发明名称

钨粉，电容器的阳极体和电解电容器

摘要

本发明涉及钨粉，电容器的阳极体和电解电容器，钨粉的制造方法和电容器的阳极体的制造方法。该钨粉在粒子表面具有硅化钨(WSi₂等)，硅含量为 0.65～7 质量%。钨粉的平均一次粒度为 0.1～1μm，硅化钨从该粒子表面到 50nm 以内局部存在，在表面的一部分具有氮化钨、碳化钨、硼化钨中的至少一种，优选；磷元素的含量为 1～500 质量 ppm，氧含量为 0.05～8 质量%。将钨、硅、氮、碳、硼、氧和磷的各元素以外的元素的含量为 0.1 质量% 以下，优选；铸造粉的平均粒径为 50～200μm，比表面积为 0.2～20m²/g。根据本发明，可以提供低电流（LC）性能良好的钨电容器。
1. 一种钨粉，在粒子表面具有硅化钨，硅含量为 0.05 ～ 7 质量%。
2. 根据权利要求 1 所述的钨粉，硅化钨为 W_{2}Si_{3}。
3. 根据权利要求 1 所述的钨粉，平均一次粒径为 0.1 ～ 1 μm。
4. 根据权利要求 1 所述的钨粉，硅化钨从粒子表面到 50nm 以内局部存在。
5. 根据权利要求 1 所述的钨粉，在表面的一部分还具有选自氮化钨、碳化钨和硼化钨中的至少一种。
6. 根据权利要求 1 所述的钨粉，磷元素的含量为 1 ～ 500 质量 ppm。
7. 根据权利要求 1 所述的钨粉，氧含量为 0.05 ～ 8 质量%。
8. 根据权利要求 1 所述的钨粉，将钨、硅、氮、碳、硼、磷和氧的各元素外的元素的含量为 0.1 质量% 以下。
9. 根据权利要求 1 ～ 8 的任一项所述的钨粉，钨粉为造粒粉。
10. 根据权利要求 9 所述的钨粉，平均粒径为 50 ～ 200 μm。
11. 根据权利要求 9 所述的钨粉，比表面积为 0.2 ～ 20m^{2}/g。
12. 根据权利要求 1 所述的钨粉，为电解电容器用。
13. 一种电容器的阳极体，是将权利要求 1 ～ 12 的任一项所述的钨粉烧结而成的。
14. 一种电解电容器，以权利要求 13 所述的电容器的阳极体为一个电极，由该电极、对电极和介于该电极与对电极之间的电介质构成。
15. 一种制造权利要求 1 ～ 12 的任一项所述的钨粉的方法，其特征在于，向钨粉中混合 0.05 ～ 7 质量% 的硅粉，在减压下进行加热使其反应。
16. 根据权利要求 15 所述的钨粉的制造方法，加热的温度为 1100 ～ 2600℃。
17. 一种制造权利要求 1 ～ 8 的任一项所述的钨粉的方法，其特征在于，在氩气氛下，利用金属硅化合物碎屑将三氧化钨粉碎，进而混合了硅粉后，在减压下进行加热使其反应。
18. 根据权利要求 17 所述的钨粉的制造方法，加热的温度为 1100 ～ 2600℃。
19. 一种电容器的阳极体的制造方法，其特征在于，将权利要求 9 ～ 11 的任一项所述的钨粉进行烧结。
钨粉、电容器的阳极体和电解电容器

技术领域
[0001] 本发明涉及钨粉、使用该钨粉的电容器的阳极体、和使用该阳极体的电解电容器。

背景技术
[0002] 与便携电话、个人计算机等的电子设备的形状的小型化、高速化、轻量化相伴，这些电子设备所使用的电容器(Condenser)也被要求更小型且轻、更大的容量、更低的 ESR(等效串联电阻)。
[0003] 作为这样的电容器，曾提出了下述电解电容器，将由可进行阳极氧化的铝等的利用作用金属粉末的烧结体构成的电容器的阳极体进行阳极氧化，并在其表面形成了由这些金属氧化物构成的电介质层。
[0004] 作为电极作用金属使用钨，以钨粉的烧结体作为阳极体的电解电容器，虽然与使用了同一制造的铝粉的相同体积的阳极体、在相同氧化转化电压下得到的电解电容器相比，可以获得较大的容量，但漏电流(LC)大，不能作为电解电容器供实际使用。为了改善这点，曾研讨了使用钨和其他金属的合金的电容器，但漏电流虽有些改善但并不充分(日本特开2004-349658 号公报(US6,876,083B2) 专利文献1)。
[0005] 在专利文献2(日本特开2003-272959 号公报)中，公开了使用形成有选自WO3、W2N、W3N3中的一种电介质层的钨箔的电极的电容器，但并不是对于上述漏电流进行了解决的技术方案。
[0006] 另外，专利文献3(国际公开第2004/055843 号小册子(US7,154,743B2))中，公开了使用选自钡、镍、钛、钨中的阳极的电解电容器，但在说明书中没有使用钨的具体例的记载。
[0007] 在先技术文献
[0008] 专利文献1：日本特开2004-349658 号公报
[0009] 专利文献2：日本特开2003-272959 号公报
[0010] 专利文献3：国际公开第2004/055843 号小册子

发明内容
[0011] 本发明的目的是提供一种钨粉、使用该钨粉的电容器的阳极体、和使用该阳极体作为电极的电解电容器，该钨粉可解决在以作为电极作用金属的钨粉的烧结体为阳极体的电解电容器中的漏电流(LC)的问题。
[0012] 本发明者发现，通过使用下述钨粉的烧结体作为阳极体，可以解决上述问题，从而完成了发明，该钨粉以硅含量成为特定的范围的方式将其表面的一部分形成硅化钨。
[0013] 即，本发明涉及以下所述的钨粉、钨的阳极体、电解电容器、钨粉的制造方法和电容器的阳极体的制造方法。
[0014] [1] 一种钨粉，在粒子表面具有硅化钨，硅含量为 0.05 ～ 7 质量%。
[0015] [2] 根据前项1所述的钨粉，硅化钨为 W2Si3。
[0016] [3] 根据前项所述的钨粉，平均一次粒径为 0.1 ～ 1 μm。
[0017] [4] 根据前项所述的钨粉，硅化钨从粒子表面到 50nm 以内局部存在。
[0018] [5] 根据前项所述的钨粉，在表面的一部分还具有选自氮化钨、碳化钨和硼化钨中的至少一种。
[0019] [6] 根据前项所述的钨粉，磷元素的含量为 1 ～ 500ppm。
[0020] [7] 根据前项所述的钨粉，氧含量为 0.05 ～ 8 质量%。
[0021] [8] 根据前项所述的钨粉，将钨、硅、氮、碳、硼、磷和氧的各元素除外的元素的含量为 0.1 质量% 以下。
[0022] [9] 根据前项所述的任一项所述的钨粉，钨粉为造粒粉。
[0023] [10] 根据前项所述的钨粉，平均粒径为 50 ～ 200μm。
[0024] [11] 根据前项所述的钨粉，比重为 2 ～ 20m²/g。
[0025] [12] 根据前项所述的任一项所述的钨粉，为电解电容器用。
[0026] [13] 一种电容器的阳极体，是将前项所述的钨粉烧结而成的。
[0027] [14] 一种电极电容器，以前项所述的电容器的阳极体为一个电极，由该电极、对电极和介于该电极与对电极之间的电介质构成。
[0028] [15] 一种制造前项所述的钨粉的方法，其特征在于，向钨粉中混合 0.05 ～ 7 质量% 的硅粉，在减压下进行加热使其反应。
[0029] [16] 根据前项所述的钨粉的制造方法，加热的温度为 1100 ～ 2600°C。
[0030] [17] 一种制造前项所述的钨粉的方法，其特征在于，在氢气气氛下，利用金属硅化物粉末将三氧化钨粉碎，进而混合了硅粉后，在减压下进行加热使其反应。
[0031] [18] 根据前项所述的钨粉的制造方法，加热的温度为 1100 ～ 2600°C。
[0032] [19] 一种电容器的阳极体的制造方法，其特征在于，将前项所述的钨粉进行烧结。
[0033] 根据本发明的钨粉，与以往的钨粉、钨合金粉相比，可以制作容量为同等以上，每单位容量的LC特性良好的电解电容器。

具体实施方式
[0034] 本发明中使用的钨粉（未加工的的钨粉）是市售的。粒径更小的钨粉，例如可以通过将三氧化钨粉在氢气气氛中粉碎，或者使用氢、钠等还原剂将钨酸和/或卤化钨适当选择还原条件来得到。
[0035] 另外，也可以通过从含钨矿物直接或者经过数道工序，选择还原条件来得到。
[0036] 表面的至少一部分被硅化了的本发明的钨粉，例如可以通过将硅粉与钨粉良好地混合，在减压下加热使其反应来得到。在该方法的情况下，钨粉从钨粒子表面反应，W₅Si₃等的硅化钨从钨粒子表面到通常 50nm 以内局部存在而形成。因此，在一次粒子的中心部导电率高的金属原样地残留，在制做出电容器的阳极体时，抑制阳极体的等效串联电阻为较低，因此优选。硅化钨的含量可以通过硅的添加量来调整。另外，无论是哪种硅化钨，其含量以硅含量为指标即可。本发明的钨粉的硅含量优选为 0.05 ～ 7 质量%，特别优选为 0.2 ～ 4 质量%。该范围的硅含量的钨粉，赋予 LC 特性良好的电容器，是作为电解电容器用粉体优选的钨粉。如果硅含量低于 0.05 质量%，则时有时不成为赋予 LC 性能良好的电解电容器的粉。
如果超过 7 质量%，则粉末的硅化部分过多，将该粉末烧结的烧结体作为阳极体化学转变的
情况下，电介质层不能很好地形成。

[0037] 上述减压条件在 10⁻³Pa 以下，优选在 10⁻⁴Pa 以下进行时，可以将氧含量设定为作为
优选范围的 0.05 ~ 8 质量%。

[0038] 反应温度优选为 1100°C 以上 2600°C 以下。使用的硅的粒径越小，就可在越低的温
度下进行硅化，但如果低于 1100°C，则硅化就需要费时。如果超过 2600°C，则硅变得容易
气化，变得需要与之对应的减压高温炉的保养。

[0039] 放置在高温下的时间，优选 3 分钟以上且低于 2 小时。与使用的减压高温炉等相
配合的温度和时间的最适条件，分析预实验中制作出的粉末进行决定即可。

[0040] 粉末也可以进一步造粒（以下，有时将造粒后的粉末简称为「造粒粉」）。作为电解
电容器用的粉末，在阳极体上容易形成细孔，所以更优选造粒粉。

[0041] 也可以使用上述的未造粒的各粉末体（以下，有时称为「一次粉末」）。例如对于粉末，
如日本特开 2003-213302 号公报所公开的那样调整细孔分布。

[0042] 作为使用的硅的形态，块状物或粒状物均可，但考虑与粉末混合性则使用粒径细
的粉体容易均匀混合从而优选。与粉末混合的硅，与粉末粒子的表面反应。通常，表面的至
少一部分被硅化的粉末的硅化量，与硅化反应时的硅投入量大致相等。因此，硅化反应时硅
的投入量，以与具有硅化物的目的物的粉末的硅含量同量的 0.05 ~ 7 质量%，优选 0.2 ~ 4
质量% 为标准进行即可。

[0043] 在氩气氛下用粉碎机械将氧化物粉末粉碎，可以得到更细的粒径的粉末。粉碎机械，
优选使用硅锆，硅化锆等的金属粉化物制的粉碎机械进行粉碎。为这些金属粉化物，则即使粉碎
机械的微细碎片混入也对得到的电容器特性的影响小。特别优选难以变为杂质的硅化物的
粉碎机械。

[0044] 再者，在表面的至少一部分被硅化的粉末中也可以混合未反应的粉末。该情况下，
在两者混合的状态下，硅含量优选为上述的范围。

[0045] 各种粉末的造粒物，可以将粉末在减压下高温下烧结，形成颗粒状或者块状，在
回到室温后，用锤击式粉碎机等破碎而得到。该情况的压力、温度条件、放置时间等，可以
与上述的减压下高温下得到表面的至少一部分被硅化的粉末的条件相同，但是温度比其高
100 ~ 300°C 左右时可得到有强度的造粒粉，因此优选。

[0046] 另外，造粒粉也可以在一次粉末中加入水等的液体或液态树脂中的至少一种，形成为
适当大小的颗粒状后，在减压下加热，进行烧结而得到。减压条件和高温放置条件，可以
在上述范围内通过预备实验求得。如果没有烧结后的颗粒彼此的凝聚，就没有必要破碎。

[0047] 这样的造粒粉，可以用筛进行分级使粒径一致。如果平均粒径优选为 50 ~
200 μm，更优选为 100 ~ 200 μm 的范围，则作为电解电容器的阳极体形成的情况下，粉可以
从成形机的料斗中顺畅的流入金属模具中，因此优选。

[0048] 将表面的一部分硅化的平均一次粒径为 0.1 ~ 1 μm，优选为 0.1 ~ 0.3 μm 的粉末
，特别地，可以使由该造粒粉制成的电解电容器的容量变大。

[0049] 在得到这样的造粒物的情况下，例如调整上述一次粒径，将造粒粉的比表面积（根
据 BET 法）变成优选 0.2 ~ 20 m²/g，更优选 1.5 ~ 20 m²/g 时，可以使电解电容器的容量变大
从而优选。
[0050] 本发明的表面具有硅化了的钨的钨粉，还优选使用在表面的一部分，具有选自氯化钨、碳化钨和硼化钨中的至少一种的钨粉。
[0051] 作为将各种钨粉的表面的一部分氯化的方法的一例，有将该粉在减压下置于350 ～ 1500℃，通数分钟～数小时的氯气的方法。氯化可以在将钨粉进行碳化时的高温处理时进行，也可以先进行氯化再进行碳化。此外，一次粉时，也可以在造粒粉制作后，或者烧结体制作后进行氯化。这样，氯化的时间没有限定，但优选在工序早期阶段事先将氯含量设为0.01 ～ 1 质量%。通过氯化，在空气中处理粉体时，可以防止必要以上的氧化。
[0052] 再者，上述氯含量中，除了与钨结合的氯以外，也含有与钨没有化学键的氯（例如固溶了的氯）。
[0053] 作为将各种粉体的表面的一部分进行碳化的方法的一例，有将该粉在使用了碳电极的减压高温炉中在300 ～ 1500℃下放置数分钟～数小时的方法。优选通过选择温度和时间，进行碳化使得碳含量成为0.001 ～ 0.1 质量%。碳化的时期与上述的氯化的时间相同。在碳电极炉中，在规定的条件下流通氮时，同时引起碳化和氮化，也可以制作将表面的一部分进行了硅化、氯化、碳化的钨粉。
[0054] 作为将表面的一部分进行了碳化的钨粉的表面的一部分进行硼化的方法的一例，有在对该粉进行造粒时，设置硼元素和/或具有硼元素的化合物作为硼源，进行造粒的方法。优选进行硼化使得含量成为0.001 ～ 0.1 质量%。如果为该范围，则可得到良好的LC特性。硼化的时期，与上述的氯化时期相同。将前氯化的粉放入碳化电极炉，进行碳化进行造粒时，可以将表面的一部分进行了碳化、氮化、碳化、硼化的钨粉。进行规性的硼化，有时LC进一步变好。
[0055] 也可以在表面的至少一部分进行了碳化的钨粉中加入氯化了的钨粉、碳化了的钨粉、硼化了的钨粉中的一种。该情况下，优选对于硅、氮、碳和硼的各元素进行配合使得它们分别落入上表含量的范围内。
[0056] 上述的氯化、碳化、硼化的方法中，说明了以各表面的一部分硅化了的钨粉为对象进行的情况，但也可以对先进行了氮化、碳化、硼化中的至少一种的钨粉，进一步将表面的一部分进行碳化。也可以在表面至少一部分进行了碳化的钨粉，进行了氮化、碳化、硼化中的至少一种的钨粉中混合钨单独粉，但对于硅、氮、碳和硼的各元素，优选进行配合使得它们分别落入上表含量的范围内。
[0057] 本发明的钨粉的氧含量，优选为0.05 ～ 8 质量%，更优选为0.08 ～ 1 质量%。
[0058] 作为将氧含量设为0.05 ～ 8 质量%的方法，有将表面的至少一部分被硅化的钨粉，以及将表面的一部分进行了氮化、碳化、硼化的至少一种的钨粉的表面进行氧化的方法。具体地说，在各粉的一次粉制作时或造粒粉制作时的减压高温炉中取出时，投入含有氮的氮气。此时，如果从减压高温炉的取出温度低于280℃，则氧化比氯化优先发生。通过逐渐地插入气体，可以形成规定的氧含量。通过事先将各钨粉设定为规定的氧含量，可以缓和使用该粉在以后的制作电极容器的阳极体的工序中的不规则的过度的氧化劣化。如果氧含量在上述范围内，则可以更良好地保持制成的电极容器的LC特性。在该工序中不进行氮化的情况下，也可以使用氮气、氮气等惰性气体代替氮气。
[0059] 本发明的钨粉，优选磷元素的含量为1 ～ 500 质量ppm。
[0060] 作为将表面的至少一部分被硅化了的钨粉，以及将表面的一部分进行了氯化、碳
化、硼化、氧化中的至少一种的钨粉，含有 1 ~ 500 质量 ppm 的磷元素的方法的一例，有在各
粉的一次粉制作时或造粒粉制作时，将磷和 / 或磷化合物作为磷化处理置于减压高温炉中，
制作含有磷的粉的方法。通过调整磷化处理的量等，含有磷成为上述的含量时，有时可以增强
制成阳极体时的阳极体的物理破坏强度，因此优选。在该范围时，制成的电解电容器的 LC
性能变得更好。

[0061] 为得到更良好的 LC 特性，表面的至少一部分被硅化了的钨粉中，对于硅、氮、碳、
硼、氧和磷的各元素以外的杂质元素的含量，优选抑制为合计 0.1 质量 % 以下。为将这些元
素抑制在上述含量以下，需要详细地研究原料、使用粉碎剂、容器等所含有的杂质元素量。

[0062] 将本发明的钨粉进行烧结，得到电容器的阳极体。再以上述阳极体为一个电极（阳
极），由该电极对电极（阴极）和介于该电极与对电极之间的电介质形成电解电容器。

[0063] 实施例

[0064] 以下列举实施例和比较例，对本发明进行说明，但本发明丝毫不因下述记载而被
限定。

[0065] 本发明中，粒径、比表面积和元素分析采用以下方法进行了测定。

[0066] 粒径使用マイクロトラック公司制的 HRA9320～X100，利用激光衍射散射法测定粒
度分布，以其累积体积 % 相当于 50 体积 % 的粒径值（D50, μm）为平均粒径。再者，在该方法
中，虽然测定粒径，但在一次粉的情况下，通常分散性良好，所以利用该测定装置测定
的一次粉的平均粒径大致看成平均一次粒径。

[0067] 比表面积使用 NOVA2000E（SYSMEX 公司），采用 BET 法测定。

[0068] 元素分析使用 ICPS-8000E（岛津制），进行 ICP 发光分析。

[0069] 实施例 1：

[0070] 在氢气流中 980℃下将钨酸还原，得到平均粒径为 0.5 μm，比表面积为 0.3 m²/g 的
钨的一次粉。对该粉末混合 4.8 质量 % 的另行准备了的市售硅粉（平均粒径为 1 μm），放入钨
制的容器中，在钼电极的减压高温炉中，在 3 × 10⁻¹³ Pa 下在 1320℃放置 20 分钟，其后进行冷
却直到变为室温，并恢复到常压。其后用锤击式粉碎机破碎，利用筛孔为 320 μm 的筛除去
粗粒，得到钨造粒粉。得到的造粒粉，平均粒径为 120 μm，比表面积为 0.2 m²/g。

[0071] 对得到的造粒粉进行了元素分析，硅为 4.8 质量 %，氧为 0.95 质量 %，其他杂质
元素均为 350 质量 ppm 以下。

[0072] 另外，利用 X 射线衍射装置（X’pert PRO PANalytical 制）分析了造粒粉，从造粒
粉的粒子表面检测到作为反应物的硅化钨。检测到的硅化钨基本上是 W₈S₂₃。另外，将造
粒粉酸洗，同样进行了分析，可知反应物的硅化钨存在于从造粒粉的粒子表面到 30 nm 的
范围。即，确认出硅在造粒粉的表层的至少一部分以硅化钨的形式存在。

[0073] 实施例 2 ~ 5 和比较例 1 ~ 2；

[0074] 在实施例 1 中变更了硅的混合量，除此以外与实施例 1 同样地得到钨造粒粉。各
例的平均粒径和比表面积与实施例 1 是同样的。在各例中得到的造粒粉，对于硅和氧的含
量为表 1 的结果，其他的杂质元素均为 350 质量 ppm 以下。

[0075] 实施例 6：

[0076] 将市售的三氧化钨粉、该三氧化钨粉 25 倍质量的粉碎剂（直径为 1 mm 的硅化钨球）
和水，在固体成分沉降的程度，分别放入三井矿山公司制粉碎机アトリュート（Attritor）
中，在氢气流下，在700℃破碎5小时。

[0077] 除去粉末后，使水蒸发后，得到平均粒径为0.3μm，比表面积为2.3m²/g的粉的一次粉。接着，加入3.7质量％的市售硅粉（平均粒径为1μm）良好地混合，放入盛有高温炉中，在7×10⁻³Pa下，在1360℃下放置20分钟。在降温的中途1000℃，向炉中加入氢气以成为10kPa，保持10分钟。最后在室温、真空下，向炉中通入1小时的氢气5体积％、氧为95体积％的混合气体，然后取出至炉外。其后，用锤击式粉碎机破碎，用筛孔为320μm的筛除去粗粒，得到铝造粒粉。得到的铝造粒粉，平均粒径为100μm，比表面积为1.6m²/g，硅为3.7质量％，氧为880质量ppm，氮为0.15质量％，其他的杂质元素均为260质量ppm以下。

[0078] 实施例7：

[0079] 通过将氯化钙在400℃下进行气相还原，可以得到平均粒径为0.1μm，比表面积为9.6m²/g的钙一次粉。在将氯化铁的硬脂酸0.3g溶于甲苯3g的液体中良好地混合于钙粉20g，得到平均粒径为160μm的颗粒状的混合物。在得到的颗粒状的混合物中，加入0.05质量％的磷酸，放入平均粒径为1μm的硅粉0.1g并良好地混合，放入实施例1中使用的碱压高温炉中，在1×10⁻³Pa以下，1340℃中放置20分钟，其后放冷达到室温后恢复常压。这样得到的铝造粒粉，平均粒径为180μm，比表面积为8.5m²/g，硅为0.5质量％，氧为0.33质量％，碳为300质量ppm，磷为100质量ppm，其他的杂质元素均为150质量ppm以下。

[0080] 实施例8：

[0081] 在实施例4中制作铝造粒粉之前，事先对钙的一次粉加入硼溶液（在20质量％的硝酸水溶液中溶解了0.1质量％的硼的溶液）并进行混合使得硼成为0.03质量％的添加剂，接着，在260℃的温度、7×10⁻³Pa的碱压下放置2小时进行干燥并恢复到室温。使用这样处理过的铝粉，与实施例4同样地混合硅，得到铝造粒粉。其中，将相电极的碱压高温炉的温度设为1420℃。得到的造粒粉，平均粒径为120μm，比表面积为0.2m²/g，硅为0.5质量％，氧为1.05质量％，氮为400质量ppm，硼为280质量ppm，其他的杂质元素均为350质量ppm以下。

[0082] 实施例9：

[0083] 在实施例6中，不将混合气体通过炉中而取出到炉外，除此以外与实施例6同样地制成铝造粒粉。得到平均粒径为100μm，比表面积为1.6m²/g的铝造粒粉。得到的造粒粉，硅为3.7质量％，氧为5.4质量％，氮为0.13质量％，其他的杂质元素均为350质量ppm以下。

[0084] 实施例10：

[0085] 在实施例7中制作颗粒状的混合物时，代替硬脂酸的甲苯溶液，使用使平均粒径1μm的硅粉0.1g分散了的水50ml，而且不加入磷酸，除此以外与实施例7同样地得到平均粒径为180μm，比表面积为8.5m²/g的铝造粒粉。得到的造粒粉，硅为0.5质量％，氧为3.1质量％，其他的杂质元素均为550质量ppm以下。

[0086] 实施例11：

[0087] 在实施例8中加入硼溶液使得硼成为0.055质量％的添加剂，除此以外与实施例8同样地得到铝造粒粉。得到的铝造粒粉，平均粒径为120μm，比表面积为0.2m²/g，硅为0.5质量％，氧为1.05质量％，氮为400质量ppm，硼为490质量ppm，其他的杂质元素均为350质量
量 ppm 以下。

0088 实施例 12：
0089 在实施例 8 中加入硼溶液使得硼成为 0.005 质量%的添加量，除此之外与实施例 8 同样地得到造粒粉。得到的造粒粉，平均粒径为 120 μm，比表面积为 0.2m²/g，硅为 0.5 质量%，氧为 1.1 质量%，氢为 400 质量 ppm，硼为 2 质量 ppm，其他的杂质元素均为 350 质量 ppm 以下。

0090 实施例 13：
0091 将实施例 7 中加入的磷酸以成为 0.3 质量%的方式加入，除此之外与实施例 7 同样地得到造粒粉。得到的造粒粉，平均粒径为 180 μm，比表面积为 8.8m²/g，硅为 0.5 质量%，氧为 3.5 质量%，碳为 300 质量 ppm，磷为 480 质量 ppm，其他的杂质元素均为 150ppm 以下。

0092 实施例 14：
0093 将实施例 7 中加入的磷酸以成为 0.005 质量%的方式加入，除此之外与实施例 7 同样地得到造粒粉。得到的造粒粉，平均粒径为 180 μm，比表面积为 8.8m²/g，硅为 0.5 质量%，氧为 3.3 质量%，碳为 300 质量 ppm，磷为 2 质量 ppm，其他的杂质元素均为 150 质量 ppm 以下。

0094 比较例 3：
0095 在市售的钨粉中以成为 1 质量%的方式良好地混合钨粉，放入坩埚中，在真空电弧溶解炉中进行合金化。将该合金使用实施例 6 中使用的粉碎机，将粉碎剂设为钨球进行粉碎并干燥，得到平均粒径为 0.5 μm，比表面积为 0.3m²/g 的钙－钨合金的一次粉。其后，不加入硅，除此之外与实施例 1 同样地得到钙－钨合金的造粒粉。得到的造粒粉，平均粒径为 120 μm，比表面积为 0.2m²/g，钙为 1 质量%，氧为 1 质量%，其他的杂质元素均为 440 质量 ppm 以下。

0096 比较例 4：
0097 实施例 1 中代替硅混合 1 质量%的平均粒径为 1 μm 的二氧化硅粉，除此之外与实施例 1 同样地得到造粒粉。得到的造粒粉，硅为 0.5 质量%，氧为 1.4 质量%，其他的杂质元素均为 350ppm 以下。但是，虽与实施例 1 同样地进行了硅化铝的分析，但是没有检测到硅化铝，另外，由 SEM 观察可知二氧化硅粒子孤立地存在于是钨粒子间。

0098 将以上各例中制成的造粒粉成形，制成大小为 1.8×3.0×3.5mm 的成形体。该成形体直径为 0.29mm 的钉线垂直地嵌入于 1.8×3.0 面上，在内部处 2.8mm，向外部伸出 8mm。将该成形体在上述的钼电极的恒压高温炉中，以 1400℃真空烧结 30 分钟，得到质量 145mg 的烧结体。

0099 将得到的烧结体作为电解电容器的阳极体使用。将阳极体在 0.1 质量%的磷酸水溶液中，以 9V 化学转化 2 小时，在阳极体表面形成了电介质层。将形成了电介质层的阳极体浸泡在以氯化钠为阴极的 30% 硫酸水溶液中，形成电解电容器，测量了容量和 LC 值。容量使用ア ジレント制的 LCR 测量仪，在室温、120Hz，用偏压 2.5V 值的值测定。LC 值，在室温施加 2.5V 在 30 秒后测定。

0100 各实施例・各比较例的结果示于表 1。

0101 表 1
<table>
<thead>
<tr>
<th>实施例</th>
<th>硅质量%</th>
<th>其他主要元素</th>
<th>容量 μF</th>
<th>LC μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>例 1</td>
<td>4.8</td>
<td>氧 0.95质量%</td>
<td>770</td>
<td>10.5</td>
</tr>
<tr>
<td>例 2</td>
<td>0.05</td>
<td>氧 1.04质量%</td>
<td>850</td>
<td>11.3</td>
</tr>
<tr>
<td>例 3</td>
<td>0.2</td>
<td>氧 0.89质量%</td>
<td>800</td>
<td>4.0</td>
</tr>
<tr>
<td>例 4</td>
<td>0.5</td>
<td>氧 0.92质量%</td>
<td>830</td>
<td>3.1</td>
</tr>
<tr>
<td>例 5</td>
<td>6.8</td>
<td>氧 0.79质量%</td>
<td>640</td>
<td>13.7</td>
</tr>
<tr>
<td>例 6</td>
<td>3.7</td>
<td>氮 880质量ppm</td>
<td>1300</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氧 0.15质量%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 7</td>
<td>0.5</td>
<td>氧 0.33质量%</td>
<td>4200</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 300质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 8</td>
<td>0.5</td>
<td>氧 1.05质量%</td>
<td>820</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氮 400质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 280质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 9</td>
<td>3.7</td>
<td>氧 5.4质量%</td>
<td>1300</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氮 0.13质量%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 10</td>
<td>0.5</td>
<td>氧 3.1质量%</td>
<td>4300</td>
<td>9.7</td>
</tr>
<tr>
<td>例 11</td>
<td>0.5</td>
<td>氧 1.05质量%</td>
<td>820</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氮 400质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 490质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 12</td>
<td>0.5</td>
<td>氧 1.1质量%</td>
<td>820</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氮 400质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 2质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 13</td>
<td>0.5</td>
<td>氧 3.5质量%</td>
<td>4200</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 300质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>磷 480质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 14</td>
<td>0.5</td>
<td>氧 3.3质量%</td>
<td>4200</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>碳 300质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>磷 2质量ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>比较例 1</td>
<td>0.03</td>
<td>氧 0.9质量%</td>
<td>880</td>
<td>96</td>
</tr>
<tr>
<td>比较例 2</td>
<td>7.4</td>
<td>氧 1.1质量%</td>
<td>600</td>
<td>48.2</td>
</tr>
<tr>
<td>比较例 3</td>
<td>0.0</td>
<td>锌 1质量%</td>
<td>520</td>
<td>29.3</td>
</tr>
<tr>
<td>比较例 4</td>
<td>0.5*1</td>
<td>氧 1.4质量%</td>
<td>800</td>
<td>120</td>
</tr>
</tbody>
</table>

*1 作为二氧化硅存在

[0103] 从表1可知，与比较例相比，实施例的电解电容器的每单位容量的LC特性优异。