Title: SYNTHESIS OF FUCOSYLATED COMPOUNDS

Figure 1

2'-Fucosyllactose

3-Fucosyllactose

Abstract: A method for making a genetically modified cell having the ability to produce fucosylated compounds comprising the steps of: transforming the cell to express a fucose kinase, transforming the cell to express a fucose-1-phosphate guanylyltransferase, transforming the cell to express a fucosyltransferase.
Synthesis of fucosylated compounds

The present invention is related to methods of making fucosylated compounds and cells related thereto.

Human milk consists of a complex mixture of carbohydrates, proteins, lipids, hormones, and micronutrients, providing all necessary nutrients for infant development. In addition human milk contains several protective agents. Besides immunoglobulins human milk contains an array of complex oligosaccharides with protective properties. Human milk oligosaccharides (HMO) fraction comprise beside the principal carbohydrate component lactose, more than 130 different complex oligosaccharides. This structural diversity of complex oligosaccharides and their occurrence at high amounts is unique to humans. In contrast, only trace amounts of much less complex oligosaccharides are found in bovine milk, and consequently commonly used infant formula lacks these oligosaccharides.

Clinical data showed that breast-fed infants have lower incidence of diarrhea, respiratory disease, and otitis media than formula-fed infants. For a long time these protective effects of human milk have been attributed to the presence of secreted immunoglobulins, however, it has now been recognized that the HMOs may be a major line of defense against pathogens for breast-fed infants.

Many of the complex HMOs show homology to cell surface glycoconjugates such as the Lewis x (Le\(^x\)) histo-blood group antigen Gal(β1-4)GlcNAc(β1) (Newburg, 2001), which often serve as pathogen receptors. Thus, by excreting soluble decoys, mimicking cell surface glycoconjugate structures, nature developed here an efficient mechanism to prevent infections. For example it was shown that HMOs can drastically reduce the virulence of pathogenic Escherichia coli (Cravioto et al., 1991), Vibrio cholerae (Coppa et al., 2006), Streptococcus pneumoniae (Andersson et al., 1986) or Campylobacter jejuni (Ruiz-Palacios et al., 2003) and are also able to neutralize toxins, like the heat-stable enterotoxin of E. coli (Crane et al., 1994). Besides the mentioned local effects in the intestinal tract, HMOs are also capable of eliciting systemic effects in infants by entering the systemic circulation (Gnoth et al., 2001).

The impact of HMOs on protein-carbohydrate interactions, e.g., selectin-leukocyte binding, can modulate immune responses and reduce inflammatory responses (Bode, 2006, Kunz & Rudloff, 2006).

Complex oligosaccharides represent the third largest component of human milk, after lactose and fat. They almost all have in common lactose at the reducing end, and are decorated with fucose and/or sialic acid at the non-reducing end. They are build from 3 to up to 32 monosaccharides and most of them contain fucose, with 1 to 15 fucose units. Thus, fucosylated oligosaccharides show great potential as bioactive food ingredients with anti-infective and prebiotic attributes.

Fucosyltransferases (FucTs), which catalyze the transfer of fucose residues from the donor guanosine-diphosphate activated L-fucose (GDP-L-fucose) to several acceptor molecules, are expressed in animals, plants, fungi and bacteria (Ma et al., 2006). They are categorized according to the site of fucose
addition, therefore αl,2, αl,3/4, and αl,6 FucTs are distinguished. Besides human FucTs, which are originally responsible for the biosynthesis of HMOs and blood group antigens, several bacterial FucTs have been described. FucT activity has been best documented for the human gastric pathogen *Helicobacter pylori*, which decorates its lipopolysaccharide (LPS) with fucose-containing Lewis antigens (Wang et al., 2000). The exact role of these Lewis antigenic structures during *H. pylori* infection is unclear, but molecular mimicry to evade the host immune system, adhesion and colonization are discussed (Bergman et al., 2006).

Due to the great potential of HMOs as health-promoting food supplements, there is strong interest in the cost-effective large-scale production. Biocatalytic production via bacterial fermentation processes is highly favorable over extraction of HMOs from human milk, and chemical synthesis, which is laborious and requires multiple protection and deprotection steps (Kretzschmar & Stahl, 1998). During the last decade, several attempts of HMO synthesis using either fermentation with recombinant *E. coli* or in vitro enzymatic conversion, have been published (Albermann et al., 2001, Dumon et al., 2006, Dumon et al., 2001, Dumon et al., 2004, Koizumi et al., 2000). The bottleneck in the production of fucosylated oligosaccharides is, however, the availability of the donor nucleotide sugar GDP-fucose. This high-energy molecule is currently neither efficiently nor cost-effectively accessible via chemical or enzymatic synthesis. Most publications reporting production systems for fucosylated compounds rely on the endogenous GDP-fucose pool of *E. coli*, which however is extremely limited and only used for the inducible synthesis of the fucose-containing exopolysaccharide colanic acid (Grant et al., 1970).

For example Albermann et al. (2001) use recombinant enzymes in an enzymatic synthesis. GDP-β-L-fucose is prepared by conversion of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose. This is treated with a GDP-4-keto-6-deoxy-D-mannose 3,5 epimerase-4-reductase to produce GDP-β-L-fucose, which is purified by preparative HPLC.

Another approach by Koizumi and co-workers to synthesize LeX from N-acetyllactosamine (LacNAC) involved the combination of GTP production from supplemented GMP by Corynebacterium ammoniagenes, GDP-fucose synthesis via GDP-mannose, and fucosylation of LacNAC by overexpression of a *H. pylori* αl,3-FucT in separate *E. coli* strains (Koizumi et al., 2000). Since permeabilization, and thus killing the cells, had to be used for this bacterial coupling approach, a continuous and large-scale fermentation process is not possible with this chosen approach.

There is still a need for methods for producing fucosylated compounds which overcome at least some of the drawbacks of prior art.

One embodiment of the invention is a method for making a genetically modified cell having the ability to produce fucosylated compounds comprising the steps of

- transforming the cell to express a fucose kinase
transforming the cell to express a fucose-1-phosphate guanylyltransferase
transforming the cell to express a fucosyltransferase.

According to the method of the invention a genetically modified cell is produced. It has been transformed to express a fucosekinase, a fucose-1-phosphate guanylyltransferase and a fucosyltransferase.

Methods of introducing genes into a cell are known to the skilled person.

In a preferred embodiment, the genetically modified cell is a microorganism selected from the group consisting of the genera Escherichia, Klebsiella, Helicobacter, Bacillus, Lactobacillus, Streptococcus, Lactococcus, Pichia, Saccharomyces and Kluyveromycetes.

In a preferred embodiment of the invention, the fucose kinase and the fucose-1-phosphate guanylyltransferase activity are combined in a bifunctional enzyme. Suitable genes for transformation, coding for a fucose kinase, a fucose-1-phosphate guanylyltransferase and/or a bifunctional fucosyl kinase/fucose-1-phosphate guanylyl transferase can be obtained from the genera Bacteroides, Lentinusphaera, Ruminococcus, Solibacter, Arabidopsis, Oryza, Physcomitrella, Vitis, Danio, Bos, Equus, Macaca, Pan, Homo, Rattus, Mus and Xenopus.

Suitable fucosyltransferase genes can be derived from organisms selected from the group of the genera Helicobacter, Escherichia, Yersinia, Enterococcus, Shigella, Klebsiella, Salmonella, Bacteroides, Dictyostelium, Arabidopsis, Drosophila, Homo, Bos, Mus, Rattus, Gallus, Canis and Sus.

Depending on the source of the gene and the cell used for expression, a codon optimization may be helpful to increase the expression. Some cells have a catabolic pathway for fucose. In this case, it is recommendable to inactivate this catabolic pathway. Suitable methods comprise inactivating one or several genes selected from the group consisting of a fucose-1-phosphate aldolase gene, a fucose isomerase gene and a fuculose kinase gene.

Suitable fucose derived compounds which can be prepared by the genetically modified cells of the present invention are fucosyllactoses, preferably T-fucosyllactose, 3-fucosyllactose or lactodifucotetraose.

The present invention is a synthesis in a cell starting from fucose instead of a preparative synthesis with recombinant enzymes starting from GDP-D-mannose as described by Albermann et al. (2001).

A further embodiment of the invention is the genetically modified cell obtainable by the method of the invention. To produce fucosylated compounds, the genetically modified cell of the invention is cultivated under suitable cultivation conditions in a medium comprising fucose and an acceptor substrate.

Suitable acceptor substrates are for example a mono-, di- or oligosaccharide or a peptide, for example lactose, 2'-fucosyllactose or 3-fucosyllactose.
The preferred fucosylated compounds obtained by the production method are fucosyllactoses, preferably 2'-fucosyllactose or 3-fucosyllactose or lactodifucotetraose.

This is the first report of efficient GDP-fucose synthesis in *E. coli* from externally supplied L-fucose and thus the establishment of an fucose "salvage pathway" in *E. coli*. However, this approach may also be transferred to other easy to culture organisms of interest to food or pharmaceutical industry (for example *Lactobacillus* spp.). Usage of this newly discovered pathway offers utterly new perspective for production of oligosaccharides, besides *T*-fucosyllactose and 3-fucosyllactose, without the need to rely on costly and laborious provision of GDP-fucose (*in vitro*) or endogenous, highly regulated, GDP-fucose biosynthetic pathways (*in vivo*).

In the so called "fucose salvage pathway" fucose is first phosphorylated to fucose-1-phosphate by the enzyme fucose kinase. The fucose-1-phosphate is then converted to GDP-fucose by the action of the enzyme fucose-1-P-guanylyltransferase. Recently, the first bacterial enzyme, Fkp, with both fucose kinase and L-fucose-1-P-guanylyltransferase activity was described (Coyne *et al.*, 2005). The intestinal bacterium *Bacteroides fragilis* uses the enzyme for the production of GDP-fucose, which serves for the decoration of capsular polysaccharides and glycoproteins with fucose residues.

Brief description of the figures

Figure 1 discloses the structures of the prominent complex human milk oligosaccharides (HMOs) 2'-fucosyllactose and 3-fucosyllactose.

Figure 2 shows a scheme of the photometric assay for determination of Fkp activity by coupled enzyme reactions and determination of NADH oxidation; Fkp = bifunctional fucose kinase / fucose-1-phosphate guanylyltransferase, PK = pyruvate kinase, LDH = L-lactate dehydrogenase, PEP = phosphoenolpyruvate.

Figure 3 shows a scheme of the photometric assay for determination of FucT activity by coupled enzyme reactions and determination of NADH oxidation; FucT = fucosyltransferase, PK = pyruvate kinase, LDH = L-lactate dehydrogenase, PEP = phosphoenolpyruvate.

Figure 4 shows the protein formation after induction. Lanes 1-4: expression of soluble Fkp (105.7 kDa) and/or FutAco (49.3 kDa) or FutT2 (35.9 kDa), in crude extracts from *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP (lane 1), *E. coli* BW25113 ΔfucA (DE3) pEJ-futAco (lane 2), *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP + pETfutAco (lane 3) and *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP + pCAW55 (lane 4); lane 5: PageRuler™ Prestained Protein Ladder (Fermentas, Germany); lanes 6-9: expression of insoluble Fkp and/or FutAco or FutT2, in cell debris resuspended in 6 M urea from *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP (lane 6), *E. coli* BW25113 ΔfucA (DE3) pET-futAco (lane 7), *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP + pETfutAco (lane 8) and *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP + pCAW55 (lane 9).
Figure 5 shows a radio thin layer chromatography (radio-TLC) of 3H-fucose, developed with butanol:acetone:acetic acid:water (35:35:7:23) and analyzed using a radio-TLC reader.

Figure 6 shows a radio-TLC of a cell extract from *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1 showing fucose and fuculose and fuculose-1-phosphate, however degradation of fuculose-1-phosphate is inhibited due to the genomic knockout of the fuculose-1-phosphate aldolase gene (*fucA*).

Figure 7 shows radio-TLC of cell extract from *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP showing accumulating GDP-fucose produced by bifunctional fucose kinase / fucose-1-phosphate guanylyltransferase Fkp from *Bacteroides fragilis* as well as fucose and degradation products fuculose and fuculose-1-phosphate.

Figure 8 shows a radio-TLC of a cell extract from *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pEJ-futAco showing accumulating 3-fucosyllactose produced by codon optimized fucosyltransferase of *Helicobacter pylori* via GDP-fucose provided by bifunctional fucose kinase / fucose-1-phosphate guanylyltransferase (Fkp). Fucose and degradation products fuculose and fuculose-1-phosphate are only minimally present; GDP-fucose amount is significantly reduced due to 3-fucosyllactose production.

Figure 9 shows a HPAED analysis of cell lysate from negative control strain *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1 showing intracellular L-fucose, lactose, glycerol and L-rhamnose, but no fucosyllactose.

Figure 10 shows a cell lysate of strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pEJ-futAco producing 3-fucosyllactose (retention time of about 11 min); furthermore L-fucose, lactose, glycerol and L-rhamnose peaks can be seen.

Figure 11 shows a HPAED analysis of cell lysate from strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pCAW55 showed production of 2'-fucosyllactose (retention time of about 22 min). Additionally, L-fucose, lactose, glycerol and L-rhamnose can be seen.

Figure 12 a and b show HPLC-analysis with electrochemical detection of GDP-fucose expression in *E. coli* JM109 (DE3) ΔfucA (Figure 12a) and *E. coli* JM109 (DE3) ΔfucA pCOLA-fkp-fucP (Figure 12b).

Examples

This invention is further explained by the following, non-limiting examples:

Example 1

Construction of expression plasmids and development of production strains

To successfully prevent the degradation of externally supplied fucose the *fucA* gene, coding for the key catabolic enzyme fuculose-1-phosphate aldolase had to be deleted from the genome of *E. coli* strain BW25113. For construction of the *fucA* deletion the methodology of (Datsenko & Wanner, 2000) was applied. For heterologous gene expression using the T7 promoter an inducible T7 RNA
polymerase was incorporated into the deletion strain *E. coli* BW25113 Δ*fucA* by using the λDE3 lysogenization kit (Novagen). The resulting strain was then named *E. coli* BW25113 Δ*fucA* (DE3). The plasmids pCOLA-*fkp-fucP* and pET-*futAco* were constructed using the pCOLADuet-1 and pETDuet-1 expression vectors (Novagen). All primers used for the construction are listed in Table 2. Gene *fkp* (GeneBank acc. no. AY849806) was amplified by PCR with primers *fkp*-NcoI-forward and *fkp*-NotI-reverse using genomic DNA of *Bacteroides fragilis* ATCC 25285D. The *fucP* gene (GeneBank acc. no. CP000948) of *Escherichia coli* K12 was amplified from genomic DNA of *E. coli* TOPIO (Invitrogen, USA) using primers *FucP*-Ndel-forward and *FucP*-XhoI-reverse. Both *fkp* and *fucP* were inserted into the first and second multiple cloning site (MCS) of pCOLADuet-1, respectively, using the indicated restriction sites. The resulting plasmid was designated pCOLA-*fkp-fucP*. The futA gene (GeneBank acc. no. AE000511) of *H. pylori* strain 26695 was codon-optimized for expression in *E. coli* and prepared synthetically by GenScript Corporation (Piscataway, NJ, USA). The gene was amplified using the primers FutAco-NcoI-forward and FutAco-BamHI-reverse, and inserted into the first MCS of pETDuet-1, yielding pEJ-futAco. The correct insertion of cloned genes was checked by restriction analysis and sequencing using the recommended primers pACYCDuetUPI, pET-UPstream, DuetDOWN-1, DuetUP2 and T7-Terminal listed in the Duet Vectors Manual (Novagen). Plasmid pCAW55 containing the gene *fucT2* coding for α,2-fucosyltransferase from *Helicobacter pylori* NCTC364 was donated by C. Albermann (Institute for Microbiology, University of Stuttgart) and is based on vector pJOE2702 (Stumpf et al., 2000). Gene *fucT2* is inserted via restriction sites Ndel/PstI and controlled by L-rhamnose-inducible promoter rhaPtet. *E. coli* BW25113 Δ*fucA* (DE3) was transformed with the expression vectors by electroporation (Dower et al., 1988). All bacterial strains used in this study are listed in Table 1.

Table 1. Bacterial strains and plasmids used.

<table>
<thead>
<tr>
<th>Name</th>
<th>Relevant characteristic(s)*</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW25113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW251 ΔfucA (DE3)</td>
<td>Δ(araD-araB)567,</td>
<td>(Datsenko & Wanner, 2000)</td>
</tr>
<tr>
<td></td>
<td>Δ(lacZ4787: rmb-3), lambda−,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rph-1, Δ(rhaD-rhaB)566,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hsdR514</td>
<td></td>
</tr>
<tr>
<td>BW251 13ΔfucA (DE3)</td>
<td>BW25113 fucA mutant, carrying</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>chromosomal copy of λDE3 T7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA polymerase gene</td>
<td></td>
</tr>
<tr>
<td>BW251 13ΔfucA (DE3) pCOLADuet-1</td>
<td>Negative control strain</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>harboring empty vectors, ApR,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KanR</td>
<td></td>
</tr>
<tr>
<td>BW251 13ΔfucA (DE3) pETDuet-1</td>
<td>KmR</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW251 13ΔfucA (DE3) pCOLA-fkp-fucP</td>
<td>ApR, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>BW25113ΔfucA (DE3) pCOLA-fkp-fucP</td>
<td>ApR, KmR</td>
<td>This study</td>
</tr>
<tr>
<td>pET-futAco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAW55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plasmids

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5'→3')</th>
<th>Added restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCOLADuet-1</td>
<td></td>
<td>Km<sup>R</sup></td>
</tr>
<tr>
<td>pETDuet-1</td>
<td></td>
<td>Ap<sup>R</sup></td>
</tr>
<tr>
<td>pCOLA-fkp-fucP</td>
<td></td>
<td>Km<sup>R</sup></td>
</tr>
<tr>
<td>pET-futAco</td>
<td></td>
<td>Ap<sup>R</sup></td>
</tr>
<tr>
<td>PCAW55</td>
<td></td>
<td>Ap<sup>R</sup></td>
</tr>
<tr>
<td>pACYCDuetUPl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pET-Upstream-Primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuetDOWN-l-Primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuetUP2-Prinner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7-Terminator-Primer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ap^R, ampicillin resistant, Km^R, kanamycin resistant.

Table 2. Primers.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5'→3')</th>
<th>Added restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fkp-Ncol-forward</td>
<td>AAGGAAAACCATGGGCCAAAAACTACTATCTTTACCG</td>
<td>NCol</td>
</tr>
<tr>
<td>Fkp-Notl-reverse</td>
<td>AAGGAAATTGGCGGCCGGCATATGATCTGATACTTTG</td>
<td>Notl</td>
</tr>
<tr>
<td>FucP-Ndel-forward</td>
<td>AAGGAAATGATATGGGAAAACATCAATACAACGC</td>
<td>Ndel</td>
</tr>
<tr>
<td>FucP-Xhol-reverse</td>
<td>AAGGGAAACTCGAGTCAGTTAGTTGCCGTTTGAGAAG</td>
<td>Xhol</td>
</tr>
<tr>
<td>FutAco-Ncol-forward</td>
<td>AAGGGAAAACCATTGGGTATGCTCCAGCCGCTGCTGG</td>
<td>NCol</td>
</tr>
<tr>
<td>FutAco-BamHI-reverse</td>
<td>AAGGAAAAGGATCCGCGGTCCCTATTACAGACCCAG</td>
<td>BamHI</td>
</tr>
<tr>
<td>pACYCDuetUPl</td>
<td>GGAATTCGACGCTCTCCCT</td>
<td></td>
</tr>
<tr>
<td>pET-Upstream-Primer</td>
<td>ATGCGTCCGGCGTAGA</td>
<td></td>
</tr>
<tr>
<td>DuetDOWN-l-Primer</td>
<td>GATTATGCAGCCGTGACA</td>
<td></td>
</tr>
<tr>
<td>DuetUP2-Prinner</td>
<td>ATGTACACGGGCCGATAATC</td>
<td></td>
</tr>
<tr>
<td>T7-Terminator-Primer</td>
<td>ATGCTAGTTATTTGCTCAG</td>
<td></td>
</tr>
</tbody>
</table>

* The restriction endonuclease recognition sites are underlined.

Example 2

Cultivation conditions and preparation of cell extracts

E. coli strains were inoculated in 10 ml of 2xYT broth (Sambrook & Russell, 2001), containing 100 µg mL⁻¹ ampicillin and/or 50 µg mL⁻¹ kanamycin, and incubated overnight in a rotary shaker at 37°C. The next day, 30 mL fresh 2xYT broth supplemented with the appropriate antibiotics was inoculated 1/100 from the overnight culture, and incubated at 37°C in a rotary shaker providing good aeration. When the cultures reached an optical density (OD₆₀₀) of approximately 0.5, inducers isopropyl-1-thio- β-D-galactopyranoside (IPTG) and/or L-rhamnose were added in a concentration of 0.1 mM and 0.1 %, respectively. The cultures were further incubated at 28°C overnight (approx. 15 h) under constant shaking. For photometric activity assay an aliquot of cell culture was removed, cells were pelleted and resuspended in five times weight/volume 50 mM Tris-HCl pH 7.5. Glass beads were added four times the weight of cell pellet and the resulting suspension was vortexed two times for five minutes each and in between placed on ice for additional five
minutes. Cell debris was removed by centrifugation (13200 rpm, 5 min, 4°C) and the resulting crude extract was stored at 4°C.

For in vivo production of fucosyllactose, cells were washed with one culture volume of phosphate buffered saline pH 7.4 (PBS) (Sambrook & Russell, 2001), and resuspended in 30 mL of modified M9 mineral medium; to the standard M9 recipe (Sambrook & Russell, 2001), the following substances were added: 20 mM L-fucose, 20 mM lactose, 0.5% glycerol, 0.5 mM guanosine and 1x GIBCO MEM Vitamin Solution (100X) (Invitrogen, USA). Inducers L-rhamnose (0.1 %) and IPTG (0.1 mM) were also added to all cultures regardless of which strain was cultivated to avoid different culture conditions. Again, the cultures were incubated at 28°C overnight (approx. 15 h) under constant shaking. The cultures were centrifuged and the supernatants were decanted and stored at -20°C. The cells were subsequently washed with PBS, resuspended in distilled water, and permeabilized by autoclaving (100°C, 5 min). To remove cell debris, the samples were centrifuged (8500 rpm, 30 min) and the clear cell lysate was stored at -20°C.

Example 3
SDS-PAGE

The expression of heterologous proteins was checked by SDS-PAGE (Sambrook & Russell, 2001). Protein extracts were prepared in 1x SDS gel-loading buffer, and polyacrylamide gels were stained with Coomassie Brilliant Blue.

Example 4
Enzymatic photometer assays

Example 4a
To determine Fkp activity, fucose kinase activity of the enzyme was measured by the amount of arising ADP from ATP, used as a substrate by pyruvate kinase (PK) while dephosphorylating phosphoenolpyruvate (PEP), whereas the resulting pyruvate was then converted to L-lactate by L-lactate dehydrogenase (LDH) under NADH consumption. The corresponding reactions are summarized in Figure 2. Each 1000 µL reaction was performed in 65 mM MOPS buffer (pH 7.5) containing 10 mM L-fucose, 15 mM PEP, 5 mM MgSO₄, 0.2 mM of each ATP and NADH, and 5 U of each PK and LDH. After the addition of 25 µL crude extract, the oxidation of NADH to NAD was monitored via the decrease of absorption at 340 nm using a V-630 Bio spectrophotometer (JASCO GmbH, Germany).

Example 4b
Analogously, FucT activity was (as shown in Figure 3) measured by arising GDP (from the donor GDP-L-fucose) which was phosphorylated to GTP by PK under conversion of PEP to pyruvate. LDH catalyzed the final reaction of pyruvate reduction to L-lactate with concomitant NADH consumption. Cellular extracts (25 µL) were tested in a 1000 µL reaction containing 10 mM lactose,
100 µM GDP-L-fucose, 5 mM MgSO₄, 0.2 mM of each ATP and NADH, and 5 U of each PK and LDH in 50 mM Tris-HCl buffer (pH 7.5). The decrease of NADH was monitored at 340 nm.

Example 5

Detection of oligosaccharides

Samples were analyzed by high performance anion exchange chromatography (HPAED) using a Decade II pulsed amperometric detector from Antec Leyden (Netherlands) and a CarboPac PA20 column (Dionex, Germany) connected to a HPLC system (Shimadzu, Germany). The detector sensitivity was set at 50 µA with a 0.05-V applied pulse potential. Mono-, di-, and oligosaccharides eluted with 10 mM sodium hydroxide at a flow rate of 0.4 mL min⁻¹. After 30 min isocratic elution with 10 mM NaOH the column was washed for 20 min with 200 mM NaOH to obtain constant retention times and thereafter regenerated with 10 mM NaOH for 20 min.

Example 6

³H-Fucose feeding experiments

E. coli BW25113 ΔfucA (DE3) cells were transformed with the vectors pCOLADuet-1, pETDuet-1, pCOLA-fkp-fucP and pET-futAco to generate the following strains:

- *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1
- *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP
- *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pET-futAco.

Strain *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1 served as empty vector control in the feeding experiments. All three strains were then used for tritium labeled fucose feeding experiments. For the feeding experiments cells were cultured in 3 ml of 2xYT medium containing 20 µl L⁻¹, 60 Ci mmol⁻¹ ³H-Fucose (40-60 Ci mmol⁻¹ and 1 mCi/mL), 50 mM lactose and 1 mM IPTG. According to the used expression vectors 2xYT medium was supplemented with 100 µg mL⁻¹ ampicillin and/or 50 µg mL⁻¹ kanamycin. The 3 mL *E. coli* cultures were incubated at room temperature overnight. Cells were then collected by centrifugation and separated from the culture media, the obtained cell pellets were resuspended in 200 µL of ddH₂O and boiled for 5 min. After cooling on ice for 10 min cell debris were collected by centrifugation at 13000 rpm for 10 min. From the so obtained *E. coli* cell supernatants 20 µL of each culture were applied to a silica gel TLC plate (Silica gel 60). For the development of the TLC plate a solvent mixture consisting of butanol : acetone : acetic acid : water (35:35:7: 23) was employed. Radio-TLC analysis was then performed with a Radio-TLC reader (Raytest). For the determination of Rf-values of non-radioactive reference material the TLC plate was sprayed with anisaldehyde solution (5 mL cone. H₂SO₄, 100 mL ethanol, 1.5 mL acetic acid, 2 mL anisaldehyde) and heated.
Example 7
Establishment of an efficient L-fucose salvage pathway in *E. coli*

Since lactose was used as acceptor substrate for the fucosyltransferases, the β-galactosidase deficient (lacZ') *E. coli* strain BW25113 was chosen to circumvent the problem of rapid lactose degradation (Datsenko & Wanner, 2000). L-Fucose can be also effectively degraded by wild type *E. coli* via isomerization to fuculose, phosphorylation to fuculose-1-phosphate and subsequent retro-aldol cleavage of fuculose-1-phosphate to glycero-3-phosphate and L-lactaldehyde. To prevent degradation of supplied fucose the gene *fucA*, encoding the key catabolic enzyme of the fucose degradation pathway fuculose-1-phosphate aldolase (FucA), was deleted in the genome of strain *E. coli* BW25113. The resulting strain *E. coli* BW25113 Δ*fucA* was unable to grow on fucose as well as lactose as sole carbon source on M9 minimal plates. Lysogenization with recombinant phage λDE3 resulted in strain *E. coli* BW25113 Δ*fucA* (DE3) compatible with the use of T7 promoter driven expression vectors. The ability of nucleotide activation of fucose to GDP-fucose is very limited in nature and was also for a long time only known from several mammals (human, pig, mouse). Nucleotide activation of fucose is mediated here by two successive enzymatic steps, first the phosphorylation of fucose to fucose-1-phosphate, catalyzed by fucose kinase and followed by the conversion of fucose-1-phosphate to GDP-Fucose, catalyzed by guanylyltransferase, respectively. Whereas in mammals the fucose salvage pathway comprises two separate enzyme catalyzed reactions, the recently discovered bacterial and plant proteins comprise both enzymatic activities. Heterologous expression of human fucose kinase in *E. coli* resulted only in barely detectable activity (Hinderlich et al., 2002). Biochemical studies showed that mammalian fucokinase represents a highly regulated enzyme (Park et al., 1998). To examine of whether the recently discovered *B. fragilis* Fkp enzyme is more suitable for activation of fucose and to efficiently provide GDP-fucose for the synthesis of fucosylated oligosaccharides in *E. coli* we amplified the gene from *B. fragilis* genomic DNA and cloned it into a bacterial expression vector for heterologous expression.

For the synthesis of T- and 3-fucosylactose the following fucosyltransferases were chosen for co-expression: The *futA* gene of *H. pylori* 26695 (Appelmelk et al., 1999), encoding an αL,3-fucosyltransferase, and the αL,2'-fucosyltransferase gene *fucT2* of *H. pylori* NCTC364 (Albermann et al., 2001). Before the start of the cloning process, the codon usage of *futA* was optimized for expression in *E. coli* and the gene was then synthesized by GenScript corporation (USA). The resulting gene *futAco* was inserted in the expression vector pETDuet-1, and expression was tested with and without co-expression of Fkp and FucP. Using standard induction conditions, Fkp, FucP and FutAco or FucT2 were co-expressed. Protein formation was examined after induction with IPTG and/or L-rhamnose with SDS-PAGE (see Figure 4), documenting pronounced soluble production of Fkp protein, whereas induction of membrane localized fucose permease protein (FucP) could, as expected, not be detected in cell cytoplasm by SDS-PAGE. However, the gene products of *futAco* and
fucT2 proved to be primarily located in inclusion bodies with only a small soluble fraction detectable.

Example 8

Photometric detection of enzymatic activity

The crude extracts derived from induced cultures were tested for fucose kinase and fucosyltransferase activity using auxiliary enzymes in coupled enzymatic assays as described above. Apparently, there is a considerable background of either NADH oxidase and/or phosphatase activity in *E. coli* BW25113 ΔfucA (DE3), which was responsible for non-reproducible results and low measured fucose kinase and fucosyltransferase activity of the different strains. Therefore, it was decided to determine enzymatic activity by monitoring intracellular product formation (GDP-fucose and fucosyllactose).

Example 9

Examination of utilization of externally fed 3H-L-fucose for GDP-fucose and 3-fucosyllactose production by recombinant E. coli

The aim of this experiment was the verification of 3-fucosyllactose production from fucose and lactose via GDP-fucose production by the fucose salvage pathway bifunctional enzyme Fkp from *Bacteroides fragilis*. Negative control strain *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1, as well as Fkp and fucose permease expressing strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP and Fkp, fucose-permease and α-L-fucosyltransferase expressing strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pET-futAco were treated as described above. Cell extracts derived from these strains were applied to a TLC plate, developed as described above and analyzed by radio-TLC reader. Additionally, 3H-labelled L-fucose standard was applied to a TLC plate and developed (see Figure 5). Non-radioactive standards for L-fucose and L-fuculose-1-phosphate, GDP-L-fucose, as well as 3-fucosyllactose were analyzed similarly by TLC and subsequent staining by anisaldehyde solution (data not shown).

The results of the negative control experiment (see Figure 6) showed products of the first and second catabolic steps from the fucose metabolism, i.e. L-fuculose (produced from fucose by fucose isomerase) and L-fuculose-1-phosphate (produced from fuculose by fuculose kinase). Further degradation of fucosyl transferase is effectively inhibited by the knock-out of the gene *fucA*, which encodes the enzyme fuculose-1-phosphate aldolase, which catalyzes the retroaldol cleavage reaction of fuculose-1-phosphate to L-lactaldehyde and dihydroxyacetone phosphate.

E. coli cells coexpressing bifunctional fucose kinase / fucose-1-phosphate guanylyltransferase Fkp from *Bacteroides fragilis* show the production of GDP-fucose (see Figure 7) which is apparently accumulating in the cells and may only minimally divert into other metabolic pathways whose products would otherwise appear on the radio-TLC.
Cell extracts from strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pET-futAco show production of 3-fucosyllactose and only a small amount of GDP-fucose (see Figure 8). This result is consistent with the initial aim of the experiment, i.e. to show the production of 3-fucosyllactose via GDP-fucose supply by bifunctional salvage pathway enzyme Fkp from *Bacteroides fragilis*. The amount of fucose degradation products fuculose and fuculose-1-phosphate is also greatly diminished, due to the consumption of GDP-fucose in fucosyllactose production and the deriving drift of the reaction equilibrium from fuculose-1-phosphate and fuculose to fucose, which is constantly drawn from the reaction by GDP-fucose production.

Example 10

Examination of 2'-fucosyllactose and 3-fucosyllactose production by recombinant *E. coli*

Strain *E. coli* BW25113 ΔfucA (DE3) harboring pCOUK-fkp-fucP and either the futAco or fucT2 gene in a separate expression vector, as well as *E. coli* BW25113 ΔfucA (DE3) harboring the empty vectors pCOLADuet-1 and pETDuet-1 (negative control) were grown in 2xYT broth, and protein expression was induced with IPTG and/or L-rhamnose for 15 h at 28°C. The cells were subsequently washed with PBS and resuspended in modified M9 medium supplemented with L-fucose, lactose and guanosine, IPTG and L-rhamnose. After a fermentation phase (28°C, 15 h), the cells were harvested, supernatants collected and cell lysates prepared as described above.

Analysis via HPAED showed retention times on the used HPLC column of approximately 3 min for the L-fucose standard, approx. 17 min for the lactose standard, approx. 11 min for the 3-fucosyllactose standard, and of approx. 22 min for the used 2'-fucosyllactose standard (data not shown). Glycerol, that is, as carbon source, part of the culture medium, was recorded with a retention time of approx. 1.5 min, and inducer L-rhamnose with a retention time of 5.5 min. Both substances are detected intracellularly during analysis of cell lysates.

Cell lysates from *E. coli* BW25113 ΔfucA (DE3) pCOLADuet-1 pETDuet-1 negative control strain showed intracellular L-fucose and lactose, but, as expected, no fucosyllactose (see Fig. 9). In addition to the aforementioned molecules also the medium supplied carbon source glycerol and the transcription inducer L-rhamnose are detected in the analysis.

HPAED analysis of cell lysate from strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pEJ-futAco, coexpressing the *B. fragilis* fkp gene and *E. coli* fucose permease gene in combination with the codon optimized *Helicobacter pylori* αl,3-fucosyltransferase gene, showed the intracellular production of 3-fucosyllactose (peak at about 11 min, see Fig. 10). L-fucose and lactose are also components of the cell lysate, as well as glycerol and L-rhamnose.

Cell lysate from strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pCAW55 showed intracellular production of 2'-fucosyllactose (see Fig. 11), due to the coexpression of αl,2-fucosyltransferase FucT2. Additionally, L-fucose, lactose,
glycerol and L-rhamnose can be seen in cell lysate, just as in cell lysate from negative control and 3-fucosyllactose producing strain *E. coli* BW25113 ΔfucA (DE3) pCOLA-fkp-fucP pET-futAco.

These results clearly show the production of 3- and 2’-fucosyllactose in recombinant *E. coli* cells from externally supplied L-fucose and lactose. By heterologous expression of *B. fragilis* Fkp protein, catalyzing the two-step reaction of fucose phosphorylation and fucose-1-phosphate guanylyl transfer, efficient production of GDP-fucose was obtained. Codon optimized α,3-fucosyltransferase FutAco initially derived from *Helicobacter pylori* or α,2-fucosyltransferase FucT2 from *Helicobacter pylori*, respectively, can convert the so supplied GDP-fucose into 2'- and 3-fucosyllactose.

Example 11

Expression of GDP-fucose in E. coli JM109 cells

Elevation of intracellular GDP-fucose content due to expression of Fkp was shown by parallel cultivation of an *E. coli* strain expressing Fkp from a plasmid and an *E. coli* strain not containing a copy of Fkp. Strain *E. coli* JM109 (DE3) ΔfucA was in this case used as control strain without Fkp. The strain expressing Fkp was the same strain *E. coli* JM109 (DE3) ΔfucA, this time containing the plasmid pCOLA-fkp-fucP, and bearing thus the genes coding for fucose kinase / fucose-1-phosphate guanylyltransferase Fkp and fucose permease FucP. As the genes were cloned in multiple cloning sites (MCS) 1 and 2 of vector pCOLADuet-1 (Novagen, UK), expression of both genes can be induced by addition of IPTG, as both MCS are flanked by a T7 promoter / operator on the 5’ side.

Both strains were cultured in duplicate in 30 ml 2YT medium, supplemented with kanamycin for the strain with pCOLA-fkp-fucP for plasmid maintenance, at 37 °C and 220 rpm. Induction of Fkp expression was started at OD_560 = 0.5 by addition of 1 mM IPTG and both strains were supplied with 20 mM fucose and then cultivated for additional 3 hours at 37 °C and 220 rpm. Cells were pelleted by centrifugation and pellets were resuspended in 5 v/w distilled water. These cell suspensions were incubated at 95 °C for 10 minutes to lyse the cells. Cell debris was removed by centrifugation and the supernatants were analyzed by HPLC.

HPLC analysis was carried out by electrochemical detection with a Decade II pulsed amperometric detector (Antec Leyden, Netherlands). 20 mM sodium hydroxide + 825 mM sodium acetate was used as eluent on a CarboPac PA20 column (Dionex, USA). GDP-fucose eluted with a retention time of 16,0 minutes.

Table 3: Intracellular GDP-fucose content of *E. coli* JM109 (DE3) ΔfucA with and without expression of fucose kinase / fucose-1-phosphate guanylyltransferase Fkp from pCOLA-fkp-fucP.

<table>
<thead>
<tr>
<th>Strain</th>
<th>GDP-fucose content [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli JM109 (DE3) ΔfucA</td>
<td>not detectable</td>
</tr>
<tr>
<td>E. coli JM109 (DE3) ΔfucA pCOLA-fkp-fucP</td>
<td>369 µM</td>
</tr>
</tbody>
</table>
Figure 12a shows HPLC-analysis of *E. coli* JM109 (DE3) Δ*fucA* cells for GDP-fucose expression without expression of FKP protein.

Figure 12b is an analysis of *E. coli* JM109 (DE3) Δ*fucA* pCOLA-fkp-fucP cells co-expressing the Fkp protein together with the fucose importer FucP. The peak at 16.0 min corresponds to GDP-fucose, as verified with an authentic standard.
References

Claims

1. A method for making a genetically modified cell having the ability to produce fucosylated compounds comprising the steps of
 - transforming the cell to express a fucose kinase
 - transforming the cell to express a fucose-1-phosphate guanylyltransferase
 - transforming the cell to express a fucosyltransferase.

2. The method of claim 1, wherein the genetically modified cell is a microorganism selected from the group consisting of the genera *Escherichia, Klebsiella, Helicobacter, Bacillus, Lactobacillus, Streptococcus, Lactococcus, Pichia, Saccharomyces* and *Kluyveromyces*.

3. The method of claim 1 or 2, wherein the fucose kinase and the fucose-1-phosphate guanylyltransferase are combined in a bifunctional enzyme.

4. The method of claim 3, wherein the bifunctional fucose kinase/fucose-1-phosphate guanylyltransferase is selected of bifunctional fucose kinase/fucose-1-phosphate guanylyltransferase derived from the group consisting of the genera *Bacteroides, Lentisphaera, Ruminococcus, Solibacter, Arabidopsis, Oryza, Physcomitrella, Vitis, Danio, Bos, Equus, Macaca, Pan, Homo, Rattus, Mus* and *Xenopus*.

5. The method of any one of claims 1 to 4, wherein the fucosyltransferase is derived from an organism selected from the group consisting of the genera *Helicobacter, Escherichia, Yersinia, Enterococcus, Shigella, Klebsiella, Salmonella, Bacteroides, Dictyostelium, Arabidopsis, Drosophila, Homo, Bos, Mus, Rattus, Gallus, Canis* and *Sus*.

6. The method of any one of claims 1 to 5, wherein a catabolic pathway of said cell for fucose is inactivated.

7. The method of claim 6, wherein the catabolic pathway for fucose is inactivated by inactivating one or several genes selected from the group consisting of a fucose-1-phosphate aldolase gene, a fucose isomerase gene and a fuculose kinase gene.

8. The method of any one of claims 1 to 7, wherein the fucosylated compound is a fucosyllactose, preferably 2'-fucosyllactose, 3'-fucosyllactose or lactodifucotetraose.

9. A genetically modified cell obtainable by the method of anyone of the claims 1 to 8.

10. A method for making fucosylated compound comprising the steps of cultivating the cell of claim 9 under suitable cultivation conditions in a medium comprising fucose and an acceptor substrate.

11. The method of claim 10, wherein the acceptor substrate is a mono-, di- or oligosaccharide or a peptide.
12. The method of claims 10 or 11, wherein the acceptor substrate is lactose, 2'-fucosyllactose or 3-fucosyllactose.

13. The method of any one of claims 10 to 12, wherein the fucosylated compound is a fucosyllactose, preferably 2'-fucosyllactose or 3-fucosyllactose, or lactodifucotetraose.
Figure 4

Figure 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C12N1/21 C12N9/12 C12N9/10 A23L1/29

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12N A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search 10 March 2010

Date of mailing of the international search report 26/03/2010

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer

Schneider, Patrick
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006/135075 A (AJINOMOTO KK [JP]; RYBAK · KONSTANTIN VYACHESLAVOVII [RU]; SLIVINSKAYA EK) 21 December 2006 (2006-12-21) the whole document</td>
<td>1-13</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2008112092 A</td>
<td>18-09-2008</td>
<td>AU 2008227024 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2679732 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2134834 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090130029 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010028951 A1</td>
</tr>
<tr>
<td>EP 1426441 A</td>
<td>09-06-2004</td>
<td>CA 2458512 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03018794 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4048173 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004219553 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009209011 A1</td>
</tr>
</tbody>
</table>