wo 2012/08990°7 A 1[I I NP0 0O 0.0 RO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/089907 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

5 July 2012 (05.07.2012) WIPOIPCT
International Patent Classification: (81)
GO6F 9/445 (2006.01)

International Application Number:
PCT/F12011/051010

International Filing Date:
16 November 2011 (16.11.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/979,141 27 December 2010 (27.12.2010) US

Applicant (for all designated States except US): NOKIA
CORPORATION [FI/FI]; Keilalahdentie 4, FI-02150 Es-
poo (FI).

Inventor; and

Inventor/Applicant (for US only): KOSKIMIES, Olli
Oskari [FI/FI|; Varjakanvalkama 16 E, FI-00950 Helsinki
(FD).

Agents: AARNIO, Ari et al.; Nokia Corporation, IPR De-
partment, Keilalahdentie 4, FI-02150 Espoo (FI).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR PRE-INITIALIZING APPLICATION RENDERING PROCESSES

FIG.1

100

USER EQUIPMENT (UE) 1012

PROCESS MANAGEMENT
PLATFORM
103

DATA
STORAGE
1osb

USER INTERFACE
MODULE 1053

PROCESS MANAGEMENT
MODULE 105b

PROCESS MONITOR
MODULE 105¢

PROCESS RULES
MODULE 1054

COMMUNICATION
NETWORK 105

f

CONTENT PLATFORM 113

CONTENT{15a

USER EQUIPMENT (UE)

101b

APPLICATION
CHARACTERISTIC

DATA 1092

USER EQUIPMENT (UE)
101n

(57) Abstract: An approach is provided for managing processes for enabling execution of applications within a user device. One or
more characteristics of an application are determined by a process monitor module (105¢). A process management module (105b)
then initializes at least a portion of at least one rendering process at the device for supporting the at least one application based, at
least in part, on the one or more characteristics. The initialization occurs prior to receiving a request to initiate an execution instance
of the at least one application, the advantage of this pre-initialization being that the time needed to launch the at least one application
is reduced.

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010

METHOD AND APPARATUS FOR
PRE-INITIALIZING APPLICATION RENDERING PROCESSES

BACKGROUND

Service providers and device manufacturers (e.g., wireless, cellular, etc.) are continually
challenged to deliver value and convenience to consumers by, for example, providing compelling
network services. One area of interest has been the development of applications (e.g., web
applications developed using standard web technologies) for delivering these services and other
functions through web browsers. For example, as the numbers of operating system platforms
(e.g., mobile operating systems) proliferate, service providers are making increasing use of web
applications as a means for cross-platform development. However, web applications have
traditionally been associated with significantly longer start times than native applications. One
factor leading to the longer startup times is the increased overhead and preparation steps
associated with initiating rendering processes to support execution of the web applications within
browsers. Accordingly, service providers and device manufacturers face significant technical
challenges to improving web application startup times.

SOME EXAMPLE EMBODIMENTS

Therefore, there is a need for an approach for efficiently pre-initializing rendering processes to
support execution of applications (e.g., web applications) at a device, particularly devices with
relatively limited resources and/or capabilities such as a mobile device (e.g., smartphones, cell
phones, etc.).

According to one embodiment, a method comprises processing and/or facilitating a processing of
one or more characteristics of at least one application for rendering at a device. The method also
comprises causing, at least in part, an initialization of at least a portion of at least one rendering
process at the device for supporting the at least one application based, at least in part, on the one
or more characteristics. The initialization occurs prior to receiving a request to initiate an
execution instance of the at least one application.

According to another embodiment, an apparatus comprises at least one processor, and at least one
memory including computer program code, the at least one memory and the computer program
code configured to, with the at least one processor, cause, at least in part, the apparatus to
process and/or facilitate a processing of one or more characteristics of at least one application for
rendering at a device. The apparatus is also causes, at least in part, an initialization of at least a
portion of at least one rendering process at the device for supporting the at least one application

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

based, at least in part, on the one or more characteristics. The initialization occurs prior to

receiving a request to initiate an execution instance of the at least one application.

According to another embodiment, a computer-readable storage medium carries one or more
sequences of one or more instructions which, when executed by one or more processors, cause, at
least in part, an apparatus to process and/or facilitate a processing of one or more characteristics
of at least one application for rendering at a device. The apparatus is also causes, at least in part,
an initialization of at least a portion of at least one rendering process at the device for supporting
the at least one application based, at least in part, on the one or more characteristics. The
initialization occurs prior to receiving a request to initiate an execution instance of the at least one
application.

According to another embodiment, an apparatus comprises means for processing and/or
facilitating a processing of one or more characteristics of at least one application for rendering at
a device. The apparatus also comprises means for causing, at least in part, an initialization of at
least a portion of at least one rendering process at the device for supporting the at least one
application based, at least in part, on the one or more characteristics. The initialization occurs

prior to receiving a request to initiate an execution instance of the at least one application.

In addition, for various example embodiments of the invention, the following is applicable: a
method comprising facilitating a processing of and/or processing (1) data and/or (2) information
and/or (3) at least one signal, the (1) data and/or (2) information and/or (3) at least one signal
based, at least in part, on (including derived at least in part from) any one or any combination of
methods (or processes) disclosed in this application as relevant to any embodiment of the
invention.

For various example embodiments of the invention, the following is also applicable: a method
comprising facilitating access to at least one interface configured to allow access to at least one
service, the at least one service configured to perform any one or any combination of network or

service provider methods (or processes) disclosed in this application.

For various example embodiments of the invention, the following is also applicable: a method
comprising facilitating creating and/or facilitating modifying (1) at least one device user interface
clement and/or (2) at least one device user interface functionality, the (1) at least one device user
interface clement and/or (2) at least one device user interface functionality based, at least in part,
on data and/or information resulting from one or any combination of methods or processes
disclosed in this application as relevant to any embodiment of the invention, and/or at least one
signal resulting from one or any combination of methods (or processes) disclosed in this
application as relevant to any embodiment of the invention.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

For various example embodiments of the invention, the following is also applicable: a method
comprising creating and/or modifying (1) at least one device user interface element and/or (2) at
least one device user interface functionality, the (1) at least one device user interface clement
and/or (2) at least one device user interface functionality based at least in part on data and/or
information resulting from one or any combination of methods (or processes) disclosed in this
application as relevant to any embodiment of the invention, and/or at least one signal resulting
from one or any combination of methods (or processes) disclosed in this application as relevant to

any embodiment of the invention.

In various example embodiments, the methods (or processes) can be accomplished on the service
provider side or on the mobile device side or in any shared way between service provider and
mobile device with actions being performed on both sides.

For various example embodiments, the following is applicable: An apparatus comprising means
for performing the method of any of originally filed claims 1-10, 21-30, and 46-48.

Still other aspects, features, and advantages of the invention are readily apparent from the
following detailed description, simply by illustrating a number of particular embodiments and
implementations, including the best mode contemplated for carrying out the invention. The
invention is also capable of other and different embodiments, and its several details can be
modified in various obvious respects, all without departing from the spirit and scope of the
invention. Accordingly, the drawings and description are to be regarded as illustrative in nature,

and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of example, and not by way of limitation,
in the figures of the accompanying drawings:

FIG. 1 is a diagram of a system capable of pre-initializing application rendering processes,
according to onc embodiment;

FIG. 2 is a diagram of the components of a process management platform, according to one
embodiment;

FIG. 3A is a diagram of a data structure representative of application characteristic data for
enabling pre-initialization of application rendering processes, according to one embodiment;

FIG. 3B is a diagram of a data structure representative of rules for enabling pre-initialization of
application rendering processes, according to one embodiment;

FIG. 4 is a flowchart of a process for pre-initializing application rendering processes, according to
one embodiment, according to one embodiment;

FIG. 5 is a flowchart of a process for initiating an execution instance of an application based on a
pool of pre-initialized rendering processes, according to one embodiment;

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

FIGs. 6A and 6B are diagrams of interactions between a client and a server utilized in data mining
included in the pre-initialization processes of FIGs. 1-5, according to various embodiments,
according to various embodiments;

FIGs. 7A and 7B are diagram of user interfaces used in the processes of FIGs. 4 and 5, according
to various embodiments;

FIG. 8 is a diagram of hardware that can be used to implement an embodiment of the invention;
FIG. 9 is a diagram of a chip set that can be used to implement an embodiment of the invention;
and

FIG. 10 is a diagram of a mobile terminal (c.g., handset) that can be used to implement an

embodiment of the invention.

DESCRIPTION OF SOME EMBODIMENTS

Examples of a method, apparatus, and computer program for pre-initializing application rendering
processes are disclosed. In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the embodiments of
the invention. It is apparent, however, to one skilled in the art that the embodiments of the
invention may be practiced without these specific details or with an equivalent arrangement. In
other instances, well-known structures and devices are shown in block diagram form in order to
avoid unnecessarily obscuring the embodiments of the invention. Although various embodiments
arc described with respect to user devices such as mobile phones, Smartphones, computing
devices, etc., it is contemplated the approach described herein may be used with other

communication devices.

Although various embodiments are described with respect to web applications, it is contemplated
that the various embodiments of the approach described herein are applicable to any application

execution within an interpreted code environment.

FIG. 1 is a diagram of a system capable of pre-initializing application rendering processes,
according to one embodiment. By way of example, the system 100 enables user devices, namely
user equipment (UEs) 101a-101n (also collectively referred to as UEs 101), to optimize the
execution and allocation of rendering processes within the UEs 101a-101n by pre-initializing at
least partially one or more of the rendering processes. Today’s UEs 101 are used to perform
various processing tasks, including connecting to the Web to access a growing variety of web-
based services, functions, content and the like. Typically, UEs 101a-101n feature browsers or
web applications executing within the browsers that enable the download or execution of content
by way of a communication network 105, thus enabling the performance of the processing tasks
described above and much more. In certain embodiments, “content” refers to any information or
data that may be viewed, executed, manipulated or rendered by a browser or web portal
application for fulfilling specific tasks. Content may include video, audio, internet data, data files,

streaming media, object code, images, contextual and semantic data, textual data, etc. Generally,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

the content 115a-115n in its myriad forms is provided to users over the communication network
105 by way of a content platform 113 (c.g., a specific website, internet server, file server).

The browser or web application facilitates the viewing, execution, manipulation or rendering of
content by managing the various operating system (OS) and/or browser processes (e.g., rendering
processes) that are created when the user performs various browsing actions. These actions may
include, by way of example, typing a URL to access a specific content source location, clicking an
embedded link for invoking an e-mail editor to send an e-mail, pressing the back or forward
button to recall or advance content, manipulating the buttons of a web or script based streaming
media player, ctc. In one embodiment, cach of the web applications are executed and rendered to
the browser via one or more “rendering processes,” which in certain embodiments, pertains to an
instance of execution of one or more instructions of a computing device or application thercof.
As used herein, the term “rendering process” includes at least in part a rendering engine, a

scripting engine (e.g., a JavaScript engine), and an associated execution context.

Depending on the operating system (OS), a process may be made up of multiple threads of
execution that execute instructions to be carried out concurrently. With respect to a browser,
web application or the like, concurrently open websites are typically presented as tabs, allowing
the user to easily toggle between varying content 115a-115n within the same browser window.
The browser application may decide to run each tab in its own OS process, run all tabs in a single

OS process, ctc.

Creating a new process for each website or content source increases robustness because the OS
takes care of isolating respective processes. By isolating processes, when one process crashes it
does not affect the other processes in operation concurrently. However, as a consequence, each
new process consumes resources, especially memory, of the UEs 101a-101n. This is especially
problematic for web applications because a large part of the browser application code needs to be
duplicated for each process allocated by the OS. The overhead and resource taxation incurred by
a typical UE 101a-101n for executing web-technologies on a process per application basis can be
in the range of 3-7 MB. Some browser applications may even consume up to 20MB of RAM just
by being launched, before any URL has been specified and loaded. Hence, this drain on resources
is especially problematic for desktop computers and critical for mobile devices and other portable
wireless communication devices having smaller resource capacity. An alternative approach is to
run several applications for enabling content 115a-115n in a single process, which leads to less
overhead per application. However, an application crash may result in process termination, in
turn effectively terminating all the other applications in the same process as well.

As previously noted, web applications, even when loaded from a local offline cache, have
significantly longer startup times than native applications, due to, for instance, the need to load,
parse, and/or interpret the applications’ code (e.g., HyperText Markup Language (HTML) code,
scripting code (e.g., JavaScript code), cascading style sheet (CSS) code, and/or other related

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

code. Also, if a web application is to be executed in a separate rendering process, a new
rendering process may need to be started. Moreover, if just-in-time (JIT) compilation is used,
compiling the JavaScript code can increase the processing and/or other resource load of the
executing device and potentially delay the startup further. Furthermore, some code interpretation
frameworks (e.g., JavaScript frameworks) employ dynamic loading which means that the
application code is first loaded and parsed only partially, then executed. At that point, additional
application code is loaded and parsed and executed; the process is then further repeated. This
kind of code architecture can slow the startup times even further.

To address this problem, system 100 of FIG. 1 introduces the capability to pre-initialize one or
more rendering processes to support execution or one or more web applications. More
specifically, the system 100 uses separate rendering processes to support execution instances of
onc or more web applications. In one embodiment, by using separate rendering processes, the
system 100 enables the creation of a pool of pre-initialized processes on standby that speed up the
startup time when requests to execute the web applications are received. In one embodiment, the
rendering processes for the most commonly used applications and/or scripting libraries (e.g.,
JavaScript libraries) may be pre-initialized.

In some embodiments, a rendering process may be fully initialized (e.g., pre-initializing including
preloading an entire web application), partly initialized (e.g., some of the code, libraries,
resources, ctc. of the web application is pre-initialized or preloaded), or uninitialized (e.g.,
rendering process is ready to load an application but no parts have been loaded yet).

In another embodiment, the rendering processes may be pre-initialized with respect to a particular
(e.g., commonly used) application. In other words, the pre-initialized rendering process can only
be used to execute or support an execution instance of the particular application. In addition or
alternatively, the rendering processes may be pre-initialized with respect to one or more libraries
(c.g., JavaScript libraries), resources (e.g., CSS files), data object definitions, or a combination
thereof, whereby the pre-initialized rendering processes support any applications that use any of
the pre-initialized libraries, resources, and/or data object definitions.

In another embodiment, the pre-initialization of the rendering processes can be customized for
known applications or applications that are made aware of the pre-initialization. For example, the
developers of applications that are aware of the pre-initialization can specify initialization
parameters (e.g., specific libraries, resources, etc. to preload) and/or rules (e.g., pre-initialization
is based on detecting specific contexts or conditions).

In yet another embodiment, the number of rendering processes on standby (e.g., waiting on a
request to execute an application) and the degree of pre-initialization (e.g., full, partial, or none)
can be varied to control the amount of available resources (¢.g., RAM memory, processing cycles,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

network bandwidth, ctc.). In other words, the pool and/or composition of the pre-initialized
rendering processes can have a “variable footprint” (¢.g., resource footprint) within the device.

As shown in FIG. 1, the system 100 comprises a user equipment (UE) 101 having connectivity to
a process management platform 103 via a communication network 105. In one embodiment, the
process management platform 103 performs all or part of the pre-initialization processes of the
various example embodiments described herein. In addition or alternatively, the UE 101 may
include one or more modules (e.g., a user interface module 105a, a process management module
105b, a process monitor module 105¢, and/or a process rules module 105d) to perform all or part
of the processes to pre-initialize application rendering processes.

By way of example, the communication network 105 of system 100 includes one or more
networks such as a data network (not shown), a wireless network (not shown), a telephony
network (not shown), or any combination thereof. It is contemplated that the data network may
be any local area network (LAN), metropolitan arca network (MAN), wide area network (WAN),
a public data network (e.g., the Internet), short range wireless network, or any other suitable
packet-switched network, such as a commercially owned, proprictary packet-switched network,
¢.g., a proprietary cable or fiber-optic network, and the like, or any combination thercof. In
addition, the wircless network may be, for example, a cellular network and may employ various
technologies including enhanced data rates for global evolution (EDGE), general packet radio
service (GPRS), global system for mobile communications (GSM), Internet protocol multimedia
subsystem (IMS), universal mobile telecommunications system (UMTS), ctc., as well as any other
suitable wireless medium, ¢.g., worldwide interoperability for microwave access (WiMAX), Long
Term Evolution (LTE) networks, code division multiple access (CDMA), wideband code division
multiple access (WCDMA), wireless fidelity (WiFi), wireless LAN (WLAN), Bluetooth®,
Internet Protocol (IP) data casting, satellite, mobile ad-hoc network (MANET), and the like, or
any combination thereof.

The UE 101 is any type of mobile terminal, fixed terminal, or portable terminal including a mobile
handset, station, unit, device, multimedia computer, multimedia tablet, Internet node,
communicator, desktop computer, laptop computer, notebook computer, netbook computer,
tablet computer, personal communication system (PCS) device, personal navigation device,
personal digital assistants (PDAs), audio/video player, digital camera/camcorder, positioning
device, television receiver, radio broadcast receiver, electronic book device, game device, or any
combination thercof, including the accessories and peripherals of these devices, or any
combination thercof. It is also contemplated that the UE 101 can support any type of interface to
the user (such as “wearable” circuitry, ctc.).

As noted above, in one embodiment, the UEs 101a-101n include one or more components for
pre-initializing application rendering processes to support executing applications. By way of
example, the components operate to enable pre-initialization processes of the UE 101 based on

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

application characteristic data 109a to specify whether and how to create a pool of pre-initialized
rendering processes to reduce application startup times. Still further, various components of the
UE 101 coordinate the sharing of resource usage data with a process management platform 103
and receives feedback from the platform 103 that enables it to pre-initialize rendering processes
based on analysis of resource information. The resource information specifies data pertaining to
the usage of various resources (¢.g., RAM, processing resources, bandwidth, etc.) by the one or
more UEs 101a-101n. For the one or more components of the UE 101 (e.g., the user interface
module 105a, the process management module 105b, the process monitor module 105¢ and the
rules update module 105d), it is contemplated their functions may be combined in one or more
components or performed by other components of equivalent functionality. In addition, the
components may be local to the respective UEs 101a-101n or available remotely over the
communication network 105 (e.g., cloud resources).

In certain embodiments, the user interface module 105a enables a web application to be rendered
to a display of a given UE 101a-101n for enabling a user to access a content platform 113 or
other functions of the web application. By way of example, the content platform 113 may be any
source available by way of a network or communication channel for generating, maintaining or
publishing content 115a-115n. The user interface module 105a, by way of example, enables
presentation and navigation of content made available by the content platform 113. Navigation
and presentation of content is facilitated by way of a uniform resource locator (URL) entry field
or through the accessing of various embedded links. In addition, the user interface module 105a
is configured to enable execution of content as various web applications (e.g., the starting and
stopping of web applications), scripts, executable objects and the like for supporting various types
of web-based or network based interactions. To enable concurrent access to content, the browser
or web portal application supported by the user interface module 105a may provide for the
multiple frames, windows or tabs to be presented to the UE 101a-101n display accordingly,
relative to particular device configurations, modes of operation, screen size availability, etc. As
will be discussed, such characteristics, pertaining to both the device capabilities and/or the
application being executed may be considered and accounted for by a process management
platform 103 in customizing the pre-initialization of one or more rendering processes for

executing one or more applications at the respective UE 101.

In one embodiment, a process management module 105b decides which rendering processes of
which applications (e.g., web applications) are to be pre-initialized based on the determined
characteristics of the application or the UE 101 upon which it runs. By way of example, the
characteristics include one or more security properties, one or more authentication properties, one
or more permissions, frequency of use, resources used, importance, priority, or a combination
therecof. In one embodiment, the characteristics are identified and provided by one or more
servers that host the respective applications. In addition or alternatively, the characteristics may
be determined at the UE 101 based on, for instance, the resources, permissions, etc. requested by
the applications.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010

By way of example, the process management module 105b operates deterministically, taking the
information from the user interface module 105a, application characteristic data 109a and the
process monitor module 105¢ into account for executing process pre-initialization decisions. For
example, a web application operable in connection with the user interface module 105a may
provide application URL and notification about application lifecycle events (e.g., application start,
stop or suspend) to the process management module 105b as input parameters into pre-
initialization decisions. For instance, the stopping or closing of an application may signal to the
process management module 105b that additional resources (e.g., RAM) may be available to
support pre-initialization of additional rendering processes. Similarly, executing or starting an
application may indicate a reduction in the amount of resources, which may cause the process
management module 105b to kill one or more pre-initialized rendering processes to make more

resources available.

In one use case, when a user first navigates to an unknown website, corresponding to the starting
of an unknown web application, application characteristic data 109a relative to this site
(application) may not yet exist and a designated default action as specified in the rule data 109a
can be taken. An exemplary default action may be to pre-initialize rendering processes for the
new application if there are available resources. Another default action may be to ask the user to
manually specify the initialization parameters and/or rules associated with the application. Yet
another default action may be to retrieve or otherwise determine the pre-initialization parameters
and/or rules associated with the application by, for instance, the application developer, service

provider, network operator, device manufacturer, ctc.

In one embodiment, the process monitor module 105¢ gathers information about the state of the
UE 101 operating system and running web applications. System and application state, interaction
and functional information is immediately available to the process management module 105b; the
process management module 105b including various functions for interacting with the OS,
interacting with the application programming interface (API), accessing execution threads, ctc.
By way of example, system information acquired and interpreted by the process monitor module
105¢ includes:

- Data indicative of how much system resources, such as free RAM memory, are currently

available;
- Data indicative of how many processes are currently pre-initialized and how much RAM

memory cach pre-initialized process is currently consuming.

In addition to the system related information, the process monitor module 105¢ monitors and
gathers information about any running web applications, including:
- Data specifying how frequently the application is used (e.g., as received from the web
application via the process management module 105b);

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
10

- Data indicative of how much resources the web application has consumed (e.g., based on
first time execution and possibly subsequent executions)

Upon collecting the data pertaining to the application in question, the process monitor module
105¢ provides the data to the process management platform 103. In addition, the process monitor
module 105¢ provides the data regarding the UE 101 upon which the application was run. Data
provided may also include metadata for specifying various details regarding the application,
including application name, version or build numbers, execution or error codes, process
sequences, accessed libraries, accessed resources, ctc. Likewise, metadata associated with the UE
or operating system may include OS version numbers, hardware builds or status information,
processor or controller details, model numbers, etc. Any data useful for characterizing the
application or device (e.g., UE 101) or for detailing the resource usage of the device or
application may be gathered and subsequently reported by the process monitor module 105c.

It is noted that the process monitor module 105¢ is configured to monitor, intercept or interpret
any information useful for specifying the current and/or historical operational, functional or
statistical state of the UE 101 or applications running thereon. Still further, it is noted that to the
extent multiple UE 101a-101n are configured with a process monitor module 105¢, the process
management platform 103 is able to gather a wide set of data regarding the various operations
and interactions of differing devices and applications. In one embodiment, this information is used
for continually developing refined process pre-initialization rules or policies that are responsive to
real world conditions and for enabling enhanced pre-initialization decisions to be made.

In one embodiment, a rules update module 105d updates both the process pre-initialization data
maintained by the UE 101a and that maintained by the process management platform 103 based
on the information collected by the process monitor module 105¢. By way of example, the rules
update module 105d is notified if new application characteristic data 109a is available at the
process management platform 103. The update process, wherein the process management
platform 103 provides process pre-initialization rules (e.g., as part of application characteristic
data 109a) to the UE 101a, may be performed at a various frequencies or as directed. It is noted
that in certain implementations, the communication between the UE 101 and process management

platform 103 is piggybacked during other information exchanges that occur between them.

Communication is facilitated between the UE 101, process management platform 103, content
platform 113 via the communication network 105 using well known, new or still developing
protocols. In this context, a protocol includes a set of rules defining how the network nodes
within the communication network 105 interact with each other based on information sent over
the communication links. The protocols are effective at different layers of operation within each
node, from generating and receiving physical signals of various types, to selecting a link for
transferring those signals, to the format of information indicated by those signals, to identifying
which software application executing on a computer system sends or receives the information.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
11

The conceptually different layers of protocols for exchanging information over a network are
described in the Open Systems Interconnection (OSI) Reference Model.

Communications between the network nodes are typically effected by exchanging discrete packets
of data. Each packet typically comprises (1) header information associated with a particular
protocol, and (2) payload information that follows the header information and contains
information that may be processed independently of that particular protocol. In some protocols,
the packet includes (3) trailer information following the payload and indicating the end of the
payload information. The header includes information such as the source of the packet, its
destination, the length of the payload, and other properties used by the protocol. Often, the data
in the payload for the particular protocol includes a header and payload for a different protocol
associated with a different, higher layer of the OSI Reference Model. The header for a particular
protocol typically indicates a type for the next protocol contained in its payload. The higher layer
protocol is said to be encapsulated in the lower layer protocol. The headers included in a packet
traversing multiple heterogencous networks, such as the Internet, typically include a physical
(layer 1) header, a data-link (layer 2) header, an internetwork (layer 3) header and a transport
(layer 4) header, and various application headers (layer 5, layer 6 and layer 7) as defined by the
OSI Reference Model.

In one embodiment, the process management platform 103 and one or more of the modules 105a-
105d interact according to a client-server model. It is noted that the client-server model of
computer process interaction is widely known and used. According to the client-server model, a
client process sends a message including a request to a server process, and the server process
responds by providing a service. The server process may also return a message with a response to
the client process. Often the client process and server process execute on different computer
devices, called hosts, and communicate via a network using one or more protocols for network
communications. The term “server” is conventionally used to refer to the process that provides
the service, or the host computer on which the process operates. Similarly, the term “client” is
conventionally used to refer to the process that makes the request, or the host computer on which
the process operates. As used herein, the terms “client” and “server” refer to the processes,
rather than the host computers, unless otherwise clear from the context. In addition, the process
performed by a server can be broken up to run as multiple processes on multiple hosts (sometimes
called tiers) for reasons that include reliability, scalability, and redundancy, among others.

FIG. 2 is a diagram of a process management platform, according to one embodiment. By way of
example, the process management platform 103 includes one or more components for pre-
initializing application rendering processes. It is contemplated that the functions of these
components may be combined in one or more components or performed by other components of
equivalent functionality. In one embodiment, the process management platform 103 includes a
resource usage data aggregation module 201, a resource usage determination module 203, a

content relationship determination module 205, a pre-initialization data module 205a, a manual

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
12

pre-initialization data module 207, a personalized pre-initialization module 209, a communication
module 211 and a controller 213. The controller 213 oversees tasks performed by the
components of the system, including facilitating data exchange and storage of context information
through use of various data storage devices 109a-109n and regulation of its own interactions with
the other components 203-211.

In one embodiment, the resource usage data aggregation module 201 receives information about
UEs 101a-101n and/or associated web applications. This information is relayed to the resource
usage data aggregation module 201 by respective process monitor modules 105¢ of UEs 101a-
101n, and includes information regarding the functional, operation or statistical state of the UE
101 or web applications operable thercon. As mentioned previously, the process management
platform 103, via the resource usage data aggregation module 201, can interact with process
monitor modules 105¢ of respective UEs 101a-101n on a periodic basis (¢.g., once per day) for
receiving such data. The interaction can also be performed during the course of normal
communication between the process management platform 103 and the process monitor modules
105¢ as a “piggyback” process. By way of example, usage data is piggybacked or packaged along
with data exchanged with the process management platform 103 during a routine diagnostic,
regular system status check or other communication session. Upon receipt, the resource usage
data aggregation module 201 can compile the data in a usage data database 215a or other data
storage 215n, where current information can be aggregated with historical information of the
same type.

It is noted that the data aggregated by module 201 may be organized for historical recollection,
real-time analysis or other means of interpretation for determining specific usage and operational
characteristics of differing UEs 101 and/or applications. In one embodiment, this operation is
performed by the resource usage determination module 203. By way of example, the resource
usage determination module 203 analyzes the usage data 215a and determines the usage trends,
commonalities and other characteristics that define the different UEs 101a-101n and web
applications. By way of example, the resource usage determination module 203 processes the
data in accordance with a developed data model that attempts to characterize the behavior of a
given web application relative to a specific moment of use, may employ various statistics or
metrics for specifying the usage of differing UEs, etc. It is noted that, once the number of
participating UEs 101 has grown over some threshold, there will be information about the vast
majority of used web applications. As such, the resource usage determination module 203 may
rely on this collected data for characterizing or otherwise determining how resources are used by
respective UEs 101a-101n or applications. This application characteristic information can then be
used for determining conditions, parameters, ctc. for pre-initializing one or more rendering

processes associated with the applications.

In one embodiment, a content relationship determination module 205 determines the relationship
between varying types of content as accessed from a particular content platform 113 via a web

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
13

application of a given UE 101. By way of example, the content relationship determination
module 205 may be configured to browse the content 115a-115n as accessed by a given
application in a methodical, automated manner or in an orderly fashion. A technique for analyzing
the content by module 205 may include URL normalization or canonicalization, which refers to
the process of modifying and standardizing a URL for various content in a consistent manner
(c.g., to determine content source commonality). Under this approach, it is possible for the
module 205 to determine if sites featuring content 115a-115n that appears to be non-related based
on their domain (e.g. www.content_source.fi and www.content source.com) are related to the
same organization/individual, which in turn, makes them related. Another technique employed by
the content relationship determination module 205 may include path ascendency analysis, wherein
the commonality between various links between content is analyzed; or content revisitation
analysis, where the amount of time content is actively browsed, its relevancy or the frequency of
access of content 115 by the application is analyzed. Still further, the content relationship
determination module 205 allows content relative to various web applications to be categorized
based on various criteria, such as importance, origin, relational affinity, complexity and required
permissions. It is noted that the content relationship determination module 205 may be employed
or implemented using known web crawler architectures. Moreover, it is noted the content
relationship determination module 205 may be implemented or accessed as a third party web tool

for performing automated content crawling.

The content relationship determination module 205 can provide additional data regarding the
characteristics, uses, classifications, etc. of the various UEs 101 and web applications to assist in
the pre-initialization process. By way of example, determining the relationship between different
sets of content 115a-115n may be used for further recognizing application and/or UE 101 usage
respective to the execution or access of different content. This process may be performed in
conjunction with the resource usage determination module 203. Having generated usage data
215a and determined the relationship between respective content 115a-115n, this information can
be compiled by a pre-initialization data module 205a of the process management platform 103
into application characteristic data 215b for use in determining whether and how to pre-initialize
one or more rendering processes corresponding to one or more respective applications. In certain
instances, the pre-initialization data module 205a may generate or adapt the data 215b based on

one or more data models or schemas, such as maintained in storage 215n.

In one embodiment, a manual pre-initialization data module 207 also enables the generation or
adaptation of usage data 215a. By way of example, the manual pre-initialization data module 207
enables the input of usage data 215a and/or application characteristics data 215b that cannot be or
is not otherwise automatically determined by the resource usage determination module 203 or
informed by the content relationship determination module 205. For example, a manual pre-
initialization rule may call for URLs of core applications (as designated by a user) to be listed, so
that the UE 101 can pre-initialize rendering processes for core applications regardless of other

factors used to determine pre-initialization. As another example, manually entered pre-

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
14

initialization parameters and/or rules may be provided for enabling pre-initialization of at least a
portion of certain rendering processes on a per site or a per content basis. It is noted the process
management platform 103 accommodates both manual and automated generation of usage data
215a, application characteristic data 215b, pre-initialization parameters and/or rules (e.g., which
processes to pre-initialize, when to pre-initialize, to what extent to pre-initialize, under what
contexts to pre-initialize, under what resource availability conditions to pre-initialize, etc.), and
the like.

In onc embodiment, a personalized pre-initialization module 209 combines the information
generated by the above described modules 203-207 to produce user-specific customized pre-
initialization parameters and/or rules. In one embodiment, such user-specific pre-initialization
parameters and/or rules are based, at least in part, on, for instance, information about major web-
sites and sites visited by the user recently. In another embodiment, the personalized pre-
initialization module 209 can make implicit determinations on what applications are favored by a
particular user and then mark the identified applications for pre-initialization. For example, the
personalized pre-initialization module 209 may determine whether to pre-initialize rendering
processes associated with particular applications by determining: (1) whether the user has created
a link or shortcut to the application on a home screen or browser of the UE 101; (2) whether the
user has rated a particular application; (3) whether the user has recommended an application to
other users; and the like. It is noted that while the above described processes are presented with
respect to the activities of the process management platform 103, certain implementations
contemplate execution of these processes at both the UE 101 and process management platform
103 or just the UE 101.

In one embodiment, the various protocols, data sharing techniques and the like required for
enabling collaborative execution between UEs 101a-101n over the communication network is
provided by way of a communication module 211. As the various UEs 10la-101n may feature
different communication means, the communication module 211 enables the process management
platform 103 to adapt to these needs respective to the required protocols of the communication
network 105. In addition, the communication module 211 may appropriately package data for
receipt by a respective UE 101a-101n. By way of example, the communication module 211
packages the application characteristic data 215b as generated by the pre-initialization data
module 205a, the manual pre-initialization data module 207, and/or the personalized pre-
initialization module 209 for transmission to respective UEs 101.

It is noted that application characteristic data 215b are generated or maintained by respective UE
101a-101n as well as the process management platform 103. In one embodiment, in an effort to
maintain a level of synchronicity of the application characteristics data 215b data between the
various UE 101a-101n and process management platform 103, an update process is performed as
described before. As a general update mechanism, application characteristic data 215b maintained
by the process management platform 103 may be downloaded by UE 101a-101n for inclusion

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
15

with its current data set 109b. By way of this approach, the dataset 109b maintained by a single
UE 101 may account for and be informed of application characteristic data for all UEs 101a-101n
configured over the network 105. This makes for a more robust application characteristic dataset
for execution at respective UEs 101. It is noted therefore, that pre-initialization of application
rendering processes may be performed differently in each UE 101a-101n due to variations in user
preferences and application use while also accounting for known operating conditions of various
UEs 101.

In another embodiment, as a further means of ensuring proper synchronization of application
characteristic data among respective UEs 101 and the process management platform 103, the
application characteristic data can be generated and defined according to a common data
framework. FIG. 3A is a diagram of a data structure representative of application characteristic
data for enabling pre-initialization of application rendering processes, according to one
embodiment. As mentioned, the application characteristic data 109a is stored to the UE 101 and
updated as necessary, using application characteristic data maintained by the process management
platform 103 (e.g., in the application characteristic database 215b). This update process is
facilitated by the process management module 105b and process monitor module 105c¢ as
described. Data structure 300 ensures the integrity of the dataset maintained at a respective client
(c.g., UE 101) while enabling the overriding of certain data received from the server (e.g., process
management platform 103).

By way of example, data structure 300 may include an application identifier 301 for specifying a
particular application (e.g., application URL), permissions settings 303 as required by the
application, a complexity indicator 305 or ranking for specifying the extent of processing
complexity required by the application, a relational indicator 307 for specifying other applications
of the UE that are related to the specified application for enabling execution of tasks and/or
processes, an application usage frequency 309 for indicating how often the application is used and
an application importance 311 for ranking the importance of the application relative to other
related applications or processes at hand to be performed. Other data items may also be defined
by the data structure 300 accordingly such as additional pre-initialization parameters and/or rules
to direct how rendering processes for specific applications are to be pre-initialized.

In one embodiment, the permissions settings data 303 is used to indicate and determine whether
certain content (c.g., specific web site) is allowed to access certain data or functionality (e.g.,
GPS sensor, camera, file system) on the UE 101. Generally, this data is user-specific, as onec UE
101 may allow a site “www.somesite.com” to access its GPS sensor data while another UE 101
may be configured to deny this capability. It is noted that website permissions settings may be
used to sct the permissions of a rendering process when the process management module 105b
pre-initializes or preloads all or part of the rendering process.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
16

The complexity indicator 305 may be established based on numerous criteria, including an average
application loading, processing or completion time; typical resource usage required for the
application and other factors. This data may be informed by the process management platform
103 which compiles data for a plurality of UE 101a-101n.

Of the various application characteristics defined by the data structure 300, permissions settings
303, complexity indicator 305 and the relational indicator 307 may be overridden by the process
management platform 103. This is because data elements 303, 305 and 307 are common for (or
generalized with respect to) all UE 101a-101n configured at a given time to the process
management platform 103. Hence, during the application characteristic data update process, a
respective UE 101 may update this data with that provided by the process management platform
103 accordingly. However, usage frequency 309 and application ranking 311 are user/UE 101
specific criteria that pertain only to a single UE 101. Consequently, during the update process
this data is not overridden by the process management platform 103. It is noted that in addition
to the above described application characteristic data 109a of data structure 300, some
characteristics that affect application process pre-initialization decisions need not be stored.
Rather, they are runtime characteristics that are observed by the process management module
105b or process monitor module 105¢, e.g., current RAM availability.

In one embodiment, the application characteristics may include: (1) one or more security
properties (e.g., the security features that are used by the application such as type of encryption,
public key infrastructure, and the like); (2) one or more authentication properties (e.g., the
policies for authenticating access to the application or its functions such as username/passwords,
biometric identification, etc.); (3) one or more permissions (e.g., the resources of the device or
other components to which the application has or secks access); (4) frequency of use (e.g., how
often is the application executed and/or used at the device); (5) importance (e.g., does the
application relate to core functions of the device); (6) pre-initialization parameter and/rules; or a

combination thereof,

FIG. 3B is a diagram of a data structure representative of rules for enabling pre-initialization of
application rendering processes, according to one embodiment. In one embodiment, the pre-
initialization logic operates on data representative of pre-initialization rules and related parameters
to be applied by a UE 101 based on the compiled application characteristic data of data structure
300. By way of example, data structure 312 may include a rule number 313 for referencing a
specific pre-initialization rule, a rule name that provides a general description of the rule 315 to be
applied, associated rule execution logic 317 for describing the logical rules and executions to be
applied given a sct of determined conditions, a priority setting 319 for specifying the level of
importance of a rule relative to others, and application data 321 for indicating the applications to
be impacted through execution of the pre-initialization rules. Other data items may also be
defined by the data structure 312 accordingly.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
17

The priority setting of a given rule is based generally upon a wide set of usage factors, content
relationship factors and other data as compiled and/or generated by the process management
platform 103 for a plurality of UE 101a-101n. As an example, when a given UE 101 is associated
with a particular wircless communication service provider (that maintains a process management
platform 103), the priority setting is assigned according to the determined usage, relationship and
other characteristics of all UEs 101 associated with the provider. Hence, the process management
platform 103 sets the priority 319, via the pre-initialization data module 205a, so as to determine
process pre-initialization approaches that are best suited for the various UEs 101 configured for
communication with the process management platform 103. It is noted that, in one embodiment,
execution of a pre-initialization rule by the process management module 105b is performed in
consideration of the application importance ranking 311 as assigned to a specific application.

It is further noted that application data 321 indicates one or more application identifiers (IDs) that
are to be associated with a specific pre-initialization rule. As indicated with respect to FIG. 3A,
cach application ID is also defined according to various other characteristics pertaining to its use,
execution and relevancy with respect to a given UE 101. By way of this commonality, application
characteristic data 300 may be associated with specific process pre-initialization logic data 312 to
be applied for the application. It is noted that system 100 enables the pre-initialization of
rendering processes within UE 101 on the basis of individual and/or real-time device conditions
and needs, and also best practices for devices in general.

In one embodiment, the data structure 312 may be implemented according to various known data
formats and conventions. Likewise, the execution logic 317 as specified within the data structure
may be implemented in accordance with any programming language or syntax that facilitates web-
based execution. This includes extensible markup language (XML), JavaScript, various .NET
protocols (c.g., ASP.NET), Simple Object Access Protocol (SOAP) and the like. As an example,
the rule execution logic 317 is conforms to a general expression wherein IF a condition is
determined (e.g., two applications share a common trust domain), THEN a specific logical
operation is performed (ec.g., pre-initialize one or more processes that can support both
applications), OTHERWISE perform a different logical operation (e.g., pre-initialize rendering
processes separately for cach of the two applications).

FIG. 4 is a flowchart of a process for pre-initializing application rendering processes, according to
onc embodiment. In one embodiment, the process management platform 103 performs the
process 400 and is implemented in, for instance, a chip set including a processor and a memory as
shown in FIG. 9. In addition or alternatively, one or more of the modules 105a-105d of the UE
101 may perform all or a portion of the process 400.

At step 401, the process management platform 103 determines to cause, at least in part,
monitoring of one or more execution instances of the at least one application. The process

management platform 103 then processes and/or facilitates a processing of the monitoring for

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
18

determining the one or more characteristics of the monitored applications (step 403). In one
embodiment, the one or more characteristics are used to direct pre-initialization of one or more
rendering processes associated with the monitored applications or other related applications. By
way of example, the one or more characteristics include, at least in part, a use pattern, a frequency
of use, a priority, a classification, a context, a preference, or a combination thereof of the at least

one web application (as previously described).

Next, the process management platform 103 processes and/or facilitates a processing of the one
or more characteristics of at least one application for rendering at a device (step 405). In one
embodiment, the processing includes determining whether one or more libraries, one or more
resources, or a combination thereof of the at least one application are available locally, remotely,
or a combination thereof (step 407). In some embodiments, the process management platform
103 is configured to pre-initialize only those portions of the at least one application (e.g., libraries,
resources, ctc.) that are available locally. In this way, the process management platform can
reduce potential network bandwidth and other resource consumption associated with retrieving
resources over the communication network 105. In other embodiments, for example where
bandwidth and resources are less restricted, the process management platform 103 may proceed
with the pre-initialization process even when some or all of the portions of the at least one
application is only available remotely over the communication network 105 (e.g., available at a

remote server or content provider).

At step 409, the process management platform 103 determines whether there are resources (e.g.,
RAM, processing, bandwidth, ctc.) available at the executing UE 101 to support the pre-
initialization of the one or more rendering processes of the at least one application. In one
embodiment, even if the resources and the characteristics indicate that a particular rendering
process should be pre-initialized, the process management platform 103 may consult a pre-
initialization blacklist and/or whitelist to determine whether to proceed with pre-initialization (step
411). By way of example, the pre-initialization blacklist provides a list of applications that should
not be pre-initialized and the whitelist provides a list of applications that should always be pre-
initialized. It is contemplated that the blacklist and whitelist can be used individually and/or in
combination to determine whether to proceed with pre-initialization of the one or more rendering
processes. For example, when a whitelist is used individually, only applications on the whitelist
would be candidates for pre-initialization. For another example, when a blacklist is used
individually, only applications not on the blacklist would be candidates for pre-initialization.

At step 413, if the decision is to proceed with pre-initialization, the process management platform
103 processes and/or facilitates a processing of one or more initialization parameters, one or more
initialization rules, or a combination thereof associated with the at least one application. The
process management platform 103 then causes, at least in part, a pre-initialization of at least a
portion of at least one rendering process at the device for supporting the at least one application

based, at least in part, the one or more characteristics, the one or more initialization parameters,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
19

the one or more initialization rules, or a combination thereof (step 415). In one embodiment, pre-
initializing a rendering process includes preloading into the at least one rendering process of one
or more libraries, one or more resources, or a combination thereof associated with the at least one
application. It is noted that the initialization or pre-initialization of the one or more rendering
processes occurs or is otherwise performed prior to receiving a request to initiate an execution

instance of the at least one application.

In one embodiment, the process management platform 103 can create and maintain a pool pre-
initialized rendering processes on standby in anticipation of requests to execute any corresponding
application (step 417). In some embodiments, the extent and composition of the pool is based on
available device resources, application priority, application characteristics, etc.

As described previously, a rendering process contains or includes the rendering engine, a scripting
engine or code interpretation engine (e.g., a JavaScript engine), and an execution context. By
way of example with respect to JavaScript, a JavaScript execution context results from operation
of the JavaScript engine on the application code. Thus, if a JavaScript library is loaded by a
browser, the library becomes part of the JavaScript execution context in the rendering process.
By preloading the libraries, resources (e.g., CSS files), object definitions, and other application
related components, the rendering processes can be pre-initialized with one or more portions or
components of the application, thereby reducing potential application startup time when a request
to execute the application is received.

It is noted that while some libraries (e.g., JavaScript libraries) utilize dynamic loading with
safeguards against loading a library twice, the same has not been historically true for HTML
applications in general. As a result, in one embodiment, the process management platform 103
extends the browser with a mechanism to prevent a JavaScript library from being loaded again if
the library has already been preloaded into the execution context of the rendering process during
pre-initialization. In another embodiment, to make the mechanism transparent to the application,
a dummy (or empty) file can be returned so that a command to execute the application (e.g., a

JavaScript eval() command) can still function as normal.

In one embodiment, the process management platform 103 may perform a full pre-initialization or
a partial pre-initialization of the rendering process. For example, full pre-initialization preloads all
components (e.g., libraries, scripts, resources, ctc.) into the rendering process to remain on

standby for a request to execute.

The process for partial pre-initialization is more complicated than full pre-initialization. In one
embodiment, to perform a partial pre-initialization, the process management platform 103 opens a
genecrated page (e.g., a preload page) in the rendering process which loads the specified
components (e.g., JavaScript code, JavaScript libraries, CSS files, etc.), and then loads the actual
application startup page into the rendering process when the user requests that application to be

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
20

started. Normally, navigating to a new page re-initializes, for instance, the JavaScript and CSS
context. In one embodiment, the re-initialization can be avoided by instead downloading the new
(application) page from within the context of the old (preload) page using, for instance, an XHR
(Extensible Markup Language (XML) Hypertext Transfer Protocol (HTTP) Request) and
replacing the preload page’s HTML with that of the new application page. Normally, the preload
page must be in the same domain as the actual application startup page. For example, XHR
requests can normally not cross domains. In one embodiment, the process management platform
103 sets the domain of the preload page to be the same as the application startup page.

In one embodiment, the JavaScript and CSS components used for partial pre-initialization or
preloading can be determined by monitoring or tracing the execution of a web application during
prior execution instances. In some embodiments, the order in which files are placed into the
execution context of the rendering process is significant and should be adhered to during the pre-

initialization process.

In one embodiment, the rendering processes pre-initialized or preloaded with common JavaScript
libraries can be used to speed up the startup time of any application that uses those libraries (note
that web applications from different providers typically do not share JavaScript libraries, but
applications from the same provider often do so). Even if the application does not need all the
preloaded libraries, the pre-initialized rendering process can typically still be used because the
unnecessary libraries only introduce a RAM or other resource overhead. In some cases, the
unnecessary library or libraries may redefine standard JavaScript objects in a way that adversely
affects the application. In this case, another rendering process may be used or the unnecessary
libraries may be unloaded or otherwise disabled.

In some cases, it is possible that the method for partial preloading is not appropriate for a
particular application. For instance, if an application verifics in some way the loaded JavaScript
files, then returning a dummy file like described above may fail. Therefore, whitelisting or
blacklisting of applications may be needed as discussed above. For example, applications that are
not on a partial preload whitelist (c.g., wherein the whitelist includes applications which are
known to work with partial pre-initialization) may be restricted to use only full pre-initialization.

In another example of using a partial preload whitelist or blacklist, some applications might have
problems with the long period between application load and application use. For example, an
application might feature automatic login to a service on startup, but also log out after a certain
period of inactivity. If this becomes a significant problem, whitelisting or blacklisting of
applications may be needed also for full pre-initialization.

In one embodiment, application developers who are aware of the pre-initialization capabilitics
discussed herein may manually create preload pages for known applications to specifically define

pre-initialization steps, parameters, rules, ctc. associated with a particular application. In addition,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
21

applications may also define their own preload or pre-initialization pages by, for instance, using a
link tag.

In one embodiment, pre-initialization or preloading is limited to application components that can
be found from local cache, otherwise their availability (and access cost) cannot be guaranteed.
One way of ensuring this is to, for instance, only apply pre-initialization to web applications which
have a HTMLS5 cache manifest. In other embodiments, a separate application cache (similar to
HTMLS5 application caches) can be created for the preloaded files to ensure their availability. In
cases, wherein availability and/or access cost is not an issue, pre-initialization can be expanded to

include both local and remote components of an application.

It is noted that since the user typically does not run two instances of the same application
simultancously, there typically should not be a standby process pre-initialized for an application
that is already running. Hence, in one embodiment, when an application is started, the used-up
standby process is typically not immediately replaced with a similar process. Rather, a new
preloaded process is created only when the application is closed. This also helps to keep the
RAM consumption stable; starting an application which is associated with a pre-initialized
rendering process generally does not consume much extra RAM. In another embodiment, the
pre-initialized rendering process created after closing the application may or may not be (fully or
partially) re-initialized for the application that was just closed depend on the application pre-

initialization strategy.

In one embodiment, a new preloaded process is typically created at: (1) system startup or boot,
(2) web application close, or (3) RAM availability increase (e.g., on closing a large native
application; also note that in some embodiments the increase must persist for some time before it
can be acted upon, in order to avoid thrashing which is a situation where the user closes one
application and starts another).

In one embodiment, an application can also explicitly request a preloaded process to be created.
For example, a JavaScript API can be provided to applications for this purpose. This is useful for
applications which start other applications. For example, a photo viewer application might
include the functionality to start a photo editing application. In this case, the photo viewer could
explicitly request the creation of a preloaded process for the photo editor application, so that it
can be started quickly when the user requests it.

In one embodiment, pre-initialized processes are created in the background (low priority) until,
for instance, either a preconfigured RAM quota is filled (note that application tracing will give a
RAM consumption estimate for each application; also custom pre-initialization parameters or
rules, e.g., custom preload pages, may specify a RAM consumption estimate) or system free
RAM drops below a preconfigured amount. The order in which pre-initialized processes are

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
22

started depends on the current pre-initialization strategy, but typically the pre-initialized processes
for the most used applications would be started first.

In one embodiment, the strategy for selecting applications and libraries for pre-initialization may
take into consideration things such as:

. Observed application/library usage frequency by the user (possibly with
recent usage having heavier weight)

. Observed application/library usage frequency by other users (possibly
limited to users who are in some way similar to the current user — note, if this is not done
dynamically it becomes more of a static rule, see next bullet)

. Static rules based on a priori knowledge (e.g., common JavaScript librarics
and traditional core applications such as Contacts and Calendar, also applications/libraries known
to be commonly used based on user studies)

. Explicit user actions that implicate importance of an application (e.g.,
marking an application as Favorite or putting a shortcut to the application on the phone’s
desktop/idle screen)

. Observed application usage patterns of the user and associated context
information (e.g., user might use game applications predominantly outside work hours, and
productivity applications predominantly during work hours)

. Observed usage patterns from other users (in one embodiment, the

observations are limited to users who are in some way similar to the current user)

In one embodiment, since the pre-initialized rendering processes are primarily a speed
optimization, they can be killed at any time. This allows the pre-initialization mechanism to
quickly adapt to changing RAM or other device resource conditions. For example, if RAM is
running low, all or some of the pre-initialized rendering processes can be killed (e.g., kill order
would be according to current pre-initialization strategy, such as reverse starting order). If there
is plenty of RAM, the browser can prefer to use fully pre-initialized standby processes for
commonly used apps. In an average-RAM-availability situation, the rendering processes for a few
top applications can be fully pre-initialized and some commonly used apps and libraries would be
partially pre-initialized.

FIG. 5 is a flowchart of a process for initiating an execution instance of an application based on a
pool of pre-initialized rendering processes, according to one embodiment. In one embodiment,
the process management platform 103 performs the process 400 and is implemented in, for
instance, a chip set including a processor and a memory as shown in FIG. 9. In addition or
alternatively, one or more of the modules 105a-105d of the UE 101 may perform all or a portion
of the process 400.

At step 501, the process management platform 103 processes and/or facilitates a processing of a
request to initiate an execution instance of at least one application. Next, the process

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
23

management platform processes and/or facilitates a processing of one or more libraries, one or
more resources, one or more object definitions, or a combination thercof associated with the at
least one application (step 503). In other words, the process management platform identifies the
specific components (e.g., libraries, resources, object definitions, ctc.) used by a particular
application. As discussed previously, one or more of the libraries, resources, object definitions,
etc. may be common to several applications.

Next, the process management platform 103 determines to cause, at least in part, a selection of
the at least one rendering process from among a pool of one or more pre-initialized rendering
processes based, at least in part, on the one or more libraries, the one or more resources, the one
or more object definitions, or a combination thercof (step 505). For example, the process
management platform 103 can select a pre-initialized rendering process that includes one or more
preloaded components of the application. As noted above, a rendering process may be pre-
initialized with common components or components specific to a particular application. If an
appropriate pre-initialized rendering process is available, then the process is selected.

The process management platform 103 then determines to initiate the execution instance of the at
least one application based, at least in part, on the sclected at least one rendering process (step
507). In this case, initiating the execution instance of the application in the pre-initialized
rendering process reduces application startup time by ensuring that at least a portion of the
components of the application is already on standby and available for immediate use in response
to the execution request.

FIGs. 6A and 6B are diagrams of interactions between a client and a server utilized in data mining
included in the pre-initialization processes of FIGs. 1-5, according to various embodiments. FIG.
6A shows that data such as resource usage data monitored at the client end 601 from mobile
devices 603 (e.g., UEs 101a-101n), may be uploaded to the server end 605 through the Internet
(e.g., communication network 105). In one embodiment, the server end 605 may include the
process management platform 103. At the server end 605, the uploaded data is stored in the
usage database 607. Once the uploaded data is processed by the server, i.c., after data mining and
personalization, it can then be downloaded to the client. This embodiment is advantageous in that
the mobile devices 603 can reduce their computational burdens associated with the data mining to
the server 609. It is noted that the server 609 generally has more processing power and related
resources (e.g., bandwidth, memory, ctc.) than the mobile devices 603 to handle this type of
computation.

Alternatively, as shown in FIG. 6B, the data retrieved (downloaded) by the mobile devices 633 at
the client end 631 may be stored at storage media (not shown) of the respective mobile devices
633. The mobile devices 633 may then locally perform the computations for generating
application characteristic data 109a. Then, if permission is granted, the result of the computation
(c.g., the client-end application characteristic data) may be uploaded to the server end 635

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
24

including a server 639 and application characteristic database 637. This embodiment is
advantageous in that the data is kept within the respective mobile devices 633, and is not
uploaded to other devices or servers without the user’s permission. As long as the mobile device
633 has the data and sufficient processing power to analyze the data, then the server 639 may not
be required to perform the analysis.

FIGs. 7A and 7B are diagram of user interfaces used in the processes of FIGs. 4 and 5, according
to various embodiments. In one embodiment, the user interfaces of FIGs. 7A and 7B include
functionality and are gencrated based, at least in part, on data, information, and/or signals
resulting from any of the processes of the various embodiments of the pre-initialization process
described herein. As shown, FIG. 7A depicts user interfaces (Uls) 701 and 703 for implicitly
indicating application priority for pre-initialization. In other words, the UEs 701 and 703 provide
indirect means for indicating the priority. In this example, Ul 701 depicts a device home screen
containing user definable application shortcuts. As shown, the user has sclected to create
shortcuts to APP 1, APP 2, and APP 3. The process management platform 103 can monitor the
shortcut as an indicator of the relative importance or priority of the application to the user. For
example, if an application with a shortcut on the home screen is likely to be of greater importance
to the user than an application that does not have a shortcut.

Similarly, UI 703 depicts a means for indirectly learning the priority of applications with respect
to a particular user. In this case the UI 703 is an interface for a user to rate particular
applications. For example, the UI 703 may be part of an application store or other online
application repository where users can rate various applications or web applications. As shown,
the UE 703 lists APP 1, APP 2, and APP 3 and provides for input of corresponding ratings from
the users. The process management platform 103 can then use the ratings information of the Ul
703 and/or the shortcut information of the UI 701 to determine a pre-initialization priority 705.
By way of example, the pre-initialization priority 705 can be used to determine which rendering
processes for which applications and in which order are to be pre-initialized at a particular’s user
device.

FIG. 7B depicts a Ul 721 for a user to manually specify the pre-initialization priority 723 for use
by the process management platform 103. As shown, the UI 721 lists APP 1, APP 2, and APP 3
and provides a column 725 for specifying whether (e.g., yes or no) to pre-initialize corresponding
rendering processes for the respective application, and a column 725 for indicating a priority (e.g.,
high or low) for those applications selected for pre-initialization. In one embodiment, the process
management platform 103 can create the pre-initialization priority 723 based solely on the manual
specifications of the UI 721. In another embodiment, the process management platform 103 can
also take into account implicit application characteristics (¢.g., the characteristics determined as
part of the Uls 701 and 703) in combination with the manual specification to generate the pre-
initialization priority 723.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
25

The processes described herecin for pre-initializing application rendering processes may be
advantageously implemented via software, hardware, firmware or a combination of software
and/or firmware and/or hardware. For example, the processes described herein, may be
advantageously implemented via processor(s), Digital Signal Processing (DSP) chip, an
Application Specific Integrated Circuit (ASIC), Field Programmable Gate Arrays (FPGAs), etc.
Such exemplary hardware for performing the described functions is detailed below.

FIG. 8 illustrates a computer system 800 upon which an embodiment of the invention may be
implemented. Although computer system 800 is depicted with respect to a particular device or
equipment, it is contemplated that other devices or equipment (¢.g., network clements, servers,
ctc.) within FIG. 8 can deploy the illustrated hardware and components of system 800. Computer
system 800 is programmed (e.g., via computer program code or instructions) to pre-initialize
application rendering processes as described herein and includes a communication mechanism
such as a bus 810 for passing information between other internal and external components of the
computer system 800. Information (also called data) is represented as a physical expression of a
measurable phenomenon, typically electric voltages, but including, in other embodiments, such
phenomena as magnetic, clectromagnetic, pressure, chemical, biological, molecular, atomic, sub-
atomic and quantum interactions. For example, north and south magnetic fields, or a zero and
non-zero electric voltage, represent two states (0, 1) of a binary digit (bit). Other phenomena can
represent digits of a higher base. A superposition of multiple simultancous quantum states before
measurement represents a quantum bit (qubit). A sequence of one or more digits constitutes
digital data that is used to represent a number or code for a character. In some embodiments,
information called analog data is represented by a near continuum of measurable values within a
particular range. Computer system 800, or a portion thereof, constitutes a means for performing

one or more steps of pre-initializing application rendering processes.

A bus 810 includes one or more parallel conductors of information so that information is
transferred quickly among devices coupled to the bus 810. One or more processors 802 for
processing information are coupled with the bus §10.

A processor (or multiple processors) 802 performs a set of operations on information as specified
by computer program code related to pre-initializing application rendering processes. The
computer program code is a set of instructions or statements providing instructions for the
operation of the processor and/or the computer system to perform specified functions. The code,
for example, may be written in a computer programming language that is compiled into a native
instruction set of the processor. The code may also be written directly using the native instruction
set (e.g., machine language). The set of operations include bringing information in from the bus
810 and placing information on the bus 810. The set of operations also typically include
comparing two or more units of information, shifting positions of units of information, and
combining two or more units of information, such as by addition or multiplication or logical
operations like OR, exclusive OR (XOR), and AND. Each operation of the set of operations that

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
26

can be performed by the processor is represented to the processor by information called
instructions, such as an operation code of one or more digits. A sequence of operations to be
executed by the processor 802, such as a sequence of operation codes, constitute processor
instructions, also called computer system instructions or, simply, computer instructions.
Processors may be implemented as mechanical, electrical, magnetic, optical, chemical or quantum

components, among others, alone or in combination.

Computer system 800 also includes a memory 804 coupled to bus 810. The memory 804, such as
a random access memory (RAM) or any other dynamic storage device, stores information
including processor instructions for pre-initializing application rendering processes. Dynamic
memory allows information stored therein to be changed by the computer system §00. RAM
allows a unit of information stored at a location called a memory address to be stored and
retrieved independently of information at neighboring addresses. The memory 804 is also used by
the processor 802 to store temporary values during execution of processor instructions. The
computer system 800 also includes a read only memory (ROM) 806 or any other static storage
device coupled to the bus 810 for storing static information, including instructions, that is not
changed by the computer system 800. Some memory is composed of volatile storage that loses
the information stored thercon when power is lost. Also coupled to bus 810 is a non-volatile
(persistent) storage device 808, such as a magnetic disk, optical disk or flash card, for storing
information, including instructions, that persists even when the computer system 800 is turned off
or otherwise loses power.

Information, including instructions for pre-initializing application rendering processes, is provided
to the bus 810 for use by the processor from an external input device 812, such as a keyboard
containing alphanumeric keys operated by a human user, or a sensor. A sensor detects conditions
in its vicinity and transforms those detections into physical expression compatible with the
measurable phenomenon used to represent information in computer system 800. Other external
devices coupled to bus 810, used primarily for interacting with humans, include a display device
814, such as a cathode ray tube (CRT), a liquid crystal display (LCD), a light emitting diode
(LED) display, an organic LED (OLED) display, a plasma screen, or a printer for presenting text
or images, and a pointing device 816, such as a mouse, a trackball, cursor direction keys, or a
motion sensor, for controlling a position of a small cursor image presented on the display 814 and
issuing commands associated with graphical clements presented on the display 814. In some
embodiments, for example, in embodiments in which the computer system 800 performs all
functions automatically without human input, one or more of external input device 812, display
device 814 and pointing device 816 is omitted.

In the illustrated embodiment, special purpose hardware, such as an application specific integrated
circuit (ASIC) 820, is coupled to bus 810. The special purpose hardware is configured to
perform operations not performed by processor 802 quickly enough for special purposes.
Examples of ASICs include graphics accelerator cards for generating images for display 814,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
27

cryptographic boards for encrypting and decrypting messages sent over a network, specch
recognition, and interfaces to special external devices, such as robotic arms and medical scanning
equipment that repeatedly perform some complex sequence of operations that are more cfficiently

implemented in hardware.

Computer system 800 also includes one or more instances of a communications interface 870
coupled to bus 810. Communication interface 870 provides a one-way or two-way
communication coupling to a variety of external devices that operate with their own processors,
such as printers, scanners and external disks. In general the coupling is with a network link 8§78
that is connected to a local network 880 to which a variety of external devices with their own
processors are connected. For example, communication interface 870 may be a parallel port or a
serial port or a universal serial bus (USB) port on a personal computer. In some embodiments,
communications interface 870 is an integrated services digital network (ISDN) card or a digital
subscriber line (DSL) card or a telephone modem that provides an information communication
connection to a corresponding type of telephone line. In some embodiments, a communication
interface 870 is a cable modem that converts signals on bus §10 into signals for a communication
connection over a coaxial cable or into optical signals for a communication connection over a
fiber optic cable. As another example, communications interface 870 may be a local area network
(LAN) card to provide a data communication connection to a compatible LAN, such as Ethernet.
Wireless links may also be implemented. For wireless links, the communications interface 870
sends or receives or both sends and receives electrical, acoustic or electromagnetic signals,
including infrared and optical signals, that carry information streams, such as digital data. For
example, in wireless handheld devices, such as mobile telephones like cell phones, the
communications interface 870 includes a radio band electromagnetic transmitter and receiver
called a radio transceiver. In certain embodiments, the communications interface 870 enables

connection to the communication network 105 for pre-initializing application rendering processes.

The term “computer-readable medium” as used herein refers to any medium that participates in
providing information to processor 802, including instructions for execution. Such a medium may
take many forms, including, but not limited to computer-readable storage medium (e.g., non-
volatile media, volatile media), and transmission media. Non-transitory media, such as non-
volatile media, include, for example, optical or magnetic disks, such as storage device 808.
Volatile media include, for example, dynamic memory 804. Transmission media include, for
example, twisted pair cables, coaxial cables, copper wire, fiber optic cables, and carrier waves that
travel through space without wires or cables, such as acoustic waves and electromagnetic waves,
including radio, optical and infrared waves. Signals include man-made transient variations in
amplitude, frequency, phase, polarization or other physical properties transmitted through the
transmission media. Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, CDRW,
DVD, any other optical medium, punch cards, paper tape, optical mark sheets, any other physical
medium with patterns of holes or other optically recognizable indicia, a RAM, a PROM, an
EPROM, a FLASH-EPROM, an EEPROM, a flash memory, any other memory chip or cartridge,

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
28

a carrier wave, or any other medium from which a computer can read. The term computer-
recadable storage medium is used herein to refer to any computer-readable medium except
transmission media.

Logic encoded in one or more tangible media includes one or both of processor instructions on a
computer-readable storage media and special purpose hardware, such as ASIC §20.

Network link 878 typically provides information communication using transmission media through
one or more networks to other devices that use or process the information. For example,
network link 878 may provide a connection through local network 880 to a host computer 882 or
to equipment 884 operated by an Internet Service Provider (ISP). ISP equipment 884 in turn
provides data communication services through the public, world-wide packet-switching
communication network of networks now commonly referred to as the Internet §90.

A computer called a server host 892 connected to the Internet hosts a process that provides a
service in response to information received over the Internet. For example, server host 892 hosts
a process that provides information representing video data for presentation at display 814. It is
contemplated that the components of system 800 can be deployed in various configurations within
other computer systems, ¢.g., host 882 and server §92.

At least some embodiments of the invention are related to the use of computer system 800 for
implementing some or all of the techniques described herein. According to one embodiment of
the invention, those techniques are performed by computer system 800 in response to processor
802 executing one or more sequences of one or more processor instructions contained in memory
804. Such instructions, also called computer instructions, software and program code, may be
read into memory 804 from another computer-readable medium such as storage device 808 or
network link 878. Execution of the sequences of instructions contained in memory 804 causes
processor 802 to perform one or more of the method steps described herein. In alternative
embodiments, hardware, such as ASIC 820, may be used in place of or in combination with
software to implement the invention. Thus, embodiments of the invention are not limited to any
specific combination of hardware and software, unless otherwise explicitly stated herein.

The signals transmitted over network link 878 and other networks through communications
interface 870, carry information to and from computer system 800. Computer system 800 can
send and receive information, including program code, through the networks 880, 890 among
others, through network link 878 and communications interface 870. In an example using the
Internet 890, a server host 892 transmits program code for a particular application, requested by a
message sent from computer 800, through Internet 890, ISP equipment 884, local network 880
and communications interface 870. The received code may be executed by processor 802 as it is
received, or may be stored in memory 804 or in storage device 808 or any other non-volatile

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
29

storage for later execution, or both. In this manner, computer system 800 may obtain application

program code in the form of signals on a carrier wave.

Various forms of computer readable media may be involved in carrying one or more sequence of
instructions or data or both to processor 802 for execution. For example, instructions and data
may initially be carried on a magnetic disk of a remote computer such as host 882. The remote
computer loads the instructions and data into its dynamic memory and sends the instructions and
data over a telephone line using a modem. A modem local to the computer system 800 receives
the instructions and data on a telephone line and uses an infra-red transmitter to convert the
instructions and data to a signal on an infra-red carrier wave serving as the network link 878. An
infrared detector serving as communications interface 870 receives the instructions and data
carried in the infrared signal and places information representing the instructions and data onto
bus 810. Bus 810 carries the information to memory 804 from which processor 802 retrieves and
executes the instructions using some of the data sent with the instructions. The instructions and
data received in memory 804 may optionally be stored on storage device 808, either before or
after execution by the processor 802.

FIG. 9 illustrates a chip set or chip 900 upon which an embodiment of the invention may be
implemented. Chip set 900 is programmed to pre-initialize application rendering processes as
described herein and includes, for instance, the processor and memory components described with
respect to FIG. 8 incorporated in one or more physical packages (e.g., chips). By way of
example, a physical package includes an arrangement of one or more materials, components,
and/or wires on a structural assembly (c.g., a baseboard) to provide one or more characteristics
such as physical strength, conservation of size, and/or limitation of clectrical interaction. It is
contemplated that in certain embodiments the chip set 900 can be implemented in a single chip. It
is further contemplated that in certain embodiments the chip set or chip 900 can be implemented
as a single “system on a chip.” It is further contemplated that in certain embodiments a separate
ASIC would not be used, for example, and that all relevant functions as disclosed herein would be
performed by a processor or processors. Chip set or chip 900, or a portion thereof, constitutes a
means for performing one or more steps of providing user interface navigation information
associated with the availability of functions. Chip set or chip 900, or a portion thercof, constitutes

a means for performing one or more steps of pre-initializing application rendering processes.

In one embodiment, the chip set or chip 900 includes a communication mechanism such as a bus
901 for passing information among the components of the chip set 900. A processor 903 has
connectivity to the bus 901 to execute instructions and process information stored in, for example,
a memory 905. The processor 903 may include one or more processing cores with cach core
configured to perform independently. A multi-core processor enables multiprocessing within a
single physical package. Examples of a multi-core processor include two, four, cight, or greater
numbers of processing cores. Alternatively or in addition, the processor 903 may include one or
more microprocessors configured in tandem via the bus 901 to enable independent execution of

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
30

instructions, pipelining, and multithreading. The processor 903 may also be accompanied with
one or more specialized components to perform certain processing functions and tasks such as
one or more digital signal processors (DSP) 907, or one or more application-specific integrated
circuits (ASIC) 909. A DSP 907 typically is configured to process real-world signals (e.g.,
sound) in real time independently of the processor 903. Similarly, an ASIC 909 can be configured
to performed specialized functions not easily performed by a more general purpose processor.
Other specialized components to aid in performing the inventive functions described herein may
include one or more ficld programmable gate arrays (FPGA) (not shown), one or more controllers
(not shown), or one or more other special-purpose computer chips.

In one embodiment, the chip set or chip 900 includes merely one or more processors and some
software and/or firmware supporting and/or relating to and/or for the one or more processors.

The processor 903 and accompanying components have connectivity to the memory 905 via the
bus 901. The memory 905 includes both dynamic memory (e.g., RAM, magnetic disk, writable
optical disk, etc.) and static memory (c.g., ROM, CD-ROM, ectc.) for storing executable
instructions that when executed perform the inventive steps described herein to pre-initialize
application rendering processes. The memory 905 also stores the data associated with or
generated by the execution of the inventive steps.

FIG. 10 is a diagram of exemplary components of a mobile terminal (e.g., handset) for
communications, which is capable of operating in the system of FIG. 1, according to one
embodiment. In some embodiments, mobile terminal 1001, or a portion thercof, constitutes a
means for performing one or more steps of pre-initializing application rendering processes.
Generally, a radio receiver is often defined in terms of front-end and back-end characteristics.
The front-end of the receiver encompasses all of the Radio Frequency (RF) circuitry whereas the
back-end encompasses all of the base-band processing circuitry. As used in this application, the
term “circuitry” refers to both: (1) hardware-only implementations (such as implementations in
only analog and/or digital circuitry), and (2) to combinations of circuitry and software (and/or
firmware) (such as, if applicable to the particular context, to a combination of processor(s),
including digital signal processor(s), software, and memory(ies) that work together to cause an
apparatus, such as a mobile phone or server, to perform various functions). This definition of
“circuitry” applies to all uses of this term in this application, including in any claims. As a further
example, as used in this application and if applicable to the particular context, the term “circuitry”
would also cover an implementation of merely a processor (or multiple processors) and its (or
their) accompanying software/or firmware. The term “circuitry” would also cover if applicable to
the particular context, for example, a baseband integrated circuit or applications processor
integrated circuit in a mobile phone or a similar integrated circuit in a cellular network device or

other network devices.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
31

Pertinent internal components of the telephone include a Main Control Unit (MCU) 1003, a
Digital Signal Processor (DSP) 1005, and a receiver/transmitter unit including a microphone gain
control unit and a speaker gain control unit. A main display unit 1007 provides a display to the
user in support of various applications and mobile terminal functions that perform or support the
steps of pre-initializing application rendering processes. The display 1007 includes display
circuitry configured to display at least a portion of a user interface of the mobile terminal (e.g.,
mobile telephone). Additionally, the display 1007 and display circuitry are configured to facilitate
user control of at least some functions of the mobile terminal. An audio function circuitry 1009
includes a microphone 1011 and microphone amplifier that amplifies the speech signal output
from the microphone 1011. The amplified speech signal output from the microphone 1011 is fed
to a coder/decoder (CODEC) 1013.

A radio section 1015 amplifies power and converts frequency in order to communicate with a
base station, which is included in a mobile communication system, via antenna 1017. The power
amplifier (PA) 1019 and the transmitter/modulation circuitry are operationally responsive to the
MCU 1003, with an output from the PA 1019 coupled to the duplexer 1021 or circulator or
antenna switch, as known in the art. The PA 1019 also couples to a battery interface and power
control unit 1020.

In use, a user of mobile terminal 1001 speaks into the microphone 1011 and his or her voice along
with any detected background noise is converted into an analog voltage. The analog voltage is
then converted into a digital signal through the Analog to Digital Converter (ADC) 1023. The
control unit 1003 routes the digital signal into the DSP 1005 for processing therein, such as
speech encoding, channel encoding, encrypting, and interleaving. In one embodiment, the
processed voice signals are encoded, by units not separately shown, using a cellular transmission
protocol such as enhanced data rates for global evolution (EDGE), general packet radio service
(GPRS), global system for mobile communications (GSM), Internet protocol multimedia
subsystem (IMS), universal mobile telecommunications system (UMTS), ctc., as well as any other
suitable wireless medium, e.g., microwave access (WiMAX), Long Term Evolution (LTE)
networks, code division multiple access (CDMA), wideband code division multiple access
(WCDMA), wireless fidelity (WiFi), satellite, and the like, or any combination thereof.

The encoded signals are then routed to an equalizer 1025 for compensation of any frequency-
dependent impairments that occur during transmission though the air such as phase and amplitude
distortion. After equalizing the bit stream, the modulator 1027 combines the signal with a RF
signal generated in the RF interface 1029. The modulator 1027 generates a sine wave by way of
frequency or phase modulation. In order to prepare the signal for transmission, an up-converter
1031 combines the sine wave output from the modulator 1027 with another sine wave generated
by a synthesizer 1033 to achieve the desired frequency of transmission. The signal is then sent
through a PA 1019 to increase the signal to an appropriate power level. In practical systems, the
PA 1019 acts as a variable gain amplifier whose gain is controlled by the DSP 1005 from

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
32

information received from a network base station. The signal is then filtered within the duplexer
1021 and optionally sent to an antenna coupler 1035 to match impedances to provide maximum
power transfer. Finally, the signal is transmitted via antenna 1017 to a local base station. An
automatic gain control (AGC) can be supplied to control the gain of the final stages of the
receiver. The signals may be forwarded from there to a remote telephone which may be another
cellular telephone, any other mobile phone or a land-line connected to a Public Switched
Telephone Network (PSTN), or other telephony networks.

Voice signals transmitted to the mobile terminal 1001 are received via antenna 1017 and
immediately amplified by a low noise amplifier (LNA) 1037. A down-converter 1039 lowers the
carrier frequency while the demodulator 1041 strips away the RF leaving only a digital bit stream.
The signal then goes through the equalizer 1025 and is processed by the DSP 1005. A Digital to
Analog Converter (DAC) 1043 converts the signal and the resulting output is transmitted to the
user through the speaker 1045, all under control of a Main Control Unit (MCU) 1003 which can
be implemented as a Central Processing Unit (CPU) (not shown).

The MCU 1003 receives various signals including input signals from the keyboard 1047. The
keyboard 1047 and/or the MCU 1003 in combination with other user input components (¢.g., the
microphone 1011) comprise a user interface circuitry for managing user input. The MCU 1003
runs a user interface software to facilitate user control of at least some functions of the mobile
terminal 1001 to pre-initialize application rendering processes. The MCU 1003 also delivers a
display command and a switch command to the display 1007 and to the speech output switching
controller, respectively. Further, the MCU 1003 exchanges information with the DSP 1005 and
can access an optionally incorporated SIM card 1049 and a memory 1051. In addition, the MCU
1003 executes various control functions required of the terminal. The DSP 1005 may, depending
upon the implementation, perform any of a variety of conventional digital processing functions on
the voice signals. Additionally, DSP 1005 determines the background noise level of the local
environment from the signals detected by microphone 1011 and sets the gain of microphone 1011
to a level selected to compensate for the natural tendency of the user of the mobile terminal 1001.

The CODEC 1013 includes the ADC 1023 and DAC 1043. The memory 1051 stores various
data including call incoming tone data and is capable of storing other data including music data
received via, e.g., the global Internet. The software module could reside in RAM memory, flash
memory, registers, or any other form of writable storage medium known in the art. The memory
device 1051 may be, but not limited to, a single memory, CD, DVD, ROM, RAM, EEPROM,
optical storage, magnetic disk storage, flash memory storage, or any other non-volatile storage
medium capable of storing digital data.

An optionally incorporated SIM card 1049 carries, for instance, important information, such as
the cellular phone number, the carrier supplying service, subscription details, and security
information. The SIM card 1049 serves primarily to identify the mobile terminal 1001 on a radio

WO 2012/089907 PCT/FI12011/051010
33

network. The card 1049 also contains a memory for storing a personal telephone number

registry, text messages, and user specific mobile terminal settings.

While the invention has been described in connection with a number of embodiments and
implementations, the invention is not so limited but covers various obvious modifications and
equivalent arrangements, which fall within the purview of the appended claims. Although features
of the invention are expressed in certain combinations among the claims, it is contemplated that
these features can be arranged in any combination and order.

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010
34

CLAIMS

WHAT IS CLAIMED IS:

1. A method comprising facilitating a processing of and/or processing (1) data and/or (2)
information and/or (3) at least one signal, the (1) data and/or (2) information and/or (3) at least
one signal based, at least in part, on the following:

a processing of one or more characteristics of at least one application for rendering at a

device; and

an initialization of at least a portion of at least one rendering process at the device for

supporting the at least one application based, at least in part, on the one or more
characteristics,

wherein the initialization occurs prior to receiving a request to initiate an execution instance

of the at least one application.

2. A method of claim 1, wherein the (1) data and/or (2) information and/or (3) at least one
signal are further based, at least in part, on the following:

a monitoring of one or more prior execution instances of the at least one application; and

a processing of the monitoring for determining the one or more characteristics.

3. A method of claim I, wherein the one or more characteristics include, at least in part, a use
pattern, a frequency of use, a priority, a classification, a context, a preference, or a combination
thereof of the at least one web application.

4. A method of claim 1, wherein the initialization causes the (1) data and/or (2) information
and/or (3) at least one signal to be based, at least in part, on the following:
a preloading into the at least one rendering process of one or more libraries, one or more
resources, or a combination thereof associated with the at least one application.

5. A method of claim 4, wherein the preloading is based, at least in part, on a determination
of whether the one or more libraries, the one or more resources, or a combination thercof are
available locally, remotely, or a combination thereof.

6. A method of claim 1, wherein the (1) data and/or (2) information and/or (3) at least one
signal are further based, at least in part, on the following:
the request to initiate the execution instance of the at least one application;
one or more libraries, one or more resources, one or more object definitions, or a combination
thereof associated with the at least one application;

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010
35

a selection of the at least one rendering process from among a pool of one or more pre-
initialized rendering processes based, at least in part, on the one or more libraries, the one
or more resources, the one or more object definitions, or a combination thereof; and

a determination to initiate the execution instance of the at least one application based, at least
in part, on the selected at least one rendering process.

7. A method of claim I, wherein the (1) data and/or (2) information and/or (3) at least one
signal are further based, at least in part, on the following:
one or more initialization parameters, one or more initialization rules, or a combination
thereof associated with the at least one application,
wherein the initialization is based, at least in part, on the one or more initialization parameters.

8. A method of claim 1, wherein the initialization is performed on a system startup, an

application close, a change in resource availability, on request, or a combination thercof.

9. A method of claim I, wherein the initialization is based, at least in part, on whether the at
least one application is on a whitelist or a blacklist.

10. A method of claim 1, wherein the at least one application is a web application.

11. An apparatus comprising:
at least one processor; and
at least one memory including computer program code for one or more programs,
the at least one memory and the computer program code configured to, with the at least one
processor, cause the apparatus to perform at least the following,
process and/or facilitate a processing of one or more characteristics of at least one
application for rendering at a device; and
cause, at least in part, an initialization of at least a portion of at least one rendering
process at the device for supporting the at least one application based, at least in
part, on the one or more characteristics,
wherein the initialization occurs prior to receiving a request to initiate an execution

instance of the at least one application.

12. An apparatus of claim 11, wherein the apparatus is further caused to:

determine to cause, at least in part, monitoring of one or more prior execution instances of the
at least one application; and

process and/or facilitate a processing of the monitoring for determining the one or more

characteristics.

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010
36

13. An apparatus of claim 11, wherein the one or more characteristics include, at least in part,
a use pattern, a frequency of use, a priority, a classification, a context, a preference, or a
combination thereof of the at least one web application.

14. An apparatus of claim 11, wherein the initialization causes the apparatus to:

determine to cause, at least in part, a preloading into the at least one rendering process of one
or more libraries, onec or more resources, or a combination thercof associated with the at
least one application.

15. An apparatus of claim 14, wherein the preloading is based, at least in part, on a
determination of whether the one or more libraries, the one or more resources, or a combination
thereof are available locally, remotely, or a combination thereof.

16. An apparatus of claim 11, wherein the apparatus is further caused to:

process and/or facilitate a processing of the request to initiate the execution instance of the at
least one application;

process and/or facilitate a processing of one or more libraries, one or more resources, one or
more object definitions, or a combination thercof associated with the at least one
application;

determine to cause, at least in part, a sclection of the at least one rendering process from
among a pool of one or more pre-initialized rendering processes based, at least in part, on
the one or more libraries, the one or more resources, the one or more object definitions, or
a combination thercof, and

determine to initiate the execution instance of the at least one application based, at least in

part, on the selected at least one rendering process.

17. An apparatus of claim 11, wherein the apparatus is further caused to:
process and/or facilitate a processing of one or more initialization parameters, one or more
initialization rules, or a combination thereof associated with the at least one application,

wherein the initialization is based, at least in part, on the one or more initialization parameters.

18. An apparatus of claim 11, wherein the initialization is performed on a system startup, an

application close, a change in resource availability, on request, or a combination thereof.

19. An apparatus of claim 11, wherein the initialization is based, at least in part, on whether
the at least one application is on a whitelist or a blacklist.

20. An apparatus of claim 11, wherein the at least one application is a web application.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
37

21. A method comprising:

processing and/or facilitating a processing of one or more characteristics of at least one
application for rendering at a device; and

causing, at least in part, an initialization of at least a portion of at least one rendering process
at the device for supporting the at least one application based, at least in part, on the one
or more characteristics,

wherein the initialization occurs prior to receiving a request to initiate an execution instance
of the at least one application.

22. A method of claim 21, further comprising:

determining to cause, at least in part, monitoring of one or more prior execution instances of
the at least one application; and

processing and/or facilitating a processing of the monitoring for determining the one or more
characteristics.

23. A method according to any of claims 21 and 22, wherein the one or more characteristics
include, at least in part, a use pattern, a frequency of use, a priority, a classification, a context, a
preference, or a combination thercof of the at least one web application.

24. A method according to any of claims 21-23, wherein the initialization comprises:

determining to cause, at least in part, a preloading into the at least one rendering process of
one or more libraries, one or more resources, or a combination thercof associated with the
at least one application.

25. A method of claim 24, wherein the preloading is based, at least in part, on a determination
of whether the one or more libraries, the one or more resources, or a combination thercof are

available locally, remotely, or a combination thereof.

26. A method according to any of claims 21-25, further comprising:

processing and/or facilitating a processing of the request to initiate the execution instance of
the at least one application;

processing and/or facilitating a processing of one or more libraries, one or more resources,
one or more object definitions, or a combination thereof associated with the at least one
application;

determining to cause, at least in part, a selection of the at least one rendering process from
among a pool of one or more pre-initialized rendering processes based, at least in part, on
the one or more libraries, the one or more resources, the one or more object definitions, or
a combination thercof, and

determining to initiate the execution instance of the at least one application based, at least in

part, on the selected at least one rendering process.

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010
38

27. A method according to any of claims 21-26, further comprising:

processing and/or facilitating a processing of one or more initialization parameters, one or
more initialization rules, or a combination thercof associated with the at least one
application,

wherein the initialization is based, at least in part, on the one or more initialization parameters.

28. A method according to any of claims 21-27, wherein the initialization is performed on a
system startup, an application close, a change in resource availability, on request, or a
combination thercof.

29. A method according to any of claims 21-28, wherein the initialization is based, at least in
part, on whether the at least one application is on a whitelist or a blacklist.

30. A method according to any of claims 21-29, wherein the at least one application is a web
application.

31. An apparatus comprising:
at least one processor; and
at least one memory including computer program code for one or more programs,
the at least one memory and the computer program code configured to, with the at least one
processor, cause the apparatus to perform at least the following,
process and/or facilitate a processing of one or more characteristics of at least one
application for rendering at a device; and
cause, at least in part, an initialization of at least a portion of at least one rendering
process at the device for supporting the at least one application based, at least in
part, on the one or more characteristics,
wherein the initialization occurs prior to initiating an execution instance of the at least
ong application.

32. An apparatus of claim 31, wherein the apparatus is further caused to:

determine to cause, at least in part, monitoring of one or more prior execution instances of the
at least one application; and

process and/or facilitate a processing of the monitoring for determining the one or more
characteristics.

33. An apparatus according to any of claims 31 and 32, wherein the one or more
characteristics include, at least in part, a use pattern, a frequency of use, a priority, a classification,
a context, a preference, or a combination thercof of the at least one web application.

10

15

20

25

30

35

WO 2012/089907 PCT/FI12011/051010
39

34. An apparatus according to any of claims 31-33, wherein the initialization causes the
apparatus to:
determine to cause, at least in part, a preloading into the at least one rendering process of one
or more libraries, onec or more resources, or a combination thercof associated with the at

least one application.

35. An apparatus of claim 34, wherein the preloading is based, at least in part, on a
determination of whether the one or more libraries, the one or more resources, or a combination

thereof are available locally, remotely, or a combination thereof.

36. An apparatus according to any of claims 31-35, wherein the apparatus is further caused
to:

process and/or facilitate a processing of a request to execute the at least one application;

process and/or facilitate a processing of one or more libraries, one or more resources, one or
more object definitions, or a combination thercof associated with the at least on
application;

determine to cause, at least in part, a selection of the at least one rendering process from
among a pool of one or more pre-initialized rendering processes based, at least in part, on
the one or more libraries, the one or more resources, the one or more object definitions, or
a combination thercof, and

determine to initiate the execution instance of the at least one application based, at least in
part, on the selected at least one rendering process.

37. An apparatus according to any of claims 31-36, wherein the apparatus is further caused
to:
process and/or facilitate a processing of one or more initialization parameters, one or more
initialization rules, or a combination thereof associated with the at least one application,

wherein the initialization is based, at least in part, on the one or more initialization parameters.

38. An apparatus according to any of claims 31-37, wherein the initialization is performed on
a system startup, an application close, a change in resource availability, on request, or a

combination thereof,

39. An apparatus according to any of claims 31-38, wherein the initialization is based, at least
in part, on whether the at least one application is on a whitelist or a blacklist.

40. An apparatus according to any of claims 31-39, wherein the at least one application is a
web application.

10

15

20

25

30

35

40

WO 2012/089907 PCT/FI12011/051010
40

41. An apparatus according to any of claims 31-40, wherein the apparatus is a mobile phone
further comprising:

user interface circuitry and user interface software configured to facilitate user control of at
least some functions of the mobile phone through use of a display and configured to
respond to user input; and

a display and display circuitry configured to display at least a portion of a user interface of the
mobile phone, the display and display circuitry configured to facilitate user control of at
least some functions of the mobile phone.

42. A computer-readable storage medium carrying one or more sequences of one or more
instructions which, when executed by one or more processors, cause an apparatus to perform at
least a method of any of claims 21-30.

43. An apparatus comprising means for performing a method of any of claims 21-30.

44. An apparatus of claim 43, wherein the apparatus is a mobile phone further comprising:

user interface circuitry and user interface software configured to facilitate user control of at
least some functions of the mobile phone through use of a display and configured to
respond to user input; and

a display and display circuitry configured to display at least a portion of a user interface of the
mobile phone, the display and display circuitry configured to facilitate user control of at
least some functions of the mobile phone.

45. A computer program product including one or more sequences of one or more
instructions which, when executed by one or more processors, cause an apparatus to at least
perform the steps of a method of any of claims 21-30.

46. A method comprising facilitating access to at least one interface configured to allow
access to at least one service, the at least one service configured to perform a method of any of
claims 21-30.

47. A method comprising facilitating a processing of and/or processing (1) data and/or (2)
information and/or (3) at least one signal, the (1) data and/or (2) information and/or (3) at least
one signal based, at least in part, on the method of any of claims 21-30.

48. A method comprising facilitating creating and/or facilitating modifying (1) at least one
device user interface element and/or (2) at least one device user interface functionality, the (1) at
least one device user interface clement and/or (2) at least one device user interface functionality
based, at least in part, on the method of any of claims 21-30.

PCT/FI12011/051010

WO 2012/089907

1/12

uiol

(3N) INFWAIND3 ¥3sN
q101
(3N) INFWAIND3 ¥3sN
UGLTINTLNOD
G0l YMOML3AN
— < NOILYDINNININOD
BGLTINILINOD

L1 WHO41V1d LNJLNOD

460}
I9VH0LS

v1vd

€601 VLvd
JILSIY3LOVHEVYHO
NOILYOI1ddV

PSOL 3ITINACI
$31NY SSI004d

9601 I1NAOW
HOLINOW SS3D0¥d

GS0} ITNACI
INFNIDOYNYIN SSTD0¥d

€01

NHO41V1d
LINIFWIOVYNVIN SSF00Hd

eG0l 3TNAOIW
JOV4H3LNI 438N

€101 (3N) LNININDIT ¥3SN

PCT/FI12011/051010

\, |

WO 2012/089907

2/12

..

E|

ugic

—

¥4
Y3T104LNOD

112 31NAOW
NOILYDINNIWINOD

OVHOLS VIvd

=

QG1Z v1vda

NOILYOI1ddV

—

JILSHILIVHVHO

A

\ 4

602 3ITNAO NOILYZITVILINI-GYd a3ZITYNOSY3d

202 AINAOW Y1¥A NOILYZITVILINI-ZHd TYNNYI

=

12474
V1vad 39vSN

A

\ 4

BG0C
31NAON
vivda
NOILVZITVILINI
-34d

c0c
JT1NAON NOILYNINYTL3A
dIHSNOILY13d LNJLNOD

€02 IINAOW
NOILYNINY3L3A
39VSN 304N0S3Y

)

=

A

\ 4

102 IINAOW NOILYDIHDOY
V1VYa 39YSN 308N0S3Y

€01 WHOALY1d LNINIDVYNYIN SSTD0¥Hd

¢ Ol

PCT/FI12011/051010

WO 2012/089907

3/12

ALRHNNN \
r,m,.,Z/ﬂm,o//ﬂa

S
A R

/% /

PCT/FI12011/051010

WO 2012/089907

4/12

ll/ > lh” ”/W

i
g¢ ‘ol

G

|

€

€le

PCT/FI12011/051010

WO 2012/089907

5/12

E

S3S3004d ONIY3AN3H
@3ZIVILINIFTYd 40 100d JLYIH0 [~ LI¥

NOILYOITddY FHL ONILHOddNS
d04 SS3004d ONIYFANTE V¥ 40

[~ Gy
NOILYOd V 1SY31 1V JZITVILINI-THd
A
NOILVOITddV FHL HLIM Q3L1VIO0SSY
S3TNY YO/ANV SHIALINVHY ~— ¢t

NOILVZITVILINI SS3004d

¢LSIT3LIHM

d0 1SITMOV14 434

60v

L0¥

18V IVAY
S304dN0S3d 33IA3]

¢TWO01
§304N0S3d
NOILVOITddYy

J0IA3A Y 1V ONIH3IANIY
d04 NOILYOI'lddY INO LSV3T
1V 40 SOILSIH3LIVEVYHO SS3004d

[~ S0

A

NOILVOITddV 3HL 40
SOILSIH3LIVHVHO ONININE313d
HO4 ONIYOLINOW SS3004d

[~ ¢0y

A

NOILYOITddY
3ANO 1SV31 1V 40 SFONVLSNI
NOILNO3X3 HOIdd HOLINOW

[~ 0¥

00%

A

_ 1HVLS _

¥ Ol

PCT/FI12011/051010

WO 2012/089907

6/12

E

SS3004d ONIY3IANTH
03153735 NO d3Sve NOILYOIddY [~_ ;0
40 JONVLSNI NOILNO3X3T FLVILINI
A
100d NOY4 SSFO0Hd ONIY3IANTS
A3Z1VILINI-34d LO313S [~ 60g
A
NOILVYOITddV HLIM d31vI00SSY
SNOILINIZ3d L23rd0 YO/ANV ~— 208
'SIOUNOSTY 'SAMVHEIT SSFO0Nd
A
NOILVOITddV INO
1SV31 1V 40 JONVLSNI NOILNOIXI ~_ |46
NV 3LVILINI OL 1S3IND3Y SS3004d
A
005

_ 1HVLS _

¢ Ol

PCT/FI12011/051010

WO 2012/089907

7/12

BJep peojumoq

1€9 ~

S pus JOAISSG - N pus e

/ Geg / €9
49 9Ol

609

JouIB)U| ybnoay) ejep peoidn
qq obesn

109~

o D)
/ G09
v9 9l

PCT/FI12011/051010

M € ddv
€0L —|
MM Z ddv

% L ddV

8/12

WO 2012/089907

L SONILYY NOILYDIlddY
ALIYOIYd i

NOILVZITVILINI Y041V 1d

-34d ININIDVYNYIN SSTD0Hd

)]

¢ ddv Z ddv | ddv
10, =
SLNOLYOHS NI3FHOS INOH

V.9l

PCT/FI12011/051010

WO 2012/089907

9/12

ALIH0OIYd
NOILVZITVILINI
-34d

(

gcl

€01
WHO41¥1d
INIWIDVYNYIN SSIO0Md

12l ¢zl
HOIH SIA ¢ ddv
VIN ON ¢ ddv
MOT S3A ddv
ALMOINd | eLINFINd

ALIHOIdd NOILYZIVILINI-FHEd A4103dS

4/ Ol

PCT/FI12011/051010

WO 2012/089907

10/12

AV1dSIa 301A30 LNdNI 30130 ONILNIOd
718 218 918
< B AHONIW AINO Qv
908
(DI1SY) 01 D14103dS
NOILYOITddY |« ¥0SSI00Nd
08 ¢ . 708
30IA3Q >m$m_>_
JOVHOLS
208 L AREINY
NOILYOINNININOD
0.8 008
REINEN MNITHHOMLIN LSOH
268 8/8 ~ "\ 288
¥3AINOYd
13NN 30IAY3S LINYALNI HHOMLIN VOO
068 0 088

8 Ol

PCT/FI12011/051010

WO 2012/089907

11/12

G06 AYOW3AIN

606 DISY

106 dSd

€06 ¥0SS300¥d

006

6 Old

PCT/FI12011/051010

WO 2012/089907

12/12

|
Je l—
020} sy =1 PO NS
|00 JoMOd J001 Ve Redsig |
2
aoepa)u| Alepeg pIBOGASY |
e
S ok o
|
/ /o
JepeAuo)d | o
an «—] Joenpopy e "
1 620} !
|
JazIsayjuAg 90ELo| I Jazienb3
44 I
| A
4
I G20l
»| Joje|npowa(;
|
\ |
—
6E01 701 G101}

4 ‘
hc0l JoleAUO)
-umo(g
LEOL \

€00}

NOW

A 4

dsd

A 4

ANVTdMOVE JISY

A

A

Gool

1501
o AMOWIW
T T G0l ~ 10V)
: |
| “
|
1£70} €co
'\ ova | oav |
|
—> 03009 ;
I N “
! JOVAYAINI |¢lo1,
_ olany |
— 1
o ____6b 001y
100}
WNINY3L 3190

0l Ol

INTERNATIONAL SEARCH REPORT Tntermational application No,

PCT/FI12011/051010

A CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

FI, SE, NO, DK

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI, Google Search.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2006041880 A1 (MARTIN BRIAN K et al.) 1-48
23 February 2006 (23.02.2006)
Sections 0017, 0021, 0030, 0044, 0053, 0060, 0064, 0065.

X US 6226667 B1 (MATTHEWS GARETH CHRISTOPHER et al.) 1,3-11,13-21,
01 May 2001 (01.05.2001) 23-31,33-48
Column 4, rows 30-36; column 4, rows 45-57; column 6, rows 39-41;
column 6, rows 46-48.

X GB 2465768 A (SYMBIAN SOFTWARE LTD et al.) 1,3-5,7-11,13-15,
02 June 2010 (02.06.2010) 17-21,23-25, 27-31,
Page 6, rows 11-16; page 6, rows 22-32; figure 1. 33-35,37-48

I:l Further documents are listed in the continuation of Box C. See patent tamily annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered hd1 ¢ 4 ‘
the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited_ to establish the pl_lblication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (&}S specified)] o considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination
"P" document published prior to the international filing date but later than being obvious to a person skilled in the art
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
03 April 2012 (03.04.2012) 10 April 2012 (10.04.2012)
Name and mailing address of the ISA/FI Authorized officer
National Board of Patents and Registration of Finland Matti Rantanen
P.0O. Box 1160, FI-00101 HELSINKI, Finland
Facsimile No. +358 9 6939 5328 Telephone No. +358 9 6939 500

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

> - International application No.
Information on patent family members

PCT/FI12011/051010
Patent document Publication Patent family Publication
cited in search report date members(s) date
US 2006041880 A1 23/02/2006 US 2008229299 A1 18/09/2008
US 6226667 B1 01/05/2001 None
GB 2465768 A 02/06/2010 WO 2009156964 A1 30/12/2009

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT . L
International application No.

PCT/FI12011/051010

CLASSIFICATION OF SUBJECT MATTER

Int.Cl.
GOG6F 9/445 (2006.01)

Form PCT/ISA/210 (extra sheet)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report
	Page 56 - wo-search-report

