
(12) STANDARD PATENT (11) Application No. AU 2013276800 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Randomized testing within transactional execution

(51) International Patent Classification(s)
G06F 11/36 (2006.01) G06F 9/46 (2006.0 1)

(21) Application No: 2013276800 (22) Date of Filing: 2013.05.03

(87) WIPO No: WO13/185978

(30) Priority Data

(31) Number (32) Date (33) Country
13/524,796 2012.06.15 US

(43) Publication Date: 2013.12.19
(44) Accepted Journal Date: 2016.08.18

(71) Applicant(s)
International Business Machines Corporation

(72) Inventor(s)
Greiner, Dan;Jacobi, Christian;Slegel, Timothy

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

(56) Related Art
US 2011/0145498 Al
US 2007/0162246 Al
US 2010/0332538 Al
US 5504900 A
US 2010/0332901 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/185978 Al
19 December 2013 (19.12.2013) W I P 0 I P C T

(51) International Patent Classification: keepsie, New York 12601-5400 (US). SLEGEL,
G06F 11/36 (2006.01) G06F 9/46 (2006.01) Timothy; IBM Corporation, M/P MS-P310, 2455 South

(21) International Application Number: Road, Poughkeepsie, New York 12601-5400 (US).

PCT/EP2013/059205 (74) Agent: WILLIAMS, Julian; IBM United Kingdom Lim

(22) International Filing Date: ited, Intellectual Property Law, Hursley Park, Winchester

3 May 2013 (03.05.2013) Hampshire S021 2JN (GB).

(81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

13/524,796 15 June 2012 (15.06.2012) US HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(71) Applicant: INTERNATIONAL BUSINESS MA- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

CHINES CORPORATION [US/US]; New Orchard ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

Road, Armonk, New York 10504 (US). NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(71) Applicant (for MG only): IBM UNITED KINGDOM TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports- ZM, ZW.
mouth Hampshire P06 3AU (GB). (84) Designated States (unless otherwise indicated, for every

(72) Inventors: GREINER, Dan; IBM Corporation, M/P kind of regional protection available): ARIPO (BW, GH,
SVL/090/F374, 555 Bailey Ave, Santa Teresa Lab, San GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Jose, California 95141-1003 (US). JACOBI, Christian; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
IBM Corporation, M/P-P310, 2455 South Road, Pough- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: RANDOMIZED TESTING WITHIN TRANSACTIONAL EXECUTION

(57) Abstract: Task specific diagnostic controls are provided to facilitate the

AA RANDOM TESTING debugging of certain types of abort conditions. The diagnostic controls may
be set to cause transactions to be selectively aborted, allowing a transaction
to drive its abort handler routine for testing purposes. The controls include,

1400 TRANSACTION IS INITIATED for instance, a transaction diagnostic scope and a transaction diagnostic con

trol. The transaction diagnostic scope indicates when the transaction dia
gnostic control is to be applied, and the transaction diagnostic control indic
ates whether transactions are to selectively aborted.

1402 CHECK STATE OF PROCESSOR
AND TDS VALUE

1404 BB
TDC NO

APPLIES?

YES cc

1406 CHECK TDC VALUE

148 ABORT TRANSACTION
148- BASED ON TDC

DD

FIG. 14

W O 2 0 13 /1 8 5 9 7 8 A 1|lllll|||ll|||1llllllllllll1||||II||||||||||||||||||||||||||||||||||I||||||||||||||||||
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK' - with international search report (Art. 21(3))
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG). - with amended claims (Art. 19(1))

1

RANDOMIZED TESTING WITHIN TRANSACTION EXECUTION

TECHNICAL FIELD

One or more aspects relate, in general, to multiprocessing computing environments, and in

particular, to transactional processing within such computing environments.

BACKGROUND

An enduring challenge in multiprocessor programming is that of updates to the same storage

location by multiple central processing units (CPUs). Many instructions that update storage

locations, including even simple logical operations, such as AND, do so with multiple accesses

to location. For instance, first, the storage location is fetched, and then, the updated result is

stored back.

In order for multiple CPUs to safely update the same storage location, access to the location is

serialized. One instruction, the TEST AND SET instruction, introduced with the S/360

architecture formerly offered by International Business Machines Corporation, provided an

interlocked update of storage location. Interlocked update means that, as observed by other

CPUs and the input/output (1/0) subsystem (e.g., channel subsystem), the entire storage access

of the instruction appears to occur atomically. Later, the S/370 architecture offered by

International Business Machines Corporation introduced the COMPARE AND SWAP and

COMPARE DOUBLE AND SWAP instructions that provide a more sophisticated means of

performing interlocked update, and allow the implementation of what is commonly known as a

lock word (or semaphore). Recently added instructions have provided additional interlocked

update capabilities, including COMPARE AND SWAP AND PURGE, and COMPARE AND

SWAP AND STORE. However, all of these instructions provide interlocking for only a single

storage location.

Most complex program techniques may require the interlocked update of multiple storage

locations, such as when adding an element to a doubly-linked list. In such an operation, both a

forward and backward pointer are to appear to be simultaneously updated, as observed by other

CPUs and the 1/0 subsystem. In order to effect such a

WO 2013/185978 PCT/EP2013/059205
2

multiple location update, the program is forced to use a separate, single point of serialization,

such as a lock word. However, lock words may provide a much courser level of serialization

than is warranted; for example, the lock words may serialize an entire queue of millions of

elements, even though only two elements are being updated. The program may structure the

5 data to use finer-grained serialization (e.g., a hierarchy of lock points), but that introduces

additional problems, such as potential deadlock situations if the hierarchy is violated, and

recovery issues if the program encounters an error while holding one or more locks or if the

lock cannot be acquired.

10 In addition to the above, there are numerous scenarios where a program may execute a

sequence of instructions that may or may not result in an exception condition. If no

exception condition occurs, then the program continues; however, if an exception is

recognized, then the program may take corrective action to eliminate the exception

condition. Java, as one example, can exploit such execution in, for instance, speculative

15 execution, partial in-lining of a function, and/or in the re-sequencing of pointer null

checking.

In classic operating system environments, such as z/OS and its predecessors offered by

International Business Machines Corporation, the program establishes a recovery

20 environment to intercept any program-exception condition that it may encounter. If the

program does not intercept the exception, the operating system typically abnormally

terminates the program for exceptions that the operating system is not prepared to handle.

Establishing and exploiting such an environment is costly and complicated.

25 BRIEF SUMMARY

Shortcomings of the prior art are overcome and advantages are provided through the

provision of a computer program product for controlling execution of transactions in a

computing environment. The computer program product includes a computer readable

30 storage medium readable by a processing circuit and storing instructions for execution by the

processing circuit for performing a method. The method includes, for instance, initiating a

transaction in a computing environment, the transaction effectively delaying committing

transactional stores to main memory until completion of a selected transaction; and

3

determining, by a processor, whether the transaction is to be aborted, the determining employing

one or more controls of a control register used by the processor, the one or more controls to

indicate whether transactions are to be selectively aborted.

Methods and systems relating to one or more embodiments are also described and claimed

herein. Further, services relating to one or more embodiments are also described and may be

claimed herein.

According to a first aspect, the present disclosure provides a computer system for controlling

execution of transactions in a computing environment, said computer system comprising: a

memory; and a processor in communications with the memory, wherein the computer system is

configured to perform a method, said method comprising: initiating a transaction in a computing

environment, the transaction effectively delaying committing transactional stores to main

memory until completion of a selected transaction; and determining, by the processor, whether

the transaction is to be aborted, the determining employing one or more controls of a control

register used by the processor, the one or more controls to indicate whether transactions are to

be randomly selected to be aborted for testing purposes, and wherein the control register

comprises: a transaction diagnostic control, wherein a first value of the transaction diagnostic

control indicates transactions are not to be aborted based on the transaction diagnostic control, a

second value of the transaction diagnostic control indicates each transaction is to be aborted

based on the transaction diagnostic control, and a third value of the transaction diagnostic

control indicates transactions are to be randomly selected to be aborted; and a transaction

diagnostic scope to indicate whether the transaction diagnostic control is to be applied, wherein

a first value of the transaction diagnostic scope indicates the transaction diagnostic control is to

be applied based on the processor being in a problem state or a supervisor state, and a second

value of the transaction diagnostic scope indicates the transaction diagnostic control is to be

applied exclusive to the processor being in the problem state.

According to a second aspect, the present disclosure provides a method of controlling execution

of transactions in a computing environment, said method comprising: initiating a transaction in a

computing environment, the transaction effectively delaying committing transactional stores to

main memory until completion of a selected transaction; and determining, by a processor,

whether the transaction is to be aborted, the determining employing one or more controls of a

control register used by the processor, the one or more controls to indicate whether transactions

are to be randomly selected to be aborted for testing purposes, and wherein the control register

3a

comprises: a transaction diagnostic control, wherein a first value of the transaction diagnostic

control indicates transactions are not to be aborted based on the transaction diagnostic control, a

second value of the transaction diagnostic control indicates each transaction is to be aborted

based on the transaction diagnostic control, and a third value of the transaction diagnostic

control indicates transactions are to be randomly selected to be aborted; and a transaction

diagnostic scope to indicate whether the transaction diagnostic control is to be applied, wherein

a first value of the transaction diagnostic scope indicates the transaction diagnostic control is to

be applied based on the processor being in a problem state or a supervisor state, and a second

value of the transaction diagnostic scope indicates the transaction diagnostic control is to be

applied exclusive to the processor being in the problem state.

Additional features and advantages are realized. Other embodiments and aspects are described

in detail herein and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects are particularly pointed out and distinctly claimed as examples in the

claims at the conclusion of the specification. The foregoing and other objects, features, and

advantages are apparent from the following detailed description taken in conjunction with the

accompanying drawings in which:

FIG. 1 depicts one embodiment of a computing environment;

FIG. 2A depicts one example of a Transaction Begin (TBEGIN) instruction;

FIG. 2B depicts one embodiment of further details of a field of the TBEGIN instruction of FIG.

2A;

FIG. 3A depicts on example of a Transaction Begin constrained (TBEGINC) instruction;

FIG. 3B depicts one embodiment of further details of a field of the TBEGINC instruction of

FIG. 3A;

FIG. 4 depicts one example of a Transaction End (TEND) instruction;

FIG. 5 depicts one example of a Transaction Abort (TABORT) instruction;

FIG. 6 depicts one example of nested transactions;

FIG. 7 depicts one example of a NONTRANSACTIONAL STORE (NTSTG) instruction;

FIG. 8 depicts one example of an EXTRACT TRANSACTION NESTING DEPTH (ETND)

instruction;

FIG. 9 depicts one example of a transaction diagnostic block;

WO 2013/185978 PCT/EP2013/059205
4

FIG. 10 depicts example reasons for abort, along with associated abort codes and condition

codes;

FIG. 11 depicts one embodiment of the logic associated with executing a TBEGINC

instruction;

5 FIG. 12 depicts one embodiment of the logic associated with executing a TBEGIN

instruction;

FIG. 13 depicts one embodiment of the logic associated with transaction abort processing;

FIG. 14 depicts one embodiment of the logic associated with random testing;

FIG. 15 depicts one embodiment of a computer program product;

10 FIG. 16 depicts one embodiment of a host computer system;

FIG. 17 depicts a further example of a computer system;

FIG. 18 depicts another example of a computer system comprising a computer network;

FIG. 19 depicts one embodiment of various elements of a computer system;

FIG. 20A depicts one embodiment of the execution unit of the computer system of FIG. 19;

15 FIG. 20B depicts one embodiment of the branch unit of the computer system of FIG. 19;

FIG. 20C depicts one embodiment of the load/store unit of the computer system of FIG. 19;

and

FIG. 21 depicts one embodiment of an emulated host computer system.

20 DETAILED DESCRIPTION

In accordance with one aspect, a transactional execution (TX) facility is provided. This

facility provides transactional processing for instructions, and in one or more embodiments,

offers different execution modes, as described below, as well as nested levels of

25 transactional processing.

The transactional execution facility introduces a CPU state called the transactional execution

(TX) mode. Following a CPU reset, the CPU is not in the TX mode. The CPU enters the

TX mode by a TRANSACTION BEGIN instruction. The CPU leaves the TX mode by

30 either (a) an outermost TRANSACTION END instruction (more details on inner and outer to

follow), or (b) the transaction being aborted. While in the TX mode, storage accesses by the

CPU appear to be block-concurrent as observed by other CPUs and the I/O subsystem. The

storage accesses are either (a) committed to storage when the outermost transaction ends

WO 2013/185978 PCT/EP2013/059205
5

without aborting (i.e., e.g., updates made in a cache or buffer local to the CPU are

propagated and stored in real memory and visible to other CPUs), or (b) discarded if the

transaction is aborted.

5 Transactions may be nested. That is, while the CPU is in the TX mode, it may execute

another TRANSACTION BEGIN instruction. The instruction that causes the CPU to enter

the TX mode is called the outermost TRANSACTION BEGIN; similarly, the program is

said to be in the outermost transaction. Subsequent executions of TRANSACTION BEGIN

are called inner instructions; and the program is executing an inner transaction. The model

10 provides a minimum nesting depth and a model-dependent maximum nesting depth. An

EXTRACT TRANSACTION NESTING DEPTH instruction returns the current nesting

depth value, and in a further embodiment, may return a maximum nesting-depth value. This

technique uses a model called "flattened nesting" in which an aborting condition at any

nesting depth causes all levels of the transaction to be aborted, and control is returned to the

15 instruction following the outermost TRANSACTION BEGIN.

During processing of a transaction, a transactional access made by one CPU is said to

conflict with either (a) a transactional access or nontransactional access made by another

CPU, or (b) a nontransactional access made by the I/O subsystem, if both accesses are to any

20 location within the same cache line, and one or both of the accesses is a store. In other

words, in order for transactional execution to be productive, the CPU is not to be observed

making transactional accesses until it commits. This programming model may be highly

effective in certain environments; for example, the updating of two points in a doubly-linked

list of a million elements. However, it may be less effective, if there is a lot of contention

25 for the storage locations that are being transactionally accessed.

In one model of transactional execution (referred to herein as a nonconstrained transaction),

when a transaction is aborted, the program may either attempt to re-drive the transaction in

the hopes that the aborting condition is no longer present, or the program may "fall back" to

30 an equivalent non-transactional path. In another model of transactional execution (referred

to herein as a constrained transaction), an aborted transaction is automatically re-driven by

the CPU; in the absence of constraint violations, the constrained transaction is assured of

eventual completion.

WO 2013/185978 PCT/EP2013/059205
6

When initiating a transaction, the program can specify various controls, such as (a) which

general registers are restored to their original contents if the transaction is aborted, (b)

whether the transaction is allowed to modify the floating-point-register context, including,

for instance, floating point registers and the floating point control register, (c) whether the

5 transaction is allowed to modify access registers (ARs), and (d) whether certain program

exception conditions are to be blocked from causing an interruption. If a nonconstrained

transaction is aborted, various diagnostic information may be provided. For instance, the

outermost TBEGIN instruction that initiates a nonconstrained transaction may designate a

program specified transaction diagnostic block (TDB). Further, the TDB in the CPU's

10 prefix area or designated by the host's state description may also be used if the transaction is

aborted due to a program interruption or a condition that causes interpretative execution to

end, respectively.

Indicated above are various types of registers. These are further explained in detail herein.

15 General registers may be used as accumulators in general arithmetic and logical operations.

In one embodiment, each register contains 64 bit positions, and there are 16 general

registers. The general registers are identified by the numbers 0-15, and are designated by a

four-bit R field in an instruction. Some instructions provide for addressing multiple general

registers by having several R fields. For some instructions, the use of a specific general

20 register is implied rather than explicitly designated by an R field of the instruction.

In addition to their use as accumulators in general arithmetic and logical operations, 15 of

the 16 general registers are also used as base address and index registers in address

generation. In these cases, the registers are designated by a four-bit B field or X field in an

25 instruction. A value of zero in the B or X field specifies that no base or index is to be

applied, and thus, general register 0 is not to be designated as containing a base address or

index.

Floating point instructions use a set of floating point registers. The CPU has 16 floating

30 point registers, in one embodiment. The floating point registers are identified by the

numbers 0-15, and are designated by a four bit R field in floating point instructions. Each

floating point register is 64 bits long and can contain either a short (32-bit) or a long (64-bit)

floating point operand.

WO 2013/185978 PCT/EP2013/059205
7

A floating point control (FPC) register is a 32-bit register that contains mask bits, flag bits, a

data exception code, and rounding mode bits, and is used during processing of floating point

operations.

5 Further, in one embodiment, the CPU has 16 control registers, each having 64 bit positions.

The bit positions in the registers are assigned to particular facilities in the system, such as

Program Event Recording (PER) (discussed below), and are used either to specify that an

operation can take place or to furnish special information required by the facility. In one

embodiment, for the transactional facility, CRO (bits 8 and 9) and CR2 (bits 61-63) are used,

10 as described below.

The CPU has, for instance, 16 access registers numbered 0-15. An access register consists

of 32 bit positions containing an indirect specification of an address space control element

(ASCE). An address space control element is a parameter used by the dynamic address

15 translation (DAT) mechanism to translate references to a corresponding address space.

When the CPU is in a mode called the access register mode (controlled by bits in the

program status word (PSW)), an instruction B field, used to specify a logical address for a

storage operand reference, designates an access register, and the address space control

element specified by the access register is used by DAT for the reference being made. For

20 some instructions, an R field is used instead of a B field. Instructions are provided for

loading and storing the contents of the access registers and for moving the contents of one

access register to another.

Each of access registers 1-15 can designate any address space. Access register 0 designates

25 the primary instruction space. When one of access registers 1-15 is used to designate an

address space, the CPU determines which address space is designated by translating the

contents of the access register. When access register 0 is used to designate an address space,

the CPU treats the access register as designating the primary instruction space, and it does

not examine the actual contents of the access register. Therefore, the 16 access registers can

30 designate, at any one time, the primary instruction space and a maximum of 15 other spaces.

In one embodiment, there are multiple types of address spaces. An address space is a

consecutive sequence of integer numbers (virtual addresses), together with the specific

WO 2013/185978 PCT/EP2013/059205
8

transformation parameters which allow each number to be associated with a byte location in

storage. The sequence starts at zero and proceeds left to right.

In, for instance, the z/Architecture, when a virtual address is used by a CPU to access main

5 storage (a.k.a., main memory), it is first converted, by means of dynamic address translation

(DAT), to a real address, and then, by means of prefixing, to an absolute address. DAT may

use from one to five levels of tables (page, segment, region third, region second, and region

first) as transformation parameters. The designation (origin and length) of the highest-level

table for a specific address space is called an address space control element, and it is found

10 for use by DAT in a control register or as specified by an access register. Alternatively, the

address space control element for an address space may be a real space designation, which

indicates that DAT is to translate the virtual address simply by treating it as a real address

and without using any tables.

15 DAT uses, at different times, the address space control elements in different control registers

or specified by the access registers. The choice is determined by the translation mode

specified in the current PSW. Four translation modes are available: primary space mode,

secondary space mode, access register mode and home space mode. Different address

spaces are addressable depending on the translation mode.

20

At any instant when the CPU is in the primary space mode or secondary space mode, the

CPU can translate virtual addresses belonging to two address spaces - the primary address

space and the second address space. At any instant when the CPU is in the access register

mode, it can translate virtual addresses of up to 16 address spaces - the primary address

25 space and up to 15 AR-specified address spaces. At any instant when the CPU is in the

home space mode, it can translate virtual addresses of the home address space.

The primary address space is identified as such because it consists of primary virtual

addresses, which are translated by means of the primary address space control element

30 (ASCE). Similarly, the secondary address space consists of secondary virtual addresses

translated by means of the secondary ASCE; the AR specified address spaces consist of AR

specified virtual addresses translated by means of AR specified ASCEs; and the home

address space consists of home virtual addresses translated by means of the home ASCE.

WO 2013/185978 PCT/EP2013/059205
9

The primary and secondary ASCEs are in control registers 1 and 7, respectively. AR

specified ASCEs are in ASN-second-table entries that are located through a process called

access-register translation (ART) using control register 2, 5, and 8. The home ASCE is in

control register 13.

5

One embodiment of a computing environment to incorporate and use one or more aspects of

the transactional facility described herein is described with reference to FIG. 1.

Referring to FIG. 1, in one example, computing environment 100 is based on the

10 z/Architecture, offered by International Business Machines (IBM@) Corporation, Armonk,

New York. The z/Architecture is described in an IBM Publication entitled "z/Architecture

Principles of Operation," Publication No. SA22-7932-08, 9th Edition, August 2010, which is

hereby incorporated herein by reference in its entirety.

15 Z/ARCHITECTURE, IBM, and Z/OS and Z/VM (referenced below) are registered

trademarks of International Business Machines Corporation, Armonk, New York. Other

names used herein may be registered trademarks, trademarks or product names of

International Business Machines Corporation or other companies.

20 As one example, computing environment 100 includes a central processor complex (CPC)

102 coupled to one or more input/output (I/O) devices 106 via one or more control units 108.

Central processor complex 102 includes, for instance, one or more central processors 110,

one or more partitions 112 (e.g., logical partitions (LP)), a logical partition hypervisor 114,

and an input/output subsystem 115, each of which is described below.

25

Central processors 110 are physical processor resources allocated to the logical partitions. In

particular, each logical partition 112 has one or more logical processors, each of which

represents all or a share of a physical processor 110 allocated to the partition. The logical

processors of a particular partition 112 may be either dedicated to the partition, so that the

30 underlying processor resource 110 is reserved for that partition; or shared with another

partition, so that the underlying processor resource is potentially available to another

partition.

WO 2013/185978 PCT/EP2013/059205
10

A logical partition functions as a separate system and has one or more applications, and

optionally, a resident operating system therein, which may differ for each logical partition.

In one embodiment, the operating system is the z/OS operating system, the z/VM operating

system, the z/Linux operating system, or the TPF operating system, offered by International

5 Business Machines Corporation, Armonk, New York. Logical partitions 112 are managed

by a logical partition hypervisor 114, which is implemented by firmware running on

processors 110. As used herein, firmware includes, e.g., the microcode and/or millicode of

the processor. It includes, for instance, the hardware-level instructions and/or data structures

used in implementation of higher level machine code. In one embodiment, it includes, for

10 instance, proprietary code that is typically delivered as microcode that includes trusted

software or microcode specific to the underlying hardware and controls operating system

access to the system hardware.

The logical partitions and logical partition hypervisor each comprise one or more programs

15 residing in respective partitions of central storage associated with the central processors.

One example of logical partition hypervisor 114 is the Processor Resource/System Manager

(PR/SM), offered by International Business Machines Corporation, Armonk, New York.

Input/output subsystem 115 directs the flow of information between input/output devices

20 106 and main storage (a.k.a., main memory). It is coupled to the central processing

complex, in that it can be a part of the central processing complex or separate therefrom.

The I/O subsystem relieves the central processors of the task of communicating directly with

the input/output devices and permits data processing to proceed concurrently with

input/output processing. To provide communications, the I/O subsystem employs I/O

25 communications adapters. There are various types of communications adapters including, for

instance, channels, I/O adapters, PCI cards, Ethernet cards, Small Computer Storage

Interface (SCSI) cards, etc. In the particular example described herein, the I/O

communications adapters are channels, and therefore, the I/O subsystem is referred to herein

as a channel subsystem. However, this is only one example. Other types of I/O subsystems

30 can be used.

WO 2013/185978 PCT/EP2013/059205
11

The I/O subsystem uses one or more input/output paths as communication links in managing

the flow of information to or from input/output devices 106. In this particular example,

these paths are called channel paths, since the communication adapters are channels.

5 The computing environment described above is only one example of a computing

environment that can be used. Other environments, including but not limited to, non

partitioned environments, other partitioned environments, and/or emulated environments,

may be used; embodiments are not limited to any one environment.

10 In accordance with one or more aspects, the transactional execution facility is a CPU

enhancement that provides the means by which the CPU can execute a sequence of

instructions - known as a transaction - that may access multiple storage locations, including

the updating of those locations. As observed by other CPUs and the I/O subsystem, the

transaction is either (a) completed in its entirety as a single atomic operation, or (b) aborted,

15 potentially leaving no evidence that it ever executed (except for certain conditions described

herein). Thus, a successfully completed transaction can update numerous storage locations

without any special locking that is needed in the classic multiprocessing model.

The transactional execution facility includes, for instance, one or more controls; one or more

20 instructions; transactional processing, including constrained and nonconstrained execution;

and abort processing, each of which is further described below.

In one embodiment, three special purpose controls, including a transaction abort Program

Status Word (PSW), a transaction diagnostic block (TDB) address, and a transaction nesting

25 depth; five control register bits; and six general instructions, including TRANSACTION

BEGIN (constrained and nonconstrained), TRANSACTION END, EXTRACT

TRANSACTION NESTING DEPTH, TRANSACTION ABORT, and

NONTRANSACTIONAL STORE, are used to control the transactional execution facility.

When the facility is installed, it is installed, for instance, in all CPUs in the configuration. A

30 facility indication, bit 73 in one implementation, when one, indicates that the transactional

execution facility is installed.

WO 2013/185978 PCT/EP2013/059205
12

When the transactional execution facility is installed, the configuration provides a

nonconstrained transactional execution facility, and optionally, a constrained transactional

execution facility, each of which is described below. When facility indications 50 and 73, as

examples, are both one, the constrained transactional execution facility is installed. Both

5 facility indications are stored in memory at specified locations.

As used herein, the instruction name TRANSACTION BEGIN refers to the instructions

having the mnemonics TBEGIN (Transaction Begin for a nonconstrained transaction) and

TBEGINC (Transaction Begin for a constrained transaction). Discussions pertaining to a

10 specific instruction are indicated by the instruction name followed by the mnemonic in

parentheses or brackets, or simply by the mnemonic.

One embodiment of a format of a TRANSACTION BEGIN (TBEGIN) instruction is

depicted in FIGs. 2A-2B. As one example, a TBEGIN instruction 200 includes an opcode

15 field 202 that includes an opcode specifying a transaction begin nonconstrained operation; a

base field (B1) 204; a displacement field (DI) 206; and an immediate field (12) 208. When

the BI field is nonzero, the contents of the general register specified by B1 204 are added to

Di 206 to obtain the first operand address.

20 When the B1 field is nonzero, the following applies:

* When the transaction nesting depth is initially zero, the first operand address

designates the location of the 256 byte transaction diagnostic block, called the TBEGIN

specified TDB (described further below) into which various diagnostic information may be

25 stored if the transaction is aborted. When the CPU is in the primary space mode or access

register mode, the first operand address designates a location in the primary address space.

When the CPU is in the secondary space or home space mode, the first operand address

designates a location in the secondary or home address space, respectively. When DAT is

off, the transaction diagnostic block (TDB) address (TDBA) designates a location in real

30 storage.

WO 2013/185978 PCT/EP2013/059205
13

Store accessibility to the first operand is determined. If accessible, the logical address of the

operand is placed into the transaction diagnostic block address (TDBA), and the TDBA is

valid.

5 - When the CPU is already in the nonconstrained transactional execution mode, the

TDBA is not modified, and it is unpredictable whether the first operand is tested for

accessibility.

When the B1 field is zero, no access exceptions are detected for the first operand and, for the

10 outermost TBEGIN instruction, the TDBA is invalid.

The bits of the I2 field are defined as follows, in one example:

General Register Save Mask (GRSM) 210 (FIG. 2B): Bits 0-7 of the I2 field contain the

15 general register save mask (GRSM). Each bit of the GRSM represents an even-odd pair of

general registers, where bit 0 represents registers 0 and 1, bit 1 represents registers 2 and 3,

and so forth. When a bit in the GRSM of the outermost TBEGIN instruction is zero, the

corresponding register pair is not saved. When a bit in the GRSM of the outermost TBEGIN

instruction is one, the corresponding register pair is saved in a model dependent location that

20 is not directly accessible by the program.

If the transaction aborts, saved register pairs are restored to their contents when the

outermost TBEGIN instruction was executed. The contents of all other (unsaved) general

registers are not restored when a transaction aborts.

25

The general register save mask is ignored on all TBEGINs except for the outermost one.

Allow AR Modification (A) 212: The A control, bit 12 of the I2 field, controls whether the

transaction is allowed to modify an access register. The effective allow AR modification

30 control is the logical AND of the A control in the TBEGIN instruction for the current nesting

level and for all outer levels.

WO 2013/185978 PCT/EP2013/059205
14

If the effective A control is zero, the transaction will be aborted with abort code 11

(restricted instruction) if an attempt is made to modify any access register. If the effective A

control is one, the transaction will not be aborted if an access register is modified (absent of

any other abort condition).

5

Allow Floating Point Operation (F) 214: The F control, bit 13 of the I2 field, controls

whether the transaction is allowed to execute specified floating point instructions. The

effective allow floating point operation control is the logical AND of the F control in the

TBEGIN instruction for the current nesting level and for all outer levels.

10

If the effective F control is zero, then (a) the transaction will be aborted with abort code 11

(restricted instruction) if an attempt is made to execute a floating point instruction, and (b)

the data exception code (DXC) in byte 2 of the floating point control register (FPCR) will

not be set by any data exception program exception condition. If the effective F control is

15 one, then (a) the transaction will not be aborted if an attempt is made to execute a floating

point instruction (absent any other abort condition), and (b) the DXC in the FPCR may be set

by a data exception program exception condition.

Program Interruption Filtering Control (PIFC) 216: Bits 14-15 of the I2 field are the

20 program interruption filtering control (PIFC). The PIFC controls whether certain classes of

program exception conditions (e.g., addressing exception, data exception, operation

exception, protection exception, etc.) that occur while the CPU is in the transactional

execution mode result in an interruption.

25 The effective PIFC is the highest value of the PIFC in the TBEGIN instruction for the

current nesting level and for all outer levels. When the effective PIFC is zero, all program

exception conditions result in an interruption. When the effective PIFC is one, program

exception conditions having a transactional execution class of 1 and 2 result in an

interruption. (Each program exception condition is assigned at least one transactional

30 execution class, depending on the severity of the exception. Severity is based on the

likelihood of recovery during a repeated execution of the transaction, and whether the

operating system needs to see the interruption.) When the effective PIFC is two, program

WO 2013/185978 PCT/EP2013/059205
15

exception conditions having a transactional execution class of 1 result in an interruption. A

PIFC of 3 is reserved.

Bits 8-11 of the I2 field (bits 40-43 of the instruction) are reserved and should contain zeros;

5 otherwise, the program may not operate compatibly in the future.

One embodiment of a format of a Transaction Begin constrained (TBEGINC) instruction is

described with reference to FIGs. 3A-3B. In one example, TBEGINC 300 includes an

opcode field 302 that includes an opcode specifying a transaction begin constrained

10 operation; a base field (B1) 304; a displacement field (DI) 306; and an immediate field (12)

308. The contents of the general register specified by B1 304 are added to Di 306 to obtain

the first operand address. However, with the transaction begin constrained instruction, the

first operand address is not used to access storage. Instead, the B1 field of the instruction

includes zeros; otherwise, a specification exception is recognized.

15

In one embodiment, the I2 field includes various controls, an example of which is depicted in

FIG. 3B.

The bits of the I2 field are defined as follows, in one example:

20

General Register Save Mask (GRSM) 310: Bits 0-7 of the 12 field contain the general

register save mask (GRSM). Each bit of the GRSM represents an even-odd pair of general

registers, where bit 0 represents registers 0 and 1, bit 1 represents registers 2 and 3, and so

forth. When a bit in the GRSM is zero, the corresponding register pair is not saved. When a

25 bit in the GRSM is one, the corresponding register pair is saved in a model-dependent

location that is not directly accessible by the program.

If the transaction aborts, saved register pairs are restored to their contents when the

outermost TRANSACTION BEGIN instruction was executed. The contents of all other

30 (unsaved) general registers are not restored when a constrained transaction aborts.

When TBEGINC is used to continue execution in the nonconstrained transaction execution

mode, the general register save mask is ignored.

WO 2013/185978 PCT/EP2013/059205
16

Allow AR Modification (A) 312: The A control, bit 12 of the I2 field, controls whether the

transaction is allowed to modify an access register. The effective allow-AR-modification

control is the logical AND of the A control in the TBEGINC instruction for the current

nesting level and for any outer TBEGIN or TBEGINC instructions.

5

If the effective A control is zero, the transaction will be aborted with abort code 11

(restricted instruction) if an attempt is made to modify any access register. If the effective A

control is one, the transaction will not be aborted if an access register is modified (absent of

any other abort condition).

10

Bits 8-11 and 13-15 of the I2 field (bits 40-43 and 45-47 of the instruction) are reserved and

should contain zeros.

The end of a Transaction Begin instruction is specified by a TRANSACTION END (TEND)

15 instruction, a format of which is depicted in FIG. 4. As one example, a TEND instruction

400 includes an opcode field 402 that includes an opcode specifying a transaction end

operation.

A number of terms are used with respect to the transactional execution facility, and

20 therefore, solely for convenience, a list of terms is provided below in alphabetical order. In

one embodiment, these terms have the following definition:

Abort: A transaction aborts when it is ended prior to a TRANSACTION END instruction

that results in a transaction nesting depth of zero. When a transaction aborts, the following

25 occurs, in one embodiment:

. Transactional store accesses made by any and all levels of the transaction are

discarded (that is, not committed).

30 - Non-transactional store accesses made by any and all levels of the transaction are

committed.

WO 2013/185978 PCT/EP2013/059205
17

* Registers designated by the general register save mask (GRSM) of the outermost

TRANSACTION BEGIN instruction are restored to their contents prior to the transactional

execution (that is, to their contents at execution of the outermost TRANSACTION BEGIN

instruction). General registers not designated by the general register save mask of the

5 outermost TRANSACTION BEGIN instruction are not restored.

. Access registers, floating-point registers, and the floating-point control register

are not restored. Any changes made to these registers during transaction execution are

retained when the transaction aborts.

10

A transaction may be aborted due to a variety of reasons, including attempted execution of a

restricted instruction, attempted modification of a restricted resource, transactional conflict,

exceeding various CPU resources, any interpretive-execution interception condition, any

interruption, a TRANSACTION ABORT instruction, and other reasons. A transaction-abort

15 code provides specific reasons why a transaction may be aborted.

One example of a format of a TRANSACTION ABORT (TABORT) instruction is described

with reference to FIG. 5. As one example, a TABORT instruction 500 includes an opcode

field 502 that includes an opcode specifying a transaction abort operation; a base field (B2)

20 504; and a displacement field (D2) 506. When the B2 field is nonzero, the contents of the

general register specified by B2 504 are added to D2 506 to obtain a second operand address;

otherwise, the second operand address is formed solely from the D2 field, and the B2 field is

ignored. The second operand address is not used to address data; instead, the address forms

the transaction abort code which is placed in a transaction diagnostic block during abort

25 processing. Address computation for the second operand address follows the rules of

address arithmetic: in the 24-bit addressing mode, bits 0-29 are set to zeros; in the 31-bit

addressing mode, bits 0-32 are set to zeros.

Commit: At the completion of an outermost TRANSACTION END instruction, the CPU

30 commits the store accesses made by the transaction (i.e., the outermost transaction and any

nested levels) such that they are visible to other CPUs and the I/O subsystem. As observed

by other CPUs and by the I/O subsystem, all fetch and store accesses made by all nested

WO 2013/185978 PCT/EP2013/059205
18

levels of the transaction appear to occur as a single concurrent operation when the commit

occurs.

The contents of the general registers, access registers, floating-point registers, and the

5 floating-point control register are not modified by the commit process. Any changes made

to these registers during transactional execution are retained when the transaction's stores

are committed.

Conflict: A transactional access made by one CPU conflicts with either (a) a transactional

10 access or non-transactional access made by another CPU, or (b) the non-transactional access

made by the I/O subsystem, if both accesses are to any location within the same cache line,

and one or more of the accesses is a store.

A conflict may be detected by a CPU's speculative execution of instructions, even though

15 the conflict may not be detected in the conceptual sequence.

Constrained Transaction: A constrained transaction is a transaction that executes in the

constrained transactional execution mode and is subject to the following limitations:

* A subset of the general instructions is available.

20 - A limited number of instructions may be executed.

. A limited number of storage-operand locations may be accessed.

* The transaction is limited to a single nesting level.

In the absence of repeated interruptions or conflicts with other CPUs or the I/O subsystem, a

25 constrained transaction eventually completes, thus an abort-handler routine is not required.

Constrained transactions are described in detail below.

When a TRANSACTION BEGIN constrained (TBEGINC) instruction is executed while the

CPU is already in the nonconstrained transaction execution mode, execution continues as a

30 nested nonconstrained transaction.

Constrained Transactional Execution Mode: When the transaction nesting depth is zero,

and a transaction is initiated by a TBEGINC instruction, the CPU enters the constrained

WO 2013/185978 PCT/EP2013/059205
19

transactional execution mode. While the CPU is in the constrained transactional execution

mode, the transaction nesting depth is one.

Nested Transaction: When the TRANSACTION BEGIN instruction is issued while the

5 CPU is in the nonconstrained transactional execution mode, the transaction is nested.

The transactional execution facility uses a model called flattened nesting. In the flattened

nesting mode, stores made by an inner transaction are not observable by other CPUs and by

the I/O subsystem until the outermost transaction commits its stores. Similarly, if a

10 transaction aborts, all nested transactions abort, and all transactional stores of all nested

transactions are discarded.

One example of nested transactions is depicted in FIG. 6. As shown, a first TBEGIN 600

starts an outermost transaction 601, TBEGIN 602 starts a first nested transaction, and

15 TBEGIN 604 starts a second nested transaction. In this example, TBEGIN 604 and TEND

606 define an innermost transaction 608. When TEND 610 executes, transactional stores are

committed 612 for the outermost transaction and all inner transactions.

Nonconstrained Transaction: A nonconstrained transaction is a transaction that executes

20 in the nonconstrained transactional execution mode. Although a nonconstrained transaction

is not limited in the manner as a constrained transaction, it may still be aborted due to a

variety of causes.

Nonconstrained Transactional Execution Mode: When a transaction is initiated by the

25 TBEGIN instruction, the CPU enters the nonconstrained transactional execution mode.

While the CPU is in the nonconstrained transactional execution mode, the transaction

nesting depth may vary from one to the maximum transaction nesting depth.

Non-Transactional Access: Non-transactional accesses are storage operand accesses made

30 by the CPU when it is not in the transactional execution mode (that is, classic storage

accesses outside of a transaction). Further, accesses made by the I/O subsystem are non

transactional accesses. Additionally, the NONTRANSACTIONAL STORE instruction may

WO 2013/185978 PCT/EP2013/059205
20

be used to cause a non-transactional store access while the CPU is in the nonconstrained

transactional execution mode.

One embodiment of a format of a NONTRANSACTIONAL STORE instruction is described

5 with reference to FIG. 7. As one example, a NONTRANSACTIONAL STORE instruction

700 includes a plurality of opcode fields 702a, 702b specifying an opcode that designates a

nontransactional store operation; a register field 704 specifying a register, the contents of

which are called the first operand; an index field (X2) 706; a base field (B2) 708; a first

displacement field (DL 2) 710; and a second displacement field (DH 2) 712. The contents of

10 the general registers designated by the X2 and B2 fields are added to the contents of a

concatenation of the DH 2 and DL 2 fields to form the second operand address. When either

or both the X2 or B2 fields are zero, the corresponding register does not take part in the

addition.

15 The 64 bit first operand is nontransactionally placed unchanged at the second operand

location.

The displacement, formed by the concatenation of the DH 2 and DL 2 fields, is treated as a 20

bit signed binary integer.

20

The second operand is to be aligned on a double word boundary; otherwise, specification

exception is recognized and the operation is suppressed.

Outer/Outermost Transaction: A transaction with a lower-numbered transaction nesting

25 depth is an outer transaction. A transaction with a transaction nesting depth value of one is

the outermost transaction.

An outermost TRANSACTION BEGIN instruction is one that is executed when the

transaction nesting depth is initially zero. An outermost TRANSACTION END instruction

30 is one that causes the transaction nesting depth to transition from one to zero. A constrained

transaction is the outermost transaction, in this embodiment.

WO 2013/185978 PCT/EP2013/059205
21

Program Interruption Filtering: When a transaction is aborted due to certain program

exception conditions, the program can optionally prevent the interruption from occurring.

This technique is called program interruption filtering. Program-interruption filtering is

subject to the transactional class of the interruption, the effective program interruption

5 filtering control from the TRANSACTION BEGIN instruction, and the transactional

execution program-interruption-filtering override in control register 0.

Transaction: A transaction includes the storage-operand accesses made, and selected

general registers altered, while the CPU is in the transaction execution mode. For a

10 nonconstrained transaction, storage-operand accesses may include both transactional

accesses and non-transactional accesses. For a constrained transaction, storage-operand

accesses are limited to transactional accesses. As observed by other CPUs and by the I/O

subsystem, all storage-operand accesses made by the CPU while in the transaction execution

mode appear to occur as a single concurrent operation. If a transaction is aborted,

15 transactional store accesses are discarded, and any registers designated by the general

register save mask of the outermost TRANSACTION BEGIN instruction are restored to

their contents prior to transactional execution.

Transactional Accesses: Transactional accesses are storage operand accesses made while

20 the CPU is in the transactional execution mode, with the exception of accesses made by the

NONTRANSACTIONAL STORE instruction.

Transactional Execution Mode: The term transactional execution mode (a.k.a., transaction

execution mode) describes the common operation of both the nonconstrained and the

25 constrained transactional execution modes. Thus, when the operation is described, the terms

nonconstrained and constrained are used to qualify the transactional execution mode.

When the transaction nesting depth is zero, the CPU is not in the transactional execution

mode (also called the non-transactional execution mode).

30

As observed by the CPU, fetches and stores made in the transactional execution mode are no

different than those made while not in the transactional execution mode.

WO 2013/185978 PCT/EP2013/059205
22

In one embodiment of the z/Architecture, the transactional execution facility is under the

control of bits 8-9 of control register 0, bits 61-63 of control register 2, the transaction

nesting depth, the transaction diagnostic block address, and the transaction abort program

status word (PSW).

5

Following an initial CPU reset, the contents of bit positions 8-9 of control register 0, bit

positions 62-63 of control register 2, and the transaction nesting depth are set to zero. When

the transactional execution control, bit 8 of control register 0, is zero, the CPU cannot be

placed into the transactional execution mode.

10

Further details regarding the various controls are described below.

As indicated, the transactional execution facility is controlled by two bits in control register

zero and three bits in control register two. For instance:

15

Control Register 0 Bits: The bit assignments are as follows, in one embodiment:

Transactional Execution Control (TXC): Bit 8 of control register zero is the transactional

execution control. This bit provides a mechanism whereby the control program (e.g.,

20 operating system) can indicate whether or not the transactional execution facility is usable by

the program. Bit 8 is to be one to successfully enter the transactional execution mode.

When bit 8 of control register 0 is zero, attempted execution of the EXTRACT

TRANSACTION NESTING DEPTH, TRANSACTION BEGIN and TRANSACTION END

25 instructions results in a special operation execution.

One embodiment of a format of an EXTRACT TRANSACTION NESTING DEPTH

instruction is described with reference to FIG. 8. As one example, an EXTRACT

TRANSACTION NESTING DEPTH instruction 800 includes an opcode field 802

30 specifying an opcode that indicates the extract transaction nesting depth operation; and a

register field RI 804 that designates a general register.

WO 2013/185978 PCT/EP2013/059205
23

The current transaction nesting depth is placed in bits 48-63 of general register RI. Bits 0

31 of the register remain unchanged, and bits 32-47 of the register are set to zero.

In a further embodiment, the maximum transaction nesting depth is also placed in general

5 register RI, such as in bits 16-3 1.

Transaction Execution Program Interruption Filtering Override (PIFO): Bit 9 of control

register zero is the transactional execution program interruption filtering override. This bit

provides a mechanism by which the control program can ensure that any program exception

10 condition that occurs while the CPU is in the transactional execution mode results in an

interruption, regardless of the effective program interruption filtering control specified or

implied by the TRANSACTION BEGIN instruction(s).

Control Register 2 Bits: The assignments are as follows, in one embodiment:

15

Transaction Diagnostic Scope (TDS): Bit 61 of control register 2 controls the applicability

of the transaction diagnosis control (TDC) in bits 62-63 of the register, as follows:

TDS

Value Meaning

20 0 The TDC applies regardless of whether the CPU is in the problem or supervisor

state.

1 The TDC applies only when the CPU is in the problem state. When the CPU is

in the supervisor state, processing is as if the TDC contained zero.

25 Transaction Diagnostic Control (TDC): Bits 62-63 of control register 2 are a 2-bit unsigned

integer that may be used to cause transactions to be randomly aborted for diagnostic

purposes. The encoding of the TDC is as follows, in one example:

TDC

30 Value Meaning

0 Normal operation; transactions are not aborted as a result of the TDC.

1 Abort every transaction at a random instruction, but before execution of the

outermost TRANSACTION END instruction.

WO 2013/185978 PCT/EP2013/059205
24

2 Abort random transactions at a random instruction.

3 Reserved

When a transaction is aborted due to a nonzero TDC, then either of the following may occur:

5 - The abort code is set to any of the codes 7-11, 13-16, or 255, with the value of the

code randomly chosen by the CPU; the condition code is set corresponding to the abort code.

Abort codes are further described below.

. For a nonconstrained transaction, the condition code is set to one. In this case,

the abort code is not applicable.

10

It is model dependent whether TDC value 1 is implemented. If not implemented, a value of

1 acts as if 2 was specified.

For a constrained transaction, a TDC value of 1 is treated as if a TDC value of 2 was

15 specified.

If a TDC value of 3 is specified, the results are unpredictable.

Transaction Diagnostic Block Address (TDBA)

20

A valid transaction diagnostic block address (TDBA) is set from the first operand address of

the outermost TRANSACTION BEGIN (TBEGIN) instruction when the BI field of the

instruction is nonzero. When the CPU is in the primary space or access register mode, the

TDBA designates a location in the primary address space. When the CPU is in the

25 secondary space, or home space mode, the TDBA designates a location in the secondary or

home address space, respectively. When DAT (Dynamic Address Translation) is off, the

TDBA designates a location in real storage.

The TDBA is used by the CPU to locate the transaction diagnostic block - called the

30 TBEGIN-specified TDB - if the transaction is subsequently aborted. The rightmost three

bits of the TDBA are zero, meaning that the TBEGIN-specified TDB is on a doubleword

boundary.

WO 2013/185978 PCT/EP2013/059205
25

When the B1 field of an outermost TRANSACTION BEGIN (TBEGIN) instruction is zero,

the transactional diagnostic block address is invalid, and no TBEGIN-specified TDB is

stored if the transaction is subsequently aborted.

5 Transaction Abort PSW (TAPSW)

During execution of the TRANSACTION BEGIN (TBEGIN) instruction when the nesting

depth is initially zero, the transaction abort PSW is set to the contents of the current PSW;

and the instruction address of the transaction abort PSW designates the next sequential

10 instruction (that is, the instruction following the outermost TBEGIN). During execution of

the TRANSACTION BEGIN constrained (TBEGINC) instruction when the nesting depth is

initially zero, the transaction abort PSW is set to the contents of the current PSW, except that

the instruction address of the transaction abort PSW designates the TBEGINC instruction

(rather than the next sequential instruction following the TBEGINC).

15

When a transaction is aborted, the condition code in the transaction abort PSW is replaced

with a code indicating the severity of the abort condition. Subsequently, if the transaction

was aborted due to causes that do not result in an interruption, the PSW is loaded from the

transaction abort PSW; if the transaction was aborted due to causes that result in an

20 interruption, the transaction abort PSW is stored as the interruption old PSW.

The transaction abort PSW is not altered during the execution of any inner TRANSACTION

BEGIN instruction.

25 Transaction Nesting Depth (TND)

The transaction nesting depth is, for instance, a 16-bit unsigned value that is incremented

each time a TRANSACTION BEGIN instruction is completed with condition code 0 and

decremented each time a TRANSACTION END instruction is completed. The transaction

30 nesting depth is reset to zero when a transaction is aborted or by CPU reset.

In one embodiment, a maximum TND of 15 is implemented.

WO 2013/185978 PCT/EP2013/059205
26

In one implementation, when the CPU is in the constrained transactional execution mode,

the transaction nesting depth is one. Additionally, although the maximum TND can be

represented as a 4-bit value, the TND is defined to be a 16-bit value to facilitate its

inspection in the transaction diagnostic block.

5

Transaction Diagnostic Block (TDB)

When a transaction is aborted, various status information may be saved in a transaction

diagnostic block (TDB), as follows:

10

1. TBEGIN-specified TDB: For a nonconstrained transaction, when the BI field

of the outermost TBEGIN instruction is nonzero, the first operand address of the instruction

designates the TBEGIN-specified TDB. This is an application program specified location

that may be examined by the application's abort handler.

15

2. Program-Interruption (PI) TDB: If a nonconstrained transaction is aborted

due to a non-filtered program exception condition, or if a constrained transaction is aborted

due to any program exception condition (that is, any condition that results in a program

interruption being recognized), the PI-TDB is stored into locations in the prefix area. This is

20 available for the operating system to inspect and log out in any diagnostic reporting that it

may provide.

3. Interception TDB: If the transaction is aborted due to any program exception

condition that results in interception (that is, the condition causes interpretive execution to

25 end and control to return to the host program), a TDB is stored into a location specified in

the state description block for the guest operating system.

The TBEGIN-specified TDB is only stored, in one embodiment, when the TDB address is

valid (that is, when the outermost TBEGIN instruction's BI field is nonzero).

30

For aborts due to unfiltered program exception conditions, only one of either the PI-TDB or

Interception TDB will be stored. Thus, there may be zero, one, or two TDBs stored for an

abort.

WO 2013/185978 PCT/EP2013/059205
27

Further details regarding one example of each of the TDBs are described below:

TBEGIN-specified TDB: The 256-byte location specified by a valid transaction diagnostic

block address. When the transaction diagnostic block address is valid, the TBEGIN

5 specified TDB is stored on a transaction abort. The TBEGIN-specified TDB is subject to all

storage protection mechanisms that are in effect at the execution of the outermost

TRANSACTION BEGIN instruction. A PER (Program Event Recording) storage alteration

event for any portion of the TBEGIN-specified TDB is detected during the execution of the

outermost TBEGIN, not during the transaction abort processing.

10

One purpose of PER is to assist in debugging programs. It permits the program to be alerted

to the following types of events, as examples:

. Execution of a successful branch instruction. The option is provided of having an

15 event occur only when the branch target location is within the designated storage area.

. Fetching of an instruction from the designated storage area.

. Alteration of the contents of the designated storage area. The option is provided

20 of having an event occur only when the storage area is within designated address spaces.

* Execution of a STORE USING REAL ADDRESS instruction.

* Execution of the TRANSACTION END instruction.

25

The program can selectively specify that one or more of the above types of events be

recognized, except that the event for STORE USING REAL ADDRESS can be specified

only along with the storage alteration event. The information concerning a PER event is

provided to the program by means of a program interruption, with the cause of the

30 interruption being identified in the interruption code.

When the transaction diagnostic block address is not valid, a TBEGIN-specified TDB is not

stored.

WO 2013/185978 PCT/EP2013/059205
28

Program-Interruption TDB: Real locations 6,144-6,399 (1800-18FF hex). The program

interruption TDB is stored when a transaction is aborted due to program interruption. When

a transaction is aborted due to other causes, the contents of the program interruption TDB

are unpredictable.

5

The program interruption TDB is not subject to any protection mechanism. PER storage

alteration events are not detected for the program interruption TDB when it is stored during a

program interruption.

10 Interception TDB: The 256-byte host real location specified by locations 488-495 of the

state description. The interception TDB is stored when an aborted transaction results in a

guest program interruption interception (that is, interception code 8). When a transaction is

aborted due to other causes, the contents of the interception TDB are unpredictable. The

interception TDB is not subject to any protection mechanism.

15

As depicted in FIG. 9, the fields of a transaction diagnostic block 900 are as follows, in one

embodiment:

Format 902: Byte 0 contains a validity and format indication, as follows:

20

Value Meaning

0 The remaining fields of the TDB are unpredictable.

25 1 A format-I TDB, the remaining fields of which are described below.

2-255 Reserved

A TDB in which the format field is zero is referred to as a null TDB.

30

Flags 904: Byte 1 contains various indications, as follows:

WO 2013/185978 PCT/EP2013/059205
29

Conflict Token Validity (CTV): When a transaction is aborted due to a fetch or store

conflict (that is, abort codes 9 or 10, respectively), bit 0 of byte 1 is the conflict token

validity indication. When the CTV indication is one, the conflict token 910 in bytes 16-23

of the TDB contain the logical address at which the conflict was detected. When the CTV

5 indication is zero, bytes 16-23 of the TDB are unpredictable.

When a transaction is aborted due to any reason other than a fetch or store conflict, bit 0 of

byte 1 is stored as zero.

10 Constrained-Transaction Indication (CTI): When the CPU is in the constrained transactional

execution mode, bit 1 of byte 1 is set to one. When the CPU is in the nonconstrained

transactional execution mode, bit 1 of byte 1 is set to zero.

Reserved: Bits 2-7 of byte 1 are reserved, and stored as zeros.

15

Transaction Nesting Depth (TND) 906: Bytes 6-7 contain the transaction nesting depth

when the transaction was aborted.

Transaction Abort Code (TAC) 908: Bytes 8-15 contain a 64-bit unsigned transaction abort

20 code. Each code point indicates a reason for a transaction being aborted.

It is model dependent whether the transaction abort code is stored in the program

interruption TDB when a transaction is aborted due to conditions other than a program

interruption.

25

Conflict Token 910: For transactions that are aborted due to fetch or store conflict (that is,

abort codes 9 and 10, respectively), bytes 16-23 contain the logical address of the storage

location at which the conflict was detected. The conflict token is meaningful when the CTV

bit, bit 0 of byte 1, is one.

30

When the CTV bit is zero, bytes 16-23 are unpredictable.

WO 2013/185978 PCT/EP2013/059205
30

Because of speculative execution by the CPU, the conflict token may designate a storage

location that would not necessarily be accessed by the transaction's conceptual execution

sequence.

5 Aborted Transaction Instruction Address (ATIA) 912: Bytes 24-31 contain an instruction

address that identifies the instruction that was executing when an abort was detected. When

a transaction is aborted due to abort codes 2, 5, 6, 11, 13, or 256 or higher, or when a

transaction is aborted due to abort codes 4 or 13 and the program exception condition is

nullifying, the ATIA points directly to the instruction that was being executed. When a

10 transaction is aborted due to abort codes 4 or 12, and the program exception condition is not

nullifying, the ATIA points past the instruction that was being executed.

When a transaction is aborted due to abort codes 7-10, 14-16, or 255, the ATIA does not

necessarily indicate the exact instruction causing the abort, but may point to an earlier or

15 later instruction within the transaction.

If a transaction is aborted due to an instruction that is the target of an execute- type

instruction, the ATIA identifies the execute-type instruction, either pointing to the

instruction or past it, depending on the abort code as described above. The ATIA does not

20 indicate the target of the execute-type instruction.

The ATIA is subject to the addressing mode when the transaction is aborted. In the 24-bit

addressing mode, bits 0-40 of the field contain zeros. In the 31-bit addressing mode, bits 0

32 of the field contain zeros.

25

It is model dependent whether the aborted transaction instruction address is stored in the

program interruption TDB when a transaction is aborted due to conditions other than a

program interruption.

30 When a transaction is aborted due to abort code 4 or 12, and the program exception

condition is not nullifying, the ATIA does not point to the instruction causing the abort. By

subtracting the number of halfwords indicated by the interruption length code (ILC) from the

ATIA, the instruction causing the abort can be identified in conditions that are suppressing

WO 2013/185978 PCT/EP2013/059205
31

or terminating, or for non-PER events that are completing. When a transaction is aborted

due to a PER event, and no other program exception condition is present, the ATIA is

unpredictable.

5 When the transaction diagnostic block address is valid, the ILC may be examined in program

interruption identification (PIID) in bytes 36-39 of the TBEGIN-specified TDB. When

filtering does not apply, the ILC may be examined in the PIID at location 140-143 in real

storage.

10 Exception Access Identification (EAID) 914: For transactions that are aborted due to certain

filtered program exception conditions, byte 32 of the TBEGIN-specified TDB contains the

exception access identification. In one example of the z/Architecture, the format of the

EAID, and the cases for which it is stored, are the same as those described in real location

160 when the exception condition results in an interruption, as described in the above

15 incorporated by reference Principles of Operation.

For transactions that are aborted for other reasons, including any exception conditions that

result in a program interruption, byte 32 is unpredictable. Byte 32 is unpredictable in the

program interruption TDB.

20

This field is stored only in the TDB designated by the transaction diagnostic block address;

otherwise, the field is reserved. The EAID is stored only for access list controlled or DAT

protection, ASCE-type, page translation, region first translation, region second translation,

region third translation, and segment translation program exception conditions.

25

Data Exception Code (DXC) 916: For transactions that are aborted due to filtered data

exception program exception conditions, byte 33 of the TBEGIN specified TDB contains the

data exception code. In one example of the z/Architecture, the format of the DXC, and the

cases for which it is stored, are the same as those described in real location 147 when the

30 exception condition results in an interruption, as described in the above-incorporated by

reference Principles of Operation. In one example, location 147 includes the DXC.

WO 2013/185978 PCT/EP2013/059205
32

For transactions that are aborted for other reasons, including any exception conditions that

result in a program interruption, byte 33 is unpredictable. Byte 33 is unpredictable in the

program interruption TDB.

5 This field is stored only in the TDB designated by the transaction diagnostic block address;

otherwise, the field is reserved. The DXC is stored only for data program exception

conditions.

Program Interruption Identification (PIID) 918: For transactions that are aborted due to

10 filtered program exception conditions, bytes 36-39 of the TBEGIN-specified TDB contain

the program interruption identification. In one example of the z/Architecture, the format of

the PIID is the same as that described in real locations 140-143 when the condition results in

an interruption (as described in the above-incorporated by reference Principles of

Operation), except that the instruction length code in bits 13-14 of the PIID is respective to

15 the instruction at which the exception condition was detected.

For transactions that are aborted for other reasons, including exception conditions that result

in a program interruption, bytes 36-39 are unpredictable. Bytes 36-39 are unpredictable in

the program interruption TDB.

20

This field is stored only in the TDB designated by the transaction diagnostic block address;

otherwise, the field is reserved. The program interruption identification is only stored for

program exception conditions.

25 Translation Exception Identification (TEID) 920: For transactions that are aborted due to

any of the following filtered program exception conditions, bytes 40-47 of the TBEGIN

specified TDB contain the translation exception identification.

* Access list controlled or DAT protection

30 - ASCE-type

* Page translation

* Region-first translation

* Region-second translation

WO 2013/185978 PCT/EP2013/059205
33

* Region-third translation

* Segment translation exception

In one example of the z/Architecture, the format of the TEID is the same as that described in

5 real locations 168-175 when the condition results in an interruption, as described in the

above-incorporated by reference Principles of Operation.

For transactions that are aborted for other reasons, including exception conditions that result

in a program interruption, bytes 40-47 are unpredictable. Bytes 40-47 are unpredictable in

10 the program interruption TDB.

This field is stored only in the TDB designated by the transaction diagnostic block address;

otherwise, the field is reserved.

15 Breaking Event Address 922: For transactions that are aborted due to filtered program

exception conditions, bytes 48-55 of the TBEGIN-specified TDB contain the breaking event

address. In one example of the z/Architecture, the format of the breaking event address is

the same as that described in real locations 272-279 when the condition results in an

interruption, as described in the above-incorporated by reference Principles of Operation.

20

For transactions that are aborted for other reasons, including exception conditions that result

in a program interruption, bytes 48-55 are unpredictable. Bytes 48-55 are unpredictable in

the program interruption TDB.

25 This field is stored only in the TDB designated by the transaction diagnostic block address;

otherwise, the field is reserved.

Further details relating to breaking events are described below.

30 In one embodiment of the z/Architecture, when the PER-3 facility is installed, it provides the

program with the address of the last instruction to cause a break in the sequential execution

of the CPU. Breaking event address recording can be used as a debugging assist for wild

branch detection. This facility provides, for instance, a 64-bit register in the CPU, called the

WO 2013/185978 PCT/EP2013/059205
34

breaking event address register. Each time an instruction other than TRANSACTION

ABORT causes a break in the sequential instruction execution (that is, the instruction

address in the PSW is replaced, rather than incremented by the length of the instruction), the

address of that instruction is placed in the breaking event address register. Whenever a

5 program interruption occurs, whether or not PER is indicated, the current contents of the

breaking event address register are placed in real storage locations 272-279.

If the instruction causing the breaking event is the target of an execute-type instruction

(EXECUTE or EXECUTE RELATIVE LONG), then the instruction address used to fetch

10 the execute-type instruction is placed in the breaking event address register.

In one embodiment of the z/Architecture, a breaking event is considered to occur whenever

one of the following instructions causes branching: BRANCH AND LINK (BAL, BALR);

BRANCH AND SAVE (BAS, BASR); BRANCH AND SAVE AND SET MODE

15 (BASSM); BRANCH AND SET MODE (BSM); BRANCH AND STACK (BAKR);

BRANCH ON CONDITION (BC, BCR); BRANCH ON COUNT (BCT, BCTR, BCTG,

BCTGR); BRANCH ON INDEX HIGH (BXH, BXHG); BRANCH ON INDEX LOW OR

EQUAL (BXLE, BXLEG); BRANCH RELATIVE ON CONDITION (BRC); BRANCH

RELATIVE ON CONDITION LONG (BRCL); BRANCH RELATIVE ON COUNT

20 (BRCT, BRCTG); BRANCH RELATIVE ON INDEX HIGH (BRXH, BRXHG); BRANCH

RELATIVE ON INDEX LOW OR EQUAL (BRXLE, BRXLG); COMPARE AND

BRANCH (CRB, CGRB); COMPARE AND BRANCH RELATIVE (CRJ, CGRJ);

COMPARE IMMEDIATE AND BRANCH (CIB, CGIB); COMPARE IMMEDIATE AND

BRANCH RELATIVE (CIJ, CGIJ); COMPARE LOGICAL AND BRANCH (CLRB,

25 CLGRB); COMPARE LOGICAL AND BRANCH RELATIVE (CLRJ, CLGRJ);

COMPARE LOGICAL IMMEDIATE AND BRANCH (CLIB, CLGIB); and COMPARE

LOGICAL IMMEDIATE AND BRANCH RELATIVE (CLIJ, CLGIJ).

A breaking event is also considered to occur whenever one of the following instructions

30 completes: BRANCH AND SET AUTHORITY (BSA); BRANCH IN SUBSPACE GROUP

(BSG); BRANCH RELATIVE AND SAVE (BRAS); BRANCH RELATIVE AND SAVE

LONG (BRASL); LOAD PSW (LPSW); LOAD PSW EXTENDED (LPSWE); PROGRAM

CALL (PC); PROGRAM RETURN (PR); PROGRAM TRANSFER (PT); PROGRAM

WO 2013/185978 PCT/EP2013/059205
35

TRANSFER WITH INSTANCE (PTI); RESUME PROGRAM (RP); and TRAP (TRAP2,

TRAP4).

A breaking event is not considered to occur as a result of a transaction being aborted (either

5 implicitly or as a result of the TRANSACTION ABORT instruction).

Model Dependent Diagnostic Information 924: Bytes 112-127 contain model dependent

diagnostic information.

10 For all abort codes except 12 (filtered program interruption), the model dependent diagnostic

information is saved in each TDB that is stored.

In one embodiment, the model dependent diagnostic information includes the following:

15 - Bytes 112-119 contain a vector of 64 bits called the transactional execution

branch indications (TXBI). Each of the first 63 bits of the vector indicates the results of

executing a branching instruction while the CPU was in the transactional execution mode, as

follows:

20 Value Meaning

0 The instruction completed without branching.

1 The instruction completed with branching.

Bit 0 represents the result of the first such branching instruction, bit 1 represents the result of

25 the second such instruction, and so forth.

If fewer than 63 branching instructions were executed while the CPU was in the

transactional execution mode, the rightmost bits that do not correspond to branching

instructions are set to zeros (including bit 63). When more than 63 branching instructions

30 were executed, bit 63 of the TXBI is set to one.

Bits in the TXBI are set by instructions which are capable of causing a breaking event, as

listed above, except for the following:

WO 2013/185978 PCT/EP2013/059205
36

- Any restricted instruction does not cause a bit to be set in the TXBI.

- For instructions of, for instance, the z/Architecture, when the M1 field of the

BRANCH ON CONDITION, BRANCH RELATIVE ON CONDITION, or BRANCH

5 RELATIVE ON CONDITION LONG instruction is zero, or when the R2 field of the

following instructions is zero, it is model dependent whether the execution of the instruction

causes a bit to be set in the TXBI.

* BRANCH AND LINK (BALR);BRANCH AND SAVE (BASR); BRANCH

10 AND SAVE AND SET MODE (BASSM); BRANCH AND SET MODE (BSM); BRANCH

ON CONDITION (BCR); and BRANCH ON COUNT (BCTR, BCTGR)

* For abort conditions that were caused by a host access exception, bit position 0 of

byte 127 is set to one. For all other abort conditions, bit position 0 of byte 127 is set to zero.

15

* For abort conditions that were detected by the load/store unit (LSU), the

rightmost five bits of byte 127 contain an indication of the cause. For abort conditions that

were not detected by the LSU, byte 127 is reserved.

20 General Registers 930: Bytes 128-255 contain the contents of general registers 0-15 at the

time the transaction was aborted. The registers are stored in ascending order, beginning with

general register 0 in bytes 128-135, general register 1 in bytes 136-143, and so forth.

Reserved: All other fields are reserved. Unless indicated otherwise, the contents of reserved

25 fields are unpredictable.

As observed by other CPUs and the I/O subsystem, storing of the TDB(s) during a

transaction abort is a multiple access reference occurring after any non-transactional stores.

30 A transaction may be aborted due to causes that are outside the scope of the immediate

configuration in which it executes. For example, transient events recognized by a hypervisor

(such as LPAR or z/VM) may cause a transaction to be aborted.

WO 2013/185978 PCT/EP2013/059205
37

The information provided in the transaction diagnostic block is intended for diagnostic

purposes and is substantially correct. However, because an abort may have been caused by

an event outside the scope of the immediate configuration, information such as the abort

code or program interruption identification may not accurately reflect conditions within the

5 configuration, and thus, should not be used in determining program action.

In addition to the diagnostic information saved in the TDB, when a transaction is aborted

due to any data exception program exception condition and both the AFP register control, bit

45 of control register 0, and the effective allow floating point operation control (F) are one,

10 the data exception code (DXC) is placed into byte 2 of the floating point control register

(FPCR), regardless of whether filtering applies to the program exception condition. When a

transaction is aborted, and either or both the AFP register control or effective allow floating

point operation control are zero, the DXC is not placed into the FPCR.

15 In one embodiment, as indicated herein, when the transactional execution facility is installed,

the following general instructions are provided.

* EXTRACT TRANSACTION NESTING DEPTH

* NONTRANSACTIONAL STORE

20 - TRANSACTION ABORT

* TRANSACTION BEGIN

* TRANSACTION END

When the CPU is in the transactional execution mode, attempted execution of certain

25 instructions is restricted and causes the transaction to be aborted.

When issued in the constrained transactional execution mode, attempted execution of

restricted instructions may also result in a transaction constraint program interruption, or

may result in execution proceeding as if the transaction was not constrained.

30

In one example of the z/Architecture, restricted instructions include, as examples, the

following non-privileged instructions: COMPARE AND SWAP AND STORE; MODIFY

RUNTIME INSTRUMENTATION CONTROLS; PERFORM LOCKED OPERATION;

WO 2013/185978 PCT/EP2013/059205
38

PREFETCH DATA (RELATIVE LONG), when the code in the M1 field is 6 or 7; STORE

CHARACTERS UNDER MASK HIGH, when the M3 field is zero and the code in the RI

field is 6 or 7; STORE FACILITY LIST EXTENDED; STORE RUNTIME

INSTRUMENTATION CONTROLS; SUPERVISOR CALL; and TEST RUNTIME

5 INSTRUMENTATION CONTROLS.

In the above list, COMPARE AND SWAP AND STORE and PERFORM LOCKED

OPERATION are complex instructions which can be more efficiently implemented by the

use of basic instructions in the TX mode. The cases for PREFETCH DATA and

10 PREFETCH DATA RELATIVE LONG are restricted as the codes of 6 and 7 release a cache

line, necessitating the commitment of the data potentially prior to the completion of a

transaction. SUPERVISOR CALL is restricted as it causes an interruption (which causes a

transaction to be aborted).

15 Under the conditions listed below, the following instructions are restricted:

* BRANCH AND LINK (BALR), BRANCH AND SAVE (BASR), and BRANCH

AND SAVE AND SET MODE, when the R2 field of the instruction is nonzero and branch

tracing is enabled.

20 - BRANCH AND SAVE AND SET MODE and BRANCH AND SET MODE,

when the R2 field is nonzero and mode tracing is enabled; SET ADDRESSING MODE,

when mode tracing is enabled.

* MONITOR CALL, when a monitor event condition is recognized.

25

The above list includes instructions that may form trace entries. If these instructions were

allowed to execute transactionally and formed trace entries, and the transaction subsequently

aborted, the trace table pointer in control register 12 would be advanced, but the stores to the

trace table would be discarded. This would leave an inconsistent gap in the trace table; thus,

30 the instructions are restricted in the cases where they would form trace entries.

When the CPU is in the transactional execution mode, it is model dependent whether the

following instructions are restricted: CIPHER MESSAGE; CIPHER MESSAGE WITH

WO 2013/185978 PCT/EP2013/059205
39

CFB; CIPHER MESSAGE WITH CHAINING; CIPHER MESSAGE WITH COUNTER;

CIPHER MESSAGE WITH OFB; COMPRESSION CALL; COMPUTE INTERMEDIATE

MESSAGE DIGEST; COMPUTE LAST MESSAGE DIGEST; COMPUTE MESSAGE

AUTHENTICATION CODE; CONVERT UNICODE-16 TO UNICODE-32; CONVERT

5 UNICODE-16 TO UNICODE-8; CONVERT UNICODE-32 TO UNICODE-16; CONVERT

UNICODE-32 TO UNICODE 8; CONVERT UNICODE-8 TO UNICODE-16; CONVERT

UNICODE-8 TO UNICODE-32; PERFORM CRYPTOGRAPHIC COMPUTATION;

RUNTIME INSTRUMENTATION OFF; and RUNTIME INSTRUMENTATION ON.

10 Each of the above instructions is either currently implemented by the hardware co-processor,

or has been in past machines, and thus, is considered restricted.

When the effective allow AR modification (A) control is zero, the following instructions are

restricted: COPY ACCESS; LOAD ACCESS MULTIPLE; LOAD ADDRESS

15 EXTENDED; and SET ACCESS.

Each of the above instructions causes the contents of an access register to be modified. If

the A control in the TRANSACTION BEGIN instruction is zero, then the program has

explicitly indicated that access register modification is not to be allowed.

20

When the effective allow floating point operation (F) control is zero, floating point

instructions are restricted.

Under certain circumstances, the following instructions may be restricted: EXTRACT

25 CPU TIME; EXTRACT PSW; STORE CLOCK; STORE CLOCK EXTENDED; and

STORE CLOCK FAST.

Each of the above instructions is subject to an interception control in the interpretative

execution state description. If the hypervisor has set the interception control for these

30 instructions, then their execution may be prolonged due to hypervisor implementation; thus,

they are considered restricted if an interception occurs.

WO 2013/185978 PCT/EP2013/059205
40

When a nonconstrained transaction is aborted because of the attempted execution of a

restricted instruction, the transaction abort code in the transaction diagnostic block is set to

11 (restricted instruction), and the condition code is set to 3, except as follows: when a

nonconstrained transaction is aborted due to the attempted execution of an instruction that

5 would otherwise result in a privileged operation exception, it is unpredictable whether the

abort code is set to 11 (restricted instruction) or 4 (unfiltered program interruption resulting

from the recognition of the privileged operation program interruption). When a

nonconstrained transaction is aborted due to the attempted execution of PREFETCH DATA

(RELATIVE LONG) when the code in the M1 field is 6 or 7 or STORE CHARACTERS

10 UNDER MASK HIGH when the M3 field is zero and the code in the RI field is 6 or 7, it is

unpredictable whether the abort code is set to 11 (restricted instruction) or 16 (cache other).

When a nonconstrained transaction is aborted due to the attempted execution of MONITOR

CALL, and both a monitor event condition and a specification exception condition are

present it is unpredictable whether the abort code is set to 11 or 4, or, if the program

15 interruption is filtered, 12.

Additional instructions may be restricted in a constrained transaction. Although these

instructions are not currently defined to be restricted in a nonconstrained transaction, they

may be restricted under certain circumstances in a nonconstrained transaction on future

20 processors.

Certain restricted instructions may be allowed in the transactional execution mode on future

processors. Therefore, the program should not rely on the transaction being aborted due to

the attempted execution of a restricted instruction. The TRANSACTION ABORT

25 instruction should be used to reliably cause a transaction to be aborted.

In a nonconstrained transaction, the program should provide an alternative non-transactional

code path to accommodate a transaction that aborts due to a restricted instruction.

30 In operation, when the transaction nesting depth is zero, execution of the TRANSACTION

BEGIN (TBEGIN) instruction resulting in condition code zero causes the CPU to enter the

nonconstrained transactional execution mode. When the transaction nesting depth is zero,

WO 2013/185978 PCT/EP2013/059205
41

execution of the TRANSACTION BEGIN constrained (TBEGINC) instruction resulting in

condition code zero causes the CPU to enter the constrained transactional execution mode.

Except where explicitly noted otherwise, all rules that apply for non-transactional execution

5 also apply to transactional execution. Below are additional characteristics of processing

while the CPU is in the transactional execution mode.

When the CPU is in the nonconstrained transactional execution mode, execution of the

TRANSACTION BEGIN instruction resulting in condition code zero causes the CPU to

10 remain in the nonconstrained transactional execution mode.

As observed by the CPU, fetches and stores made in the transaction execution mode are no

different than those made while not in the transactional execution mode. As observed by

other CPUs and by the I/O subsystem, all storage operand accesses made while a CPU is in

15 the transactional execution mode appear to be a single block concurrent access. That is, the

accesses to all bytes within a halfword, word, doubleword, or quadword are specified to

appear to be block concurrent as observed by other CPUs and I/O (e.g., channel) programs.

The halfword, word, doubleword, or quadword is referred to in this section as a block. When

a fetch-type reference is specified to appear to be concurrent within a block, no store access

20 to the block by another CPU or I/O program is permitted during the time that bytes

contained in the block are being fetched. When a store-type reference is specified to appear

to be concurrent within a block, no access to the block, either fetch or store, is permitted by

another CPU or I/O program during the time that the bytes within the block are being stored.

25 Storage accesses for instruction and DAT and ART (Access Register Table) table fetches

follow the non-transactional rules.

The CPU leaves the transactional execution mode normally by means of a TRANSACTION

END instruction that causes the transaction nesting depth to transition to zero, in which case,

30 the transaction completes.

When the CPU leaves the transactional execution mode by means of the completion of a

TRANSACTION END instruction, all stores made while in the transactional execution

WO 2013/185978 PCT/EP2013/059205
42

mode are committed; that is, the stores appear to occur as a single block-concurrent

operation as observed by other CPUs and by the I/O subsystem.

A transaction may be implicitly aborted for a variety of causes, or it may be explicitly

5 aborted by the TRANSACTION ABORT instruction. Example possible causes of a

transaction abort, the corresponding abort code, and the condition code that is placed into the

transaction abort PSW are described below.

External Interruption: The transaction abort code is set to 2, and the condition code in the

10 transaction abort PSW is set to 2. The transaction abort PSW is stored as the external old

PSW as a part of external interruption processing.

Program Interruption (Unfiltered): A program exception condition that results in an

interruption (that is, an unfiltered condition) causes the transaction to be aborted with code 4.

15 The condition code in the transaction abort PSW is set specific to the program interruption

code. The transaction abort PSW is stored as the program old PSW as a part of program

interruption processing.

An instruction that would otherwise result in a transaction being aborted due to an operation

20 exception may yield alternate results: for a nonconstrained transaction, the transaction may

instead abort with abort code 11 (restricted instruction); for a constrained transaction, a

transaction constraint program interruption may be recognized instead of the operation

exception.

25 When a PER (Program Event Recording) event is recognized in conjunction with any other

unfiltered program exception condition, the condition code is set to 3.

Machine Check Interruption: The transaction abort code is set to 5, and the condition code

in the transaction abort PSW is set to 2. The transaction abort PSW is stored as the machine

30 check old PSW as a part of machine check interruption processing.

WO 2013/185978 PCT/EP2013/059205
43

I/O Interruption: The transaction abort code is set to 6, and the condition code in the

transaction abort PSW is set to 2. The transaction abort PSW is stored as the I/O old PSW as

a part of I/O interruption processing.

5 Fetch Overflow: A fetch overflow condition is detected when the transaction attempts to

fetch from more locations than the CPU supports. The transaction abort code is set to 7, and

the condition code is set to either 2 or 3.

Store Overflow: A store overflow condition is detected when the transaction attempts to

10 store to more locations than the CPU supports. The transaction abort code is set to 8, and the

condition code is set to either 2 or 3.

Allowing the condition code to be either 2 or 3 in response to a fetch or store overflow abort

allows the CPU to indicate potentially retryable situations (e.g., condition code 2 indicates

15 re-execution of the transaction may be productive; while condition code 3 does not

recommend re-execution).

Fetch Conflict: A fetch conflict condition is detected when another CPU or the I/O

subsystem attempts to store into a location that has been transactionally fetched by this CPU.

20 The transaction abort code is set to 9, and the condition code is set to 2.

Store Conflict: A store conflict condition is detected when another CPU or the I/O

subsystem attempts to access a location that has been stored during transactional execution

by this CPU. The transaction abort code is set to 10, and the condition code is set to 2.

25

Restricted Instruction: When the CPU is in the transactional execution mode, attempted

execution of a restricted instruction causes the transaction to be aborted. The transaction

abort code is set to 11, and the condition code is set to 3.

30 When the CPU is in the constrained transactional execution mode, it is unpredictable

whether attempted execution of a restricted instruction results in a transaction constraint

program interruption or an abort due to a restricted instruction. The transaction is still

aborted but the abort code may indicate either cause.

WO 2013/185978 PCT/EP2013/059205
44

Program Exception Condition (Filtered): A program exception condition that does not result

in an interruption (that is, a filtered condition) causes the transaction to be aborted with a

transaction abort code of 12. The condition code is set to 3.

5 Nesting Depth Exceeded: The nesting depth exceeded condition is detected when the

transaction nesting depth is at the maximum allowable value for the configuration, and a

TRANSACTION BEGIN instruction is executed. The transaction is aborted with a

transaction abort code of 13, and the condition code is set to 3.

10 Cache Fetch Related Condition: A condition related to storage locations fetched by the

transaction is detected by the CPU's cache circuitry. The transaction is aborted with a

transaction abort code of 14, and the condition code is set to either 2 or 3.

Cache Store Related Condition: A condition related to storage locations stored by the

15 transaction is detected by the CPU's cache circuitry. The transaction is aborted with a

transaction abort code of 15, and the condition code is set to either 2 or 3.

Cache Other Condition: A cache other condition is detected by the CPU's cache circuitry.

The transaction is aborted with a transaction abort code of 16, and the condition code is set

20 to either 2 or 3.

During transactional execution, if the CPU accesses instructions or storage operands using

different logical addresses that are mapped to the same absolute address, it is model

dependent whether the transaction is aborted. If the transaction is aborted due to accesses

25 using different logical addresses mapped to the same absolute address, abort code 14, 15, or

16 is set, depending on the condition.

Miscellaneous Condition: A miscellaneous condition is any other condition recognized by

the CPU that causes the transaction to abort. The transaction abort code is set to 255 and the

30 condition code is set to either 2 or 3.

WO 2013/185978 PCT/EP2013/059205
45

When multiple configurations are executing in the same machine (for example, logical

partitions or virtual machines), a transaction may be aborted due to an external machine

check or I/O interruption that occurred in a different configuration.

5 Although examples are provided above, other causes of a transaction abort with

corresponding abort codes and condition codes may be provided. For instance, a cause may

be a Restart Interruption, in which the transaction abort code is set to 1, and the condition

code in the transaction abort PSW is set to 2. The transaction abort PSW is stored as the

restart-old PSW as a part of restart processing. As a further example, a cause may be a

10 Supervisor Call condition, in which the abort code is set to 3, and the condition code in the

transaction abort PSW is set to 3. Other or different examples are also possible.

Notes:

15 1. The miscellaneous condition may result from any of the following:

. Instructions, such as, in the z/Architecture, COMPARE AND REPLACE DAT

TABLE ENTRY, COMPARE AND SWAP AND PURGE, INVALIDATE DAT TABLE

ENTRY, INVALIDATE PAGE TABLE ENTRY, PERFORM FRAME MANAGEMENT

20 FUNCTION in which the NQ control is zero and the SK control is one, SET STORAGE

KEY EXTENDED in which the NQ control is zero, performed by another CPU in the

configuration; the condition code is set to 2.

. An operator function, such as reset, restart or stop, or the equivalent SIGNAL

25 PROCESSOR order is performed on the CPU.

. Any other condition not enumerated above; the condition code is set to 2 or 3.

2. The location at which fetch and store conflicts are detected may be anywhere

30 within the same cache line.

WO 2013/185978 PCT/EP2013/059205
46

3. Under certain conditions, the CPU may not be able to distinguish between similar

abort conditions. For example, a fetch or store overflow may be indistinguishable from a

respective fetch or store conflict.

5 4. Speculative execution of multiple instruction paths by the CPU may result in a

transaction being aborted due to conflict or overflow conditions, even if such conditions do

not occur in the conceptual sequence. While in the constrained transactional execution

mode, the CPU may temporarily inhibit speculative execution, allowing the transaction to

attempt to complete without detecting such conflicts or overflows speculatively.

10

When multiple abort conditions apply, it is unpredictable which abort code is reported by the

CPU.

As indicated above, a transaction may be implicitly aborted or explicitly aborted. If the CPU

15 is in the nonconstrained execution mode, a transaction may be explicitly aborted by

execution of a TRANSACTION ABORT instruction. The second operand address of the

instruction, formed by combining the contents of the register specified by B2 and D2 when

the B2 field is nonzero, is not used to address data; instead, the address specified by the B2

and D2 fields forms the transaction abort code, which is placed in the transaction diagnostic

20 block during abort processing. When the B2 field is zero, the second operand address is

formed solely from the D2 field. Address computation for the second operand address

follows the rules of address arithmetic: in the 24-bit addressing mode, bits 0-39 are set to

zeros; in the 31-bit addressing mode, bits 0-32 are set to zeros. The condition code in the

transaction abort PSW is set to either 2 or 3, depending on whether bit 63 of the second

25 operand address is zero or one, respectively.

When TRANSACTION ABORT is the target of an execute-type instruction, the operation is

suppressed and an execute exception is recognized.

30 A specification exception is recognized and the operation is suppressed if the second

operand address is between 0 and 255.

WO 2013/185978 PCT/EP2013/059205
47

A special operation exception is recognized and the operation is suppressed if the CPU is not

in the transactional execution mode at the beginning of the instruction.

If the CPU is in the constrained transactional execution mode, a transaction constraint

5 program exception condition is recognized.

Condition Code: The code remains unchanged. However, the condition code of the

transaction abort PSW will be set by the subsequent transaction abort processing.

10 Program Exceptions:

* Execute

* Operation (transactional execution facility not installed)

* Special operation

* Specification

15 - Transaction constraint (due to restricted instruction)

Notes:

1. If a transactional execution control, bit 8 of control register 0, is zero, the CPU

20 cannot be in the transactional execution mode; attempted execution of a

TRANSACTIONAL ABORT in this case results in a special operation exception.

2. Abort codes 0-255 are reserved for transactions that are implicitly aborted by the

CPU. If the program specifies any of these codes in the TRANSACTION ABORT

25 instruction, a specification exception is recognized, and the transaction is aborted with the

resulting abort code indicating a program interruption (code 4) or program interruption

condition (code 12).

3. Program interruptions are subject to the effective program interruption filtering

30 control.

4. Execution of TABORT may cause high contention which, in turn, can lead to

other abort conditions.

WO 2013/185978 PCT/EP2013/059205
48

5. Following the TABORT instruction, program execution continues at the

instruction designated by the transaction abort PSW.

FIG. 10 summarizes example abort codes stored in a transaction diagnostic block, and the

5 corresponding condition code (CC). The description in FIG. 10 illustrates one particular

implementation. Other implementations and encodings of values are possible.

As shown in FIG. 10, in one embodiment, abort codes 1, 3, and 17-254 are reserved for

potential enhancements. Such enhancements may result in the setting of either condition

10 code 2 or 3. Further, abort code 0 is reserved and will not be assigned to a meaningful abort

indication, in this embodiment. Depending on the model, the CPU may not be able to

distinguish between certain abort reasons. For example, a fetch/store overflow and a

fetch/store conflict may not be distinguishable by the CPU in all circumstances.

15 In one embodiment, and as mentioned above, the transactional facility provides for both

constrained transactions and nonconstrained transactions, as well as processing associated

therewith. Initially, constrained transactions are discussed and then nonconstrained

transactions

20 A constrained transaction executes in transactional mode without a fall-back path. It is a

mode of processing useful for compact functions. In the absence of repeated interruptions or

conflicts with other CPUs or the I/O subsystem (i.e., caused by conditions that will not allow

the transaction to complete successfully), a constrained transaction will eventually complete;

thus, an abort handler routine is not required and is not specified. For instance, in the

25 absence of violation of a condition that cannot be addressed (e.g., divide by 0); a condition

that does not allow the transaction to complete (e.g., a timer interruption that does not allow

an instruction to run; a hot I/O; etc.); or a violation of a restriction or constraint associated

with a constrained transaction, the transaction will eventually complete.

30 A constrained transaction is initiated by a TRANSACTION BEGIN constrained

(TBEGINC) instruction when the transaction nesting depth is initially zero. A constrained

transaction is subject to the following constraints, in one embodiment.

WO 2013/185978 PCT/EP2013/059205
49

1. The transaction executes no more than 32 instructions, not including the

TRANSACTION BEGIN constrained (TBEGINC) and TRANSACTION END instructions.

2. All instructions in the transaction are to be within 256 contiguous bytes of

5 storage, including the TRANSACTION BEGIN constrained (TBEGINC) and any

TRANSACTION END instructions.

3. In addition to the restricted instructions, the following restrictions apply to a

constrained transaction.

10

a. Instructions are limited to those referred to as General Instructions, including, for

instance, add, subtract, multiply, divide, shift, rotate, etc.

b. Branching instructions are limited to the following (the instructions listed are of

15 the z/Architecture in one example):

* BRANCH RELATIVE ON CONDITION in which the M1 is nonzero and the

R12 field contains a positive value.

20 - BRANCH RELATIVE ON CONDITION LONG in which the M1 field is

nonzero, and the R12 field contains a positive value that does not cause address wraparound.

* COMPARE AND BRANCH RELATIVE, COMPARE IMMEDIATE AND

BRANCH RELATIVE, COMPARE LOGICAL AND BRANCH RELATIVE, and

25 COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE in which the M3 field is

nonzero and the R14 field contains a positive value. (That is, only forward branches with

nonzero branch masks.)

c. Except for TRANSACTION END and instructions which cause a specified

30 operand serialization, instructions which cause a serialization function are restricted.

d. Storage-and-storage operations (SS-), and storage-and-storage operations with an

extended opcode (SSE-) instructions are restricted.

WO 2013/185978 PCT/EP2013/059205
50

e. All of the following general instructions (which are of the z/Architecture in this

example) are restricted: CHECKSUM; CIPHER MESSAGE; CIPHER MESSAGE WITH

CFB; CIPHER MESSAGE WITH CHAINING; CIPHER MESSAGE WITH COUNTER;

CIPHER MESSAGE WITH OFB; COMPARE AND FORM CODEWORD; COMPARE

5 LOGICAL LONG; COMPARE LOGICAL LONG EXTENDED; COMPARE LOGICAL

LONG UNICODE; COMPARE LOGICAL STRING; COMPARE UNTIL SUBSTRING

EQUAL; COMPRESSION CALL; COMPUTE INTERMEDIATE MESSAGE DIGEST;

COMPUTE LAST MESSAGE DIGEST; COMPUTE MESSAGE AUTHENTICATION

CODE; CONVERT TO BINARY; CONVERT TO DECIMAL; CONVERT UNICODE-16

10 TO UNICODE-32; CONVERT UNICODE-16 TO UNICODE-8; CONVERT UNICODE-32

TO UNICODE-16; CONVERT UNICODE-32 TO UNICODE-8; CONVERT UNICODE-8

TO UNICODE-16; CONVERT UNICODE-8 TO UNICODE-32; DIVIDE; DIVIDE

LOGICAL; DIVIDE SINGLE; EXECUTE; EXECUTE RELATIVE LONG; EXTRACT

CACHE ATTRIBUTE; EXTRACT CPU TIME; EXTRACT PSW; EXTRACT

15 TRANSACTION NESTING DEPTH; LOAD AND ADD; LOAD AND ADD LOGICAL;

LOAD AND AND; LOAD AND EXCLUSIVE OR; LOAD AND OR; LOAD PAIR

DISJOINT; LOAD PAIR FROM QUADWORD; MONITOR CALL; MOVE LONG;

MOVE LONG EXTENDED; MOVE LONG UNICODE; MOVE STRING; NON

TRANSACTIONAL STORE; PERFORM CRYPTOGRAPHIC COMPUTATION;

20 PREFETCH DATA; PREFETCH DATA RELATIVE LONG; RUNTIME

INSTRUMENTATION EMIT; RUNTIME INSTRUMENTATION NEXT; RUNTIME

INSTRUMENTATION OFF; RUNTIME INSTRUMENTATION ON; SEARCH STRING;

SEARCH; STRING UNICODE; SET ADDRESSING MODE; STORE CHARACTERS

UNDER MASK HIGH, when the M3 field is zero, and the code in the RI field is 6 or 7;

25 STORE CLOCK; STORE CLOCK EXTENDED; STORE CLOCK FAST; STORE

FACILITY LIST EXTENDED; STORE PAIR TO QUADWORD; TEST ADDRESSING

MODE; TRANSACTION ABORT; TRANSACTION BEGIN (both TBEGIN and

TBEGINC); TRANSLATE AND TEST EXTENDED; TRANSLATE AND TEST

REVERSE EXTENDED; TRANSLATE EXTENDED; TRANSLATE ONE TO ONE;

30 TRANSLATE ONE TO TWO TRANSLATE TWO TO ONE; and TRANSLATE TWO TO

TWO.

WO 2013/185978 PCT/EP2013/059205
51

4. The transaction's storage operands access no more than four octowords. Note:

LOAD ON CONDITION and STORE ON CONDITION are considered to reference storage

regardless of the condition code. An octoword is, for instance, a group of 32 consecutive

bytes on a 32 byte boundary.

5

5. The transaction executing on this CPU, or stores by other CPUs or the I/O

subsystem, do not access storage operands in any 4 K-byte blocks that contain the 256 bytes

of storage beginning with the TRANSACTION BEGIN constrained (TBEGINC) instruction.

10 6. The transaction does not access instructions or storage operands using different

logical addresses that are mapped to the same absolute address.

7. Operand references made by the transaction are to be within a single doubleword,

except that for LOAD ACCESS MULTIPLE, LOAD MULTIPLE, LOAD MULTIPLE

15 HIGH, STORE ACCESS MULTIPLE, STORE MULTIPLE, and STORE MULTIPLE

HIGH, operand references are to be within a single octoword.

If a constrained transaction violates any of constraints 1-7, listed above, then either (a) a

transaction constraint program interruption is recognized, or (b) execution proceeds as if the

20 transaction was not constrained, except that further constraint violations may still result in a

transaction constrained program interruption. It is unpredictable which action is taken, and

the action taken may differ based on which constraint is violated.

In the absence of constraint violations, repeated interruptions, or conflicts with other CPUs

25 or the I/O subsystem, a constrained transaction will eventually complete, as described above.

1. The chance of successfully completing a constrained transaction improves if the

transaction meets the following criteria:

30 a. The instructions issued are fewer than the maximum of 32.

b. The storage operand references are fewer than the maximum of 4 octowords.

WO 2013/185978 PCT/EP2013/059205
52

c. The storage operand references are on the same cache line.

d. Storage operand references to the same locations occur in the same order by all

transactions.

5

2. A constrained transaction is not necessarily assured of successfully completing

on its first execution. However, if a constrained transaction that does not violate any of the

listed constraints is aborted, the CPU employs circuitry to ensure that a repeated execution of

the transaction is subsequently successful.

10

3. Within a constrained transaction, TRANSACTION BEGIN is a restricted

instruction, thus a constrained transaction cannot be nested.

4. Violation of any of constrains 1-7 above by a constrained transaction may result

15 in a program loop.

5. The limitations of a constrained transaction are similar to those of a compare

and-swap loop. Because of potential interference from other CPUs and the I/O subsystem,

there is no architectural assurance that a COMPARE AND SWAP instruction will ever

20 complete with condition code 0. A constrained transaction may suffer from similar

interference in the form of fetch- or store-conflict aborts or hot interruptions.

The CPU employs fairness algorithms to ensure that, in the absence of any constraint

violations, a constrained transaction eventually completes.

25

6. In order to determine the number of repeated iterations required to complete a

constrained transaction, the program may employ a counter in a general register that is not

subject to the general register save mask. An example is shown below.

LH1 15,0 Zero retry counter.

30 Loop TBEGINC O(O),X 'FEO' Preserve GRs 0-13

AHI 15,1 Increment counter

... Constrained transactional-execution code

WO 2013/185978 PCT/EP2013/059205
53

TEND End of transaction.

*R15 now contains count of repeated transactional attempts.

5 Note that both registers 14 and 15 are not restored in this example. Also note that on some

models, the count in general register 15 may be low if the CPU detects the abort condition

following the completion of the TBEGINC instruction, but before the completion of the AHI

instruction.

10 As observed by the CPU, fetches and stores made in the transactional execution mode are no

different than those made while not in the transaction execution mode.

In one embodiment, the user (i.e., the one creating the transaction) selects whether or not a

transaction is to be constrained. One embodiment of the logic associated with the processing

15 of constrained transactions, and, in particular, the processing associated with a TBEGINC

instruction, is described with reference to FIG. 11. Execution of the TBEGINC instruction

causes the CPU to enter the constrained transactional execution mode or remain in the

nonconstrained execution mode. The CPU (i.e., the processor) executing TBEGINC

performs the logic of FIG. 11.

20

Referring to FIG. 11, based on execution of a TBEGINC instruction, a serialization function

is performed, STEP 1100. A serialization function or operation includes completing all

conceptually previous storage accesses (and, for the z/Architecture, as an example, related

reference bit and change bit settings) by the CPU, as observed by other CPUs and by the I/O

25 subsystem, before the conceptually subsequent storage accesses (and related reference bit

and change bit settings) occur. Serialization affects the sequence of all CPU accesses to

storage and to the storage keys, except for those associated with ART table entry and DAT

table entry fetching.

30 As observed by a CPU in the transactional execution mode, serialization operates normally

(as described above). As observed by other CPUs and by the I/O subsystem, a serializing

operation performed while a CPU is in the transactional execution mode occurs when the

CPU leaves the transactional execution mode, either as a result of a TRANSACTION END

WO 2013/185978 PCT/EP2013/059205
54

instruction that decrements the transaction nesting depth to zero (normal ending), or as a

result of the transaction being aborted.

Subsequent to performing serialization, a determination is made as to whether an exception

5 is recognized, INQUIRY 1102. If so, the exception is handled, STEP 1104. For instance, a

special operation exception is recognized and the operation is suppressed if the transactional

execution control, bit 8 of control register 0, is 0. As further examples, a specification

exception is recognized and the operation is suppressed, if the B1 field, bits 16-19 of the

instruction, is nonzero; an execute exception is recognized and the operation is suppressed, if

10 the TBEGINC is the target of an execute-type instruction; and an operation exception is

recognized and the operation is suppressed, if the transactional execution facility is not

installed in the configuration. If the CPU is already in the constrained transaction execution

mode, then a transaction constrained exception program exception is recognized and the

operation is suppressed. Further, if the transaction nesting depth, when incremented by 1,

15 would exceed a model dependent maximum transaction nesting depth, the transaction is

aborted with abort code 13. Other or different exceptions may be recognized and handled.

However, if there is not an exception, then a determination is made as to whether the

transaction nesting depth is zero, INQUIRY 1106. If the transaction nesting depth is zero,

20 then the transaction diagnostic block address is considered to be invalid, STEP 1108; the

transaction abort PSW is set from the contents of the current PSW, except that the

instruction address of the transaction abort PSW designates the TBEGINC instruction, rather

than the next sequential instruction, STEP 1110; and the contents of the general register pairs

as designated by the general register save mask are saved in a model dependent location that

25 is not directly accessible by the program, STEP 1112. Further, the nesting depth is set to 1,

STEP 1114. Additionally, the effective value of the allow floating point operation (F) and

program interruption filtering controls (PIFC) are set to zero, STEP 1316. Further, the

effective value of the allow AR modification (A) control, bit 12 field of the I2 field of the

instruction, is determined, STEP 1118. For example, the effective A control is the logical

30 AND of the A control in the TBEGINC instruction for the current level and for any outer

TBEGIN instructions.

WO 2013/185978 PCT/EP2013/059205
55

Returning to INQUIRY 1106, if the transaction nesting depth is greater than zero, then the

nesting depth is incremented by 1, STEP 1120. Further, the effective value of the allow

floating point operation (F) is set to zero, and the effective value of the program interruption

filtering control (PIFC) is unchanged, STEP 1122. Processing then continues with STEP

5 1118. In one embodiment, a successful initiation of the transaction results in condition code

0. This concludes one embodiment of the logic associated with executing a TBEGINC

instruction.

In one embodiment, the exception checking provided above can occur in varying order. One

10 particular order for the exception checking is as follows:

Exceptions with the same priority as the priority of program-interruption conditions for the

general case.

15 Specification exception due to the B1 field containing a nonzero value.

Abort due to exceeding transaction nesting depth.

Condition code 0 due to normal completion.

20

Additionally, the following applies in one or more embodiments:

1. Registers designated to be saved by the general register save mask are only

restored if the transaction aborts, not when the transaction ends normally by means of

25 TRANSACTION END. Only the registers designated by the GRSM of the outermost

TRANSACTION BEGIN instruction are restored on abort.

The I2 field should designate all register pairs that provide input values that are changed by a

constrained transaction. Thus, if the transaction is aborted, the input register values will be

30 restored to their original contents when the constrained transaction is re-executed.

WO 2013/185978 PCT/EP2013/059205
56

2. On most models, improved performance may be realized, both on

TRANSACTION BEGIN and when a transaction aborts, by specifying the minimum

number of registers needed to be saved and restored in the general register save mask.

5 3. The following illustrates the results of the TRANSACTION BEGIN instruction

(both TBEGIN and TBEGINC) based on the current transaction nesting depth (TND) and,

when the TND is nonzero, whether the CPU is in the nonconstrained or constrained

transactional-execution mode:

Instruction TND=O

TBEGIN Enter the nonconstrained transactional-execution mode

TBEGINC Enter the constrained transactional-execution mode

Instruction TND>O

TBEGIN NTX Mode CTX Mode

Continue in the nonconstrained Transaction-constrained

transactional-execution mode exception

TBEGINC Continue in the nonconstrained Transaction-constrained

transactional-execution mode exception

Explanation:

CTX CPU is in the constrained transactional-execution mode

NTX CPU is in the nonconstrained transactional-execution mode

TND Transaction nesting depth at the beginning of the instruction.

10

As described herein, in one aspect, a constrained transaction is assured of

completion, assuming it does not contain a condition that makes it unable to complete. To

ensure it completes, the processor (e.g., CPU) executing the transaction may take certain

actions. For instance, if a constrained transaction has an abort condition, the CPU may

15 temporarily:

(a) inhibit out-of-order execution;

(b) inhibit other CPUs from accessing the conflicting storage locations;

WO 2013/185978 PCT/EP2013/059205
57

(c) induce random delays in abort processing; and/or

(d) invoke other measures to facilitate successful completion.

To summarize, processing of a constrained transaction is, as follows:

5

* If already in the constrained-TX mode, a transaction-constrained exception is

recognized.

* If current TND (Transaction Nesting Depth)> 0, execution proceeds as if

nonconstrained transaction

10 o Effective F control set to zero

o Effective PIFC is unchanged

o Allows outer nonconstrained TX to call service function that may or may not use

constrained TX.

* If current TND = 0:

15 o Transaction diagnostic block address is invalid

- No instruction-specified TDB stored on abort

o Transaction-abort PSW set to address of TBEGINC

- Not the next sequential instruction

o General-register pairs designated by GRSM saved in a model-dependent

20 location not accessible by program

o Transaction token optionally formed (from D2 operand). The transaction

token is an identifier of the transaction. It may be equal to the storage operand address or

another value.

* Effective A = TBEGINC A & any outer A

25 * TND incremented

o If TND transitions from 0 to 1, CPU enters the constrained TX mode

o Otherwise, CPU remains in the nonconstrained TX mode

* Instruction completes with CCO

* Exceptions:

30 o Specification exception (PIC (Program Interruption Code) 0006) if B1 field is

nonzero

o Special operation exception (PIC 0013 hex) if transaction-execution control

(CRO.8) is zero

WO 2013/185978 PCT/EP2013/059205
58

o Transaction constraint exception (PIC 0018 hex) if issued in constrained TX

mode

o Operation exception (PIC 0001) if the constrained transactional execution

facility is not installed

5 o Execute exception (PIC 0003) if the instruction is the target of an execute

type instruction

o Abort code 13 if nesting depth exceeded

Abort conditions in constrained transaction:

o Abort PSW points to TBEGINC instruction

10 - Not the instruction following it

- Abort condition causes entire TX to be re-driven

* No fail path

o CPU takes special measures to ensure successful completion on re-drive

15 o Assuming no persistent conflict, interrupt, or constrained violation, the

transaction is assured of eventual completion.

- Constraint violation:

o PIC 0018 hex - indicates violation of transaction constraint

o Or, transaction runs as if nonconstrained

20

As described above, in addition to constrained transaction processing, which is optional, in

one embodiment, the transactional facility also provides nonconstrained transaction

processing. Further details regarding the processing of nonconstrained transactions, and, in

particular, the processing associated with a TBEGIN instruction are described with reference

25 to FIG. 12. Execution of the TBEGIN instruction causes the CPU either to enter or to

remain in the nonconstrained transactional execution mode. The CPU (i.e., the processor)

that executes TBEGIN performs the logic of FIG. 12.

Referring to FIG. 12, based on execution of the TBEGIN instruction, a serialization function

30 (described above) is performed, STEP 1200. Subsequent to performing serialization, a

determination is made as to whether an exception is recognized, INQUIRY 1202. If so, then

the exception is handled, STEP 1204. For instance, a special operation exception is

recognized and the operation is suppressed if the transactional execution control, bit 8 of

WO 2013/185978 PCT/EP2013/059205
59

control register 0, is zero. Further, a specification exception is recognized and the operation

is suppressed if the program interruption filtering control, bits 14-15 of the I2 field of the

instruction, contains the value 3; or the first operand address does not designate a double

word boundary. An operation exception is recognized and the operation is suppressed, if the

5 transactional execution facility is not installed in the configuration; and an execute exception

is recognized and the operation is suppressed if the TBEGIN is the target of an execute-type

instruction. Additionally, if the CPU is in the constrained transactional execution mode,

then a transaction constrained exception program exception is recognized and the operation

is suppressed. Further, if the transaction nesting depth, when incremented by 1, would

10 exceed a model dependent maximum transaction nesting depth, the transaction is aborted

with abort code 13.

Yet further, when the B1 field of the instruction is nonzero and the CPU is not in the

transactional execution mode, i.e., the transaction nesting depth is zero, then the store

15 accessibility to the first operand is determined. If the first operand cannot be accessed for

stores, then an access exception is recognized and the operation is either nullified,

suppressed, or terminated, depending on the specific access-exception condition.

Additionally, any PER storage alteration event for the first operand is recognized. When the

B1 field is nonzero and the CPU is already in the transactional execution mode, it is

20 unpredictable whether store accessibility to the first operand is determined, and PER storage

alteration events are detected for the first operand. If the B1 field is zero, then the first

operand is not accessed.

In addition to the exception checking, a determination is made as to whether the CPU is in

25 the transactional execution mode (i.e., transaction nesting depth is zero), INQUIRY 1206. If

the CPU is not in the transactional execution mode, then the contents of selected general

register pairs are saved, STEP 1208. In particular, the contents of the general register pairs

designated by the general register save mask are saved in a model dependent location that is

not directly accessible by the program.

30

Further, a determination is made as to whether the B1 field of the instruction is zero,

INQUIRY 1210. If the BI field is not equal to zero, the first operand address is placed in the

transaction diagnostic block address, STEP 1214, and the transaction diagnostic block

WO 2013/185978 PCT/EP2013/059205
60

address is valid. Further, the transaction abort PSW is set from the contents of the current

PSW, STEP 1216. The instruction address of the transaction abort PSW designates the next

sequential instruction (that is, the instruction following the outermost TBEGIN).

5 Moreover, a determination is made of the effective value of the allow AR modification (A)

control, bit 12 of the I2 field of the instruction, STEP 1218. The effective A control is the

logical AND of the A control in the TBEGIN instruction for the current level and for all

outer levels. Additionally, an effective value of the allow floating point operation (F)

control, bit 13 of the I2 field of the instruction, is determined, STEP 1220. The effective F

10 control is the logical AND of the F control in the TBEGIN instruction for the current level

and for all outer levels. Further, an effective value of the program interruption filtering

control (PIFC), bits 14-15 of the I2 field of the instruction, is determined, STEP 1222. The

effective PIFC value is the highest value in the TBEGIN instruction for the current level and

for all outer levels.

15

Additionally, a value of one is added to the transaction nesting depth, STEP 1224, and the

instruction completes with setting condition code 0, STEP 1226. If the transaction nesting

depth transitions from zero to one, the CPU enters the nonconstrained transactional

execution mode; otherwise, the CPU remains in the nonconstrained transactional execution

20 mode.

Returning to INQUIRY 1210, if B1 is equal to zero, then the transaction diagnostic block

address is invalid, STEP 1211, and processing continues with STEP 1218. Similarly, if the

CPU is in transactional execution mode, INQUIRY 1206, processing continues with STEP

25 1218.

Resulting Condition Code of execution of TBEGIN include, for instance:

0 Transaction initiation successful

1 -

30 2 -

3 -

Program Exceptions include, for instance:

WO 2013/185978 PCT/EP2013/059205
61

- Access (store, first operand)

* Operation (transactional execution facility not installed)

* Special operation

* Specification

5 - Transaction constraint (due to restricted instruction)

In one embodiment, the exception checking provided above can occur in varying order. One

particular order to the exception checking is as follows:

10 * Exceptions with the same priority as the priority of program interruption

conditions for the general case.

- Specification exception due to reserved PIFC value.

* Specification exception due to first operand address not on a doubleword

boundary.

15 - Access exception (when B1 field is nonzero).

. Abort due to exceeding maximum transaction nesting depth.

* Condition code 0 due to normal completion.

Notes:

20

1. When the B1 field is nonzero, the following applies:

* An accessible transaction diagnostic block (TDB) is to be provided when an

outermost transaction is initiated - even if the transaction never aborts.

* Since it is unpredictable whether accessibility of the TDB is tested for nested

25 transactions, an accessible TDB should be provided for any nested TBEGIN instruction.

* The performance of any TBEGIN in which the B 1 field is nonzero, and the

performance of any abort processing that occurs for a transaction that was initiated by an

outermost TBEGIN in which the B 1 field is nonzero, may be slower than when the B 1 field

is zero.

30

2. Registers designated to be saved by the general register save mask are only

restored, in one embodiment, if the transaction aborts, not when the transaction ends

WO 2013/185978 PCT/EP2013/059205
62

normally by means of TRANSACTION END. Only the registers designated by the GRSM

of the outermost TRANSACTION BEGIN instruction are restored on abort.

The I2 field should designate all register pairs that provide input values that are changed by

5 the transaction. Thus, if the transaction is aborted, the input register values will be restored

to their original contents when the abort handler is entered.

3. The TRANSACTION BEGIN (TBEGIN) instruction is expected to be followed

by a conditional branch instruction that will determine whether the transaction was

10 successfully initiated.

4. If a transaction is aborted due to conditions that do not result in an interruption,

the instruction designated by the transaction abort PSW receives control (that is, the

instruction following the outermost TRANSACTION BEGIN beginIN). In addition to the

15 condition code set by the TRANSACTION BEGIN (TBEGIN) instruction, condition codes

1-3 are also set when a transaction aborts.

Therefore, the instruction sequence following the outermost TRANSACTION BEGIN

(TBEGIN) instruction should be able to accommodate all four condition codes, even though

20 the TBEGIN instruction only sets code 0, in this example.

5. On most models, improved performance may be realized, both on

TRANSACTION BEGIN and when a transaction aborts, by specifying the minimum

number of registers needed to be saved and restored in the general register save mask.

25

6. While in the nonconstrained transactional execution mode, a program may call a

service function which may alter access registers or floating point registers (including the

floating point control register). Although such a service routine may save the altered

registers on entry and restore them at exit, the transaction may be aborted prior to normal

30 exit of the routine. If the calling program makes no provision for preserving these registers

while the CPU is in the nonconstrained transactional execution mode, it may not be able to

tolerate the service function's alteration of the registers.

WO 2013/185978 PCT/EP2013/059205
63

To prevent inadvertent alteration of access registers while in the nonconstrained

transactional execution mode, the program can set the allow AR modification control, bit 12

of the I2 field of the TRANSACTION BEGIN instruction, to zero. Similarly, to prevent the

inadvertent alteration of the floating point registers, the program can set the allow floating

5 point operation control, bit 13 of the 12 field of the TBEGIN instruction, to zero.

7. Program exception conditions recognized during execution of the

TRANSACTION BEGIN (TBEGIN) instruction are subject to the effective program

interruption filtering control set by any outer TBEGIN instructions. Program exception

10 conditions recognized during the execution of the outermost TBEGIN instruction are not

subject to filtering.

8. In order to update multiple storage locations in a serialized manner, conventional

code sequences may employ a lock word (semaphore). If (a) transactional execution is used

15 to implement updates of multiple storage locations, (b) the program also provides a "fall

back" path to be invoked if the transaction aborts, and (c) the fallback path employs a lock

word, then the transactional execution path should also test for the availability of the lock,

and, if the lock is unavailable, end the transaction by means of the TRANSACTION END

instruction and branch to the fall back path. This ensures consistent access to the serialized

20 resources, regardless of whether they are updated transactionally.

Alternatively, the program could abort if the lock is unavailable, however the abort

processing may be significantly slower than simply ending the transaction via TEND.

25 9. If the effective program interruption filtering control (PIFC) is greater than zero,

the CPU filters most data exception program interruptions. If the effective allow floating

point operation (F) control is zero, the data exception code (DXC) will not be set in the

floating point control register as a result of an abort due to a data exception program

exception condition. In this scenario (filtering applies and the effective F control is zero),

30 the only location in which the DXC is inspected is in the TBEGIN-specified TDB. If the

program's abort handler is to inspect the DXC in such a situation, general register B1 should

be nonzero, such that a valid transaction diagnostic block address (TDBA) is set.

WO 2013/185978 PCT/EP2013/059205
64

10. If a PER storage alteration or zero address detection condition exists for the

TBEGIN-specified TDB of the outermost TBEGIN instruction, and PER event suppression

does not apply, the PER event is recognized during the execution of the instruction, thus

causing the transaction to be aborted immediately, regardless of whether any other abort

5 condition exists.

In one embodiment, the TBEGIN instruction implicitly sets the transaction abort address to

be the next sequential instruction following the TBEGIN. This address is intended to be a

conditional branch instruction which determines whether or not to branch depending on the

10 condition code (CC). A successful TBEGIN sets CCO, whereas an aborted transaction sets

CCl, CC2, or CC3.

In one embodiment, the TBEGIN instruction provides an optional storage operand

designating the address of a transaction diagnostic block (TDB) into which information is

15 stored if the transaction is aborted.

Further, it provides an immediate operand including the following:

A general register save mask (GRSM) indicating which pairs of general registers are to be

saved at the beginning of transactional execution and restored if the transaction is aborted;

20

A bit (A) to allow aborting of the transaction if the transaction modifies access registers;

A bit (F) to allow aborting of the transaction if the transaction attempts to execute floating

point instructions; and

25

A program interruption filtering control (PIFC) that allows individual transaction levels to

bypass the actual presentation of a program interruption if a transaction is aborted.

The A, F, and PIFC controls can be different at various nesting levels and restored to the

30 previous level when inner transaction levels are ended.

Moreover, the TBEGIN (or in another embodiment, TBEGINC) is used to form a transaction

token. Optionally, the token may be matched with a token formed by the TEND instruction.

WO 2013/185978 PCT/EP2013/059205
65

For each TBEGIN (or TBEGINC) instruction, as an example, a token is formed from the

first operand address. This token may be formed independent of whether the base register is

zero (unlike TDB address setting which only occurs when the base register is nonzero). For

each TRANSACTION END instruction executed with a nonzero base register, a similar

5 token is formed from its storage operand. If the tokens do not match, a program exception

may be recognized to alert the program of an unpaired instruction.

Token matching provides a mechanism intended to improve software reliability by ensuring

that a TEND statement is properly paired with a TBEGIN (or TBEGINC). When a TBEGIN

10 instruction is executed at a particular nesting level, a token is formed from the storage

operand address that identifies this instance of a transaction. When a corresponding TEND

instruction is executed, a token is formed from the storage operand address of the

instruction, and the CPU compares the begin token for the nesting level with the end token.

If the tokens do not match, an exception condition is recognized. A model may implement

15 token matching for only a certain number of nesting levels (or for no nesting levels). The

token may not involve all bits of the storage operand address, or the bits may be combined

via hashing or other methods. A token may be formed by the TBEGIN instruction even if

its storage operand is not accessed.

20 To summarize, processing of a nonconstrained transaction is, as follows:

* If TND = 0:

o If B1 * 0, transaction diagnostic block address set from first operand address.

o Transaction abort PSW set to next sequential instruction address.

o General register pairs designated by 12 field are saved in model-dependent

25 location.

- Not directly accessible by the program

* Effective PIFC, A, & F controls computed

o Effective A = TBEGIN A & any outer A

o Effective F = TBEGIN F & any outer F

30 o Effective PIFC = max(TBEGIN PIFC, any outer PIFC)

* Transaction nesting depth (TND) incremented

* If TND transitions from 0 to 1, CPU enters the transactional execution mode

* Condition code set to zero

WO 2013/185978 PCT/EP2013/059205
66

o When instruction following TBEGIN receives control:

- TBEGIN success indicated by CCO

- Aborted transaction indicated by nonzero CC

Exceptions:

5 o Abort code 13 if nesting depth exceeded

o Access exception (one of various PICs) if the BI field is nonzero, and the

storage operand cannot be accessed for a store operation

o Execute exception (PIC 0003) if the TBEGIN instruction is the target of an

execute-type instruction

10 o Operation exception (PIC 0001) if the transactional execution facility is not

installed

o PIC 0006 if either

- PIFC is invalid (value of 3)

- Second-operand address not doubleword aligned

15 o PIC 0013 hex if transactional-execution control (CRO.8) is zero

o PIC 00 18 hex if issued in constrained TX mode

As indicated herein, transaction may be aborted implicitly or explicitly by a

TRANSACTION ABORT instruction. Aborting a transaction by the TABORT instruction

20 or otherwise includes performing a number of steps. An example of the steps for abort

processing, in general, is described with reference to FIG. 13. If there is a difference in

processing based on whether it is initiated by TABORT or otherwise, it is indicated in the

description below. In one example, a processor (e.g., CPU) is performing the logic of FIG.

13.

25

Referring to FIG. 13, initially, based on execution of the TABORT instruction or an implicit

abort, non-transactional store accesses made while the CPU was in the transactional

execution mode are committed, STEP 1300. Other stores (e.g., transactional stores) made

while the CPU was in the transactional execution mode are discarded, STEP 1302.

30

The CPU leaves the transactional execution mode, STEP 1304, and subsequent stores occur

non-transactionally. The current PSW is replaced with the contents of the transaction abort

PSW, except that the condition code is set as described above (other than the situation

WO 2013/185978 PCT/EP2013/059205
67

below, in which if TDBA is valid, but the block is inaccessible, the CC= 1), STEP 1306. As

a part of or subsequent to abort processing, processing branches to the transaction abort PSW

specified location to perform an action. In one example in which the transaction is a

constrained transaction, the location is the TBEGINC instruction and the action is re

5 execution of that instruction; and in a further example in which the transaction is a

nonconstrained transaction, the location is the instruction after TBEGIN, and the action is

execution of that instruction, which may be, for instance, a branch to an abort handler.

Next, a determination is made as to whether the transaction diagnostic block address

10 (TDBA) is valid, INQUIRY 1308. When the transaction diagnostic block address is valid,

diagnostic information identifying the reason for the abort and the contents of the general

registers are stored into the TBEGIN-specified transaction diagnostic block, STEP 1310.

The TDB fields stored and conditions under which they are stored are described above with

reference to the transaction diagnostic block.

15

If the transaction diagnostic block address is valid, but the block has become inaccessible,

subsequent to the execution of the outermost TBEGIN instruction, the block is not accessed,

and condition code 1 applies.

20 For transactions that are aborted due to program exception conditions that result in an

interruption, the program interruption TDB is stored.

Returning to INQUIRY 1308, if the transaction diagnostic block address is not valid, no

TBEGIN-specified TDB is stored and condition code 2 or 3 applies, depending on the reason

25 for aborting.

In addition to the above, the transaction nesting depth is set equal to zero, STEP 1312.

Further, any general register pairs designated to be saved by the outermost TBEGIN

instruction are restored, STEP 1314. General register pairs that were not designated to be

30 saved by the outermost TBEGIN instruction are not restored when a transaction is aborted.

Further, a serialization function is performed, STEP 1316. A serialization function or

operation includes completing all conceptionally previous storage accesses (and, for the

WO 2013/185978 PCT/EP2013/059205
68

z/Architecture, as an example, related reference bit and change bit settings) by the CPU, as

observed by other CPUs and by the I/O subsystem, before the conceptionally subsequent

storage accesses (and related reference bit and change bit settings) occur. Serialization

effects the sequence of all CPU accesses to storage and to the storage keys, except for those

5 associated with ART table entry and DAT table entry fetching.

As observed by a CPU in the transactional execution mode, serialization operates normally

(as described above). As observed by other CPUs and by the I/O subsystem, a serializing

operation performed while a CPU is in the transactional execution mode occurs when the

10 CPU leaves the transactional execution mode, either as a result of a TRANSACTION END

instruction that decrements the transaction nesting depth to zero (normal ending) or as a

result of the transaction being aborted.

For abort processing initiated other than by TABORT, if the transaction is aborted due to an

15 exception condition that results in an interruption, INQUIRY 1318, interruption codes or

parameters associated with the interruption are stored at the assigned storage locations

corresponding to the type of interruption, STEP 1320. Further, the current PSW, as set

above, is stored into the interruption old PSW, STEP 1322. Thereafter, or if the transaction

was not aborted due to an exception condition that resulted in an interruption, the instruction

20 ends with condition code zero.

In one embodiment, in order to facilitate the debugging of certain types of abort conditions,

the transactional execution facility provides task-specific diagnostic controls. As used

herein, task specific means that the controls are in a register that is switched coincident with

25 the dispatch of a task (a.k.a., process or dispatchable unit). A task includes execution of one

or more transactions and is associated with a given user. The diagnostic controls may be set

(e.g., by the operating system based on information provided by the given user) to cause

transactions to be selectively or randomly (e.g., unpredictably) aborted, thus allowing a

transaction to drive its abort handler routine for testing purposes. In one embodiment,

30 selectively includes selection by, for instance, a machine dependent mechanism (e.g.,

counter or timer not directly synchronized with instruction execution) that effectively

distributes abort events. In further embodiments, other selection mechanisms or criteria may

WO 2013/185978 PCT/EP2013/059205
69

be used. The controls include, for instance, the Transaction Diagnostic Scope (TDS) and

Transaction Diagnostic Control (TDC), each of which is described above.

One embodiment of the use of the diagnostic controls to randomly abort transactions is

5 described with reference to FIG. 14. The logic of FIG. 14 is performed by a processor (e.g.,

CPU), such as a processor executing one or more transactions.

Referring to FIG. 14, initially, a transaction is initiated via, for instance, a TRANSACTION

BEGIN instruction executed by a processor, STEP 1400. Thereafter, the state of the

10 processor (e.g., whether it is in the problem or supervisor state) and the value of the

Transaction Diagnostic Scope (TDS) are checked, STEP 1402. Based on the state of the

processor and the TDS value, a determination is made as to whether the Transaction

Diagnostic Control (TDC) is to be applied, INQUIRY 1404. For instance, if the Transaction

Diagnostic Scope control is set to zero, then the Transaction Diagnostic Control applies

15 regardless of the state of the CPU. However, if the Transaction Diagnostic Scope control is

set to one, then the Transaction Diagnostic Control applies, in this example, only when the

CPU is in the problem state. If the Transaction Diagnostic Control does not apply, then

processing is complete, and selective or random testing is not performed.

20 However, if the Transaction Diagnostic Scope and/or the state of the processor indicates that

the Transaction Diagnostic Control is to be applied, INQUIRY 1404, then the Transaction

Diagnostic Control value is checked, STEP 1406. Thereafter, the transaction may or may

not be aborted based on the Transaction Diagnostic Control, STEP 1408. For instance, if the

Transaction Diagnostic Control is zero, then transactions are not aborted as a result of the

25 Transaction Diagnostic Control. However, if the Transaction Diagnostic Control is set to

one, then every transaction is aborted as a result of the control at a selected or random

instruction before execution of the outermost TRANSACTION END instruction. For

instance, a selection control may be used to select the instruction to be aborted within the

transaction. This control could specify, for instance, the nth instruction; it can use any other

30 type of computation to determine at which instruction each transaction is to be aborted; or it

may use a machine dependent mechanism that effectively distributes abort events. Yet

further, the selection control can be the same or different for each transaction.

WO 2013/185978 PCT/EP2013/059205
70

Yet further, if the Transaction Diagnostic Control is set to two, then selected or random

transactions are aborted at selected or random instructions. Again, any selection control may

be used to determine which transactions are to be aborted, and at which instructions within

those transactions. When the transaction is aborted based on the Transaction Diagnostic

5 Control, the transaction can drive its abort handler routine for testing purposes. For

example, assume there is a transaction that updates a queue and also has a fall-back path that

will use a class locking protocol if the transaction repeatedly aborts. A TDC value of 2 will

cause the transaction to abort (but, also succeed on other occasions). Thus, both the

transactional code and the non-transactional abort handler code will get exercised.

10

As a further example, a TDC value of 1 will cause a transaction to always abort, thus part of

the transactional code will be tested, but never to successful completion; rather, the abort

handler code will be tested for various abort reasons.

15 In a further embodiment, other TDC values may be provided. For instance, a value may be

provided to abort at a selection transaction within nested transactions. Other examples are

also possible.

As described above, in one example, a capability is provided for selectively or randomly

20 aborting transactions by means of an operating system control (for instance, by means of a

system debugger) in order to deliberately cause transactions to abort. The control is in a

register that is switched for each task dispatched, thus it is within the context of a user. The

controls enable the processor to selectively or randomly stimulate aborts, while the

transaction is executing, in order to facilitate the debugging certain types of abort conditions.

25

Further, provided above is an efficient means of updating multiple, discontiguous objects in

memory without classic (course-grained) serialization, such as locking, that provides a

potential for significant multiprocessor performance improvement. That is, multiple,

discontiguous objects are updated without the enforcement of more course-grained storage

30 access ordering that is provided by classic techniques, such as locks and semaphores.

Speculative execution is provided without onerous recovery setup, and constrained

transactions are offered for simple, small-footprint updates.

WO 2013/185978 PCT/EP2013/059205
71

Transactional execution can be used in a variety of scenarios, including, but not limited to,

partial inlining, speculative processing, and lock elision. In partial inlining, the partial

region to be included in the executed path is wrapped in TBEGIN/TEND. TABORT can be

included therein to roll back state on a side-exit. For speculation, such as in Java, nullchecks

5 on de-referenced pointers can be delayed to loop edge by using a transaction. If the pointer

is null, the transaction can abort safely using TABORT, which is included within

TBEGIN/TEND.

An example code fragment depicting lock-elision with both transactional and non

10 transactional execution is provided below:

* Function:

* ADDQEL

*

* Input:

15 * RI - pointer to QEL to be inserted.

* R2 - pointer to insertion point in queue.

* R14 - return address.

* R15 - entry point.

* Assumes that TX facility is installed; no test performed.

20 *

* Output:

* Registers restored

QEL DSECT Queue element definition:

25 QELFWD DS AD - Forward QEL pointer.

QEL_BWD DS AD - Backward QEL pointer.

QELINFO DS CL240 - QEL payload.

QELLENG EQU *-QEL - Length of QEL.

30 AddQEL CSECT

STMG 14,12,8(13) Save caller's registers.

LGR 12,15 Load base register.

USING ADDQEL,12 Know the code.

WO 2013/185978 PCT/EP2013/059205
72

LA 2,SAVE Point to new save area.

STG 2,136(,13) Save a (new) in old.

STG 13,SAVE+128 Save a (old) in new.

LGR 13,2 Point R13 at new save area.

5

NEW USING QEL,1 Make new QEL addressable.

CUR USING QEL,2 Make current QEL addressable.

PRE USING QEL,3 Make previous QEL

addressable.

10

LHI 10,0 Load loop counter.

LOOP BEGIN 0,0 Begin TX mode.

JNZ ABORT TX aborted; try again.

LG 3,CUR.QEL_BWD Point to previous element.

15 STG 1,PRE.QELFWD Update prev. forward ptr.

STG 1,CUR.QEL_BWD Update curr. backward ptr.

STG 2,NEW.QEL_FWD Update new forward ptr.

STG 3,NEW.QEL_BWD Update new backward ptr.

TEND 0 End TX mode.

20 LMG 14,12,8(13) Restore caller's registers.

BSM 0,14 Return to caller.

ABORT JC B'0101',NORETRY CC 1 or 3; not worth retrying.

AHI 10,1 Increment the loop counter.

25 CIJNL 10,6,NORETRY Give up after 6 attempts.

PPA 10,0,1 Request processor assistance.

J LOOP Attempt the transaction again.

NORETRY SETLOCK OBTAIN, ... Acquire lock

30 LG 3,CUR.QEL_BWD Point to previous element.

STG 1,PRE.QEL_FWD Update prev. forward ptr.

STG 1,CUR.QEL_BWD Update curr. backward ptr.

STG 2,NEW.QEL_FWD Update new forward ptr.

WO 2013/185978 PCT/EP2013/059205
73

STG 3,NEW.QEL_BWD Update new backward ptr.

SETLOCK RELEASE, ... Release lock

LMG 14,12,8(13) Restore caller's registers.

BSM 0,14 Return to caller.

5 SAVE DS 18AD Save area.

END

As used herein, storage, central storage, main storage, memory and main memory are used

interchangeably, unless otherwise noted implicitly by usage or explicitly. Further, while in

10 one embodiment, effectively delaying includes delaying committing transactional stores to

main memory until completion of a selected transaction; in another embodiment, a

transaction effectively delaying includes allowing transactional updates to memory, but

keeping the old values and restoring memory to the old values on abort.

15 As will be appreciated by one skilled in the art, one or more aspects may be embodied as a

system, method or computer program product. Accordingly, one or more aspects may take

the form of an entirely hardware embodiment, an entirely software embodiment (including

firmware, resident software, micro-code, etc.) or an embodiment combining software and

hardware aspects that may all generally be referred to herein as a "circuit," "module" or

20 "system". Furthermore, one or more embodiments may take the form of a computer

program product embodied in one or more computer readable medium(s) having computer

readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The

25 computer readable medium may be a computer readable storage medium. A computer

readable storage medium may be, for example, but not limited to, an electronic, magnetic,

optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any

suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the

computer readable storage medium include the following: an electrical connection having

30 one or more wires, a portable computer diskette, a hard disk, a random access memory

(RAM), a read-only memory (ROM), an erasable programmable read-only memory

(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory

(CD-ROM), an optical storage device, a magnetic storage device, or any suitable

WO 2013/185978 PCT/EP2013/059205
74

combination of the foregoing. In the context of this document, a computer readable storage

medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

5 Referring now to FIG. 15, in one example, a computer program product 1500 includes, for

instance, one or more non-transitory computer readable storage media 1502 to store

computer readable program code means or logic 1504 thereon to provide and facilitate one

or more embodiments.

10 Program code embodied on a computer readable medium may be transmitted using an

appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for one or more embodiments may be

15 written in any combination of one or more programming languages, including an object

oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional

procedural programming languages, such as the "C" programming language, assembler or

similar programming languages. The program code may execute entirely on the user's

computer, partly on the user's computer, as a stand-alone software package, partly on the

20 user's computer and partly on a remote computer or entirely on the remote computer or

server. In the latter scenario, the remote computer may be connected to the user's computer

through any type of network, including a local area network (LAN) or a wide area network

(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

25

One or more embodiments are described herein with reference to flowchart illustrations

and/or block diagrams of methods, apparatus (systems) and computer program products. It

will be understood that each block of the flowchart illustrations and/or block diagrams, and

combinations of blocks in the flowchart illustrations and/or block diagrams, can be

30 implemented by computer program instructions. These computer program instructions may

be provided to a processor of a general purpose computer, special purpose computer, or

other programmable data processing apparatus to produce a machine, such that the

instructions, which execute via the processor of the computer or other programmable data

WO 2013/185978 PCT/EP2013/059205
75

processing apparatus, create means for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium

5 that can direct a computer, other programmable data processing apparatus, or other devices

to function in a particular manner, such that the instructions stored in the computer readable

medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

10 The computer program instructions may also be loaded onto a computer, other

programmable data processing apparatus, or other devices to cause a series of operational

steps to be performed on the computer, other programmable apparatus or other devices to

produce a computer implemented process such that the instructions which execute on the

computer or other programmable apparatus provide processes for implementing the

15 functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and

operation of possible implementations of systems, methods and computer program products

according to various embodiments. In this regard, each block in the flowchart or block

20 diagrams may represent a module, segment, or portion of code, which comprises one or

more executable instructions for implementing the specified logical function(s). It should

also be noted that, in some alternative implementations, the functions noted in the block may

occur out of the order noted in the figures. For example, two blocks shown in succession

may, in fact, be executed substantially concurrently, or the blocks may sometimes be

25 executed in the reverse order, depending upon the functionality involved. It will also be

noted that each block of the block diagrams and/or flowchart illustration, and combinations

of blocks in the block diagrams and/or flowchart illustration, can be implemented by special

purpose hardware-based systems that perform the specified functions or acts, or

combinations of special purpose hardware and computer instructions.

30

In addition to the above, one or more aspects may be provided, offered, deployed, managed,

serviced, etc. by a service provider who offers management of customer environments. For

instance, the service provider can create, maintain, support, etc. computer code and/or a

WO 2013/185978 PCT/EP2013/059205
76

computer infrastructure that performs one or more aspects for one or more customers. In

return, the service provider may receive payment from the customer under a subscription

and/or fee agreement, as examples. Additionally or alternatively, the service provider may

receive payment from the sale of advertising content to one or more third parties.

5

In one embodiment, an application may be deployed for performing one or more

embodiments. As one example, the deploying of an application comprises providing

computer infrastructure operable to perform one or more embodiments.

10 As a further aspect, a computing infrastructure may be deployed comprising integrating

computer readable code into a computing system, in which the code in combination with the

computing system is capable of performing one or more embodiments.

As yet a further aspect, a process for integrating computing infrastructure comprising

15 integrating computer readable code into a computer system may be provided. The computer

system comprises a computer readable medium, in which the computer medium comprises

one or more embodiments. The code in combination with the computer system is capable of

performing one or more embodiments.

20 Although various embodiments are described above, these are only examples. For example,

computing environments of other architectures can be used to incorporate and use one or

more embodiments. Further, different instructions, instruction formats, instruction fields

and/or instruction values may be used. Moreover, different, other, and/or additional

restrictions/constraints may be provided/used. Many variations are possible.

25

Further, other types of computing environments can benefit and be used. As an example, a

data processing system suitable for storing and/or executing program code is usable that

includes at least two processors coupled directly or indirectly to memory elements through a

system bus. The memory elements include, for instance, local memory employed during

30 actual execution of the program code, bulk storage, and cache memory which provide

temporary storage of at least some program code in order to reduce the number of times code

must be retrieved from bulk storage during execution.

WO 2013/185978 PCT/EP2013/059205
77

Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing

devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be

coupled to the system either directly or through intervening I/O controllers. Network

adapters may also be coupled to the system to enable the data processing system to become

5 coupled to other data processing systems or remote printers or storage devices through

intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 16, representative components of a Host Computer system 5000 to

10 implement one or more embodiments are portrayed. The representative host computer 5000

comprises one or more CPUs 5001 in communication with computer memory (i.e., central

storage) 5002, as well as I/O interfaces to storage media devices 5011 and networks 5010 for

communicating with other computers or SANs and the like. The CPU 5001 is compliant

with an architecture having an architected instruction set and architected functionality. The

15 CPU 5001 may have access register translation (ART) 5012, which includes an ART

lookaside buffer (ALB) 5013, for selecting an address space to be used by dynamic address

translation (DAT) 5003 for transforming program addresses (virtual addresses) into real

addresses of memory. A DAT typically includes a translation lookaside buffer (TLB) 5007

for caching translations so that later accesses to the block of computer memory 5002 do not

20 require the delay of address translation. Typically, a cache 5009 is employed between

computer memory 5002 and the processor 5001. The cache 5009 may be hierarchical having

a large cache available to more than one CPU and smaller, faster (lower level) caches

between the large cache and each CPU. In some implementations, the lower level caches are

split to provide separate low level caches for instruction fetching and data accesses. In one

25 embodiment, for the TX facility, a transaction diagnostic block (TDB) 5100 and one or more

buffers 5101 may be stored in one or more of cache 5009 and memory 5002. In one

example, in TX mode, data is initially stored in a TX buffer, and when TX mode ends (e.g.,

outermost TEND), the data in the buffer is stored (committed) to memory, or if there is an

abort, the data in the buffer is discarded.

30

In one embodiment, an instruction is fetched from memory 5002 by an instruction fetch unit

5004 via a cache 5009. The instruction is decoded in an instruction decode unit 5006 and

dispatched (with other instructions in some embodiments) to instruction execution unit or

WO 2013/185978 PCT/EP2013/059205
78

units 5008. Typically several execution units 5008 are employed, for example an arithmetic

execution unit, a floating point execution unit and a branch instruction execution unit.

Further, in one embodiment of the TX facility, various TX controls 5110 may be employed.

The instruction is executed by the execution unit, accessing operands from instruction

5 specified registers or memory as needed. If an operand is to be accessed (loaded or stored)

from memory 5002, a load/store unit 5005 typically handles the access under control of the

instruction being executed. Instructions may be executed in hardware circuits or in internal

microcode (firmware) or by a combination of both.

10 In accordance with an aspect of the TX facility, processor 5001 also includes a PSW 5102

(e.g., TX and/or abort PSW), a nesting depth 5104, a TDBA 5106, and one or more control

registers 5108.

As noted, a computer system includes information in local (or main) storage, as well as

15 addressing, protection, and reference and change recording. Some aspects of addressing

include the format of addresses, the concept of address spaces, the various types of

addresses, and the manner in which one type of address is translated to another type of

address. Some of main storage includes permanently assigned storage locations. Main

storage provides the system with directly addressable fast-access storage of data. Both data

20 and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes

called caches. A cache is typically physically associated with a CPU or an I/O processor.

25 The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

Separate caches may be maintained for instructions and for data operands. Information

within a cache is maintained in contiguous bytes on an integral boundary called a cache

30 block or cache line (or line, for short). A model may provide an EXTRACT CACHE

ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also

provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which

WO 2013/185978 PCT/EP2013/059205
79

effects the prefetching of storage into the data or instruction cache or the releasing of data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage

5 proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.

An eight-bit unit is called a byte, which is the basic building block of all information

formats. Each byte location in storage is identified by a unique nonnegative integer, which

is the address of that byte location or, simply, the byte address. Adjacent byte locations have

consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence.

10 Addresses are unsigned binary integers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a

group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture, a

group of bytes in storage is addressed by the leftmost byte of the group. The number of

15 bytes in the group is either implied or explicitly specified by the operation to be performed.

When used in a CPU operation, a group of bytes is called a field. Within each group of

bytes, in, for instance, the z/Architecture, bits are numbered in a left-to-right sequence. In

the z/Architecture, the leftmost bits are sometimes referred to as the "high-order" bits and

the rightmost bits as the "low-order" bits. Bit numbers are not storage addresses, however.

20 Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire

byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the

z/Architecture). The bits in an address may be numbered 8-31 or 40-63 for 24-bit addresses,

or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit addresses. In one

example, bits 8-31 and 1-31 apply to addresses that are in a location (e.g., register) that is 32

25 bits wide, whereas bits 40-63 and 33-63 apply to addresses that are in a 64-bit wide location.

Within any other fixed-length format of multiple bytes, the bits making up the format are

consecutively numbered starting from 0. For purposes of error detection, and in preferably

for correction, one or more check bits may be transmitted with each byte or with a group of

bytes. Such check bits are generated automatically by the machine and cannot be directly

30 controlled by the program. Storage capacities are expressed in number of bytes. When the

length of a storage-operand field is implied by the operation code of an instruction, the field

is said to have a fixed length, which can be one, two, four, eight, or sixteen bytes. Larger

fields may be implied for some instructions. When the length of a storage-operand field is

WO 2013/185978 PCT/EP2013/059205
80

not implied but is stated explicitly, the field is said to have a variable length. Variable

length operands can vary in length by increments of one byte (or with some instructions, in

multiples of two bytes or other multiples). When information is placed in storage, the

contents of only those byte locations are replaced that are included in the designated field,

5 even though the width of the physical path to storage may be greater than the length of the

field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary is

called integral for a unit of information when its storage address is a multiple of the length of

10 the unit in bytes. Special names are given to fields of 2, 4, 8, 16, and 32 bytes on an integral

boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is

the basic building block of instructions. A word is a group of four consecutive bytes on a

four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte

boundary. An octoword is a group of 32 consecutive bytes on a 32-byte boundary. A

15 quadword is a group of 16 consecutive bytes on a 16-byte boundary. When storage

addresses designate halfwords, words, doublewords, quadwords, and octowords, the binary

representation of the address contains one, two, three, four or five rightmost zero bits,

respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

20

On devices that implement separate caches for instructions and data operands, a significant

delay may be experienced if the program stores into a cache line from which instructions are

subsequently fetched, regardless of whether the store alters the instructions that are

subsequently fetched.

25

In one example, the embodiment may be practiced by software (sometimes referred to

licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of

which would be consistent with one or more embodiments). Referring to FIG. 16, software

program code which embodies one or more aspects may be accessed by processor 5001 of

30 the host system 5000 from long-term storage media devices 5011, such as a CD-ROM drive,

tape drive or hard drive. The software program code may be embodied on any of a variety

of known media for use with a data processing system, such as a diskette, hard drive, or CD

ROM. The code may be distributed on such media, or may be distributed to users from

WO 2013/185978 PCT/EP2013/059205
81

computer memory 5002 or storage of one computer system over a network 5010 to other

computer systems for use by users of such other systems.

The software program code includes an operating system which controls the function and

5 interaction of the various computer components and one or more application programs.

Program code is normally paged from storage media device 5011 to the relatively higher

speed computer storage 5002 where it is available for processing by processor 5001. The

techniques and methods for embodying software program code in memory, on physical

media, and/or distributing software code via networks are well known and will not be further

10 discussed herein. Program code, when created and stored on a tangible medium (including

but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),

DVDs, Magnetic Tape and the like is often referred to as a "computer program product".

The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

15

FIG. 17 illustrates a representative workstation or server hardware system in which one or

more embodiments may be practiced. The system 5020 of FIG. 17 comprises a

representative base computer system 5021, such as a personal computer, a workstation or a

server, including optional peripheral devices. The base computer system 5021 includes one

20 or more processors 5026 and a bus employed to connect and enable communication between

the processor(s) 5026 and the other components of the system 5021 in accordance with

known techniques. The bus connects the processor 5026 to memory 5025 and long-term

storage 5027 which can include a hard drive (including any of magnetic media, CD, DVD

and Flash Memory for example) or a tape drive for example. The system 5021 might also

25 include a user interface adapter, which connects the microprocessor 5026 via the bus to one

or more interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030

and/or other interface devices, which can be any user interface device, such as a touch

sensitive screen, digitized entry pad, etc. The bus also connects a display device 5022, such

as an LCD screen or monitor, to the microprocessor 5026 via a display adapter.

30

The system 5021 may communicate with other computers or networks of computers by way

of a network adapter capable of communicating 5028 with a network 5029. Example

network adapters are communications channels, token ring, Ethernet or modems.

WO 2013/185978 PCT/EP2013/059205
82

Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD

(cellular digital packet data) card. The system 5021 may be associated with such other

computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system

5021 can be a client in a client/server arrangement with another computer, etc. All of these

5 configurations, as well as the appropriate communications hardware and software, are

known in the art.

FIG. 18 illustrates a data processing network 5040 in which one or more embodiments may

be practiced. The data processing network 5040 may include a plurality of individual

10 networks, such as a wireless network and a wired network, each of which may include a

plurality of individual workstations 5041, 5042, 5043, 5044. Additionally, as those skilled

in the art will appreciate, one or more LANs may be included, where a LAN may comprise a

plurality of intelligent workstations coupled to a host processor.

15 Still referring to FIG. 18, the networks may also include mainframe computers or servers,

such as a gateway computer (client server 5046) or application server (remote server 5048

which may access a data repository and may also be accessed directly from a workstation

5045). A gateway computer 5046 serves as a point of entry into each individual network. A

gateway is needed when connecting one networking protocol to another. The gateway 5046

20 may be preferably coupled to another network (the Internet 5047 for example) by means of a

communications link. The gateway 5046 may also be directly coupled to one or more

workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer

may be implemented utilizing an IBM eServer System z server available from International

Business Machines Corporation.

25

Referring concurrently to FIG. 17 and FIG. 18, software programming code 5031 which may

embody one or more aspects may be accessed by the processor 5026 of the system 5020

from long-term storage media 5027, such as a CD-ROM drive or hard drive. The software

programming code may be embodied on any of a variety of known media for use with a data

30 processing system, such as a diskette, hard drive, or CD-ROM. The code may be distributed

on such media, or may be distributed to users 5050, 5051 from the memory or storage of one

computer system over a network to other computer systems for use by users of such other

systems.

WO 2013/185978 PCT/EP2013/059205
83

Alternatively, the programming code may be embodied in the memory 5025, and accessed

by the processor 5026 using the processor bus. Such programming code includes an

operating system which controls the function and interaction of the various computer

components and one or more application programs 5032. Program code is normally paged

5 from storage media 5027 to high-speed memory 5025 where it is available for processing by

the processor 5026. The techniques and methods for embodying software programming

code in memory, on physical media, and/or distributing software code via networks are well

known and will not be further discussed herein. Program code, when created and stored on a

tangible medium (including but not limited to electronic memory modules (RAM), flash

10 memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a

"computer program product". The computer program product medium is typically readable

by a processing circuit preferably in a computer system for execution by the processing

circuit.

15 The cache that is most readily available to the processor (normally faster and smaller than

other caches of the processor) is the lowest (LI or level one) cache and main store (main

memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often

divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

20

Referring to FIG. 19, an exemplary processor embodiment is depicted for processor 5026.

Typically one or more levels of cache 5053 are employed to buffer memory blocks in order

to improve processor performance. The cache 5053 is a high speed buffer holding cache

lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes

25 of memory data. Separate caches are often employed for caching instructions than for

caching data. Cache coherence (synchronization of copies of lines in memory and the

caches) is often provided by various "snoop" algorithms well known in the art. Main

memory storage 5025 of a processor system is often referred to as a cache. In a processor

system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the

30 level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile

storage (DASD, tape etc) that is available to a computer system. Main storage 5025

"caches" pages of data paged in and out of the main storage 5025 by the operating system.

WO 2013/185978 PCT/EP2013/059205
84

A program counter (instruction counter) 5061 keeps track of the address of the current

instruction to be executed. A program counter in a z/Architecture processor is 64 bits and

can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is

typically embodied in a PSW (program status word) of a computer such that it persists

5 during context switching. Thus, a program in progress, having a program counter value,

may be interrupted by, for example, the operating system (context switch from the program

environment to the operating system environment). The PSW of the program maintains the

program counter value while the program is not active, and the program counter (in the

PSW) of the operating system is used while the operating system is executing. Typically,

10 the program counter is incremented by an amount equal to the number of bytes of the current

instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed

length while CISC (Complex Instruction Set Computing) instructions are typically variable

length. Instructions of the IBM z/Architecture are CISC instructions having a length of 2, 4

or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a

15 branch taken operation of a branch instruction for example. In a context switch operation,

the current program counter value is saved in the program status word along with other state

information about the program being executed (such as condition codes), and a new program

counter value is loaded pointing to an instruction of a new program module to be executed.

A branch taken operation is performed in order to permit the program to make decisions or

20 loop within the program by loading the result of the branch instruction into the program

counter 5061.

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the

processor 5026. The fetch unit either fetches "next sequential instructions", target

25 instructions of branch taken instructions, or first instructions of a program following a

context switch. Modem Instruction fetch units often employ prefetch techniques to

speculatively prefetch instructions based on the likelihood that the prefetched instructions

might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

30

The fetched instructions are then executed by the processor 5026. In an embodiment, the

fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit

decodes the instruction(s) and forwards information about the decoded instruction(s) to

WO 2013/185978 PCT/EP2013/059205
85

appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive

information about decoded arithmetic instructions from the instruction fetch unit 5055 and

will perform arithmetic operations on operands according to the opcode of the instruction.

Operands are provided to the execution unit 5057 preferably either from memory 5025,

5 architected registers 5059 or from an immediate field of the instruction being executed.

Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in

other machine hardware (such as control registers, PSW registers and the like).

Virtual addresses are transformed into real addresses using dynamic address translation

10 5062, and, optionally, using access register transaction 5063.

A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the

function of the instruction. Referring to FIG. 20A, an execution unit 5057 may

communicate 5071 with architected general registers 5059, a decode/dispatch unit 5056, a

15 load store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An

execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold

information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs

arithmetic operations such as add, subtract, multiply and divide as well as logical function

such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports

20 specialized operations that are design dependent. Other circuits may provide other

architected facilities 5072 including condition codes and recovery support logic for example.

Typically the result of an ALU operation is held in an output register circuit 5070 which can

forward the result to a variety of other processing functions. There are many arrangements

of processor units, the present description is only intended to provide a representative

25 understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having

arithmetic and logical functionality while a floating point instruction for example would be

executed in a floating point execution having specialized floating point capability.

30 Preferably, an execution unit operates on operands identified by an instruction by performing

an opcode defined function on the operands. For example, an ADD instruction may be

executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

WO 2013/185978 PCT/EP2013/059205
86

The execution unit 5057 performs the arithmetic addition on two operands and stores the

result in a third operand where the third operand may be a third register or one of the two

source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)

5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,

5 Or and XOR as well as a variety of algebraic functions including any of add, subtract,

multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating

point. Data may be Big Endian (where the least significant byte is at the highest byte

address) or Little Endian (where the least significant byte is at the lowest byte address)

depending on architecture. The IBM z/Architecture is Big Endian. Signed fields may be

10 sign and magnitude, l's complement or 2's complement depending on architecture. A 2's

complement number is advantageous in that the ALU does not need to design a subtract

capability since either a negative value or a positive value in 2's complement requires only

an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit

field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo

15 byte) block, for example.

Referring to FIG. 20B, branch instruction information for executing a branch instruction is

typically sent to a branch unit 5058 which often employs a branch prediction algorithm such

as a branch history table 5082 to predict the outcome of the branch before other conditional

20 operations are complete. The target of the current branch instruction will be fetched and

speculatively executed before the conditional operations are complete. When the conditional

operations are completed the speculatively executed branch instructions are either completed

or discarded based on the conditions of the conditional operation and the speculated

outcome. A typical branch instruction may test condition codes and branch to a target

25 address if the condition codes meet the branch requirement of the branch instruction, a target

address may be calculated based on several numbers including ones found in register fields

or an immediate field of the instruction for example. The branch unit 5058 may employ an

ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output

register circuit 5080. The branch unit 5058 may communicate 5081 with general registers

30 5059, decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including

a context switch initiated by an operating system, a program exception or error causing a

WO 2013/185978 PCT/EP2013/059205
87

context switch, an I/O interruption signal causing a context switch or multi-threading activity

of a plurality of programs (in a multi-threaded environment), for example. Preferably a

context switch action saves state information about a currently executing program and then

loads state information about another program being invoked. State information may be

5 saved in hardware registers or in memory for example. State information preferably

comprises a program counter value pointing to a next instruction to be executed, condition

codes, memory translation information and architected register content. A context switch

activity can be exercised by hardware circuits, application programs, operating system

programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or

10 in combination.

A processor accesses operands according to instruction defined methods. The instruction

may provide an immediate operand using the value of a portion of the instruction, may

provide one or more register fields explicitly pointing to either general purpose registers or

15 special purpose registers (floating point registers for example). The instruction may utilize

implied registers identified by an opcode field as operands. The instruction may utilize

memory locations for operands. A memory location of an operand may be provided by a

register, an immediate field, or a combination of registers and immediate field as

exemplified by the z/Architecture long displacement facility wherein the instruction defines

20 a base register, an index register and an immediate field (displacement field) that are added

together to provide the address of the operand in memory for example. Location herein

typically implies a location in main memory (main storage) unless otherwise indicated.

Referring to FIG. 20C, a processor accesses storage using a load/store unit 5060. The

25 load/store unit 5060 may perform a load operation by obtaining the address of the target

operand in memory 5053 and loading the operand in a register 5059 or another memory

5053 location, or may perform a store operation by obtaining the address of the target

operand in memory 5053 and storing data obtained from a register 5059 or another memory

5053 location in the target operand location in memory 5053. The load/store unit 5060 may

30 be speculative and may access memory in a sequence that is out-of-order relative to

instruction sequence, however the load/store unit 5060 is to maintain the appearance to

programs that instructions were executed in order. A load/store unit 5060 may communicate

5084 with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053

WO 2013/185978 PCT/EP2013/059205
88

or other elements 5083 and comprises various register circuits 5086, 5087, 5088 and 5089,

ALUs 5085 and control logic 5090 to calculate storage addresses and to provide pipeline

sequencing to keep operations in-order. Some operations may be out of order but the

load/store unit provides functionality to make the out of order operations to appear to the

5 program as having been performed in order, as is well known in the art.

Preferably addresses that an application program "sees" are often referred to as virtual

addresses. Virtual addresses are sometimes referred to as "logical addresses" and "effective

addresses". These virtual addresses are virtual in that they are redirected to physical

10 memory location by one of a variety of dynamic address translation (DAT) technologies

including, but not limited to, simply prefixing a virtual address with an offset value,

translating the virtual address via one or more translation tables, the translation tables

preferably comprising at least a segment table and a page table alone or in combination,

preferably, the segment table having an entry pointing to the page table. In the

15 z/Architecture, a hierarchy of translation is provided including a region first table, a region

second table, a region third table, a segment table and an optional page table. The

performance of the address translation is often improved by utilizing a translation lookaside

buffer (TLB) which comprises entries mapping a virtual address to an associated physical

memory location. The entries are created when the DAT translates a virtual address using

20 the translation tables. Subsequent use of the virtual address can then utilize the entry of the

fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-processor system, each processor

25 has responsibility to keep shared resources, such as I/O, caches, TLBs and memory,

interlocked for coherency. Typically, "snoop" technologies will be utilized in maintaining

cache coherency. In a snoop environment, each cache line may be marked as being in any

one of a shared state, an exclusive state, a changed state, an invalid state and the like in order

to facilitate sharing.

30

I/O units 5054 (FIG. 19) provide the processor with means for attaching to peripheral

devices including tape, disc, printers, displays, and networks for example. I/O units are often

presented to the computer program by software drivers. In mainframes, such as the System z

WO 2013/185978 PCT/EP2013/059205
89

from IBM@, channel adapters and open system adapters are I/O units of the mainframe that

provide the communications between the operating system and peripheral devices.

Further, other types of computing environments can benefit from one or more aspects. As an

5 example, an environment may include an emulator (e.g., software or other emulation

mechanisms), in which a particular architecture (including, for instance, instruction

execution, architected functions, such as address translation, and architected registers) or a

subset thereof is emulated (e.g., on a native computer system having a processor and

memory). In such an environment, one or more emulation functions of the emulator can

10 implement one or more embodiments, even though a computer executing the emulator may

have a different architecture than the capabilities being emulated. As one example, in

emulation mode, the specific instruction or operation being emulated is decoded, and an

appropriate emulation function is built to implement the individual instruction or operation.

15 In an emulation environment, a host computer includes, for instance, a memory to store

instructions and data; an instruction fetch unit to fetch instructions from memory and to

optionally, provide local buffering for the fetched instruction; an instruction decode unit to

receive the fetched instructions and to determine the type of instructions that have been

fetched; and an instruction execution unit to execute the instructions. Execution may include

20 loading data into a register from memory; storing data back to memory from a register; or

performing some type of arithmetic or logical operation, as determined by the decode unit.

In one example, each unit is implemented in software. For instance, the operations being

performed by the units are implemented as one or more subroutines within emulator

software.

25

More particularly, in a mainframe, architected machine instructions are used by

programmers, usually today "C" programmers, often by way of a compiler application.

These instructions stored in the storage medium may be executed natively in a z/Architecture

IBM@ Server, or alternatively in machines executing other architectures. They can be

30 emulated in the existing and in future IBM@ mainframe servers and on other machines of

IBM@ (e.g., Power Systems servers and System x Servers). They can be executed in

machines running Linux on a wide variety of machines using hardware manufactured by

IBM@, Intel@, AMD, and others. Besides execution on that hardware under a

WO 2013/185978 PCT/EP2013/059205
90

z/Architecture, Linux can be used as well as machines which use emulation by Hercules,

UMX, or FSI (Fundamental Software, Inc), where generally execution is in an emulation

mode. In emulation mode, emulation software is executed by a native processor to emulate

the architecture of an emulated processor.

5

The native processor typically executes emulation software comprising either firmware or a

native operating system to perform emulation of the emulated processor. The emulation

software is responsible for fetching and executing instructions of the emulated processor

architecture. The emulation software maintains an emulated program counter to keep track

10 of instruction boundaries. The emulation software may fetch one or more emulated machine

instructions at a time and convert the one or more emulated machine instructions to a

corresponding group of native machine instructions for execution by the native processor.

These converted instructions may be cached such that a faster conversion can be

accomplished. Notwithstanding, the emulation software is to maintain the architecture rules

15 of the emulated processor architecture so as to assure operating systems and applications

written for the emulated processor operate correctly. Furthermore, the emulation software is

to provide resources identified by the emulated processor architecture including, but not

limited to, control registers, general purpose registers, floating point registers, dynamic

address translation function including segment tables and page tables for example, interrupt

20 mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected

interfaces to I/O subsystems such that an operating system or an application program

designed to run on the emulated processor, can be run on the native processor having the

emulation software.

25 A specific instruction being emulated is decoded, and a subroutine is called to perform the

function of the individual instruction. An emulation software function emulating a function

of an emulated processor is implemented, for example, in a "C" subroutine or driver, or

some other method of providing a driver for the specific hardware as will be within the skill

of those in the art after understanding the description of the preferred embodiment. Various

30 software and hardware emulation patents including, but not limited to U.S. Letters Patent

No. 5,551,013, entitled "Multiprocessor for Hardware Emulation", by Beausoleil et al.; and

U.S. Letters Patent No. 6,009,261, entitled "Preprocessing of Stored Target Routines for

Emulating Incompatible Instructions on a Target Processor", by Scalzi et al; and U.S. Letters

WO 2013/185978 PCT/EP2013/059205
91

Patent No. 5,574,873, entitled "Decoding Guest Instruction to Directly Access Emulation

Routines that Emulate the Guest Instructions", by Davidian et al; and U.S. Letters Patent No.

6,308,255, entitled "Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor

Support Allowing Non-Native Code to Run in a System", by Gorishek et al; and U.S. Letters

5 Patent No. 6,463,582, entitled "Dynamic Optimizing Object Code Translator for

Architecture Emulation and Dynamic Optimizing Object Code Translation Method", by

Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled "Method for Emulating Guest

Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions", by

Eric Traut, each of which is hereby incorporated herein by reference in its entirety; and

10 many others, illustrate a variety of known ways to achieve emulation of an instruction format

architected for a different machine for a target machine available to those skilled in the art.

In FIG. 21, an example of an emulated host computer system 5092 is provided that emulates

a host computer system 5000' of a host architecture. In the emulated host computer system

15 5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host

processor) and comprises an emulation processor 5093 having a different native instruction

set architecture than that of the processor 5091 of the host computer 5000'. The emulated

host computer system 5092 has memory 5094 accessible to the emulation processor 5093.

In the example embodiment, the memory 5094 is partitioned into a host computer memory

20 5096 portion and an emulation routines 5097 portion. The host computer memory 5096 is

available to programs of the emulated host computer 5092 according to host computer

architecture. The emulation processor 5093 executes native instructions of an architected

instruction set of an architecture other than that of the emulated processor 5091, the native

instructions obtained from emulation routines memory 5097, and may access a host

25 instruction for execution from a program in host computer memory 5096 by employing one

or more instruction(s) obtained in a sequence & access/decode routine which may decode the

host instruction(s) accessed to determine a native instruction execution routine for emulating

the function of the host instruction accessed. Other facilities that are defined for the host

computer system 5000' architecture may be emulated by architected facilities routines,

30 including such facilities as general purpose registers, control registers, dynamic address

translation and I/O subsystem support and processor cache, for example. The emulation

routines may also take advantage of functions available in the emulation processor 5093

(such as general registers and dynamic translation of virtual addresses) to improve

WO 2013/185978 PCT/EP2013/059205
92

performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

The terminology used herein is for the purpose of describing particular embodiments only

5 and is not intended to be limiting. As used herein, the singular forms "a", "an" and "the" are

intended to include the plural forms as well, unless the context clearly indicates otherwise. It

will be further understood that the terms "comprises" and/or "comprising", when used in this

specification, specify the presence of stated features, integers, steps, operations, elements,

and/or components, but do not preclude the presence or addition of one or more other

10 features, integers, steps, operations, elements, components and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or step plus

function elements in the claims below, if any, are intended to include any structure, material,

or act for performing the function in combination with other claimed elements as specifically

15 claimed. The description of one or more embodiments has been presented for purposes of

illustration and description, but is not intended to be exhaustive or limited to in the form

disclosed. Many modifications and variations will be apparent to those of ordinary skill in

the art. The embodiment was chosen and described in order to best explain various aspects

and the practical application, and to enable others of ordinary skill in the art to understand

20 various embodiments with various modifications as are suited to the particular use

contemplated.

EDITORIAL NOTE

Application No. 2013276800

Please Note: There are no claim pages 93

to 96. The claims commence on page 97.

97

CLAIMS

1. A computer system for controlling execution of transactions in a computing

environment, said computer system comprising: a memory; and a processor in communications

with the memory, wherein the computer system is configured to perform a method, said method

comprising: initiating a transaction in a computing environment, the transaction effectively

delaying committing transactional stores to main memory until completion of a selected

transaction; and

determining, by the processor, whether the transaction is to be aborted, the determining

employing one or more controls of a control register used by the processor, the one or more

controls to indicate whether transactions are to be randomly selected to be aborted for testing

purposes, and wherein the control register comprises: a transaction diagnostic control, wherein

a first value of the transaction diagnostic control indicates transactions are not to be aborted

based on the transaction diagnostic control, a second value of the transaction diagnostic control

indicates each transaction is to be aborted based on the transaction diagnostic control, and a

third value of the transaction diagnostic control indicates transactions are to be randomly

selected to be aborted; and

a transaction diagnostic scope to indicate whether the transaction diagnostic control is to

be applied, wherein a first value of the transaction diagnostic scope indicates the transaction

diagnostic control is to be applied based on the processor being in a problem state or a

supervisor state, and a second value of the transaction diagnostic scope indicates the transaction

diagnostic control is to be applied exclusive to the processor being in the problem state.

2. The computer system of claim 1, wherein the determining comprises based on the one or

more controls indicating transactions are to be randomly selected to be aborted, determining

whether the transaction is to be selected for aborting, and wherein the method further comprises

based on the determining indicating the transaction is to be selected for aborting, aborting the

transaction.

3. The computer system of claim 2, wherein the determining whether the transaction is to

be aborted comprises: checking a value of the transaction diagnostic control of the control

register; and based on the value indicating transactions are to be randomly selected to be

aborted, the processor further determining based on a selection control whether the transaction is

to be selected for aborting.

98

4. The computer system of claim 2, wherein the aborting further comprises executing an

abort handler to provide testing associated with the aborting.

5. The computer system of claim 1, wherein the one or more controls are task specific in

that the one or more controls are for a specific task and are set based on user-provided

information, the specific task to include the transaction.

6. The computer system of claim 1, wherein based on the determining indicating the

transaction is to be aborted, the transaction is to drive its abort handler for testing purposes, the

testing purposes including debugging certain types of abort conditions.

7. A method of controlling execution of transactions in a computing environment, said

method comprising:

initiating a transaction in a computing environment, the transaction effectively delaying

committing transactional stores to main memory until completion of a selected transaction; and

determining, by a processor, whether the transaction is to be aborted, the determining

employing one or more controls of a control register used by the processor, the one or more

controls to indicate whether transactions are to be randomly selected to be aborted for testing

purposes, and wherein the control register comprises: a transaction diagnostic control, wherein a

first value of the transaction diagnostic control indicates transactions are not to be aborted based

on the transaction diagnostic control, a second value of the transaction diagnostic control

indicates each transaction is to be aborted based on the transaction diagnostic control, and a

third value of the transaction diagnostic control indicates transactions are to be randomly

selected to be aborted; and

a transaction diagnostic scope to indicate whether the transaction diagnostic control is to

be applied, wherein a first value of the transaction diagnostic scope indicates the transaction

diagnostic control is to be applied based on the processor being in a problem state or a

supervisor state, and a second value of the transaction diagnostic scope indicates the transaction

diagnostic control is to be applied exclusive to the processor being in the problem state.

8. The method of claim 7, wherein the determining comprises based on the one or more

controls indicating transactions are to be randomly selected to be aborted, determining whether

the transaction is to be selected for aborting, and wherein the method further comprises based on

the determining indicating the transaction is to be selected for aborting, aborting the transaction.

99

9. The method of claim 8, wherein the determining whether the transaction is to be aborted

comprises:

checking a value of the transaction diagnostic control of the control register; and

based on the value indicating transactions are to be randomly selected to be aborted, the

processor further determining based on a selection control whether the transaction is to be

selected for aborting.

10. The method of claim 8, wherein the aborting comprises aborting the transaction at a

selected instruction within the transaction.

11. The method of claim 8, wherein the aborting further comprises executing an abort

handler to provide testing associated with the aborting.

12. The method of claim 7, wherein the one or more controls are task specific in that the one

or more controls are for a specific task and are set based on user-provided information, the

specific task to include the transaction.

13. The method of claim 7, wherein based on the determining indicating the transaction is to

be aborted, the transaction is to drive its abort handler for testing purposes.

14. The method of claim 13, wherein the testing purposes includes debugging certain types

of abort conditions.

15. A computer program product for controlling execution of transactions in a computing

environment, said computer program product comprising: a computer readable storage medium

readable by a processing circuit and storing instructions for execution by the processing circuit

for performing the method of any one of claims 7 to 14.

International Business Machines Corporation

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

