AT 00O OO0

WO 01/37095 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

00 OO

(10) International Publication Number

WO 01/37095 Al

(51) International Patent Classification”: GOG6F 11/30,
12/14, 15/173, 15/177, HOAL 9/00, 9/32
(21) International Application Number: PCT/US00/31032

(22) International Filing Date:
10 November 2000 (10.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
132916
09/561,395

14 November 1999 (14.11.1999)
28 April 2000 (28.04.2000)

L
us

(71) Applicant: CLICKNET SOFTWARE, INC. [US/US];
2460 Zanker Road, San Jose, CA 95131 (US).

(72) Inventors: HOLLANDER, Yona; 21327 Glenplace Dr.,
#7, Cupertino, CA 95014 (US). RAHMAN, Ophir; 1570

Ben Roe, Los Altos, CA 94040 (US). HORVITZ, Oded;
Hagana St. 43, 46325 Herzelya (IL).

(74) Agents: BEATON, Glenn, K. et al.; Gibson, Dunn &
Crutcher, Suite 4100, 1801 California Street, Denver, CO
80202 (US).

(81) Designated States (national): AU, CA, JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR INTERCEPTING AN APPLICATION PROGRAM INTERFACE

GET CALLERROUTINE |91
RETURN ADDRESS FROM
PROCEDURE ACTIVATION

RECORD
A
CALCULATECALLER | 10
ROUTINECALLING [\
ADDRESS
A
CHECK IF CALLER
ROUTINE ADDRESS IS
WITHIN VALID ADDRESS (194
RANGE LIMITS IN THE
PROCESS ADDRESS LIST
196
NO CALLER ROUTINE YES

CALLING ADDRESS
VAUID?

v

A

(57) Abstract: In a computer system running an
operating system platform, having an operating
system including a kernel space and a process space,
said process space including a user application
running in process space, said user application
operative to intercept system calls, a method of
secure function execution, said method comprising
the step of examining said intercepted system call
(191, 192) validity by comparing said intercepted
system call originating address with range of process
valid addresses (194) associated with said process
from which said intercepted system call originated
(191, 192) and providing notification (198, 200) as
to the validity (196) of said intercepted system call
(191, 192) or terminating said intercepted system
call.

NOTIFY SFE SERVER : NOTIFY SFE SERVER

ABOUT ILLEGAL CALL OR | 200 ABOUT LEGAL CALLOR |19
PERFORM USER PERFORM USER

PREDETERMINED ACTION PREDETERMINED ACTION

WO 01/37095 PCT/US00/31032

METHOD AND SYSTEM FOR INTERCEPTING AN APPLICATION PROGRAM INTERFACE
FIELD OF THE INVENTION
The present invention relates generally to a method for
detecting and preventing unauthorized or illegal access attempts within
a computer system. More specifically, the present invention relates to a
method for detecting and preventing attempts to exploit the buffer

overflow-related weakness within a computer system.

BACKGROUND OF THE INVENTION
This application is related to Israel Patent Application Number
“METHOD AND SYSTEM FOR INTERCEPTING A
APPLICATION PROGRAM INTERFACE" filed 14 November 1999.

Modern computers are designed with the requirements of
high-level languages in mind. The most essential technique for
structuring computer programs introduced by high-level languages, is
the procedure or the function.

Procedures or functions are computer programs. A procedure
call or a function call is a high-leve| abstraction that alters the flow of
the calling program execution. In contrast with the more traditional
“‘jump” or “goto” instructions, which also alter the flow of execution, a
procedure or a function, after the execution of its own code, returns

control to the instruction immediately following the call. To implement

PCT/US00/31032
WO 01/37095

procedure or function calls in the manner described, a memory device
called a stack is utilized.

A stack is a contiguous block of memory containing data. Its
size is dynamically adjusted by the operating system routines at run
time. The data is inserted to and removed from the stack by Central
Processing Unit (CPU) utilizing Assembler language instructions such
as “push” or “pop”.

The stack consists of logical stack frames or Procedure
Activation Records that are inserted into the stack when a function is
called and removed from the stack when the said function returns
control to the calling program. The stack frame itself contains
parameters to the called function, local variables, pointers to recover
the previous stack frame, and the return address of the calling
Computer program. The return address is the instruction pointer of the
calling program at the time of the function call.

Induced buffer overflow or buffer overflow attack is known in
the art. Buffer overflow attacks exploit the lack of bounds checking on
the size of input being stored in a buffer array. Arrays are predefined
allocated memory devices within a computer system. By writing data
intentionally past the end of an allocéted array, an attacker can make

arbitrary changes to data stored adjacent to the said array. The most
2

095 PCT/US00/31032
WO 01/37

common data structure to be corrupted in this fashion is the stack.
Therefore this type of attack is also known as stack smashing.

The prevalent form of buffer overflow exploitation is to attack
buffers allocated on the stack. Such attacks attempt to achieve two
mutually dependent objectives. One such objective is inserting an
attack code in the form of an executable binary code native to the
attacked machine. Another such objective is to change the return
address to point to the attacker's supplied code now residing within said
stack memory. Such attacker's supplied code may be utilized -to gain
enhanced privileges over said computer system.

The programs that are attacked using this technique are
usually high privilege utilities or daemons that run under the user-id root
to perform essential services. The effect of a successful buffer overflow
attack is to provide the attacker non-authorized root privileges. Gaining
root privileges within a computer system allows non-authorized users
access privileged resources.

As the maximum length of the overflowing data string can be
only the current depth of the stack, the inserted attack code should be
short in terms of code length. Writing data outside the stack limit will
result in an exception condition that will prevent the attack code to

execute. Therefore, the buffer overflow attacker will be forced to write
3

PCT/US00/31032
WO 01/37095

short code and will have to yse high-level System calls or Library calls.

Such calls will later be utilized to gain non-authorized enhanced

privileges to access privileged resources.

Several strategies, which attempt to resolve the buffer
overflow weakness, are known in the art. One such strategy is to
design a compiler designed to prohibit a computer program from writing
past a stack segment array. Another strategy is to detect buffer
overflow vulnerable programs off line and alert the user to the
possibility that the system privileges may be compromised.

Another known strategy is using a repair program. The repair
program can repair or fix those vulnerable programs that can be used
to exploit the buffer overflow weakness.

None of the above provide a method and apparatus for
prevention of buffer overflow through controlled execution of system or

other calls within a computer system.

PCT/US00/31032
WO 01/37095

SUMMARY OF THE PRESENT INVENTION

Thus, there is 3 long felt need to provide a for detecting and
preventing unauthorized or illegal access attempts within a computer
system. More specifically, a method for detecting and preventing
attempts to exploit the buffer overflow-related weakness within 3
Computer system by validating system or other calls made within a
computer system. |

It is therefore the object of this invention to provide a method
for preventing induced buffer overflow attack by preventing execution of
high-level System calls, Library calls, Application Program Interface cajl
and the like when such calls are illegally made.

It is therefore another object of the present invention to
provide a method for preventing induced buffer overflow attack by
preventing execution of high-level System calls, Library calls,
Application Program Interface call and the like when such calls are
made from unauthorized areas within a computer system.

It is yet a further object of the present invention to provide a
method for Preventing induced buffer overflow attack by preventing
execution of high-level System calls, Library calls, Application Program
Interface call when such calls are made from outside the user process

associated with said called system or other call.
5

PCT/US00/31032
WO 01/37095

It is therefore provided in accordance with a preferred
embodiment of the present invention a method of secure function
execution within ‘3 computer system running an operating system
platform, said operating system including a kernel Space and a process
space, said process space including a user application running in
process space, said user application operative to intercept system calls,
said method comprising the step of examining said intercepted system
call validity by comparing said intercepted system call originating
address with range of process valid addresses associated with said
process from which said intercepted system call originated and
providing notification as to the validity of said intercepted system call, or
terminating said intercepted system call.,

Itis further provided in accordance with a preferred embodiment of
the present invention a method of secure function execution within a
computer system running an Ooperating system platform, said operating
system including a kernel Space and a process space, said process
space including a user application running in process space, said user
application operative to intercept system calls, said method comprising
the step of examining said intercepted system call validity by comparing
said intercepted system call originating address with range of process

valid addresses associated with said process from which said
6

0 01/37095 PCT/US00/31032
w

intercepted system call originated and responsive to process creation
inserting application program interface interception module into said
created process and responsive to process creation updating process

valid addresses table or responsive to process termination updating

process valid addresses table.

In accordance with yet another preferred embodiment of the
present invention there is provided a method of secure function
execution within a computer system running an operating system
platform, said operating system including a kernel space and a process
space, said process space including a user application running in
process space, said user application operative to intercept library calls,
said method comprising the step of examining said intercepted library
call validity by comparing said intercepted library call originating
address with range of process valid addresses associated with said
process from which said intercepted library call originated and providing
notification as to the validity of,.said intercepted library call or

terminating said intercepted library call.

In accordance with yet another preferred embodiment of the

present invention there is provided a method of secure function
7

095 PCT/US00/31032
WO 01/37

execution within a computer system running an operating system
platform, said operating system including a kernel space and a process
space, said process space including a user application running in
process space, said user application Operative to intercept library calls,
said method comprising the step of examining said intercepted library
call validity by comparing said intercepted library call originating
address with range of process valid addresses associated with said
process from which said intercepted library call originated and
responsive to system call loading dynamic link library hooking and
patching library routines associated with said dynamic link library and
responsive to system call unloading dynamic link library updating

process valid addresses table.

In accordance with another preferred embodiment of the
present invention there is provided a method of secure function
execution within a computer system running an operating system
platform, said operating system including a kernel space and a process
Space, said process space including a user application running in
process space, said user application operative to system and function
calls, said system or function call intercepted, said method comprising

the steps of receiving caller routine return address from said process
8

PCT/US00/31032
WO 01/37095

memory device, determining whether caller routine address js valid by
comparing said caller address routine with process valid address table
and providing notification as to the validity of said caller routine return
address or performing user predetermined acts associated with said
validity of caller routine address. The same method further comprising
the step of determining said caller routine calling address by

determining the address Preceding said caller routine address.

In accordance with yet another preferred embodiment of the
present invention there is provided a method of secure function
execution within a computer system running an operating system
platform, said operating system including a kernel space and a process
Space, said process space including a user application running in
process space, said user application operative to system and function
calls, said system or function call intercepted, said method comprising
the steps of receiving caller routine return address from said process
memory device, determining whether caller routine address is valid by
comparing said caller address routine with associated process stack
address area and providing notification as to the validity of said caller
routine return address or performing user predetermined acts

associated with said validity of caller routine address. The same
9

PCT/US00/31032
WO 01/37095

said process memory device further comprises the step of determining

said caller routine calling address by determining the address

preceding said caller routine address.

10

PCT/US00/31032
WO 01/37095

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and
constitutes a part of the specification, illustrate preferred embodiments

of the invention and, together with the description, serve to explain the

principles of the invention:

Fig. 1 is a block diagram of the Secure Function Execution

System environment generally referenced to as system 100;

Fig. 2 is a high-level flow diagram of the Secure Function

Execution Server 116 operation;

Fig. 3 is a high-level flow diagram of the operation of the

Secure Function Execution Server initialization module referred to in

Fig. 2;

Fig. 4 is a high-level diagram of Secure Function Execution

Server or the like résponse to an intercepted system call referred to in

Fig. 2;

Fig. 5 is a high-level flow diagram of the operation of the
11

WO 01/37095 PCT/US00/31032

Secure Function Execution Server and the like library call response

module referred to in Fig. 2;

Fig. 6 is a high-level flow diagram of the operation of the

Calling Address Validation Routine module;

Fig. 7 is a high-level flow diagram of the Calling Address
Validation Routine module relating to an another embodiment of the

present invention.

12

WO 01/37095 PCT/US00/31032

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention overcomes the disadvantages of the
prior art by providing a novel method, which detects if an attempt to
exploit the buffer overflow weakness is occurring by validating use of
system or other calls within a computerized system.

Reference is now made to Fig. 1, there is provided a
schematic illustration of the system environment wherein the Secure
Function Execution System is operating, generally referred to as
system 100, in accordance with a preferred embodiment of the present
invention.

The present invention is related to Israel Patent Application
Number XXXXXXX. “METHOD AND SYSTEM FOR INTERCEPTING A
APPLICATION PROGRAM INTERFACE” filed 14 November 1999.

As further described in detail in Israel Patent Application
Number XXXXXXX, system 100 of Fig. 1 may comprise of four
components of the Secure Function Execution System;

a) Secure Function Execution Server 116 is an active

component. Secure Function Execution Server 116 is the
13

WO 01/37095

PCT/US00/31032

Operational center of the Secure Function Execution
System 100. Secure Function Execution Server 116
loads and controls System Call Interception Component
124, loads and controls AP] Interception Module 134,
140, and 146, responds to diverse system and library
calls and acts as an interface towards the user. The
Secure Function Execution Server 116 is loaded into the
user space memory device 112 of a computer system.
Secure Function Execution Server 116 incorporates the
AP! Interception Control Server operations that were

described in detail in lsrael Patent Application No.

XHXXXXXX.

b) API Interception Module 134, 140, 146 and the like are

active components. API Interception Module 134, 140,
146 and the like operations are described in detail in
Israel Patent Application Number XXXXXXX. AP
Interception Module 134, 140, 146 and the like consist of
Dispatch Routine, Depatch Routine, Hook and Patch
Routine, Pre-Entry Routine, and Post-Entry Routine. The
Operations of the said routinés are also described in

detail in Israel Patent Application No. XXXXXXX.
14

WO 01/37095

c)

PCT/US00/31032

System Call Interception Component 124 is an active
component. System Call Interception Component 124

Operation is described in detail in Israel Patent

Application No. XXXXXXX.

d) API routine 132, 138, 144 and the like are passive

components. API routines 132, 138, 144 and the like are
potential objects upon which Secure Function Execution
System 100 might Operate. API routines 132, 138, 144
and the like are loaded into process address space
memory device 118, 120, 122 and the like in user

memory device 112 of system 100.

System 100 previously described in Israel Patent Application

number XXXXXXX serve as model for a Secure Function Execution

System in which the present invention is operative. |t will be

appreciated by those skilled in the art that the present invention may

Operate under various similar systems and that the system shown

herein is an example to further illustrate the working of the present

invention.

Referring to Fig. 2 there is provided a high-level flow

diagram of the Secure Function Execution Server 116 operation.

15

WO 01/37095 PCT/US00/31032

Secure Function Execution Server 116 was previously described in
detail in Israel Patent Application Number XXXXXXX. The operation of
said Secure Function Execution Server 116 would now be briefly
explained.

Secure Function Execution (SFE as it will be abbreviated
from this point on in the text of this document) Server 116 initializes the
application in step 150. 'Consequently SFE Server 116 commences its
run-time operation in step 152 by constantly monitoring system calis
made by diverse applications that run in the host operating system
(step 152) and responding appropriately to the said system calls (step
154) as described in detail in Fig. 4. SFE Server is also constantly
monitoring library calls made by diverse application that run in the host
operating system (step 156). SFE Server responds appropriately to the

said library calls (step 158) as described in detail in Fig. 5.

Referring now to Fig. 3 there is provided a high-level flow
diagram of SFE Server 116 start-up.operation referenced as step 150
of Fig. 2. SFE Server 116 start-up operation was previously described
in detail in Israel Patent Application Number XXOXXOXXXX.

First SFE Server 116 loads System Call Interception

Component 124 into kernel space memory device 114 (step 184). After
16

WO 01/37095 PCT/US00/31032

establishing communication with System Call Interception Component
124 SFE Server 116 queries System Call Interception Component 124
for the list of active processes 118, 120, 122 and the like (step 186).
Using the said list of active processes 118, 120, 122 and the like SFE
Server 116 creates a list of valid address ranges for each active
process 118, 120, 122 and the like. This structure will be referenced
from this point on as Process Valid Address Range in the text of this
document.

Process Valid Address Range List holds the address range
into which the process 118, 120, 122 and the like was loaded to.
Process Valid Address Range also holds all the address ranges into
which diverse Dynamic Link Library (DLL) 130, 136, 142 and the like
were loaded. Dynamic Link Library is a set of callable subroutines
linked as a binary image that can be dynamically loaded by applications
that utilize them.

Finally, SFE Server will insert AP| Interception Module 134,
140, 146 and the like to all active processes 118, 120, 122 and the like

(step 19) as described in detail in Israel Patent Application No.

XXHKXXXX.

SFE Server operation of monitoring system calls in step 152
17

o5 PCT/US00/31032
WO 01/370

of Fig. 2 is described in detail in Israel Patent Application No.

XXXXXXX.

Turning now to Fig. 4 which is a high-level flow diagram of
SFE Server or the like response to an intercepted system call, referred
to as step 154 of Fig. 2. SFE Server 116 determines in step 160
whether the system call detected is an illegal call or a legal call. SFE
Server determines whether said system call is valid by comparing said
system call originating address with range of Process Valid Address
associated with said process from which said system call originated. If
illegal call was detected the SFE Server 116 may terminate the illegal
function (step 164). Alternatively SFE Server 116 may notify a user
(typically the System Administrator) about the illegal call (step 168).
Alternatively, SFE Server 116 may perform another or other series of
user predetermined actions.

If the system call detected is legal (step 160) SFE Server 116
examines the said system call to determine if it is of the type of process
creation (step 162). If and when it is determined that the system call of
the type of process creation SFE Server 116 inserts API Interception
Module 134 to the newly created process address space 118 (step 168)

and updates Process Valid Address Range List (step 170) by adding
18

PCT/US00/31032
WO 01/37095

SFE Server 116 updates Process Valid Address Range List (step 171)

by removing said Process valid addresses range from Process Valid

Address Range List,

SFE Server operation of monitoring library calls in step 156 of

Fig. 2 is described in detail in US Patent Application No. XXXXXXX,

Turning now to Fig. 5 which is a high-level flow diagram of the
SFE Server and the like response to an intercepted library call referred
to as step 158 of Fig. 2. SFE Server 116 determines in step 172 if the
library call detected is an illegal call. SFE Server determines whether
said library call js valid by comparing said library call originating
address with range of Process Valig Address associated with said
process from which said library call originated. If an illegal call is
detected SFE Server 116 optionally terminates the illegal library
function (step 180). Alternatively, SFE Server 116 notifies a user
(typically the System Administrator) (step 182). Alternatively, SFE

19

9 PCT/US00/31032
WO 01/37095

Server 116 performs any other user predetermined or instructed action
(step 182).

If the library call detected is legal (step 172) SFE Server 116
determines if the said library call is of the type of DLL 130 load (step
174). If the decision in step 174 is affirmative than SFE Server 116
hooks and patches the library calls (APIs) 132 existing within said
loaded DLL 130. Such hooking and patching is further described in
detai_l in Israel Patent Application . After hooking and patching
said API Interception Module 134 already loaded into said associated
process 118 is now operative to intercept calls made to said library calls
132. When determined that the library call is of the type DLL load SFE
Server 116 updates Process Valid Address Range List (step 178) by
adding DLL address rage into Process Valid Address Range List. If the
decision in step 172 is negative SFE Server 116 determines if the
intercepted library call if of the type DLL unload (step 176) by deleting
DLL address range from Process Valid Address Range List. When it is
determined that the library call is of the type of DLL unload SFE Server

updates the Process Valid Address Range List (step 178).

Reference in now made to Fig. 6 that is a high-level flow

diagram of the operation of the Calling Address Validation Routine
20

0 01/37095 PCT/US00/31032
W

module. The Calling Address Validation Routine module may operate in
conjunction with API Interception Module Pre-Entry routine as further
described in detail in Israel Patent Application No. XXXXXXX.

Pre-Entry routine may be activated when an API 132 or the
like of Fig. 1 is intercepted. Operating under SFE System 100 Pre-Entry
routine, Calling Address Validation Routine module is executing a set of
instructions designed to validate the API function 132 of Fig. 1 calling
address (caller Routine). Caller Routine also includes caller Application
Program Interface, caller system call, caller library call and the like.

Calling Address Validation Routine module commences its
Operation by reading the caller Routine return address from the
Procedure Activation Record (stack frame) which is on the user stack
segment (step 191). The stack frame is a dynamic area of the process
stack segment used as a control area for function calls. The process
stack segment is a dynamic area of memory belonging to a process. In
step 192 the caller Routine calling address is calculated (step 192) and
with the help of the data in Process Valid Address Range List it is
examined if the said caller Routine calling address is within valid
address range limits (step 194). In step 196 it is determined whether
the calling address valid or non-valid. To calculate if said caller Routine

calling address is within said valid address range limit said caller
21

WO 01/37095 PCT/US00/31032

Routine calling address is matched with said valid address range limit.
If said caller Routine calling address is within said valid address range
than caller Routine calling address is valid. Next, Calling Address
Validation Routine module by Pre-Entry routine or the like notifies SFE
Server 116 or the like about the test result (step 198 and step 200).

It will be appreciated to by persons skilled in the art that in
this illustrated embodiment of the present invention any unauthorized or
illegal system call or library call originating from memory areas out of
active process address space memory device 118, 120, 122 and the

like of Fig. 1 will be detected and optionally their execution will be

prevented by SFE System 100.

Reference is now made to Fig. 7 which is a high-level flow
diagram of the Calling Address Validation Routine module relating to an
another embodiment of the present invention.

In the embodiment thereof Calling Address Validation Routine
module commences its operation by reading the caller return address
from the Procedure Activation Record (stack frame) on the process
stack segment (step 202). It will be appreciated that reading caller
Routine return address is significantly faster and more accurate. In step

204 the caller Routine calling address is calculated and it is examined
22

WO 01/37095 PCT/US00/31032

with the help of system-level structures to determine whether the calling
address is inside the address limits of the process stack segment (step
206). Such determination is accomplished by comparing said caller
Routine calling address with address limits of said process stack
segment. Next, Calling Address Validation Routine module by
Pre-Entry routine or the like notifies SFE Server 116 or the like about

the result of the examination (step 210 and step 212).

It will be appreciated by persons skilled in the art that in this
further embodiment of the invention any unauthorized or illegal system
call or library call originating from the process stack segment structure

will be detected and optionally prevented by SFE System 100.

Additional advantages will readily occur to the person skilled
in the art. The invention, in its broader aspects is, therefore, not limited
to the specific details, representative methods, systems and examples
shown and described. It will be further appreciated by persons skilled
in the art that the present invention is not limited to what has been
particularly shown and described hereinabove. Rather the scope of the

applicant's general inventive concept and the claims which follow.

23

WO 01/37095 PCT/US00/31032

CLAIMS

1.1n a computer system running an operating system platform, said
operating system including a kernel Space and a process space,
said process space including a user application running in process
space, said user application Operative to intercept system calls, a
method of secure function execution, said method comprising the
step of:
examine said intercepted system call validity by comparing said
intercepted system call originating address with range of
process valid addresses associated with said process from

which said intercepted system call originated.

2. The method of claim 1, further comprising the step of:

providing notification as to the validity of said intercepted system

call.

3. The method of claim 1, further comprising the step of:

terminating said intercepted system call.

4. The method of claim 2, further comprising the step of:
24

WO 01/37095 PCT/US00/31032

terminating said intercepted system call.

3. The method of claim 1, further comprising the steps of:
responsive to process creation inserting application program
interface interception module into said created process;

responsive to process creation updating process valid addresses

table.

6. The method of claim 1, further comprising the step of:

responsive to process termination updating process valid

addresses table;

7.1n a computer system running an operating system platform, said
operating system including a kernel space and a process space,
said process space including a user application running in process
space, said user application operative to intercept library calls, a
method of secure function execution, said method comprising the
step of:
examine said intercepted library call validity by comparing said
intercepted library call ‘originating address with range of

process valid addresses associated with said process from
25

WO 01/37095 PCT/US00/31032

which said intercepted library call originated.

8. The method of claim 7, further comprising the step of:

providing notification as to the validity of said intercepted library

call.

9. The method of claim 7, further comprising the step of:

terminating said intercepted library cail.

10. The method of claim 8, further comprising the step of:

terminating said intercepted library call.

11. The method of claim 7, further comprising the steps of:
responsive to system call loading dynamic link library hooking and
patching library routines associated with said dynamic link
library;
responsive to system call unloading dynamic link library updating

process valid addresses table;

12. In a computer system running an operating system platform, said

operating system including a kernel space and a process space,
26

WO 01/37095 PCT/US00/31032

said process space including a user application running in process
space, said user application operative to system and function calls,
said system or function call intercepted, a method of secure function
execution, said method comprising the steps of:
receiving caller routine return address from said process memory
device;
determining whether caller routine address is valid by comparing

said caller address routine with process valid address table.

13. The method of claim 12, further comprising the step of:

providing notification as to the validity of said caller routine return

address.

14. The method of claim 12, further comprising the step of:

performing user predetermined acts associated with said validity of

caller routine address.

15. The method of claim 12, wherein the step of receiving caller
routine return address from said process memory device further

comprises the step of;

determining said caller routine calling address by determining the
27

WO 01/37095 PCT/US00/31032

address preceding said caller routine address.

16. In a computer system running an operating system platform, said
operating system including a kernel space and a process space,
said process space including a user application running in process
space, said user application operative to system and function calls,
said system or function call intercepted, a method of secure function
execution, said method comprising the steps of:

receiving caller routine return address from said process memory
device;
determining whether caller routine address is valid by comparing

said caller address routine with associated process stack

address area.

17. The method of claim 16, further comprising the step of:

providing notification as to the validity of said caller routine return

address.

18. The method of claim 16, further comprising the step of:
performing user predetermined acts associated with said validity of

caller routine address.
28

WO 01/37095 PCT/US00/31032

19. The method of claim 16, wherein the step of receiving caller

routine return address from said process memory device further

comprises the step of:

determining said caller routine calling address by determining the

address preceding said caller routine address.

20. The method of secure function execution as substantially

described hereinabove.

21. The method of secure function execution as illustrated in any of

the drawings.

For the Applicant

Soroker — Agmon, Law Offices

29

WO 01/37095 PCT/US00/31032

_____________________ L ~JD0
PROCESS 'A' ADDRESS | 118
SPACE 112
——————— (\/
3 DLLs 116 .
l r\/ 0
______ SECURE .
R APls] FUNCTION :
| b I EXECUTION :
———— === SERVER .
| APIINTERCEPTION X
L MODULE :
PROCESS 'B' ADDRESS .
SPACE X
| DLLs :
I I ______ '
| APIs .
e :
| API INTERCEPTION
| MODULE .
' PROCESS 'C ADDRESS
' — _ SPACE __ __ ‘
X | DLLs X
: I ' —————— .
: | L APIs '
L .
; | API INTERCEPTION 3
' | MODULE '
5 USER SPACE
: 114
r\/
SYSTEM CALL 124 .
INTERCEPTION ~ KERNEL SPACE
COMPONENT

177

WO 01/37095 PCT/US00/31032

116

150
INITIALIZE APPLICATION
152
MONITOR SYSTEM CALLS [~
RESPOND TO SYSTEM |7
CALLS
1
MONITOR LIBRARY 56
FUNCTION CALLS
158
RESPOND TO LIBRARY
FUNCTION CALLS

277

WO 01/37095 PCT/US00/31032

184
LOAD SYSTEM CALL
INTERCEPTION
COMPONENT
186
GET LIST OF ACTIVE
PROCESSES
158
BUILD PROCESS ADDRESS
LIST
190
INSERT API INTERCEPTION |~
MODULE TO ALL ACTIVE
PROCESSES

377

WO 01/37095 PCT/US00/31032

160

YES NO

TERMINATE ILLEGAL ,\1/64

FUNCTION
SYSTEM CALL
PROCESS CREATION
NO
YES
v v
NOTIFY USER/PERFORM 166| INSERT API INTERCEPTION | 168
PREDETERMINED OR ™~ | MODULE TO PROCESS |~
USER INSTRUCTED ACTION

L I

UPDATE PROCESS ,\1/70
ADDRESS LIST

——
vy Vv

RETURN

SYSTEM CALL
PROCESS
TERMINATION?

NO

FIG. 4

4 /7

WO 01/37095 PCT/US00/31032

YES ILLEGAL LIBRARY

CALL?

TERMINATE ILLEGAL [180

FUNCTION "~
174
DLL LOADED INTO
PROCESS ADDRESS
SPACE?
NOTIFY USER/PERFORM 182
PREDETERMINED OR ~

USER INSTRUCTED ACTION

176

——r

A 4

DLL UNLOADED FROM
PROCESS ADDRESS
SPACE?

~L HOOK AND PACTH API IN
177 LOADED DLL

PDATE PROCESS ADDRESS | 178
Y L4 —p AT R e A

RETURN

FIG. 5

577

6 /7

WO 01/37095 PCT/US00/31032
GET CALLERROUTINE 191
RETURN ADDRESS FROM
PROCEDURE ACTIVATION
RECORD
CALCULATE CALLER | 49,
ROUTINE CALLING {_
ADDRESS
CHECK IF CALLER
ROUTINE ADDRESS IS
WITHIN VALID ADDRESS (194
RANGE LIMITS IN THE
PROCESS ADDRESS LIST
196
NO CALLER ROUTINE YES
CALLING ADDRESS
VALID?
NOTIFY SFE SERVER NOTIFY SFE SERVER
ABOUT ILLEGAL CALL OR | 200 ABOUT LEGAL CALLOR | 198
PERFORM USER PERFORM USER
PREDETERMINED ACTION PREDETERMINED ACTION

WO 01/37095

GET CALLER ROUTINE
RETURN ADDRESS FROM
PROCEDURE ACTIVATION

RECORD

CALCULATE CALLER
ROUTINE CALLING
ADDRESS

CHECK IF CALLER
ROUTINE CALLING
ADDRESS IS IN PROCESS
STACK AREA

CALLER ROUTINE

YES /CALLING ADDRESS IN \.NO

PROCESS STACK
AREA?

NOTIFY SFE SERVER
ABOUT ILLEGAL CALL OR ,\%1 2
PERFORM USER
PREDETERMINED ACTION

PCT/US00/31032

1206

NOTIFY SFE SERVER
ABOUT LEGAL CALL OR \21 0
PERFORM USER
PREDETERMINED ACTION

FIG.7

777

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/31032

A. CLASSIFICATION OF SUBJECT MATTER
[PC(7) : GO6F 11/30, 12/14, 15/173, 15/177; HO4L 9/00, 9/32
US CL :713/200, 201; 709/217, 218, 219, 223, 224, 225
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 713/200, 201; 709/217, 218, 219, 223, 224, 225

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,E US 6,185,689 Bl (TODD, SR. ET AL) 06 FEBRUARY 2001, SEE | 1-21
ENTIRE DOCUMENT

X,p US 6,088,804 A (HILL ET AL) 11 JULY 2000, SEE ENTIRE | 1-21

DOCUMENT

X,p US 6,067,620 A (HOLDEN ET AL) 23 MAY 2000, SEE ENTIRE | 1-21
DOCUMENT

X,p US 6,061,798 A (COLEY ET AL) 09 MAY 2000, SEE ENTIRE | 1-21
DOCUMENT

X US 5,940,591 A (BOYLE ET AL) 17 AUGUST 1999, SEE| 1-21

ENTIRE DOCUMENT

X US 5,832,228 A (HOLDEN ET AL) 03 NOVEMBER 1998, SEE| 1-21
ENTIRE DOCUMENT

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the

"A” document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance
v "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P” document published prior to the international filing date but later than g~ document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the mtematloﬁl sea Ah reﬁorz 0 0 1
25 FEBRUARY 2001
Name and mailing address of the ISA/US Authorized officer
Commussioner of Patents and Trademarks)
Box PCT ﬂ? 12/ £z
Washington, D.C. 20231 CHRISTOPHER 5" REVKR
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9618

Form PCT/ISA/210 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

International apptication No.

PCT/US00/31032
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,826,014 A (COLEY ET AL) 20 OCTOBER 1998, SEE 1-21

X,p

ENTIRE DOCUMENT

US 5,577,209 A (BOYLE ET AL) 19 NOVEMBER 1996, SEE 1-21

ENTIRE DOCUMENT

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/31032

B. FIELDS SEARCHED
Electronic data bases consuited (Name of data base and where practicable terms used):

BRS (FILES: USPAT, DERWENT, JPO, EPO, IBM TDB'S), DIALOG (FILES: COMPSCI, ELECTRON,
SOFTWARE)

search terms: buffer, overflow, attack, intrusion, hack, hacker, denial, service, flood, packet, valid, validity, validation,

confirm, confirmation, confirming, intercept, interception, intercepting, intercepted, address, addresses, location,
originate, originating, originated

Form PCT/ISA/210 (extra sheet) (July 1998)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

