发明名称
一种超大粒度钼粉制备方法

摘要
一种超大粒度的钼粉的制备方法，涉及一种用于具有特殊物理性能的高熔点合金粉末的制备方法。其特征在于其制备过程包括以下步骤：(1)选择将粒度为 2.5 μm - 3.5 μm，松装密度为 0.9 g/cm³ - 1.1 g/cm³，氧含量小于0.08%(重量)的钼粉；(2)将选择的钼粉在 15MPa - 30MPa 压力下压制成坯；(3)将压制的坯料在 800℃ - 1200℃的温度下，烧结1 - 5 小时；(4)将烧结后的坯料破碎、球磨和筛分，制备出由平均粒度为 100 μm - 200 μm 的颗粒团组成的钼粉。采用本发明的方法，可制备出由平均粒度为 100 μm - 200 μm 的颗粒团组成的钼粉，实现 80%以上的成品率。
1. 一种超大粒度钼粉制备方法，其特征在于其制备过程包括以下步骤：

 （1）选择费氏粒度为 2.5\(\mu m \)~3.5\(\mu m \)，松装密度为 0.9g/cm\(^3\)~1.1g/cm\(^3\)，氧含量小于 0.08%（重量）的钼粉；

 （2）将选择的钼粉在 15MPa~30MPa 压力下压制成坯；

 （3）将压制的坯料在 800°C~1200°C 的温度下，烧结 1~5 小时；

 （4）将烧结后的坯料破碎、球磨和筛分，制备出由平均粒度为 100\(\mu m \)~200\(\mu m \) 的颗粒团组成的钼粉。

2. 根据权利要求 1 所述的一种超大粒度钼粉制备方法，其特征在于所述的压制的坯料烧过程是在氢气保护下进行的。
一种超大粒度钼粉制备方法

技术领域

一种超大粒度的钼粉的制备方法，涉及一种用于具有特殊物理性能的高熔点合金粉末的制备方法。

背景技术

具有超大粒度（平均粒度达10μm以上）、高比重（松装密度达2.5g/cm³以上）、高流动性（霍尔流速达30min/50g以上）等特殊物理性能的钼粉，拥有常规颗粒钼粉所无法比拟的使用性能，在航天、电子、汽车等领域展现出广泛的应用前景。

目前，这种特殊物理性能的钼粉产品被日本新日铁公司（Nippon Steel）、东曹公司（Tosoh）、日立金属公司（Hitachi Metals）等少数几家国外公司所垄断。其制备技术的具体细节的尚未见报道。

发明内容
本发明的目的就是针对上述已有技术的不足，提供一种能制备出由平均粒度为
100μm~200μm 的颗粒团组成的超大粒度钼粉的方法。

本发明的目的是通过以下技术方案实现的。

一种超大粒度钼粉制备方法，其特征在于其制备过程包括以下步骤：

(1) 选择微氏粒度为 2.5~3.5μm，松装密度为 0.9~1.1g/cm³，氧含量小于 0.08%（重量）
的钼粉；

(2) 将选择的钼粉在 15MPa~30MPa 压力下压制成坯；

(3) 将压制的坯料在 800℃~1200℃的温度下，烧结 1~5 小时；

(4) 将烧结后的坯料破碎、球磨和筛分，制备出由平均粒度为 100~200μm 的颗粒团组成
的钼粉。

本发明的一种超大粒度钼粉制备方法，其特征在于所述的压制的坯料烧结过程是在氢气
保护下进行的。

本发明的原料为微氏粒度为 2.5μm~3.5μm，松装密度为 0.9g/cm³~1.1g/cm³ 的钼粉，采用传
统的化学法制备较为容易，钼粉的化学成分要求是为了保证成品钼粉的化学成分，形貌较
规则的钼粉在成型过程中，颗粒的流动性较好，可较一致地保证烧结强度。

本发明的压制过程中，将一定质量的常规钼粉装入模具后，其压制力和保压时间以保证
压坯尺寸，即压制密度为准。根据不同批次的钼粉，压制力和保压时间可在 15MPa~30MPa、
30s~60s 之间波动。压坯大小则根据液压机台面大小确定，二则不能小于颚式破碎机的入料
尺寸要求。

本发明的低温烧结的烧结温度和烧结时间根据不同批次钼粉物理性能有所波动。烧结和
冷却过程的氢气流量根据不同马弗炉的炉膛大小而定，以保证烧结后不发生氧化为准。

采用本发明的方法直接采用常规钼粉进行后续处理，对原料的要求较低；整个工艺过程
为物理过程，不同于传统的化学还原法，可保证工艺过程少（无）污染；采用本方法制备的
颗粒团钼粉，其形貌较为圆整，颗粒团内部的烧结强度较高，在使用过程中不会出现颗粒团
自动破碎的现象。可制备出由平均粒度为 100μm~200μm 的颗粒团组成的钼粉，实现 80%以
上的成品率。

附图说明

图 1 为采用本发明的方法制备的钼粉的微观形貌图。

图 2（a）为采用本发明的方法制备的钼粉的宏观形貌图。

图 2（b）为采用本发明的方法制备的钼粉的单个颗粒内部组织形貌图。
具体实施方式

一种超大粒度钼粉制备方法，包括以下步骤：

（1）选择合适的常规钼粉。钼粉的粒度和密度适中（费氏粒度为 2.5μm～3.5μm，松装密度为 0.9g/cm³～1.1g/cm³），化学成分均匀、合格（尤其是氧含量不超过 0.08wt%），钼粉形貌较为规则，无过多的搭接。

（2）压坯成型。采用足量吨位的液压机和模具，将钼粉压制成坯，保证压制过程达到 15MPa～30MPa 的压制力，保压时间达到 30s 以上，压坯尺寸根据液压机台面尺寸确定。

（3）低温烧结。将压坯逐排放入钼质托盘中，压坯与托片之间放置粒度为 1μm～5μm 的氧化铬球，压坯之间用 φ1mm 的钼丝间隔。将装有钼压坯的托盘放入预先升温的马弗炉，选择 800℃～1200℃的温度，对压坯烧结 1～5 小时。烧结和冷却过程保证氢气流量为 0.3m³/h～0.9m³/h。

（4）破碎和筛分。首先，采用颚式破碎机对经过低温烧结的钼板坯进行破碎，出口粒度为 1 mm～5mm，然后，采用机械合金化设备，选择 1：1 的球料比，对破碎后的钼颗粒进行球磨 1 小时，接下来，采用 60 目振动筛筛分，最后采用 560kg 空气锤对筛上物进行破碎，进行继续筛分。

实施例 1

首先，选择费氏粒度为 2.76μm，松装密度为 0.98g/cm³ 的钼粉，其氧含量为 0.067wt%，微观形貌如图 1 所示。然后，在 YA32-315A 型四柱液压机上，采用 20MPa 的压制力和 30s 的保压时间压制成坯，压坯尺寸为 16mm×60mm×160mm。将压坯逐排放入钼质托盘中，压坯与托片之间放置粒度为 1μm～5μm 的氧化铬球，压坯之间用 φ1mm 的钼丝间隔。将托盘放入马弗炉，选择 900℃/2.5h 的工艺进行低温烧结。保温烧结后推入马弗炉的冷却区冷却 1 小时，马弗炉的氢气流量为 0.7m³/h～0.8m³/h。随后将烧结后的钼板坯逐个放入上海世邦机器制造有限公司产 YGM7286 型磨粉机粉碎，对出口碎料 1：1 的球料比，在三位混料机中球磨 1 小时，球磨过程对球磨罐进行抽真空保护（真空度达 10⁻³MPa）。球磨并冷却后采用 60 目振动筛进行筛分，筛下物收集包装，筛上物放入 560kg 空气锤的砧座上（砧座装有保护套，以防钼粉污染），重锤击 3～4 次，收集锻击后的钼粉 60 目筛分，筛下物收集包装，筛上物作为钼废料，压制其它用途的板坯。

采用这种方法制备的钼粉颗粒粒度可达到 100μm～200μm，其形貌较为圆整（图 2），可满足热喷涂等后续使用要求。
实施例 2

其他条件同例 1，选择贾氏粒度为 2.5μm~3.5μm，松装密度为 0.9g/cm³~1.1g/cm³，氧含量
小于 0.08%（重量）的钼粉；在 15MPa 压制成坯；在 800℃的温度下，烧结 1 小时；将烧结后的
坯料破碎、球磨和筛分，制备出由平均粒度为 100μm~200μm 的颗粒团组成的钼粉。其形
貌较为圆整，可满足热喷涂等后续使用要求。

实施例 3

其他条件同例 1，选择贾氏粒度为 2.5μm~3.5μm，松装密度为 0.9g/cm³~1.1g/cm³，氧含量
小于 0.08%（重量）的钼粉；在 30MPa 压力下压制成坯；将压制的坯料在 1200℃的温度下，
烧结 1 小时；将烧结后的坯料破碎、球磨和筛分，制备出由平均粒度为 100μm~200μm 的颗
粒团组成的钼粉。其形貌较为圆整，可满足热喷涂等后续使用要求。
图 1

图 2