(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
30 April 2015 (30.04.2015)
(10) International Publication Number
WO 2015/059451 A1

(51) International Patent Classification:
E02D 9/00 (2006.01)
(21) International Application Number:
PCT/GB20 14/053 108
(22) International Filing Date:
16 October 2014 (16.10.2014)
(25) Filing Language:
English
(26) Publication Language:
English
(30) Priority Data:
13 18599.6 2 1 October 2013 (21.10.2013) GB
(71) Applicant: ASTRA SITE SERVICES LIMITED [GB/GB]; Easter Inch Road, Easter Inch Estate, Bathgate Lothian EH48 2FH (GB).
(72) Inventor: RODGERS, Simon; Astra Site Services Limited, Easter Inch Road, Easter Inch Estate, Bathgate Lothian EH48 2FH (GB).
(74) Agent: CLIFTON COWLEY LEGAL; 25, Meer Street, Stratford-Upon-Avon, Warwickshire CV37 6QB (GB).
(71) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIP (BW, GH, OM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

(54) Title: PILE CROPPING DEVICE

[Continued on next page]
Abstract: A pile cropping device comprising a body locatable around and/or in the region of a pile to be cropped, the body having one or more pile cropping teeth adapted, in use, to engage with and disengage from cladding and/or reinforcement of said pile, wherein at the point of engagement between the cropping tooth or teeth and the pile to be cropped, the planar orientation of the tooth or teeth relative to the axis of the pile remaining generally unaffected by variation in the thickness of said reinforcement and/or cladding to be cropped from the pile.
PILE CROPPING DEVICE

This invention relates generally to the cropping of concrete piles, used in the construction of buildings, after they have been cast in order to reveal the internal reinforced steel rods set within the concrete cladding. More specifically, although not exclusively, this invention relates to an improvement in apparatus used in the cropping of concrete clad piles to reveal the said internal reinforcement steel rods set within.

In the erection of modern buildings, there is a requirement for the use of foundations. One type of foundation, commonly used on areas of reclaimed land, is the well-known reinforced concrete pile. Two types of reinforced concrete pile prevail, namely those cast in situ or otherwise, pre-cast. Pre-cast concrete piles are made intentionally to protrude from the ground in which they are positioned to give satisfactory space for levelling to a required level. Levelling is done by cropping the top of the pile to a required height. The concrete piles also contain steel reinforcing rods which need to be exposed in order that further building works can be structurally tied to the foundations. The need for these reinforcing rods mean that any cropping to the concrete needs to avoid severing the pile all the way through. Devices to crop need to fracture the concrete at a localised point and then remove the waste, or facilitate its removal to reveal a section of reinforcing rod.

Cropping devices are well known in the industry, such as that disclosed in EP0339261, a device lowered over the concrete pile to a desired height and whose cutting teeth fracture the concrete. This device, and many like it, has hydraulically driven jaws that pivot about a point close to the body of the device. This drives the cutting teeth in a circular motion about said point. The concrete piles to be cropped, however, are of varying thicknesses, heights and tolerances; so any given cropping device ideally need to be able to crop a variety of concrete piles of varying size such as of varying thicknesses. If the pile is thicker than average, the jaws need to be wider whereby pressure is therefore applied in a downwards direction, i.e. at an acute angle with respect to a normal plane horizontal with respect to the vertical axis of the pile. If the pile is thinner than average, the jaws need to be narrower and the hydraulic pressure applied to the cutting teeth will be upwards i.e. at an acute angle with respect to a normal plane horizontal with respect to the vertical axis of the pile. The current cropping devices only work at their optimum efficiency with concrete piles of average thickness with very little tolerance thicker or thinner.
A disadvantage of this type of known system is that the pressure from the cutting teeth may be applied at an angle not parallel to the required fracture through the concrete, therefore wasting power. A second disadvantage of this is that the direction of applied hydraulic cutting force may not be parallel to the direction of the cutting teeth throughout the extent of their cutting engagement with the pile; this decreases the life span of the teeth which are consumable items. The method that current cropping devices use to counteract this disadvantage is to lengthen the distance between the centre of rotation and the cutting teeth. The problem with this is that the mechanical force decreases due to the pivot effect created between the pneumatic piston, the centre of rotation and the cutting tooth. The current cropper design therefore makes a compromise between these disadvantages.

It is an object of this invention to provide a pile cropping device wherein power applied by the cutting teeth remains substantially parallel to the desired plane of fracture in the concrete pile. It is another object to provide a pile cropping which allows utilisation of the pivot effect inherent in a typical pile cropping system to utilise the hydraulic more economically. It is yet another object to provide a pile cropping device that directs a cutting force generally parallel to the position of the cutting teeth and independently of the thickness of the pile to be cropped to optimise integrity and longevity of each tooth.

According to the present invention, there is provided a pile cropping device comprising a body locatable around and/or in the region of a pile to be cropped, the body having one or more pile cropping teeth adapted, in use, to engage with and disengage from cladding and/or reinforcement of said pile, wherein at the point of engagement between the cropping tooth or teeth and the pile to be cropped, the planar orientation of the tooth or teeth relative to the axis of the pile remaining generally unaffected by variation in the thickness of said reinforcement and/or cladding to be cropped from the pile. Preferred and optional features are to be found amongst the sub claims herewith.

In one embodiment the device for cropping concrete pile foundations comprises a body for receiving the exposed top of the concrete pile, means for attachment to lifting apparatus, at least one cutting tooth in a hydraulically powered jaw including a parallel linkage to maintain the position of the tooth generally parallel to a desired plane of fracture in the concrete pile.

In a second embodiment, the device for cropping concrete pile foundations comprises one cutting tooth for which there is provided a surface, oppositely located relative to the tooth to provide a contact point for the tooth to push upon when in operation.
In a third embodiment, the device for cropping concrete pile foundations comprises more than one cutting tooth in which an array of similar teeth and mountings therefore is arranged at even spacing around the body to provide even cutting or cropping power distribution into the concrete pile when in operation.

In a still further embodiment of the invention, the device for cropping concrete piles comprises, a body, at least one hydraulically actuated jaw rotationally connected to a pivot point on the body, comprising at least one cutting tooth, the jaws of the pile cropping device containing a parallel linkage between a centre of rotation of the jaw, and a cutting tooth. The pivot point on the body, rotationally connected to the jaw, is rigidly connected to a second point, independent of the jaw, with the line that joins the two being parallel to a desired cutting plane, these two said points being rotationally connected to the cutting tooth by a central linkage and the jaw, the jaw being rotationally connected to the pivot point and to the front of the cutting tooth and the central linkage being rotationally connected to the said second point and to a point at the back of the cutting tooth. The distance between the said second point and said point at the back of the cutting tooth being the same as the distance between the centre of rotation and the point it is connected to at the front of the cutting tooth, the distance between the centre of rotation and the said second point being the same as the distance between the point at the front of the tooth and the point at the back of the tooth. These dimensional qualities hold the cutting tooth parallel to the desired cutting plane and therefore meet the requirements of the non-exclusive objects of this invention.

In order that the invention may be illustrated, more easily appreciated, and readily carried into effect by those skilled in the art, embodiments of the invention will now be described by way of example only with reference to the accompanying drawings in which:

 Figure 1 is a side view of a pile cropping device,
 Figure 2 is a cross-section of the device in figure 1,
 Figure 3 is an enlarged detail view of a jaw-tooth arrangement from figure 2,
 Figure 4 is an isometric view of another preferred embodiment,
 Figure 5 is a side view of the embodiment shown in figure 4,
 Figure 6 is a top view of the embodiment shown in figure 4,
Figure 7 is a cross-section of the device in figure 5 in an open position, and Figure 8 is a cross-section of the device in figure 5 in a closed position.

Referring to the drawings, figure 1 is an image of one embodiment of the pile cropper device (1). The figure shows the device from the side and shows the body of the cropper (11) rotationally connected to jaws (12) at a pivot point (15). The jaws comprise of a jaw assembly (12) and cutting teeth (13). The jaws are driven by hydraulic arms (14) and the internal parallel mechanism holds the tip of the teeth parallel to the desired plane of fracture of the concrete pile (not shown) and the rotation point (16) allows the tip to rotate. The jaw assembly comprises outer plates (18) and support elements (17).

Figure 2 is a cross-sectional view of the device in figure 1 and shows the internal mechanism of the parallel linkage.

Figure 3 shows a detail view of the jaw assembly (12) and demonstrates one form of preferred parallel linkage. The top link (31) between the pivot point of the jaw (15) and the rotational connection (34) is, in this case, parallel to the plane of the desired fracture of the concrete pile. The tooth (13) is held by the tooth linkage (32) which is held parallel to the top link (31) by the jaw assembly (12) and the rotating link (33). The rotating link (33) between the rotational connection (34) at the top of the linkage and the rotational connection (35) at the bottom of the linkage is rotationally connected to both the top linkage (31) and the tooth linkage (32). This causes the tooth to remain parallel when the jaw actuates.

Figure 4 shows another embodiment of the invention, the figure shows the body of the cropper (41) rotationally connected to jaws (42) at a pivot point (45). The jaws comprise of a jaw assembly (42) and cutting teeth (43). The jaws are driven by hydraulic arms (44) and the internal parallel mechanism holds the tip of the teeth parallel to the desired plane of fracture of the concrete pile (not shown).

Figure 5 shows the cropping device of figure 4 from a side view. The cropper is in its open position.

Figure 6 shows the cropping device of figure 4 from the top. The cropper is in its open position.

Figure 7 shows a cross-section of the cropping device of figure 5 and demonstrates the internal parallel mechanism for this embodiment. The jaw assembly (42) contains a
similar arrangement of linkages as figure 2, however, the top linkage (71) connects the pivot point (74) directly to the body of the device. The top linkage (71) positions centre of the pivot point (74) onto the same plane as the centre of the jaw pivot point (45).

Figure 8 shows the same cross-section of the apparatus as figure 7 but it is in a closed position and demonstrates the way with which the parallel mechanism causes the tooth to remain parallel.

The principal advantage of devices according to this invention result from maintaining the orientation of the tooth relative to the pile to be, or being, cropped generally constant throughout its engagement with the pile, its cladding or its projecting reinforcement as the pile reduces in thickness by removal of a portion of mainly the concrete surround. This advantage follows through in the ability to deal similarly with piles of different thickness. By so aligning the plane of cutting teeth to the axis of the pile and keeping that generally constant maximises the efficiency of the cutting/cropping operations, reduces power consumption and optimises replaceable teeth longevity.
CLAIMS

1. A pile cropping device comprising a body locatable around and/or in the region of a pile to be cropped, the body having one or more pile cropping teeth adapted, in use, to engage with and disengage from cladding and/or reinforcement of said pile, wherein at the point of engagement between the cropping tooth or teeth and the pile to be cropped, the planar orientation of the tooth or teeth relative to the axis of the pile remaining generally unaffected by variation in the thickness of said reinforcement and/or cladding to be cropped from the pile.

2. A device as claimed in claim 1, in which the said planar orientation of the tooth or teeth remains generally constant over a range of its movement, in use, from engagement with the said cladding and/or reinforcement to disengagement therefrom.

3. A device as claimed in any preceding claim, wherein the said planar orientation remains generally constant and is independent of the thickness of the pile to be cropped.

4. A device as claimed in any preceding claim, in which a jaw is provided and mounted for powered movement by hydraulic ram, and which jaw comprises more than three pivot points for movable components of the device.

5. A device as claimed in claim 4 in which there are provided five such pivot points.

6. A device as claimed in any preceding claim in which the body is associated with an extension arm which includes a pivot point at or in the region of its extremity spaced from the said body, for a movable component of the device.

7. A device as claimed in any preceding claim, in which the or each cutting tooth is provided with two spaced apart pivot points for pivotal mounting to the said body.

8. A device as claimed in any preceding claim, comprising at least one hydraulically actuated jaw rotationally connected to a pivot point on the body, the device provided with jaws which are adapted to operate with a parallel linkage between a centre of rotation of the jaw, and a cutting tooth.
9. A device as claimed in any preceding claim wherein a pivot point on the body, rotationally connected to a jaw is rigidly connected to a second point, independent of the jaw, a notional line that joins the two points being parallel to a desired cutting plane, said two points being rotationally connected to a cutting tooth by a central linkage and the jaw, the jaw being rotationally connected to the pivot point and to the front of the cutting tooth, and the central linkage being rotationally connected from the said second point to a secondary pivot point of the cutting tooth.

10. A device according to claim 9 wherein the distance between the said second point and said secondary pivot point of the cutting tooth is the same as the distance between the centre of rotation and the point to which it is connected at a primary pivot point of the cutting tooth, the distance between the centre of rotation and the said second point being the same as the distance between the primary and secondary pivot points of the cutting tooth.
According to International Patent Classification (IPC) or to both national classification and IPC

A. CLASSIFICATION OF SUBJECT MATTER

INV. E02D9/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 470 364 A (WILLIAMS MICHAEL J [GB]; DYCE BRIAN J [GB]) 24 November 2010 (2010-11-24) the whole document</td>
<td>1-3, 6, 9, 10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

21 November 2014

Date of mailing of the international search report

01/12/2014

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Geiger, Harald
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 2470364 A</td>
<td>24-11-2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3228389 A</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8901969 A</td>
<td>05-12-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1320353 C</td>
<td>20-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 58903074 DI</td>
<td>04-02-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0339261 A2</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H01315562 A</td>
<td>20-12-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 25764 A</td>
<td>18-10-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2023814 Cl</td>
<td>30-11-1994</td>
</tr>
</tbody>
</table>