

DEUTSCHE DEMOKRATISCHE REPUBLIK AMT FÜR ERFINDUNGS- UND PATENTWESEN

PATENTSCHRIFT 145989

Ausschließungspatent

Erteilt gemäß § 5 Absatz 1 des Änderungsgesetzes zum Patentgesetz

In der vom Anmelder eingereichten Fassung veröffentlicht

				Int. Cl. ³	
(11)	145 989	(44)	21.01.81	3(51) A 01 N 43/08	}
(21)	AP A 01 N / 215 492	(22)	12.09.79		
(31)	P 28 41 824.8	(32)	22.09.78	(33) DE	

- (72) Puttner, Reinhold, Dr. Dipl.-Chem.; Bühmann, Ulrich, Dr. Dipl.-Chem.; Baumert, Dietrich, Dr. Dipl.-Biol.; Pieroh, Ernst A., Dipl.-Gartenbau-Insp., Personen mit ständigem Wohnsitz in Berlin (West)
- (73) Schering AG, Berlin (West), WB, und Bergkamen, DE
- (74) Internationales Patentbüro Berlin, 1020 Berlin, Wallstraße 23/24.

(54) Fungizides Mittel

(57) Die Erfindung betrifft ein fungizides Mittel zur Bekämpfung phytopathogener Pilze im Gartenbau und in der Landwirtschaft. Ziel der Erfindung ist die Bereitstellung von Mitteln mit verbesserter fungizider Wirkung gegen Blatt- und Bodenpilze. Erfindungsgemäß sind die neuen Mittel gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der allgemeinen Formel I in Mischung mit Träger- und/oder Hilfsstoffen. In der Formel bedeuten beispielsweise: R₁ Wasserstoff oder C1-4-Alkyl; R₂ einen aromatischen Kohlenwasserstoffrest, der gegebenenfalls ein- oder mehrfach substituiert sein kann; R₃ C1-C6-Alkyl, Halogen-C1-C6-Alkyl u.a. oder einen gegebenenfalls ein- oder mehrfach substituierten Phenyl- oder Benzylrest, eine Amidino- oder Dimethylthiocarbarmoyl-Gruppe u.a.; X Sauerstoff, Schwefel, Sulfinyl u.a. - Formel I -

⁽⁷¹⁾ siehe (73)

215492 -1-

Berlin,d.15.1.1980 AP AO1N/215 492 55 774 18

Fungizides Mittel

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein fungizides Mittel zur Bekämpfung phytopathogener Pilze enthaltend neue Essigsäureanilide.

Charakteristik der bekannten technischen Lösungen

Mittel zur Bekämpfung phytopathogener Pilze sind bereits bekannt. Praxisbekannte Mittel dieser Art sind z. B. Tetramethylthiuramidisulfid (DE-PS 642 532) und Manganäthylen-bisdithiocarbamat (US-PS 2 504 404).

Ziel der Erfindung

Ziel der vorliegenden Erfindung ist die Bereitstellung neuer Mittel mit verbesserter fungizider Wirkung, insbesondere mit guter Wirkung gegen Blatt- und Bodenpilze.

Darlegung des Wesens der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, neue Verbindungen mit den gewünschten Eigenschaften zu entwickeln, die als Wirkstoff in fungiziden Mitteln geeignet sind.

Diese Aufgabe wird erfindungsgemäß durch ein Mittel gelöst, das dadurch gekennzeichnet ist, daß es mindestens eine Verbindung der allgemeinen Formel

enthält, in der

- R₁ Wasserstoff oder C₁-C₄-Alkyl,
- einen aromatischen Kohlenwasserstoffrest oder einen einoder mehrfach, gleich oder verschieden durch C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Halogen, Trifluormethyl, Nitro, C_1 - C_4 -Alkoxycarbonyl oder Cyan substituierten aromatischen Kohlenwasserstoffrest,
- R₃ C₁-C₆-Alkyl, Halogen-C₁-C₆-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-Alkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, Halogen-C₁-C₆-Alkylcarbonyl, ein-oder mehrfach, gleich oder verschieden durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Trifluormethyl, Nitro oder Amino substituiertes Phenyl oder Benzyl, die Amidinooder Dimethyl thiocarbamoyl-Gruppe und
- X Sauerstoff, Schwefel, die Sulfinyl- oder Sulfonylgruppe bedeuten.

Die erfihdungsgemäßen Verbindungen sind überraschenderweise den bekannten Mitteln der oben genannten Art in der Wirkung gegen phytopathogene Pilze überlegen und besitzen außerdem eine gute Pflanzenverträglichkeit und eine ausreichende Wirkungsdauer. Sie wirken in den praktisch in Frage kommenden Aufwandmengen nicht phytotoxisch, so daß bei ihrer Verwendung negative Beeinflussungen des Pflanzenwuchses ausgeschlossen sind. Dank dieser vorteilhaften Eigenschaften können diese Verbindungen daher in der Landwirtschaft oder im Gartenbau zur Boden- und Erdenbehandlung oder zur Blattapplication zum Einsatz kommen.

Die erfindungsgemäßen Verbindungen zeichnen sich durch eine hervorragende Wirkung gegen eine Vielzahl von Schadpilzen aus, wie z. B. Pythium, Phytophthora, Plasmopara, Piricularia, Botrytis und andere.

Im Gegensatz zu den nur vorbeugend wirksamen Mitteln, wie z. B. Manganäthylenbisdithiocarbamat, besitzen die erfindungsgemäßen Verbindungen den außerordentlichen Vorteil einer kurativen und systemischen Wirkung und erlauben damit auch die Bekämpfung von bereits in die Pflanzen eingedrungenen Pilzen.

Von den erfindungsgemäßen Verbindungen zeichnen sich durch eine sehr gute Wirkung insbesondere diejenigen aus, bei denen in der oben angegebenen Formel I

- R, Wasserstoff, Methyl oder Athyl,
- R2 Phenyl, Methylphenyl, Dimethylphenyl, Methoxyphenyl, Fluorphenyl, Chlorphenyl, Bromphenyl, Dichlorphenyl, Trifluormethylphenyl, Methylthiophenyl oder Cyanphenyl,
- R₃ Methyl, Äthyl, Propyl, Isopropyl, tert.-Butyl, Allyl, Propenyl, Propinyl, Methoxyäthyl, Benzyl, Chlorbenzyl, Methylbenzyl, Methoxybenzyl, Phenyl, Chlorphenyl, Methylphenyl, Methoxyphenyl, Acetyl, Chloracetyl und
- X Sauerstoff, Schwefel, die Sulfinyl- oder die Sulfonylgruppe bedeuten.

Die erfindungsgemäßen Verbindungen können entweder allein, in Mischung miteinander oder mit anderen Wirkstoffen angewendet werden. Gewünschtenfalls können andere Fungizide, Nematizide, Insektizide oder sonstige Schädlingsbekämpfungsmittel – je nach dem gewünschten Zweck- zugesetzt werden.

Berlin, d. 15.1.1980 55 774 18

Zweckmäßig werden die Wirkstoffe in Form von Zubereitungen, wie z. B. Pulvern, Streumitteln, Granulaten, Lösungen, Emulsionen oder Suspensionen, unter Zusatz von flüssigen und/oder festen Trägerstoffen bzw. Verdünnungsmitteln und gegebenenfalls von Netz-, Haft-, Emulgier- urd/oder Dispergierhilfsmitteln angewendet.

Geeignete flüssige Trägerstoffe sind Wasser, Mineralöle, oder andere organische Lösungsmittel, wie z. B. Xylol, Chlorbenzol, Cyclohexanol, Dioxan, Acetonitril, Essigester, Dimethylformamid, Isophoron und Dimethylsulfoxyd.

Als feste Trägerstoffe eignen sich Kalk, Kaolin, Kreide, Talkum, Attaclay und andere Tone sowie natürliche oder synthetische Kieselsäure.

An oberflächenaktiven Stoffen sind z. B. zu nennen: Salze der Ligninsulfonsäuren, Salze von alkylierten Benzolsulfonsäuren, sulfonierte Säureamide und deren Salze, polyäthoxylierte Amine und Alkohole.

Sofern die Wirkstoffe zur Saatgutbeizung Verwendung finden sollen, können auch Farbstoffe zugemischt werden, um dem gebeizten Saatgut eine deutlich sichtbare Färbung zu geben.

Der Anteil des bzw. der Wirkstoffe(s) im Mittel kann in weiten Grenzen variieren, wobei die genaue Konzentration des für die Mittel verwendeten Wirkstoffs hauptsächlich von der Menge abhängt, in welcher die Mittel verwendet werden sollen. Beispielsweise enthalten die Mittel zwischen etwa 1 bis 80 Gewichtsprozente, vorzugsweise zwischen 20 und 50 Gewichtsprozente Wirkstoff und etwa 99 bis 20 Gewichtspro-

zente flüssige oder feste Trägerstoffe sowie gegebenenfalls bis zu 20 Gewichtsprozente oberflächenaktive Stoffe.

Die Ausbringung der Mittel kann in üblicher Weise erfolgen, z. B. durdh Verspritzen, Versprühen, Vernebeln, Verstäuben, Vergasen, Verräuchern, Verstreuen, Gießen oder Beizen.

Die neuen erfindungsgemäßen Verbindungen lassen sich z. B. herstellen, indem man Verbindungen der allgemeinen Formel

mit Säurehalogeniden der allgemeinen Formel

$$Hal - CO - CH2 - X - R3$$

gegebenenfalls in Gegenwart eines Säureakzeptors gelöst in einem organischen Lösungsmittel zur Reaktion bringt und die Verfahrensprodukte in an sich bekannter Weise isoliert, wobei R₁, R₂, R₃ und X die oben angeführte Bedeutung haben und Hal ein Halogenatom, vorzugsweise ein Chloratom, darstellt.

Im Falle, daß X Schwefel bedeutet, kann die Herstellung der erfindungsgemäßen Verbindung auch erfolgen, indem die Verbindungen der allgemeinen Formel II zunächst mit Säurehalogeniden der allgemeinen Formel

$$Hal - CO - CH_2 - Hal$$

gegebenenfalls in Gegenwart eines Säureakzeptors, gelöst in einem organischen Lösungsmittel, zu Verbindungen der allgemeinen Formel

$$H_2C$$
 --- C - N - CO - CH_2 - Hal
 R_2
 C - C = O

umgesetzt werden, die man denn mit Verbindungen der allgemeinen Formel

$$B^{(+)}$$
 S - R_3

oder mit Thioharnstoff der Formel

$$S = C \frac{NH_2}{NH_2}$$

in einem inerten organischen Lösungsmittel unter Stickstoff zu den gewünschten Verfahrensprodukten umsetzt, wobei R_1 , R_2 und R_3 die oben angeführte Bedeutung haben, B ein Alkalimetallatom, vorzugsweise Natrium, und Hal ein Halogenatom, vorzugsweise Chlor, darstellen.

Als Säureakzeptoren können gegebenenfalls Verwendung finden z. B. organische Basen, wie Pyridin, Triäthylamin oder N,N-Dimethylanilin, oder anorganische Basen, wie Hydroxide, Oxide und Carbonate von Alkali- und Erdalkalimetallen.

Als Lösungsmittel können eingesetzt werden organische Lösungsmittel, wie z. B. Äther, Tetrahydrofuran, Benzol, Toluol, Xylol, Essigester, Acetonitril, Dimethylformamid oder Dimethylsulfoxid. Die Reaktionen werden zweckmäßigerweise bei Temperaturen zwischen -15 °C und 150 °C durchgeführt.

Im Falle, daß X die Sulfinyl- oder Sulfonylgruppe darstellt, werden die erfindungsgemäßen Verbindungen der allgemeinen Formel I mit X in der Bedeutung Schwefel mit Oxidationsmitteln, wie organische Persäuren, z. B. 3-Chloperbenzoesäure, in einem inerten organischen Lösungsmittel, wie z. B. Methylchlorid oder Chloroform, oder mit anorganischen Reagentien, wie z. B. Wasserstoffperoxid oder Kaliumpermanganat, bei Temperaturen zwischen O und 100 °C in Essigsäure umgesetzt. Zur Darstellung der Sulfinylverbindungen werden etwa 2 Oxidationsäquivalente und im Falle der Sulfonylverbindungen etwa 4 Oxidationsäquivalente benötigt.

Ausführungsbeispiel

Die Erfindung wird nachstehend an einigen Ausführungsbeispielen näher erläutert. Die folgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Verbindungen.

Beispiel 1

Methoxyessigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/

Eine Mischung aus 9,75 g (0,047 Mol) 3-(2,6-Dimethylanilino)-perhydrofuranon-2, 6,50 g (0,06 Mol) Methoxyacetylchlorid,

250 ml Toluol und 2 ml Dimethylformamid wird 3 Stunden bei 25 °C und anschließend eine Stunde bei Siedetemperatur gerührt. Man engt darauf im Vakuum zur Trockne ein und digeriert den festen Rückstand mit Diisopropyläther. Nach dem Absaugen der Kristalle wird im Vakuum bei 25 °C getrocknet.

Ausbeute: 11,5 g = 88 % der Theorie

Fp.: 130 - 131 °C

Beispiel 2

Acetoxyessigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid

10,26 g (0,05 Mol) 3-(2,6-Dimethylanilino)-perhydrofuranon-2 in 200 ml Toluol gelöst werden mit 6,85 g (0,05 Mol) Aceto-xyessigsäurechlorid versetzt und eine Stunde zum Sieden erwärmt. Die Reaktionslösung wird anschließend im Vakuum zur Trockne eingeengt. Das hinterbleibende Öl wird durch Anreiben mit Äther kristallisiert. Man saugt die Kristalle ab, wäscht mehrmals mit wenig Äther und treocknet die Substanz bei ca. 25 °C im Vakuum.

Ausbeute: 12,64 g = 82,8 % der Theorie

Fp.: 106 - 108 °C

Beispiel 3

Methylthioessigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/

28,17 g (0,1 Mol) Chloressigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid7 werden in 120 ml Acetonitril gelöst und mit 6,5 g (0,15 Mol) Natriummethylat versetzt. Man

kühlt die Mischung auf ca. -15 °C ab und versetzt unter Rühren mit 22,4 g (0,47 Mol) Methylmercaptan. Nach dem langsamen Erwärmen auf 20 °C bis 25 °C wird die Mischung ca. 20 Stunden bei dieser Temperatur nachgerührt. Anschließend wird mit Essigester/Wasser aufgenommen und die alkalische Wasserphase abgetrennt. Die organische Phase wird einmal mit Natronlauge ausgeschüttelt und anschließend neutral gewaschen. Die Essigesterphase wird über Magnesiumsulfat getrocknet, abfiltriert und im Vakuum eingeengt. Der ölige Rückstand wird im Ölpumpenvakuum getrocknet.

Ausbeute: 18 g = 61,3%der Theorie

Fp.: 71 - 73 °C

Beispiel 4

Isopropylsulfonyl-essigsäure-\(\sigma^2\),6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid\(\sigma^2\)

9,64 g (0,03 Mol) Isopropylthio-essigsäure-\(\bar{2}\),6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid\(\bar{2}\) werden in 260 ml Chloroform gelöst und mit 12,08 g (0,07 Mol) 3-Chlorperbenzoesäure versetzt. Nach 4stündigem Rühren bei Raumtemperatur werden weitere 6 g (0,035 Mol) 3-Chlorperbenzoesäure zugegeben. Man rührt ca. 14 Stunden nach und schüttelt die organische Phase mehrmals mit 1 N-Natronlauge aus, trocknet über Magnesiumsulfat und engt im Vakuum ein. Die erhaltenen Kristalle werden mit Isoäther digeriert und abgesaugt.

Ausbeute: 9 g = 84,9 % der Theorie

Fp.: 177 - 185 °C

Berlin,d.15.1.1980 55 774 18

Beispiel 5

Dimethyldithiocarbaminsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilinocarbonylmethyl7-ester

8,45 g (0,03 Mol) Chloressigsäure-2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid werden in 100 ml Acetonitril gelöst und nach Zugabe von 5,3 g (0,037 Mol) Natriumdimethyldithiocarbamat 6 Stunden unter Durchleiten von Stickstoff zum Sieden erhitzt. Nach dem Abkühlen auf ca. 20 - 25 °C wird die Reaktionsmischung in 400 ml Wasser gegossen und 3mal mit Chloroform extrahiert. Die vereinigten Chloroformphasen werden über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Der kristalline Rückstand wird abgesaugt, mit Methanol gewaschen und bei Raumtemperatur im Vakuum getrocknet. Ausbeute: 7,7 g = 70 % der Theorie

153 - 156 °C Fp.:

Analog können die folgenden erfindungsgemäßen Verbindungen hergestellt werden.

Name der Verbindung	Physikalische Konstante
Methoxyessigsäure-/3-chlor-N-(2-oxoperhydro-3-furyl)-anilid/	Fp./ 100 - 103 °C
Methoxyessigsäure-\(\bigz_2\), 6-dimethyl-N- (5-methyl-2-oxoperhydro-3-furyl)- anilid\(\bigz_1\)	Fp.: 113 - 114 °C
Methoxyessigsäure-/N-(2-oxoperhydro 3-furyl)-anilid/	Fp.: 65 - 66 °C
Nethoxyessigsäure-/3-methyl-N-(2-oxoperhydro-3-furyl)-anilid/	Fp./ 115 - 116 °C

Name der Verbindung

Physikalische Konstante

			*		
Methoxyessigsäure-∠2,3-dimethyl-N-(2-oxoperhydro-3-furyl)anilid7	Fp.:	105		106	o _C
Methoxyessigsäure-/3-fluor-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid/	Fp.:	.75		76	oc
Methoxyessigsäure-/3-chlor-N-(5-methyl 2-oxoperhydro-3-furyl)-anilid/	- Fp.:	81	_	83	o _C
Methoxyessigsäure-∠2-methyl-N-(2-oxope 3-furyl)-anilid7	rhydr Fp.:			67	°C
Methoxyessigsäure-/2-methoxy-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.:	95		97	og
Methoxyessigsäure-/3-chlor-2-methyl- N-(2-oxoperhydro-3-furyl)-anilid/	Fp.:	106		108	°C
Methoxyessigsäure-/3-cyan-N-(2-oxoper-hydro-3-furyl)-anilid/	Fp.:	93		94	oc
Acetoxyessigsäure-/3-methyl-N-(2-oxopehydro-3-furyl)-anilid/	r- Fp.:	99		103	°°C
Acetoxyessigsäure-/N-(2-oxoperhydro-3-furyl)-anilid/	Fp.:	127		128	oC
Acetoxyessigsäure-/3-brom-N-(2-oxo-perhydro-3-furyl)-anilid/	Fp.:	137	***	138	°C
Acetoxyessigsäure-/2,3-dimethyl-N-(2-operhydro-3-furyl)-anilid/	xo- Fp.:	97	***	98	OC
Acetoxyessigsäure-/3-fluor-N-(2-oso-perhydro-3-furyl)-anilid/	Fp.:	96		98	oC
Acetoxyessigsäure-2,6-dimethyl-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid	Fp.:	140	8 47	141	°C
Acetoxyessigsäure-/2-methyl-N-(2-oxo-perhydro-3-furyl)-anilid/	Fp.:	119	mis	120	o Č
_					

Name der Verbindung	Physikalische Konstante
Acetoxyessigsäure-/3-chlor-N-(2-oxoperhydro-3-furyl)-anilid7	Fp.: 123 - 124 °C
Acetoxyessigsäure-/3-cyan-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 118 - 120 ^o c
Phenylthio-essigsäure-\(\bar{2}\),6-dimethyl N-(2-oxoperhydro-3-furyl)-anilid\(\bar{2}\)	- Fp.: 103 - 105 °C
Äthylthio-essigsäure-/2,6-dimethyl-(2-oxoperhydro-3-furyl)-anilid/	n _D 20 1,5552
Isopropylthio-essigsaure-\(\bar{2}\),6-dimetric N-(2-oxoperhydro-3-furyl)-anilid	hyl- n _D 20 1,5490
tertButhylthio-essigsäure-/2,6-dithyl-N-(oxoperhydro-3-furyl)-anilid	
-S-/3-Chlor-N-(2-oxoperhydro-3-fury anilino-carbonylmethyl/-thiuronium-chlorid	
Dimethyldithiocarbaminsäure-/3-chlo N-(2-oxoperhydro-3-furyl)-anilino- carbonylmethy <u>1</u> 7-ester	9.
Dimethylthiocarbaminsäure-/3-fluor-N-(2-oxoperhydro-3-furyl)anilinocarbonylmethyl/-ester	
(3-Methylphenylthio)-3-essigsäure- /2,6-dimethyl-N-(2-oxoperhydro-3- furyl)-anilid/	n _D 20 1 , 5950
(Benzylthio)-essigsäure-/2,6-dimeth N-(2-oxoperhydro-3-furyl)-anilid/	yl- n _D 20 1,5720
(2-Aminophenylthio)-essigsäure-/2,6 dimethyl-N-(2-oxoperhydro-3-furyl)-anilid_/	

Name der Verbindung	Physikalische Konstante
Chloracetoxyessigsäure-\(\big2\),6-dimethyl\ N-(2-oxoperhydro-3-furyl)-anili\(\bar{d}\)	- Fp.: 115 - 118 ^O C
Phenoxyessigsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 92 - 93 °C
Chloracetoxyessigsäure- \sqrt{N} -(2-oro-perhydro-3-furyl)-anili d 7	Fp.: 64 °C
Chloracetoxyessigsäure-/3-methyl-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 82 - 83 °C
Chloracetoxyessigsäure-/3-brom-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 124 - 125 °C
Phenoxyessigsäure-/3-brom-N-(2-oxoperhydro-3-furyl)-anilid7	Fp.: 114 °C
Phenoxyessigsäure- <u>/N</u> -(2-oxoper- hydro-3-furyl)-anili <u>d</u> /	Fp.: 120 -121 °C
Phenoxyessigsäure-2,3-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid7	Fp.: 80 - 82 °C
Phenoxyessigsäure-/3-methyl-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 87 - 89 °C
Phenoxyessigsäure-/2-methyl-N-(2-oxoperhydro-3-furyl)-anilid/	Fp.: 112 - 113 °C
Phenoxyessigsäure-/3-chlor-N-(2-oxo-perhydro-3-furyl)-anilid7	Fp.: 93 - 95 °C
Chloracetoxyessigsäure-/3-chlor-N-(2-oxoperhydro-3-furyl)-anilid7	Fp.: 102 - 103 °C
Phenoxyessigsäure-/2,6-dimethyl-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid/	
Chloracetoxyessigsäure—\(\overline{2}\), 6-dimethyl- N-(5-methyl-2-oxoperhydro-3-furyl)- anilid\(\overline{7}\)	Fp.: 94 - 97 °C

Physikalische Konstante Name der Verbindung S-/2.6-Dimethyl-N-(2-oxoperhydro-3-furyl)-anilinocarbonylmethyl/-Fp.: 260 °C thiuronium-chlorid (Zersetzung) Äthoxyessigsäure-/2,6-dimethyl-N-63 °C (2-oxoperhydro-3-furyl)-anilid/ Fp.: Äthoxyessigsäure-/2,6-dimethyl-N-(5-82 **-** 83 °C methyl-2-bxoperhydro-3-furyl)-anilid7 Fp.: Äthoxyessigsäure-/3-chlor-N-(2-Fp.: 100 - 101 °C oxoperhydro-3-furyl)-anilid7 Athoxyessigsaure-/N-(2-oxoperhydro-Fp.: 62 - 64 °C 3-furyl)-anild/ Athoxyessigsaure-/3-brow-N-(2-oxo-Fp.: 115 - 116 °C perhydro-3-furyl)-anilid/ Athoxyessigsäure-/3-methyl-N-(2-Fp.: 74 - 76 °C oxoperhydro-3-furyl)-anilid7 Äthoxyessigsäure-/5-chlor-2-methyl-N-Fp.: 101 - 103 °C (2-oxoperhydro-3-furyl)-anilid/ Äthoxyessigsäure-Z2-chlor-N-(2-1,5387 oxoperhydro-3-furyl)-anilid7 Methoxyessigsäure-/2,6-dimethyl-N-)5-80 - 81 °C butyl-2-oxoperhydro-3-furyl)-anilid/ Methoxyessigsäure-/4-chlor-N-(2-Fp.: 105 - 106 °C oxoperhydro-3-furyl)-anilid/

Die erfindungsgemäßen Verbindungen stellen in der Regel nahezu farblose, geruchlose, kristalline Körper oder schwach gelbliche Flüssigkeiten dar, die in Wasser und Benzin sehr schlecht, in polaren Lösungsmitteln, wie z. B. Aceton, Dimethylformamid und Dimethylsulfoxyd, hingegen sehr gut löslich sind.

Die Ausgangsverbindungen zur Herstellung der erfindungsgemä-Ben Verbindungen sind an sich bekannt oder können nach an sich bekannten Verfahren hergestellt werden.

Die Molgenden Beispiele dienen zur Erläuterung der Anwendungsmöglichkeiten und der überlegenen fungiziden Wirkung der erfindungsgemäßen Verbindungen.

Beispiel 6

Grenzkonzentrationstest bei der Bekämpfung von Pythium ultimum

20 %ige pulverförmige Wirkstoffzubereitungen wurden gleichmäßig mit dem Boden vermischt, der durch Pythium ultimum stark verseucht war. Man füllte den behandelten Boden in 0,5 Liter Erde fassende Tonschalen und säte ohne Karenzzeit je Schale 20 Korn Markerbsen (Pisum sativum L. convar. medullare Alef.) der Sorte "Wunder von Kelvedon" aus. Nach einer Kulturdauer von 3 Wochen bei 20 - 24 °C im Gewächshaus wurde die Anzahl der gesunden Erbsen bestimmt und eine Wurzelbonitur (1-4) durchgeführt.

Wirkstoffe, Aufwandmengen und Ergebnisse sind in der nachfolgenden Tabelle aufgeführt.

Wurzelbonitur:

- 4 = weiße Wurzeln ohne Pilznekrosen
- 3 = weiße Wurzeln, geringe Pilznekrosen
- 2 = braune Wurzeln, bereits stärke Pilznekrosen
- 1 = starke Pilznekrosen, Wurzeln vermorscht

		Berlin,d.15.1.1980 55 774 18	
er a f	ur		
	Wurzelbonitur (1-4)		
	urzel 1-4)	444 444 444 444 444 444 444	
	W.		
	gesunder		
	Anzahl gesu Erbsen	<u> </u>	· .
* .	ৰ ন্ন		
	Wirkstoffkonzen- trationen in mg/l Erde	ስብ ስ	
`	Wirkstoff trationen mg/l Erde	22 23 <t< td=""><td></td></t<>	
	Erfindungsgemäße Verbindungen	Methoxyessigsäure-Ze,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/ Methoxyessigsäure-Ze,6-dimethyl-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid/ anilid/ Methoxyessigsäure-Zi-aethyl-N-(2-oxoperhydro-3-furyl)-anilid/ Methoxyessigsäure-Zi-methyl-N-(2-oxoperhydro-3-furyl)-anilid/ Methoxyessigsäure-Zi-furyl)-anilid/ Methoxyessigsäure-Zi-furyl)-anilid/ Mathoxyessigsäure-Zi-furyl)-anilid/ Mathoxyessigsäure-Zi-furyl)-anilid/ methyl-2-oxoperhydro-3-furyl)-anilid/ methyl-2-oxoperhydro-3-furyl)-anilid/ methyl-2-oxoperhydro-3-furyl)-anilid/ methyl-2-oxoperhydro-3-furyl)-anilid/	

Erfindungsgemäße Verbindungen	Wirkstoffkonzen- trationen in mg/l Erde	Anzahl gesunder Erbsen	Wurzelbonitur (1-4)
Methoxyessigsäure- $\sqrt{2}$ -methyl-N-(2-oxoperhydro-3-furyl)-anili <u>d</u> 7	20 40 80 80 80 80 80	777	W44
Methoxyessigsäure- $\sqrt{2}$ -methoxy- \mathbb{N} -(2-oxoperhydro-3-furyl)-anili \overline{a}	004 004 004 000 000 000 000	788	M4 4
Wethoxyessigsäure-/3-cyan-N-(2- oxoperhydro-3-furyl)-anili <u>d</u> /	2004 0408 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	277	4 4 4
Methoxyessigsäure-/3-chlor-2-methyl- N-(2-oxoperhydro-3-furyl)-anili <u>d</u>	20 4 04 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	777	বিব
Acetoxyessigsäure-/2,6-dimethyl-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid/	0748 0400 0400 0000	wú⁄⁄⁄	~~4
Acetoxyessigsäure-/2,6-dimethyl-N- (2-oxoperhydro-3-furyl)-anilig/	20 40 80 80 80 80 80	777 C	N44
Phenyl-thioessigsäure- <u>/</u> Z,6-dimethyl- N-(2-oxoperhydro-3-furyl)-anili <u>d</u> 7	20 40 40 40 40 40 40 40 40 40 40 40 40 40	ω ₀ 0,0	~ 04
Äthylthio-essigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anili d	20 40 40 80 80 80 80 80	7777 V08	444

Erfindungsgemäße Verbindungen	Wirkstoffkonzen- trationen in mg/l Erde	Anzahl gesunder Erbsen	Wurzelbonitur (1-4)
Isopropylthio-essigsäure-\(\overline{Z}\),6-dime-thyl-N-(2-oxoperhydro-3-furyl)-anilid\(\overline{Z}\) Isopropylsulfonyl-essigsäure-\(\overline{Z}\),6-	20 40 80 80 80 80 80 80 80 80 80 80 80 80 80	27 77 7 7 7 7 9 7 1 1 1 1 1 1 1 1 1 1 1 1	444 M4
anili <u>d</u> anili <u>d</u> Vergleichsmittel Manganäthylenbisdithiocarbamat		, – 60 0	4 ~~~
Kontrolle I. (3 Wiederholungen) Verseuchter Boden ohne Behandlung	(၁)	- 00	~~~
Kontrolle II. (3 Wiederholungen) Gedämpfter Boden	р С С С С С С С С С С С С С С С С С С С	777	44 4

Beispiel 7

Bekämpfung von Phytophthora nicotianae var. nicotianae in der Topfkultur von Sinningia speciosa

Sinningia Jungpflanzen der Sorte "Berliner Rot" wurden in Tontöpfe mit einem Durchmesser von 11 cm getopft. Das Topfsubstrat war ein Gemisch aus 1 Teil Torfkultursubstrat und 1 Teil Komposterde. Nach dem Topfen wurden die Pflanzen mit 100 ml der angegebenen Präparatekonzentration einmal gegossen. 3 Tage danach wurden die Töpfe mit Mycelflocken einer 3 Wochen alten Phytophthora-Kultur gleichmäßig inokuliert. Es folgte eine Kulturdauer von 7 Wochen bei 22 – 24 C im Gewächshaus.

Wirkstoffe, Aufwandmengen und Ergebnisse sind in der nachstehenden Tabelle aufgeführt.

Verbindung	Virkstoff- conzentra- cion	Pflanzenausfall nach 7 Wochen	Durch- schnitt. Pflanzen- frischge- wicht nach 7 Wochen
Methoxyessigsäure-	0,01 %	0 %	180 g
<pre>/2,6-dimethyl-N-(2- oxoperhydro-3-furyl)- anilid√</pre>	0,02 %	O %	192 g
Methoxyessigsäure-	0,01 %	0 %	176 g
<u>√N</u> -(2-oxoperhydro-3- furyl)-anilid	0,02 %	0 %	200 g
Kontrolle I. inokuliert	—————————————————————————————————————	. 80 %	145 g
Kontrolle II. nicht inokuliert	•••	0 %	184 g

Berlin, d. 15.1.1980 55 774 18

Beispiel 8

Bekämpfung von Phytophthora parasitica var. nicotianae in der Tabak-Kultur

Tabakjungpflanzen der Sorte "Havana" wurden in Tontöpfe mit einem Durchmesser von 14 cm getopft. Topfsubstrat war ein Gemisch aus 1 Teil Torfkultursubstrat und einem Teil sandiger Komposterde. Nach dem Topfen wurden die Pflanzen mit 100 ml der angegebenen Präparatekonzentration einmal gegossen. 3 Tage danach wurden die Töpfe mit Mycelflocken einer 4 Wochen alten Phytophthora-Kultur gleichmäßig inokuliert. Es folgte eine Kulturdauer von 4 Wochen bei 24 bis 26 °C im Gewächshaus.

Wirkstoffe, Aufwandmengen und Ergebnisse sind in der nachfolgenden Tabelle aufgeführt.

Erfindungsgemäße Verbindung	Wirkstoffkon- zentration	Pflanzenaus- fall nach 4 Wochen	Durchschnittl. Pflanzen- frischge- wicht nach 4 Wochen
Methoxyessigsäure-	0,01 %	0 %	215 g
<pre>/2,6-dimethyl-N-(5- methyl-2-oxoperhydro 3-furyl)-anilid√</pre>	0,02 %	0 %	230 g
Methoxyessigsäure-	0,01 %	0 %	225 g
<pre>/2,6-dimethyl-N(2- oxoperhydro-3- furyl)-anilid </pre>	0,02 %	0 %	227 g
Kontrolle I. inokuliert		100 %	O g
Kontrolle II. nicht inokuliert	ences	0 %	260 g

Berlin, d. 15.1.1980 55 774 18

Beispiel 9

Bekämpfung von Phytophthora capsici in der Paprika-Kultur (Capsicum annuum)

Paprikajungpflanzen wurden in Tontöpfe mit einem Durchmesser von 14 cm getopft. Substrat war ein Gemisch aus 1 Teil Torfkultursubstrat mit 1 Teil sandiger Komposterde. 3 Tage nach dem Topfen wurden die Pflanzen mit 100 ml der angegebenen Präparatekonzentration einmal gegossen. 3 Tage danach wurden die Töpfe mit Mycelflocken einer 4 Wochen alten Phytophthora-Kultur gleichmäßig inokuliert. Es folgte eine Kulturdauer von 4 Wochen bei 24 bis 26 °C im Gewächshaus. Wirkstoffe, Aufwandmengen und Ergebnisse sind in der nach-

folgenden Tabelle aufgeführt.

Erfindungsgemäße Verbindung	Wirkstoff- konzentration	Pflanzenausfall nach 4 Wochen
Methoxyessigsäure-\(\big2,6-di-\) methyl-N-(2-oxoperhydro-\) 3-furyl)-anilid\(\big7\)	0,01 % 0,02 % 0,04 %	20 % 0 % 0 %
Methoxyessigsäure-Z3-chlor- N-(2-cxoperhydro-3-furyl)- anilid7	0,01 % 0,02 % 0,04 %	40 % 0 % 0 %
Kontrolle I. inokuliert Kontrolle II.		100 %
nicht inokuliert	Escal	0 %

Berlin,d.15.1.1980 55 774 18

Beispiel 10

Bekämpfung von Phytophthora cryptogaea in der Topfkultur von Senecio cruentus

Cineraria-Jungpflanzen der Sorte "Erfurter Zwerg" wurden in Tontöpfe mit einem Durchmesser von 11 cm getopft. Tofpsubstrat war ein Gemisch aus 1 Teil Torfkultursubstrat mit 1 Teil sandiger Komposterde. 3 Tage nach dem Topfen wurden die Pflanzen mit Mycelflocken einer 3 Wochen alten Phytophthora-Kultur gleichmäßig inokuliert. Es folgte eine Kulturdauer von 7 Wochen bei 20 bis 22 °C im Gewächshaus. Wirkstoffe, Aufwandmengen und Ergebnisse sind in der nachfolgenden Tabelle aufgeführt.

Erfindungsgemäße Verbindung	Wirkstoff- konzentration	Pflanzenausfall nach 7 Wochen	
Methoxyessigsäure-/2,6-	0,01 %	0 %	
dimethyl-N-(2-cxoperhydro-	0,02 %	0 %	
3-furyl)-anilid7			
Methoxyessigsäure-/2,6-	0,01 %	20 %	
dimethyl-N-(5-methyl-2-oxo	- 0,02 %	0 %	
perhydro-3-furyl)-anilid/			
Kontrolle I.			
inokuliert		100 %	
Kontrolle II.			
nicht inokuliert	-	0 %	

Beispiel 11

Beizung von Buschbohnensaat

Buschbohnensaat (Phaseolus vulgaris var. nanus) der Sorte "Wachs Beste von Allen" wurde mit 20%igen pulverförmigen Wirkstoffzubereitungen gebeizt. 2 Liter Erde fassende Tonschalen (20 x 20 x 5 cm) wurden mit normaler Komposterde angefüllt (Damping-off) und je Schale 25 Korn Bohnensaat ausgesät. Nach einer Kulturdauer von 15 Tagen bei 19 bis 21 °C im Gewächshaus wurden die gesunden Sämlinge bestimmt.

Wirkstoffe, Aufwandmenge und Ergebnisse sind in der nachfolgenden Tabelle aufgeführt.

			215	492)	- 25 -	Berlin,d.15.1.80 55 774 18
	ewicht						
	Pflanzenfrischgewicht je Pflanze	ധഗധ മ്വ്മ് ജജജ	44 <i>w</i> <i>nwr</i> 9999	の44 め27 8888	446 0'00' 888	644 647 888	<i>www</i> 444 がある
2	% gesunde Pflanzen von der Saat	700 700 888	777 000 888	700 700 888 888	200 200 277 277	100 100 23 23 23 23	707 000 000 000 000 888 888
	Wirkstoff in g/kg Saat	0,18 0,25 0,50	00,770	000 000, 000, 000,	000 4.00 9.00 9.00	0,12	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Erfindungsgemäße Verbindung	Methoxyessigsäure-/2,6-dimethyl- N-(2-oxoperhydro-3-furyl)-anilid/	Methoxyessigsäure- <u>/3</u> -chlor-N- (2-oxoperhydro-3-furyl)-anilid/	Methoxyessigsäure-27,6-dimethyl- N-(5-methyl-2-oxoperhydro-3- furyl)-anilid/	Methoxyessigsäure-/N-(2-oxo- perhydro-3-furyl)-anilid/	Methoxyessigsäure-/3-methyl-N- (2-oxoperhydro-3-furyl)-anilid/	Vergleichsmittel Tetramethylthiuramdisulfid Kontrolle I. Verseuchter Boden Kontrolle II. Gedämpfter Boden

Berlin,d,15.1.1980 55 774 18

Beispiel 12

Wirkung prophylaktischer Blattbehandlung gegen Plasmopara viticola an Weinrebenpflanzen im Gewächshaus

Junge Weinrebenpflanzen mit etwa 5 bis 8 Blättern wurden mit einer Wirkstoff-Konzentration von 0,025 % tropfnaß gespritzt, nach Antrocknen des Spritzbelages mit einer wäßrigen Aufschwemmung von Sporangien des Pilzes (etwa 20.000 pro ml) blattunterseits besprüht und sofort im Gewächshaus bei 22 bis 24 °C und möglichst wasserdampfgesättigter Atmosphäre inkubiert.

Vom zweiten Tage an wurde die Luftfeuchtigkeit für 3 bis 4 Tage auf Normalhöhe zurückgenommen (30 bis 70 % Sättigung) und dann für einen Tag auf Wasserdampfsättigung gehalten. Anschließend wurde von jedem Blatt der prozentuale Anteil pilzbefallener Fläche notiert und der Durchschnitt je Behandlung zur Ermittlung der Fungizidwirkung wie folgt verrechnet:

100 - 100 • Befall in Behandelt = % Wirkung

Erfindungsgemäße Verbindung	% Wirkung
Methoxyessigsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/	100
Methoxyessigsäure-/3-chlor-N-(2-oxo-perhydro-3-furyl)-anilid/	100
Methoxyessigsäure-/2,6-dimethyl-N- (5-methyl-2-oxoperhydro-3-furyl)-anilid/	100
Methoxyessigsäure-√N-(2-oxoperhydro- 3-furyl)-anilid7	100
Methoxyessigsäure-/3-methyl-N-(2-oxoperhydro-3-furyl)-anilid7	100
Methoxyessigsäure-/2,3-dimethyl-N- (2-oxoperhydro-3-furyl)-anilid/	100
Methoxyessigsäure-Z3-fluor-N-(5-methyl- 2-oxoperhydro-3-furyl)-anilidZ	100
Methoxyessigsäure-/3-chlor-N-(5-methyl- 2-oxoperhydro-3-furyl)-anilid/	100
Acetoxyessigsäure-/2,6-dimethyl-N-(5-methyl-2-oxoperhydro-3-furyl)-anilid/	74
Phenylthioessigsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/	98
Acetoxyessigsäure-/2-methyl-N-(2-oxo-perhydro-3-furyl)-anilid/	74
Acetoxyessigsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/	100
Methoxyessigsäure-/2-methyl-N-(2-oxoperhydro-3-furyl)-anilid/	100
Methoxyessigsäure-/2-methoxy-N-(2-oxoperhydro-3-furyl)-anilid/	100

Erfindungsgemäße Verbindung	% Wirkung
Methoxyessigsäure-/3-chlor-2-methyl-N-(2-oxoperhydro-3-furyl)-anilid7	100
Acetoxyessigsäure-/3-chlor-N-(2-oxoperhydro-3-furyl)-anilid/	98
Acetoxyessigsäure- <u>/3</u> -cyan-N-(2-oxoperhydro-3-furyl)-anili <u>d</u>	74
Methoxyessigsäure-/3-cyan-N-(2-oxoperhydro-3-furyl)-anilid/	100
Athylthio-essigsäure- $\sqrt{2}$,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anili d	100
Isopropylthio-essigsäure-\(\bar{2}\),6-dimethyl- N-(2-oxoperhydro-3-furyl)-anili\(\bar{d}\)	100
tertButylthio-essigsäure-\(\bar{2}\),6-dimethyl- N-(2-oxoperhydro-3-furyl)-anili\(\bar{d}\)	95
Isopropylsulfonyl-essigsäure-/2,6-dimethyl-N-(2-oxoperhydro-3-furyl)-anilid/	100

Erfindungsanspruch

Fungizides Mittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der allgemeinen Formel

$$H_2^C --- CH - N - CO - CH_2 - X - R_3$$
 $R_1 - C --- CH - N - CO - CH_2 - X - R_3$

I,

in der

 R_1 Wasserstoff oder C_1 - C_4 -Alkyl,

- R₂ einen aromatischen Kohlenwasserstoffrest oder einen einoder mehrfach, gleich oder verschieden durch C₁-C₄Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, Trifluormethyl, Nitro, C₁-C₄-Alkoxycarbonyl cder Cyan substituierten aromatischen Kohlenwasserstoffrest,
- R₃ C₁-C₆-Alkyl, Halogen-C₁-C₆-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-Alkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, Halogen-C₁-C₆-Alkylcarbonyl, ein-oder mehrfach, gleich oder verschieden durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Trifluormethyl, Nitro oder Amino substituiertes Phenyl oder Benzyl, die Amidinooder Dimethylthiocarbamoyl-Gruppe und
- X Sauerstoff, Schwefel, die Sulfinyl- oder Sulfonylgruppe bedeuten, in Mischung mit Träger- und/oder Hilfsstoffen.