyol (e.g., propylene glycol, glycerol, ethylene glycol, diethylene glycol, erythritol, inositol, maltitol, mannitol, sorbitol, xylitol, pentaerythritol, or sucrose). In some embodiments, the polyol is glycerol. In some embodiments, the polyol is propylene glycol.

[0044] In some embodiments, the non-aqueous excipient is a semihydroxylated alkane. Semihydroxylated alkanes are known, for example, as described in U.S. Patent Application Publication 2013/0046014, the content of which is incorporated by reference in its entirety. Semihydroxylated alkanes are linear or branched alkanes some of whose hydrogen atoms have been replaced by fluorine. In some embodiments, the semihydroxylated alkanes are composed of at least one non-fluorinated hydrocarbon segment and at least one perfluorinated hydrocarbon segment. In some embodiments, the semihydroxylated alkanes have one non-fluorinated hydrocarbon segment attached to one perfluorinated hydrocarbon segment, according to the general formula \( \text{F(CF}_2\text{)}_{\text{n}}\text{(CH}_2\text{)}_{\text{m}}\text{H,} \) or two perfluorinated hydrocarbon segments separated by one non-fluorinated hydrocarbon segment, according to the general formula \( \text{F(CF}_2\text{)}_{\text{n}}\text{(CH}_2\text{)}_{\text{m}}\text{(CF}_2\text{)}_{\text{o}}\text{F,} \) wherein \( \text{n, m, and o are independently selected in the range from 3 to 20.} \)

[0045] Concentrations of the non-aqueous excipient (e.g., glycerol) in the pharmaceutical composition can be from
0.1% to 10% (e.g., 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the non-aqueous excipient is glycerol, and the concentration of glycerol is in the range of 0.1% to 5% (e.g., 0.1%, 0.2%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the concentration of glycerol is 0.1%, 0.4%, 1.3%, or 2.7% by weight of the composition.

[0046] The pharmaceutical composition can also contain other suitable ingredients. Non-limiting examples of such suitable ingredients include one or more ingredients selected from the group consisting of a biochemically acceptable energy source, a preservative, a buffer agent, a toxicity agent, a surfactant, a viscosity modifying agent, and an antioxidant.

[0047] Suitable biochemically acceptable energy source can be any of those known in the art. For example, the biochemically acceptable energy source can be any of those that can facilitate reduction by participating as an intermediate of energy metabolic pathways, particularly the glucose metabolic pathway. Non-limiting examples of suitable biochemically acceptable energy source include amino acids or derivative thereof (e.g., alanine, glycine, valine, leucine, isoleucine, 2-oxoglutarate, glutamate, and glutamine, etc.), a sugar or metabolites thereof (e.g., glucose, glucose-6-phosphate (G6P), pyruvate (e.g., ethyl pyruvate), lactate, or derivatives thereof), a lipid (e.g., fatty acid or derivatives thereof such as mono-, di-, and tri-glycerides and phospholipids), and others (e.g., NADH). Suitable amount of a biochemically acceptable energy source can be in the range of 0.01% to 5% (e.g., 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the biochemically acceptable energy source is ethyl pyruvate. In some embodiments, the biochemically acceptable energy source is alanine. In some embodiments, the amount of ethyl pyruvate or alanine is in the range of 0.05% to 5% (e.g., 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the amount of alanine is 0.5% by weight of the composition. In any of the embodiments described herein, the biochemically acceptable energy source is in an amount that is ophthalmically acceptable.

[0048] Suitable preservatives can be any of those known in the art. Non-limiting examples include benzalkonium chloride (BAC), cetrimonium, chlorobutanol, edetate disodium (EDTA), polyquaternium-1 (Polyquad®), polyhexamethylenebiguanide (PHTMB), stabilized oxychloro complex (PURITEX®), sodium perborate, and SoZis®. Suitable amount of a preservative in the pharmaceutical composition can be in the range of 0.005% to 1% (e.g., 0.005, 0.01, 0.02%, 0.05%, 0.1%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the preservative is benzalkonium chloride. In some embodiments, the benzyalkonium chloride is in the amount of 0.005% to 1% (e.g., 0.005, 0.01, 0.02%, 0.05%, 0.1%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the benzalkonium chloride is in the amount of 0.01% by weight of the composition. In any of the embodiments described herein, the preservative is in an amount that is ophthalmically acceptable. In some embodiments, the pharmaceutical composition is free of a preservative. Even though lipoic acid choline ester or a derivative thereof may function as a preservative, as used herein, it is not categorized as a preservative.

[0049] Suitable buffer agent can be any of those known in the art that can achieve a desired pH (e.g., described herein) for the pharmaceutical composition. Non-limiting examples include phosphate buffers (e.g., sodium phosphate monobasic monohydrate, sodium phosphate dibasic anhydrous), acetate buffer, citrate buffer, borate buffers, and HBSS (Hank’s Balanced Salt Solution). Suitable amount of a buffer agent can be readily calculated based on a desired pH. In any of the embodiments described herein, the buffer agent is in an amount that is ophthalmically acceptable. However, in some embodiments, the pharmaceutical composition does not include a buffer agent. In some embodiments, the pH of the aqueous solution or the final pharmaceutical composition is adjusted with an acid (e.g., hydrochloric acid) or a base (e.g., sodium hydroxide) to the desired pH range (e.g., as described herein). Even though some compounds that normally would not be routinely used as buffer agents, such as alanine, may still have the capacity as being a buffer agent; but as used herein, they are not categorized as buffer agents.

[0050] Suitable toxicity agent can be any of those known in the art. Non-limiting examples include sodium chloride, potassium chloride, mannitol, dextrose, glycerin, propylene glycol and mixtures thereof. Suitable amount of toxicity agent in the pharmaceutical composition is any amount that can achieve an osmolality of 200-460 mOsm (e.g., 260-360 mOsm, or 260-320 mOsm). In some embodiments, the pharmaceutical composition is an isotonic composition. In some embodiments, the amount of a toxicity agent (e.g., sodium chloride) is 0.1% to 5% (e.g., 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In any of the embodiments described herein, the toxicity agent is in an amount that is ophthalmically acceptable.

[0051] Suitable surfactant can be any of those known in the art, including ionic surfactants and nonionic surfactants. Non-limiting ionic surfactants include ammonium lauryl sulfate, sodium lauryl sulfate, sodium laureth sulfate, sodium myristyl sulfate, diocetyl sodium sulfosuccinate, perfluorooctanesulfonate, perfluorobutanesulfonate, linear alkylbenzene sulfonates, sodium laureth sarcosinate, perfluorononanoate, perfluorooctanoate, octenidine dihydrochloride, cetyl trimethylammonium bromide, cetyl trimethylammonium chloride, cetylpyridinium chloride (CPC), benzalkonium chloride (BAC), benzenethionium chloride (BZT), dimethyldioctadecylammonium chloride, cetrimonium bromide, dioctadecyl(dimethylammonium bromide, sultains (e.g., cocamidopropyl hydroxy sulfinate), phosphates (e.g., lecithin), and betaines (e.g., cocamidopropyl betaine).

[0052] Non-limiting examples of useful nonionic surfactants include polyoxyethylene fatty esters (e.g., polysorbate 80 [poly(oxyethylene) sorbitan monooleate], polysorbate 60 [poly(oxyethylene)sorbitan monostearate], polysorbate 40 [poly(oxyethylene)sorbitan monooleate], poly(oxyethylene)sorbitan monolaureate, poly(oxyethylene)sorbitan trioleate, or polysorbate 65 [poly(oxyethylene)sorbitan trioleate]), polyoxyethylene hydrogenated castor oils (e.g., polyoxyethylene hydrogenated castor oil 10, polyoxyethylene hydrogenated castor oil 40, polyoxyethylene hydrogenated castor oil 50, or polyoxyethylene hydrogenated castor oil 80).
oil 60), polyoxyethylene polyoxypropylene glycols (e.g., polyoxyethylene (160) polyoxypropylene (30) glycol [Pluronic F681], polyoxyethylene (42) polyoxypropylene (67) glycol [Pluronic P123], polyoxyethylene (54) polyoxypropylene (39) glycol [Pluronic P85], polyoxyethylene (196) polyoxypropylene (67) glycol [Pluronic F1271], or polyoxyethylene (20) polyoxypropylene (20) glycol [Pluronic L-441]), polyoxy 40 stearate, sucrose fatty esters, and a combination thereof. In some embodiments, the surfactant is polyborate 80. Suitable amount of surfactant in the pharmaceutical composition can be in the range of 0.01% to 5% (e.g., 0.05, 0.1, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the surfactant is polyborate 80, and the amount of polyborate 80 is in the range of 0.05% to 5% (e.g., 0.05, 0.1, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, or any ranges based on these specified numeric values) by weight of the composition. In some embodiments, the amount of polyborate 80 is 0.5% by weight of the composition. In any of the embodiments described herein, the surfactant is in an amount that is ophthalmically acceptable. However, in some embodiments, the pharmaceutical composition is free of a surfactant. Even though lipoic acid choline ester or a derivative thereof may function as a surfactant, as used herein, it is not categorized as a surfactant.

[0055] In some embodiments, the pharmaceutical composition is characterized by one or more of the following: (a) having a concentration of the lipoic acid choline ester from 1% to 10% (e.g., 1%, 1.5%, 3%, 4%, 5%, or any ranges between the specified numeric values) by weight of the composition; (b) having a concentration of a preservative (e.g., benzalkonium chloride) of 0.005% to 0.1% (e.g., 0.01%) by weight of the composition; (c) having a biochemical energy source (e.g., alanine) of 0.1% to 5% (e.g., 0.5%) by weight of the composition; and (d) having a concentration of glycerol of 0.5% to 5% (e.g., 2.7%) by weight of the composition.

[0056] In some embodiments, the lipoic acid choline ester in the pharmaceutical composition has a counter ion selected from the group consisting of chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tartrate (e.g., (+)-tartrate, (-)-tartrate, or a mixture thereof), succinate, benzoate, and anions of an amino acid such as glutamic acid. In some embodiments, the counter ion is chloride.

[0057] In some embodiments, the pharmaceutical composition contains a non-aqueous excipient, which is glycerol in a concentration of 2.7% by weight of the composition. In some embodiments, the concentration of glycerol is 3% by weight of the composition.

[0058] In some embodiments, the pharmaceutical composition consists essentially of 0.025% by weight of edetate disodium dehydrate, 1.3% by weight of glycine, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 1% by weight of lipoic acid choline ester, and water, wherein the pH of the pharmaceutical composition is 4.3 to 4.7.

[0059] In some embodiments, the pharmaceutical composition consists essentially of 0.025% by weight of edetate disodium dehydrate, 0.4% by weight of glycine, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 3% by weight of lipoic acid choline ester, and water, wherein the pH of the pharmaceutical composition is 4.3 to 4.7.

[0060] In some embodiments, the pharmaceutical composition consists essentially of 0.025% by weight of edetate disodium dehydrate, 0.1% by weight of glycine, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 4% by weight of lipoic acid choline ester, and water, wherein the pH of the pharmaceutical composition is 4.4 to 4.6.

Mixing LACE with a Non-Aqueous Excipient

[0061] As stated above, the pharmaceutical compositions described herein can be formed by premixing the therapeutically effective amount of lipoic acid choline ester with a non-aqueous excipient to form a non-aqueous composition. The non-aqueous composition can then be further mixed with an aqueous solution, e.g., to form an ophthalmic formulation. In some aspects, the invention also provides a system or method of long-term storage of the pharmaceutical composition by storing the non-aqueous composition separately from the aqueous solution, for example, in a two-part device (e.g., as described herein) or in a kit. The separately stored non-aqueous composition can then be mixed with the aqueous solution to form an “activated” formulation prior to use.

[0062] The non-aqueous composition can be a solution, an emulsion, or a suspension formed by mixing lipoic acid
choline ester and the non-aqueous excipient. The mixing can be conducted under heat for a sustained period of time. In some embodiments, the mixing is conducted at a temperature of 20°C to 100°C (e.g., 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, or any ranges based on these specified numeric values) for a period of 1 hour to 24 hours (e.g., 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours, or any ranges based on these specified numeric values). In some embodiments, the mixing is conducted at a temperature of 37°C to 80°C. In some embodiments, the mixing is carried out for 8 hours.

[0063] In some embodiments, the non-aqueous composition is a solution. In some embodiments, the solution contains lipoic acid choline ester. In some embodiments, the solution contains a derivative of lipoic acid choline ester (e.g., a reaction product formed from lipoic acid choline ester and a non-aqueous excipient (e.g., propylene glycol or glycerol). The concentration of lipoic acid choline ester or derivatives thereof in the solution can be up to the solubility limit in the non-aqueous excipient (e.g., propylene glycol or glycerol). In some embodiments, the concentration of lipoic acid choline ester or derivatives thereof is in a range of 0.1% to 40% (e.g., 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, or any ranges based on these specified numeric values) by weight of the solution.

Mixing the Non-Aqueous Composition with an Aqueous Solution

[0064] The non-aqueous compositions described herein can be mixed with an aqueous solution having a pH of 4 to 8 (e.g., 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, or any ranges based on these specified numeric values) to form an ophthalmic formulation. In some embodiments, mixing the non-aqueous composition does not substantially change the pH of the aqueous solution, i.e., the ophthalmic formulation also has a pH of 4 to 8. In some embodiments, the ophthalmic formulation has a pH of 4 to 6 (e.g., 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, or any ranges based on these specified numeric values). In some embodiments, the ophthalmic formulation has a pH of 4.2 to 4.7 (e.g., 4.5).

[0065] The ophthalmic formulations can be sterilized. In some embodiments, the non-aqueous composition is sterilized before mixing with the aqueous solution. In some embodiments, the aqueous solution is also sterilized. In some embodiments, the non-aqueous composition is mixed with the aqueous solution (e.g., a sterilized aqueous solution, or a non-sterilized aqueous solution) and then sterilized.

[0066] The ophthalmic formulation can include one or more ingredients selected from the group consisting of a biochemically acceptable energy source, a preservative, a buffer agent, a toxicity agent, a surfactant, a viscosity modifying agent, and an antioxidant. Suitable biochemically acceptable energy sources, preservatives, buffer agents, toxicity agents, surfactants, viscosity modifying agents, and antioxidants are those described herein. In some embodiments, the one or more ingredients are mixed in the aqueous solution before mixing with the non-aqueous composition. In some embodiments, the one or more ingredients are mixed in the non-aqueous composition before mixing with the aqueous solution. Suitable amounts of biochemically acceptable energy sources, preservatives, buffer agents, toxicity agents, surafactants, viscosity modifying agents, and antioxidants are also described herein. However, in any of the embodiments described herein, the ophthalmic formulation can also be free of a buffer agent, a surfactant, a viscosity modifying agent, a preservative, or a combination thereof.

[0067] In some embodiments, the ophthalmic formulation is characterized by one or more of:

(a) having a concentration of the lipoic acid choline ester or derivatives thereof from 1% to 10% (e.g., 1%, 1.5%, 3%, 4%, 5%, or any ranges based on the specified numeric values) by weight of the formulation;

(b) having a concentration of a preservative (e.g., benzalkonium chloride) 0.005% to 0.1% (e.g., 0.01%) by weight of the formulation;

(c) having a pH of 4 to 6 (e.g., 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, or any ranges based on these specified numeric values);

(d) having a biochemical energy source (e.g., alanine) of 0.1% to 5% (e.g., 0.5%) by weight of the formulation;

(e) having a concentration of glycerol of 0.5% to 5% (e.g., 2.7%) by weight of the formulation; and

(f) having a shelf-life stability of greater than 3 months (e.g., 3 months, 6 months, 9 months, or 12 months).

[0068] In some embodiments, the ophthalmic formulation contains a non-aqueous excipient, which is glycerol in a concentration of 2.7% by weight of the composition. In some embodiments, the concentration of glycerol is 3% by weight of the formulation.

[0069] In some embodiments, the ophthalmic formulation contains essentially 0.025% by weight of edetate disodium dehydrate, 1.3% by weight of glycerin, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 1% by weight of lipoic acid choline ester or derivatives thereof, and water, wherein the pH of the ophthalmic formulation is 4.3 to 4.7.

[0070] In some embodiments, the ophthalmic formulation contains essentially 0.025% by weight of edetate disodium dehydrate, 0.4% by weight of glycerin, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 3% by weight of lipoic acid choline ester or derivatives thereof, and water, wherein the pH of the ophthalmic formulation is 4.3 to 4.7.

[0071] In some embodiments, the ophthalmic formulation contains essentially 0.025% by weight of edetate disodium dehydrate, 0.1% by weight of glycerin, 0.5% by weight of alanine, 0.01% by weight of benzalkonium chloride, 4% by weight of lipoic acid choline ester or derivatives thereof, and water, wherein the pH of the ophthalmic formulation is 4.4 to 4.6.

Storage of LACE Formulation

[0072] As lipoic acid choline ester can be susceptible to hydrolysis and light induced oxidation, in some embodiments, the invention provides a method for storing lipoic acid choline ester in a non-aqueous environment, an oxygen free environment, and/or with reduced light exposure. In some embodiments, the lipoic acid choline ester is stored in a non-aqueous environment. In some embodiments, the lipoic acid choline ester is stored in the non-aqueous environment as a lyophilized powder. In some embodiments, the lipoic acid choline ester is stored in the non-aqueous environment as a non-aqueous composition (e.g., as described herein). In some embodiments, the lipoic acid choline ester...
is stored in a non-aqueous environment in an opaque container. In some embodiments, the non-aqueous environment is substantially oxygen free.

In some embodiments, the lipoic acid choline ester is stored in an aqueous environment (e.g., after mixing a non-aqueous composition with an aqueous solution), wherein the aqueous environment is free of oxygen. In some embodiments, the lipoic acid choline ester is stored in the aqueous environment with reduced light exposure (e.g., in an opaque container).

In some embodiments, the invention also provides a system for storing a pharmaceutical composition comprising an active ingredient in an aqueous solution, wherein the active ingredient (e.g., lipoic acid choline ester or derivatives thereof) is susceptible to hydrolysis in the aqueous solution.

In some embodiments, the system comprises a first compartment, a second compartment, and a seal separating the first and second compartments, wherein the first compartment comprises a non-aqueous composition comprising the active ingredient (e.g., lipoic acid choline ester or derivatives thereof), the second compartment comprises an aqueous solution. In some embodiments, the active ingredient in the first compartment is in a solid form (e.g., a powder, e.g., a lyophilized powder). In some embodiments, the active ingredient in the first compartment is mixed with a non-aqueous excipient (e.g., as described herein). In some embodiments, the system is activated upon breaking the seal and mixing the non-aqueous solution with the aqueous solution.

An example of the system is a modified eye drop bottle shown in FIG. 4. The eye drop bottle contains two parts, part 1 (includes the first compartment and the seal, shown as an insert in FIG. 4) and part 2 (includes the second compartment) (see FIG. 4), with the compartments separated from each other prior to formation of final formulation for patient activation and use. In some embodiments, part 1 of the eye drop bottle contains any of the non-aqueous compositions described herein (e.g., lipoic acid choline ester or derivatives thereof mixed with glycerol). In some embodiments, part 1 of the eye drop bottle contains a non-aqueous composition comprising an active ingredient (e.g., a peptide) that is susceptible to hydrolysis in an aqueous solution.

In some embodiments, part 1 of the eye drop bottle contains lipoic acid choline ester or derivatives thereof in glycerol (e.g., 150 mg LACE/1.03 ul glycerol). In some embodiments, part 2 of the eye drop bottle contains an aqueous solution (4.8 ml) having the following excipients: 0.01% by weight of Benzalkonium Chloride; 2.6% by weight of Glycerin, USP; and 0.5% by weight of Alanine, USP, wherein the pH of the solution is 4.5±0.2.

The insert separates the non-aqueous composition from part 2 until activation, which allows long-term storage until short-term ocular treatment is started. In some embodiments, the insert includes a main insert stationary holder; an inner tube; and a lower seal, wherein the inner tube is configured to contain the non-aqueous composition and the lower seal is configured to prevent contact of the non-aqueous composition with the aqueous solution. In some embodiments, the eye drop bottle includes a dropper tip, which seals the insert. In some embodiments, the eye drop bottle is configured such that compressing or squeezing the bottle is sufficient to move the lower seal upward, whereby exposing the inner tube perforations to release the non-aqueous composition into the aqueous solution.

In any of the embodiments described above, the non-aqueous composition comprising the active pharmaceutical ingredient (e.g., lipoic acid choline ester or derivatives thereof), prior to releasing into the aqueous solution, is shelf-stable for at least 3 months (e.g., 6 months, 9 months, 12 months, 2 years, or more than 2 years). In some embodiments, the non-aqueous composition is characterized by having 2% or less (e.g., 1.5%, 1%, 0.5%, or 0.2%) of the active pharmaceutical ingredient degraded. In some embodiments, the non-aqueous composition is characterized by having 10% or less (e.g., 9%, 8%, 7%, 6%, 5%, 4%, 3.5%, 3%, 2%, 1%, 0.5%, or 0.2%) of the active pharmaceutical ingredient degraded. In some embodiments, the pharmaceutical composition formed by releasing the non-aqueous composition into the aqueous solution is shelf-stable for at least 3 months (e.g., 6 months, 9 months, or 12 months).

In some embodiments, the invention also provides a method of storing an active ingredient that is susceptible to hydrolysis in an aqueous solution, the method comprising (a) providing the active ingredient in a first compartment; (b) providing the aqueous solution in a second compartment; and (c) separating the first and second compartments, e.g., with a seal, wherein the active ingredient in the first compartment is not in contact with the aqueous solution until just prior to usage, e.g., by breaking the seal. In some embodiments, the active ingredient in the first compartment is mixed with a non-aqueous excipient (e.g., as described herein). In some embodiments, the active ingredient is lipoic acid choline ester or derivatives thereof, or a peptide. Suitable methods for configuring the first compartment and the second compartment include those described herein.

Methods of Treatment

The pharmaceutical compositions comprising lipoic acid choline ester or derivatives thereof (e.g., as described herein) can be employed in a method for treating or preventing a disease or disorder associated with oxidative damage. Diseases or disorders associated with oxidative damage are known.

In some embodiments, the invention provides a method of treating an ocular disease in a subject in need thereof, comprising administering to a lens or an eye of the subject a therapeutically effective amount of any of the pharmaceutical compositions described herein. In some embodiments, the ocular diseases are presbyopia, cataract, macular degeneration (including age-related macular degeneration), retinopathies (including diabetic retinopathy), glaucoma, or ocular inflammations. In some embodiments, the ocular disease is presbyopia.

Suitable amount of pharmaceutical compositions for the methods of treating or preventing an ocular disease herein can be any therapeutically effective amount. In some embodiments, the method comprises administering to the lens or eye of the subject an amount of the pharmaceutical composition effective to increase the accommodative amplitude of the lens by at least 0.1 diopters (D) (e.g., 0.1, 0.2, 0.5, 1, 1.2, 1.5, 1.8, 2, 2.5, 3, or 5 diopters). In some embodiments, the method comprises administering to the lens or eye of the subject 1-5 drops (about 40 ul. per drop) of the pharmaceutical composition. In some embodiments, the lens or eye of the subject is treated with the pharmaceutical composition 1, 2, 3, 4, 5, or more than 5 times a day, each
time with 1-5 drops (about 40 uL per drop). In some embodiments, the lens or eye of the subject is treated with the pharmaceutical composition 1, 2, 3, 4, 5, or more than 5 drops each time. In some embodiments, the lens or eye of the subject is treated with the pharmaceutical composition herein twice or three times per day, each time with 1 or 2 drops (about 40 uL per drop).

[0084] The methods include preventative methods that can be performed on patients of any age. The methods also include therapeutic methods that can be performed on patients of any age, particularly patients that are 20, 25, 30, 35, 40, 45, 50, 52, 55, 57, 60, 70, 75, or 80 years of age or older.

[0085] The following examples are illustrative and do not limit the scope of the claimed embodiments.

**EXAMPLES**

**Example 1**

**Synthesis of LACE Chloride**

[0086] A two-step synthesis of lipoic acid choline ester chloride is described below.

![Synthesis Diagram]

**[0087]** R-lipoic acid (5 g, 24.3 mmol), dimethylaminoethanol, (2.37 g, 26.7 mmol) and DMAP (0.9 g, 7.3 mmol) were suspended in MTBE (40 mL) at room temperature under nitrogen. The reaction mixture was cooled to 0°C, and DIC (3.36 g, 26.7 mmol) in MTBE (20 mL) was added. After addition, the mixture was slowly warmed to room temperature and stirred for minimum 12 hours. The reaction was monitored by TLC (5% MeOH/CH₂Cl₂). Reaction mixture was filtered, washed with MTBE, and purified via flash chromatography to give yellow oil (3.3 g, 10.1 mmol).

**[0088]** Lipoate obtained above (0.5 g, 1.8 mmol) was suspended in acetone (1.8 mL) and CH₂Cl₂ (1.8 mL, 1.0 in MTBE) was added. The reaction was heated under nitrogen at 50°C in a sealed tube overnight. HPLC showed 95% conversion.

**Example 2**

**Studies on Stability of LACE Formulations**

[0089] Various lipoic acid choline ester formulations were tested for stabilities.

**[0090]** The HPLC systems that were used in the performance of the HPLC assays were qualified by CGMP with IQ, OQ, and PQ. Each system that was used consisted of a Waters 2695 Separations Module and Waters 2487 Dual λ Absorbance Detector.

**[0091]** The following additional equipments were used in the experiments:

- Mettler AE163 Balance, E-000,902
- Mettler AE200 Balance, E-000,903
- Mettler PB3002 Balance, E-000,904
- Fisher ARSO Accumet pH Meter, E-000,726
- Precision Systems 5004 J-LOsmette Osmometer, E-000,705, E-000,800
- Millipore A-10 Advantage Purified Water System, E-000,723

**Container Closures**

- **[0092]** 3 mL White Bottles:
  - 3 cc LDPE Cylinder Round Bottle, Resin: Dupont 20-6064, Color: White, PCC PEC17030 (WX in Mix), Alcan Packaging, PN: 20319-137 (BPN-000,688)
  - 3 cc LDPE Cylinder Round Bottle, Resin: Chevron PE 5104, Color: White WX0200, Alcan; Packaging, PN: 20319-007 (BPN-000,441)

- **[0093]** 3 mL Natural Bottles:
  - 3 cc Cylinder Round Bottle, Resin: LDPE Chevron Phillips PE 5104, Color: Natural, Additive: PCC Lube-ZaSt 110445 S068, Alcan Packaging, PN: 20319-006 (BPN-000,653)

**Tips:**

- 8 mm Controlled Dropper Tip 0.020 Needle, Natural, Resin: LDPE Dow Dowlex 2517, Alcan Packaging, PN: 12208-0AA (BPN-000,443)

- 8 mm Controlled Dropper Tip, 0.020 Needle, Natural, Resin: LDPE Dupont 20-6064, Alcan Packaging, PN: 12208-015 (BPN-000,492B)

**Caps:**


**Methods**

- **[0096]** The pH was measured following USP/NF<791> and SOP-00273. The osmolality was measured following USP/NF<785> and SOP-00084.

- **[0097]** The HPLC method to analyze LACE Chloride used a Phenomenex Luna CN column with a 5 um particle size, 100 A pore size, 2.0 mm inner diameter, and 50 mm length (PN: 00B-4255-30). The mobile phase consisted of 50% of 0.1 M Sodium Acetate and 50% Acetonitrile. The flow rate was 1.0 mL/min, the detection wavelength was 225 nm, the
The column temperature was 40°C, the injection volume was 20 μL, and the run time was 50 minutes. The working LACE chloride concentration was 0.1 mg/mL and plastic HPLC vials were used for the analysis.

For the final stability screen on LACE chloride formulations (BCL457-180, BCL471-189, BCL483-079, BCL483-165, BCL489-027) the mobile phase concentration was errantly prepared to 0.01 M Sodium Acetate. This resulted in wide LACE peaks with a longer retention time, but did not seem to affect the results. The LACE standard was consistent with the LACE in the samples.

Formulations BCL442-110 B-H

Table 1 shows the detailed formulations of LACE chloride ophthalmic formulations at pH 5.5 and 7.0 (BCL442-110).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Phosphate</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Monobasic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0%</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Edetate Sodium,</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Benzalkonium Chloride</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Alamine</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>LACE Chloride</td>
<td>1.5%</td>
<td>3.0%</td>
<td>5.0%</td>
<td>1.5%</td>
<td>3.0%</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

The pH, osmolality, appearance, and LACE chloride concentration were measured in solutions containing LACE chloride at 1.5%, 3.0%, and 5.0% at pH 5.5 or pH 7.0. The LACE chloride assay was performed four days after preparation. The solutions showed that the LACE chloride is not very stable at pH 7 over four days from the time of preparation until the assay was performed. But the solutions at pH 5.5 resulted in a percent recovery from 86% to 100%, which showed that low pH is more stable for LACE chloride formulations.

Formulations BCL448-053 C and D

The detailed LACE chloride ophthalmic formulations in citrate buffer (BCL448-053) are described in Table 2:

<table>
<thead>
<tr>
<th>Component</th>
<th>BCL448-053 C (DA-000,207)</th>
<th>BCL448-053 D (DA-000,205)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric Acid</td>
<td>0.50%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Glycerin</td>
<td>0.75%</td>
<td>0.40%</td>
</tr>
<tr>
<td>Edetate Sodium,</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Dihydrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzalkonium Chloride</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>0.75%</td>
<td>0.40%</td>
</tr>
<tr>
<td>Alamine</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>LACE Chloride</td>
<td>1.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>pH Target</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

The solutions were tested at the time of preparation and after storage at 5°C (ambient RH), 25°C (40% RH), 40°C (not more than (NMT) 25% RH) and 57°C (ambient RH) for three months.

The results show that the formulations are stable for LACE Chloride potency for 3 months at 5°C and 25°C/40% RH. The solutions at 40°C/NMT 25% RH show potency less than 90% of initial after two months. There is no significant stability difference observed between formulations with and without polysorbate 80.

Example 3

LACE Formulation with Propylene Glycol

A solution of LACE chloride in propylene glycol was prepared to determine its stability. A solution of 1.0% LACE chloride in propylene glycol was prepared and stored at -20°C (ambient RH), 5°C (ambient RH), and 25°C.
The solutions were tested for LACE chloride potency after storage for 3 months.

The results show that LACE chloride is not stable in propylene glycol after 3 months storage at 5° C. and 25° C. In these samples, HPLC analysis (using the method described in Example 2) a peak with relative retention time (RRT) of approximately 0.73. For the solution stored at room temperature, the LACE chloride is completely converted to this peak. No additional peaks are detected. The peak at 0.73 RRT is not detected in the LACE chloride solutions in citrate buffer.

Example 4

Three Month Stability Results

Formulations

Three formulations LACE Ophthalmic Solution, 10 mg/mL (1%); 30 mg/mL (3%); and 40 mg/mL (4%) were prepared and tested for stability.

The 1% LACE Solution:
0.025% by weight of edetate disodium dehydrate,
1.3% by weight of glycerin,
0.5% by weight of alanine,
0.01% by weight of benzalkonium chloride,
1% by weight of lipoic acid choline ester,
water, and
sodium hydroxide (1N) and/or HCl (1N) to adjust the pH to be 4 to 5.

The 3% LACE Solution:
0.025% by weight of edetate disodium dehydrate,
0.4% by weight of glycerin,
0.5% by weight of alanine,
0.01% by weight of benzalkonium chloride,
3% by weight of lipoic acid choline ester,
water, and
sodium hydroxide (1N) and/or HCl (1N) to adjust the pH to be 4 to 5.

The 4% LACE Solution:
0.025% by weight of edetate disodium dehydrate,
0.1% by weight of glycerin,
0.5% by weight of alanine,
0.01% by weight of benzalkonium chloride,
4% by weight of lipoic acid choline ester,
water, and
sodium hydroxide (1N) and/or HCl (1N) to adjust the pH to be 4 to 5.

HPLC Methods

Equipment:
Waters 2695 Separation Module or equivalent containing a pump capable of delivering a gradient flow rate of 1.0 mL/min or equivalent and an autosampler.
Waters 2987 Multi wavelength Detector or single wavelength detector capable of detection at 225 nm or equivalent.

Column: YMC Pack ODS AQ, 250x4.6 mm, PN: AQ125052546WT

Reagents:
Acetonitrile, HPLC grade or equivalent
Methanol, HPLC grade or equivalent
Sodium Phosphate Monobasic Monohydrate, USP grade or equivalent

1-Heptane Sulfonic Acid, Sodium Salt, HPLC grade or equivalent
Triethylamine, HPLC grade or equivalent
Phosphoric Acid, NF grade or equivalent
Purified Water

Analytical Balance

Various Class A volumetric flasks
Various Class A pipets
Various graduated cylinders
HPLC vials

HPLC System Parameters:

Column: YMC Pack ODS AQ, 250x4.6 mm, 5 μm, 12 cm,
PN: AQ125052546WT

Mobile Phase:

A: 0.05 M Sodium Phosphate, 0.005 M 1-Heptane Sulfonic Acid Sodium Salt, 0.2% Triethylamine, pH 4.5 (+0.2) (adjusted with Phosphoric Acid)

D: Acetonitrile

Gradient:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% A</th>
<th>% D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>29.0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>30.0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>30.5</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>50.0</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL/min
Wavelength: 225 nm
Column Temperature: 60° C.
Injection Volume: 10 μL (Potency), 50 μL (RS)
Approximate Run Time*: 50 min
*The run time and the retention time may vary based on the age of the column and the type of the instrument used

Approximate Retention Time*: 21 min
Needle Wash Water: Acetonitrile (90:10)
Diluent 0.05 M Sodium Phosphate

Results

The formulations were stored at four different conditions, i.e., 5° C. under ambient RH; 25° C. under 40% RH; 40° C. under not more than 25% RH; and −20° C. under ambient RH. Samples were taken at time 0, 1 month, and 3 months for measurement of EDTA content, BAK content, pH, and LACE potency. The results are shown in Tables 4-7 below. Appearance tests were also done at time 0, 1 month, and 3 months (see Table 8). Drug related impurities were analyzed by HPLC. Tables 9A-9D show the amount of drug related impurities formed at time 0, 1 month, and 3 months (only impurities with an amount greater than 0.05% are reported in the tables).
### TABLE 4
EDTA Assay Results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Lot BCL545-129A (80.0% to 120.0%)</th>
<th>Lot BCL545-129B (80.0% to 120.0%)</th>
<th>Lot BCL545-129C (80.0% to 120.0%)</th>
<th>Lot BCL545-129D (80.0% to 120.0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C/Ambient RH 0</td>
<td>97.8%</td>
<td>98.9%</td>
<td>98.5%</td>
<td>98.2%</td>
</tr>
<tr>
<td>1</td>
<td>101.0%</td>
<td>100.4%</td>
<td>100.1%</td>
<td>99.10%</td>
</tr>
<tr>
<td>3</td>
<td>99.5%</td>
<td>98.2%</td>
<td>99.7%</td>
<td>98.35%, 101.0%</td>
</tr>
<tr>
<td>25 C/RH 1</td>
<td>102.8%</td>
<td>100.5%</td>
<td>100.1%</td>
<td>98.80%</td>
</tr>
<tr>
<td>40% RH 3</td>
<td>99.5%</td>
<td>96.5%</td>
<td>93.9%</td>
<td>85.4%, 85.1%</td>
</tr>
<tr>
<td>40 C/NMT 25% RH 1</td>
<td>100.8%</td>
<td>93.1%</td>
<td>91.3%</td>
<td>88.80%</td>
</tr>
<tr>
<td>48 C/Ambient RH 3</td>
<td>101.1%</td>
<td>54.5%</td>
<td>16.3%</td>
<td>7.5%, 6.0%</td>
</tr>
<tr>
<td>-20 C/Ambient RH 1</td>
<td>IP</td>
<td>IP</td>
<td>IP</td>
<td>IP</td>
</tr>
</tbody>
</table>

### TABLE 5
BAK Results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Lot BCL545-129A (80.0% to 120.0%)</th>
<th>Lot BCL545-129B (80.0% to 120.0%)</th>
<th>Lot BCL545-129C (80.0% to 120.0%)</th>
<th>Lot BCL545-129D (80.0% to 120.0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C/Ambient RH 0</td>
<td>96.9%</td>
<td>94.4%</td>
<td>95.0%</td>
<td>95.6%</td>
</tr>
<tr>
<td>1</td>
<td>96.3%</td>
<td>93.4%</td>
<td>94.5%</td>
<td>95.0%</td>
</tr>
<tr>
<td>3</td>
<td>96.5%</td>
<td>93.5%</td>
<td>93.5%</td>
<td>94.3%</td>
</tr>
<tr>
<td>25 C/RH 1</td>
<td>96.6%</td>
<td>94.4%</td>
<td>94.3%</td>
<td>95.9%</td>
</tr>
<tr>
<td>40% RH 3</td>
<td>96.6%</td>
<td>93.1%</td>
<td>93.5%</td>
<td>93.6%</td>
</tr>
<tr>
<td>40 C/NMT 25% RH 1</td>
<td>98.2%</td>
<td>94.0%</td>
<td>92.8%</td>
<td>94.8%</td>
</tr>
<tr>
<td>RH 3</td>
<td>96.4%</td>
<td>94.0%</td>
<td>38.3%</td>
<td>164.5%</td>
</tr>
</tbody>
</table>

### TABLE 6
pH Results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Lot BCL545-129A (4.0 to 5.0)</th>
<th>Lot BCL545-129B (4.0 to 5.0)</th>
<th>Lot BCL545-129C (4.0 to 5.0)</th>
<th>Lot BCL545-129D (4.0 to 5.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C/Ambient RH 0</td>
<td>4.6</td>
<td>4.6</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Ambient RH 1</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>4.5</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>25 C/RH 1</td>
<td>4.5</td>
<td>4.5</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>40% RH 3</td>
<td>4.7</td>
<td>4.7</td>
<td>4.6</td>
<td>4.1</td>
</tr>
<tr>
<td>40 C/NMT 25% RH 1</td>
<td>4.6</td>
<td>4.5</td>
<td>4.7</td>
<td>3.8</td>
</tr>
<tr>
<td>-20 C/Ambient RH 3</td>
<td>4.6</td>
<td>4.4</td>
<td>4.4</td>
<td>4.3</td>
</tr>
</tbody>
</table>
### TABLE 7

**LACE Potency Results**

<table>
<thead>
<tr>
<th>Test Article Number</th>
<th>STA-000,325</th>
<th>STA-000,326</th>
<th>STA-000,327</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Formulation</strong></td>
<td>EV06 Ophthalmic Solution, 10 mg/mL</td>
<td>EV06 Ophthalmic Solution, 30 mg/mL</td>
<td>EV06 Ophthalmic Solution, 40 mg/mL</td>
</tr>
<tr>
<td><strong>Lot Number</strong></td>
<td>Lot BCL455-129B</td>
<td>Lot BCL455-129C</td>
<td>Lot BCL455-129D</td>
</tr>
<tr>
<td><strong>Specification</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>90.0% to 110.0% of Initial Label</td>
<td>90.0% to 110.0% of Initial Label</td>
<td>90.0% to 110.0% of Initial Label</td>
</tr>
<tr>
<td><strong>% of Initial</strong></td>
<td>% of Initial</td>
<td>% of Initial</td>
<td>% of Initial</td>
</tr>
<tr>
<td>5 C/ Ambient RH</td>
<td>0 98.1% N/A</td>
<td>94.0% N/A</td>
<td>91.5% N/A</td>
</tr>
<tr>
<td>40% RH</td>
<td>1 98.9% 100.8%</td>
<td>98.0% 104.3%</td>
<td>100.8% 110.2%</td>
</tr>
<tr>
<td>40 C/NMT</td>
<td>3 99.4% 101.3%</td>
<td>95.9% 102.0%</td>
<td>94.5% 103.3%</td>
</tr>
<tr>
<td>25% RH</td>
<td>3 94.2% 96.0%</td>
<td>92.8% 98.7%</td>
<td>89.8% 98.1%</td>
</tr>
<tr>
<td>Ambient RH</td>
<td>79.3% 80.8%</td>
<td>73.6% 78.3%</td>
<td>68.1% 74.4%</td>
</tr>
</tbody>
</table>

### TABLE 8

**Appearance Results**

<table>
<thead>
<tr>
<th>Formulation</th>
<th>EV06 Ophthalmic Solution, Placebo</th>
<th>EV06 Ophthalmic Solution, 10 mg/mL</th>
<th>EV06 Ophthalmic Solution, 30 mg/mL</th>
<th>EV06 Ophthalmic Solution, 40 mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lot Number</strong></td>
<td>BCL455-129A Clear, colorless solution</td>
<td>BCL455-129B Clear, colorless to yellow Solution</td>
<td>BCL455-129C Clear, colorless to yellow Solution</td>
<td>BCL455-129D Clear, colorless to yellow Solution</td>
</tr>
<tr>
<td><strong>5 C/Ambient RH</strong></td>
<td>0 Clear, colorless solution</td>
<td>Clear, yellow solution Munsell: 5Y 9/1</td>
<td>Clear, yellow solution Munsell: 5Y 9/2</td>
<td>Clear, yellow solution Munsell: 5Y 9/2</td>
</tr>
<tr>
<td></td>
<td>1 Clear, colorless Solution 99.9% Tat 500 nm</td>
<td>Clear, slightly yellow Solution 99.7% Tat 500 nm Munsell: 10YR 0/5</td>
<td>Clear, slightly yellow Solution 98.7% Tat 500 nm Munsell: 5Y9/1</td>
<td>Clear, slightly yellow Solution 99.0% Tat 500 nm Munsell: 5Y9/1.5</td>
</tr>
<tr>
<td></td>
<td>3 Clear, colorless solution 100.6% T</td>
<td>Clear, slightly yellow Solution 100.1% T Munsell: 10YR 0/5</td>
<td>Clear, slightly yellow Solution 99.5% T Munsell: 5Y9/1</td>
<td>Clear, slightly yellow Solution 99.1% T Munsell: 5Y9/1</td>
</tr>
<tr>
<td>25 C/40% RH</td>
<td>1 Clear, colorless Solution 100.1% T at 500 nm</td>
<td>Clear, slightly yellow Solution 99.7% Tat 500 nm Munsell: 10YR 0/5</td>
<td>Clear, slightly yellow Solution 98.7% Tat 500 nm Munsell: 5Y9/1</td>
<td>Clear, slightly yellow Solution 98.9% Tat 500 nm Munsell: 5Y9/1.5</td>
</tr>
<tr>
<td></td>
<td>3 Clear, colorless solution 100.7% T</td>
<td>Clear, slightly yellow Solution 100.3% Tat 500 nm Munsell: 10YR 0/5</td>
<td>Clear, slightly yellow Solution 99.7% T Munsell: 10YR9/1</td>
<td>Clear, slightly yellow Solution 99.3% T Munsell: 5Y9/1</td>
</tr>
<tr>
<td>40 C/NMT 25% RH</td>
<td>1 Clear, colorless Solution 99.8% Tat 500 nm</td>
<td>Clear, slightly yellow Solution 99.6% Tat 500 nm Munsell: 10YR 0/5</td>
<td>Clear, slightly yellow Solution 99.1% Tat 500 nm Munsell: 5Y9/1</td>
<td>Clear, slightly yellow Solution 98.1% Tat 500 nm Munsell: 5Y9/1.5</td>
</tr>
<tr>
<td></td>
<td>3 Clear, colorless solution 100.6% T</td>
<td>Clear, slightly yellow Solution 100.1% T Munsell: 10YR9/1</td>
<td>Clear, slightly yellow Solution 13.4% T Munsell: 5Y9/1</td>
<td>Clear, slightly yellow Solution 3.0% T Munsell: 5Y9/1</td>
</tr>
<tr>
<td>~20 C/Ambient RH</td>
<td>1 Clear, colorless solution 99.6% T</td>
<td>Clear, pale yellow Solution 98.4% Tat 500 nm Munsell: 5Y 9/0.5</td>
<td>Clear, pale yellow Solution 96.3% Tat 500 nm Munsell: 5Y 9/1</td>
<td>Clear, pale yellow Solution 96.8% Tat 500 nm Munsell: 5Y 9/1</td>
</tr>
</tbody>
</table>

- C: Centigrade
- RH: Relative Humidity
- N/A: Not Applicable
### TABLE 9A

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLS45-129A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Related Impurities in Control Solution</th>
<th>Lot Number</th>
<th>BCLS45-129A</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
<th>Report Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C./Ambient RH 0</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>0.06%</td>
<td>0.08%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ambient RH</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 9B

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLS45-129B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Related Impurities in 1% LACE Solution</th>
<th>Lot Number</th>
<th>BCLS45-129B</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
<th>Report Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C./Ambient RH 0</td>
<td>0</td>
<td>0.44%</td>
<td>0.38%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>0.06%</td>
<td>0.13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>0.65%</td>
<td>0.25%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>1.68%</td>
<td>1.36%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>1.48%</td>
<td>0.15%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ambient RH</td>
<td>1</td>
<td>1.46%</td>
<td>1.57%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>1.46%</td>
<td>0.69%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>1.46%</td>
<td>2.49%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>4.26%</td>
<td>0.10%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ambient RH</td>
<td>1</td>
<td>4.23%</td>
<td>0.27%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>20 C./Ambient RH 1</td>
<td>ND</td>
<td>0.09%</td>
<td>0.69%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>-20 C./Ambient RH 1</td>
<td>ND</td>
<td>0.09%</td>
<td>0.89%</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 9C

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLS45-129C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Related Impurities in 3% LACE Solution</th>
<th>Lot Number</th>
<th>BCLS45-129C</th>
<th>Specification</th>
<th>Report RRT of each individual impurity ≥ 0.05%</th>
<th>Report Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C./Ambient RH 0</td>
<td>0</td>
<td>0.24%</td>
<td>0.31%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>0.05%</td>
<td>0.11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>0.56%</td>
<td>0.12%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>0.56%</td>
<td>0.12%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>0.54%</td>
<td>1.20%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ambient RH</td>
<td>1</td>
<td>1.40%</td>
<td>0.14%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>25 C./</td>
<td>1</td>
<td>1.28%</td>
<td>1.56%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>46% RH</td>
<td>3</td>
<td>1.28%</td>
<td>1.56%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>40 C./NMT 25%</td>
<td>1</td>
<td>3.56%</td>
<td>0.81%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>Ambient RH</td>
<td>1</td>
<td>3.56%</td>
<td>0.81%</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>-20 C./Ambient RH 1</td>
<td>ND</td>
<td>0.06%</td>
<td>0.30%</td>
<td>ND</td>
<td>Total</td>
</tr>
<tr>
<td>-20 C./Ambient RH 1</td>
<td>ND</td>
<td>0.06%</td>
<td>0.30%</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>
Example 5

Dioptrin™ Eye Drop Reduces Mouse Lens Elasticity

Methods

[0119] In Vitro Test:

[0120] Eight month old mouse lenses (C57BL/6J) were incubated for 12 hours in medium supplemented with selected levels (0-500 μM) of lipoic acid (LA). Lens elasticity was measured using the coves ship method known. After elasticity measurements, lenses were homogenized in a dissociation medium containing alkylating agent 1 (free SH modification). The homogenate was filtered and the rinsed, resuspended, retentate was treated with reducing agent (CTCEP) and alkylating agent 2 (S—S SHs modified).

After filtration and rinses, the levels of alkylated SH groups in retentate 2 was determined. Bovine serum albumin was the positive control for the sulfhydryl analysis.

[0121] In vivo test: Eight month old C57BL/6J mice were treated with 2.5 μL of a formulation of 5% LACE (Dioptrin™) three times per day at eight hour intervals in the right eye (OD) for 5 weeks. After the final treatment, lenses were removed and placed in a cuvette containing HBSS. Elasticity was determined with a computer controlled instrument that provided Z stage upward movements in 1 μm increments with concomitant force measurements with a Harvard Apparatus P10 isometric force transducer. The elasticity of lenses from 8 week old C57BL/6J mice was determined for comparison.

Results

[0122] LA treatment led to a concentration-dependent decrease in lens protein disulfides concurrent with an increase in lens elasticity. Changes in disulfides and elasticity were negatively correlated (R=0.87, p=0.006). The [LA]_{50} for both effects was 50±10 nM with maximal effect at 100 uM LA. After topical ocular treatment with Dioptrin™ the lenses of the treated eyes of the old mice were more elastic than the lenses of untreated eyes, i.e. the relative force required for similar Z displacements was higher in the untreated eyes’ lenses. In most instances the lenses of the treated eyes were even more elastic than the lenses of the 8 week old mice.

Example 6

EVO6 Draize Test for Eye Drop Ocular Safety

[0124] Safety of the EVO6 was evaluated by the Draize test to evaluate its use at concentrations as high as 5%. The Draize Test is an acute toxicity test devised in 1944 by Food and Drug Administration (FDA) toxicologists John H. Draize and Jacob M. Spines. Initially used for testing cosmetics, the procedure involves applying 0.5 mL or 0.5 g of a test substance to the eye or skin of a restrained, conscious animal, and then leaving it for set amount of time before rinsing it out and recording its effects. Corneal, iris, and conjunctival responses were evaluated using the scale described by Draize et al., J. Pharmacol. & Exp. Therapeutics, 82:377-390 (1944). Because of the importance of the cornea to vision, 73% of the Draize score is based on corneal damage. A normal score was 0, increasing amounts of damage result in a higher score, with the maximum score possible being 110. A Draize score was computed at each observation time by averaging the total scores of all rabbits tested. Observations were made and recorded 24, 48, and 72 hours after treatment.

[0125] This test consists of instilling 30 to 50 μL of the product into one eye of 6 New Zealand white rabbits and monitoring to observe any abnormal clinical signs such as redness of conjunctiva, swelling, or increased blinking which may indicate irritation. The EVO6 test concentrations (3%-5%) demonstrated no adverse effects (Draize Rabbit Eye test score of 2.0+/−0.6) and thus considered “not corrosive or irritating.”

Example 7

Dioptrin™ for Restoration of Accommodation in Presbyopes

Methods

[0126] Screening studies were conducted to determine the highest tolerated concentration when applied topically to
rabbit eyes, in conjunction with bioanalysis of corneal, aqueous humor, and lens concentrations of EVO6 and its metabolites. In a GLP rabbit study, animals were treated with topical 0, 1, 3 or 4% Dioplitin solution three times daily for 90 consecutive days. Slit-lamp exams and fundoscopy were performed at pre-dose baseline and after 1, 30, and 90 days of dosing. Daily clinical observations, food consumption, body weights, clinical pathology, and toxicokinetics were performed. Full necropsy and ocular histopathology were also conducted.

Results

[0127] Dioplitin™ ophthalmic formulations were well tolerated in rabbit eyes. No dose-related ocular signs of toxicity were observed at any timepoint in the GLP study. Ophthalmic exams were normal, with the exception of mild (1+) conjunctival congestion and (1+) discharge observed in some of animals dosed with 3% or 4% Dioplitin™ on the first day of dosing, which persisted throughout the dosing period, but did not worsen. No systemic effects or adverse events were reported. Plasma levels of EVO6 were at or below the limits of detection, indicating rapid metabolism.

[0128] Dioplitin™ is a promising new treatment for presbyopia, with the potential to restore several diopters of accommodation. In preclinical studies, EVO6 has been shown to be effective at increasing lens elasticity through reduction of lens protein disulfides. The ophthalmic formulation is non-irritating, and systemic and ocular safety have been demonstrated in a 90 day GLP ocular toxicology study at topical doses up to 4% three times daily.

Example 8

Dioplitin™ Eye Drop to Treat Presbyopia: Corneal Penetration and Ocular Pharmacokinetics

Methods

[0129] Esters of lipoic acid were evaluated in rabbits for corneal penetration. Rabbits were also used to examine the metabolism, absorption, and distribution of LACE (LA prodrug) using HPLC-ESI/MS/MS (LOD=2 ng/ml).

Results

[0130] LACE was found to improve penetration over lipoic acid. A prototypic ocular eye drop formulation of LACE was tested as Dioplitin™. It is rapidly degraded by endogenous butyrylcholinesterases and provides elevated ocular tissue levels of LA. Lens DHIA (measured as LA) and LACE are both significantly elevated [P<0.05] using 3% Dioplitin™ treated compared to untreated contralateral eye; 22.6±/−9.1(5) and 142.3±/−31.9 (5) nM/L, respectively.

[0131] As shown in FIG. 2A, Dioplitin™ elevates LACE (prodrug) and LA (active) in ocular tissue samples (ESI/LC/MS/MS); importantly in the lens. LA can be cleared away in the form of 6,8-bis(methylthio)octanoic acid (BMOA).

[0132] A schematic showing of LACE metabolism is shown in FIG. 2B. The absorbed LACE molecule into the cornea is converted into non-surfactant natural products (lipoic acid and choline) in the cornea by pseudocholinesterases (PCHE), which minimizes corneal damage during transit into the aqueous. Importantly, this corneal cleavage process then allows for transfer of these intermediates into the aqueous. This rapid degradation into lipoic acid allows applying a higher concentration of LACE to an eye compared to that of a non-degradable cationic surfactants, for example, the safety limit for ocular use of BAK is <0.01%.

[0133] For comparison, in humans, the percent uptake (area under the curve or total over 4 hour period) is only 0.37% (Cagini) following application of lipoic acid formulation to the eyes; while separate animals studies (rabbits and mice) with EVO6 formulation, 2.2% of the applied drop penetrates into the aqueous measured as LA. See FIG. 3.

[0134] In conclusion, Dioplitin™ provides a convenient ocular delivery platform for improved aqueous delivery of a dithiol compound to reduce protein disulfides in order to soften the lens and restore accommodation amplitude, which is useful for treatment of Presbyopia.

Example 9

LACE Formulation with Glycerol

[0135] Lipidic acid choline ester was mixed in neat glycerol (no water) with brief heating to 80° C. for 8 hours. High concentrations of lipidic acid choline ester in a final clear solution were found. The final clear solution is stable.

Example 10

Single Bottle 2-Part Delivery System

[0136] A single bottle 2-part delivery system is described for the 2-part stable long-term manufactured formulation. This delivery bottle uses commercially available bottle, dropper tip, and cap. An insert is placed into the commercially available standard bottle (FIG. 4, left top), which separates the 2-parts until activation.

[0137] Capacity: 4 mL; neck finish: 15-415

[0138] Material: natural clear LDPE bottle with white cap

[0139] Provides reliable repeatable dispensing of reagents; flexible contact-clear bottle permits easy content identification

[0140] Excellent chemical resistance; material is suitable for most biotech diagnostic and pharmaceutical applications

[0141] Delivers 40 μl drops (based on water; viscosity affects drop size) one at a time

[0142] Manufacturer: Thermo Fisher Nalgene®

[0143] Manufacturer Part No: 2750-9125

[0144] Composition of Part 1 and Part 2 are shown in Table 10 below:

<table>
<thead>
<tr>
<th>TABLE 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of Parts 1 and 2</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>LACE 3.00%</td>
</tr>
<tr>
<td>PART 1</td>
</tr>
<tr>
<td>LACE/glycerol</td>
</tr>
<tr>
<td>LACE</td>
</tr>
<tr>
<td>glycerol</td>
</tr>
<tr>
<td>glycerol</td>
</tr>
<tr>
<td>PART 2 2 ml 5</td>
</tr>
<tr>
<td>alanine</td>
</tr>
<tr>
<td>BAK</td>
</tr>
</tbody>
</table>
TABLE 10-continued
Composition of Parts 1 and 2

<table>
<thead>
<tr>
<th>PARTS 1 + 2 “ACTIVATED”</th>
<th>mg/ml</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACE</td>
<td>30.00</td>
<td>3.00%</td>
</tr>
<tr>
<td>glycerol</td>
<td>26.00</td>
<td>2.60%</td>
</tr>
<tr>
<td>alanine</td>
<td>2.50</td>
<td>0.250%</td>
</tr>
<tr>
<td>BAK</td>
<td>0.07</td>
<td>0.007%</td>
</tr>
</tbody>
</table>

Preparation of Part 1

[0145] 150 mg of solid lipoic acid choline ester chloride is placed into 103 ul of medical grade glycerol and heated at 80° C. for 6 hours. An amorphous micelle is formed.

[0146] The extract shown in FIG. 4 (left drawing) has the following assembly components: the main insert stationary holder 1; the inner tube 2 that contains the non-aqueous solvent and also contains a filter to remove particulates; the lower seal 3 that contains the liquid within the inner tube; and the dropper tip 5 for sealing the insert prior to sterilization. The active agent in part-1 composition is added to the inner tube 2, as shown in 4. The dropper tip is then placed. Part 1 is sterilized using gamma-irradiation.

Assembling Parts 1 and 2

[0147] Part-2 contains the aqueous solution that is separately sterilized. Once the insert and aqueous solution are properly sterilized, they are combined (cap removed) under a sterile controlled manufacturing environment (FIG. 4, middle drawing). Part-1 insert is placed into the Part-2 container. Once assembled, long-term storage is possible without need for carefully controlled temperature conditions (<45° C.).

Activation

[0148] As shown in FIG. 4 (right drawing), to activate, the patient only needs to compress or “squeeze” the bottle to release part-1 into part-2 aqueous solution. This step moves the lower seal 3 (FIG. 4) upward to expose the inner tube 2 (FIG. 4) perforations. Part-1 composition then flows into part-2 aqueous solution. The solution is readily dissolved with brief shaking. The lid is still in place during activation. The final formulation (about 5 mL) contains:

3% Lipoic Acid Choline Ester;

0.01% Benzalkonium Chloride;

2.7% Glycerin, USP; and

0.5% Alanine, USP;

[0149] with a pH of 4.5±0.2.

[0150] This provides sufficient formulation for a BID 60-day treatment (40 ul/drop).

[0151] The final formulation is sufficiently stable to maintain predicted outcome. The final formulation is stable when refrigerated (5° C.) for 30 days without degradation>0.5% of the active compound.

[0152] Parts 1 and 2 maintained in the 2-part bottle provides a long-term shelf life resistant to thermal degradation<45° C. for 2 years.

[0153] The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teachings and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.

[0154] The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

[0155] All of the various aspects, embodiments, and options described herein can be combined in any and all combinations.

[0156] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

What is claimed:

1. A pharmaceutical composition comprising a therapeutically effective amount of lipoic acid choline ester and a non-aqueous excipient, mixed in an aqueous solution having a pH of 4 to 6, wherein at least 95% of the lipoic acid choline ester is present in the pharmaceutical composition, as measured by HPLC, following storage at 25° C. under 40% relative humidity for 3 months.

2. The pharmaceutical composition of claim 1, wherein less than 2% of the lipoic acid choline ester is degraded following storage at 25° C. under 40% relative humidity for 3 months.

3. The pharmaceutical composition of claim 1 or claim 2, having less than 12% total drug related impurities based on area-under-the-curve as determined by HPLC following storage at 25° C. under 40% relative humidity for 3 months.

4. The pharmaceutical composition of any of claims 1-3, having less than 7% of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25° C. under 40% relative humidity for 3 months, wherein the drug related impurity is characterized by a relative retention time of 1.12 to 1.14.

5. The pharmaceutical composition of any of claims 1-4, having less than 4% of a drug related impurity based on area-under-the-curve as determined by HPLC following storage at 25° C. under 40% relative humidity for 3 months, wherein the drug related impurity is characterized by a relative retention time of 0.65 to 0.66.

6. The pharmaceutical composition of any of claims 1-5, characterized by one or more of the following:

(a) having a concentration of the lipoic acid choline ester of 1% to 10% by weight of the composition;

(b) having a concentration of a preservative of 0.005% to 0.1% by weight of the composition;

(c) having a biochemical energy source of 0.1% to 5% by weight of the composition; and
(d) having a concentration of glycerol of 0.5% to 5% by weight of the composition.

7. The pharmaceutical composition of claim 6, wherein the preservative is benzalkonium chloride and the biochemical energy source is alanine.

8. The pharmaceutical composition of any of claims 1-7, wherein the lipoic acid choline ester has a counter ion selected from the group consisting of chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tartrate, succinate, benzoate, and anion of glutamic acid.

9. A method of improving accommodative amplitude in a lens, comprising administering to the lens an effective amount of the pharmaceutical composition of any of claims 1-8.

10. A method of treating or preventing presbyopia in a subject, comprising administering to an eye of the subject an effective amount of the pharmaceutical composition of any of claims 1-8.

11. A non-aqueous composition comprising lipoic acid choline ester or derivatives thereof and a non-aqueous excipient.

12. The non-aqueous composition of claim 11, wherein the non-aqueous excipient is substantially miscible with water.

13. The non-aqueous composition of claim 11 or claim 12, wherein the non-aqueous excipient is a non-hydrolytic solvent.

14. The non-aqueous composition of any of claims 11-13, wherein the non-aqueous excipient is an alcohol.

15. The non-aqueous composition of claim 14, wherein the alcohol is a polyol.

16. The non-aqueous composition of claim 15, wherein the polyol is glycerol.

17. The non-aqueous composition of claim 15, wherein the polyol is propylene glycol.

18. The non-aqueous composition of claim 11, wherein the non-aqueous excipient is a semithiorinated alkane.

19. The non-aqueous composition of any of claims 11-18, comprising a non-aqueous solution obtained by mixing lipoic acid choline ester with the non-aqueous excipient.

20. The non-aqueous composition of claim 19, wherein the mixing is conducted at a temperature of 20° C. to 100° C.

21. The non-aqueous composition of claim 20, wherein the mixing is conducted at a temperature of 37° C. to 80° C.

22. The non-aqueous composition of any of claims 11-21, wherein the concentration of lipoic acid choline ester or derivatives thereof is in a range of 0.1% to 40% by weight of the composition.

23. The non-aqueous composition of any of claims 11-22, wherein the lipoic acid choline ester has a counter ion selected from the group consisting of chloride, bromide, iodide, sulfate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, hydrogen fumarate, tartrate, succinate, benzoate, and anion of glutamic acid.


25. The ophthalmic formulation of claim 24, wherein the aqueous solution comprises a buffer.

26. The ophthalmic formulation of claim 24 or claim 25, having a pH of 4 to 8.

27. The ophthalmic formulation of claim 26, having a pH of 4.5.

28. The ophthalmic formulation of any of claims 24-27, comprising at least one ingredient selected from the group consisting of a biochemically acceptable energy source, a preservative, a buffer agent, a tonicity agent, a surfactant, a viscosity modifying agent, and an antioxidant.

29. The ophthalmic formulation of any of claims 24-28, wherein the non-aqueous composition is sterilized before mixing in the aqueous solution.

30. The ophthalmic formulation of any of claims 24-29, wherein the aqueous solution is a sterilized solution.

31. The ophthalmic formulation of any of claims 24-30, characterized by one or more of:

(a) having a concentration of the lipoic acid choline ester or derivatives thereof from 1% to 10% by weight of the formulation;

(b) having a concentration of a preservative 0.005% to 0.1% by weight of the formulation;

(c) having a pH of 4 to 6;

(d) having a biochemical energy source of 0.1% to 5% by weight of the formulation;

(e) having a concentration of glycerol of 0.5% to 5% by weight of the formulation; and

(f) having a shelf-life stability of greater than 3 months.

32. The ophthalmic formulation of claim 31, wherein the preservative is benzalkonium chloride and the biochemical energy source is alanine.

33. A method of improving accommodative amplitude in a lens, comprising administering to the lens an effective amount of the non-aqueous composition of any of claims 11-23 or the ophthalmic formulation of any of claims 24-32.

34. A method of treating or preventing presbyopia in a subject, comprising administering to an eye of the subject an effective amount of the pharmaceutical composition of any of claims 11-23 or the ophthalmic formulation of any of claims 24-32.

35. A system comprising a first compartment, a second compartment, and a seal separating the first and second compartments, wherein the first compartment comprises a non-aqueous composition of an active ingredient and a non-aqueous excipient, the second compartment comprises an aqueous solution, and wherein the system is activated upon breaking the seal and mixing the non-aqueous solution with the aqueous solution.

36. The system of claim 35, wherein the active ingredient is lipoic acid choline ester or derivatives thereof and the non-aqueous excipient is an ophthalmically acceptable excipient.

37. The system of claim 35 or claim 36, wherein the aqueous solution comprises a buffer.

38. The system of any of claims 35-37, wherein both the non-aqueous composition and the aqueous solution are sterilized.

39. The system of any of claims 35-38, wherein the active ingredient in the system has a shelf-life stability of more than 3 months.

40. The system of claim 39, wherein the active ingredient in the system has a shelf-life stability of more than 6 months.

41. The system of any of claims 35-40, wherein the active ingredient in the system after activation has a shelf-life stability of more than 3 months.

42. A method of storing an active ingredient that is susceptible to hydrolysis in an aqueous solution, the method
comprising (a) providing the active ingredient in a first compartment; (b) providing the aqueous solution in a second compartment; and (c) separating the first and second compartments with a seal, wherein the active ingredient in the first compartment is not in contact with the aqueous solution until just prior to usage by breaking the seal.

43. The method of claim 42, wherein the active ingredient in the first compartment is a lyophilized powder or is mixed with a non-hydrolytic solvent.

44. The method of claim 42 or 43, wherein the active ingredient is lipoic acid choline ester or derivatives thereof, or a peptide.

* * * * *