Office de la Propriete Canadian CA 2651757 A1 200/7/11/08

Intellectuelle Intellectual Property
du Canada Office (21) 2 651 757
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(86) Date de dépét PCT/PCT Filing Date: 2007/05/03 (51) Cl.Int./Int.Cl. GO6F 3/06 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2007/11/08 GO6F 1/730(2000.01)

. . : _ (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2008/10/31 DATA ROBOTICS INCORPORATED. US

(86) N° demande PCT/PCT Application No.: US 200//068139
(72) Inventeurs/Inventors:
(87) N publication PCT/PCT Publication No.: 2007/128005 TERRY, JULIAN M., US:

(30) Priorité/Priority: 2006/05/03 (US60/797,127) CLARKSON, NEIL A., GB;
BARRALL, GEOFFREY S., US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

54) Titre : SYSTEME DE STOCKAGE DE BLOC A RECONNAISSANCE DE SYSTEME DE FICHIERS, APPAREIL ET
PROCEDE ASSOCIES
54) Title: FILESYSTEM-AWARE BLOCK STORAGE SYSTEM, APPARATUS, AND METHOD

I
|
_—

2720

2721

Host
— filesystem Host OS
Data Data
Structures Structures

Filesystem -
Aware

Storage
Controller

— - Storage
Controller

Data
]l User Data Structures

(57) Abréegée/Abstract:
A filesystem-aware storage system locates and analyzes host filesystem data structures in order to determine storage usage of the
host filesystem. To this end, the storage system might locate an operating system partition, parse the operating system partition to

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2651757 A1 200/7/11/08

en 2 0651 757
13) A1

(57) Abrege(suite)/Abstract(continued):
locate its data structures, and parse the operating system data structures to locate the host filesystem data structures. The storage

system manages data storage based on the storage usage of the host file system. The storage system can use the storage usage
Information to identify storage areas that are no longer being used by the host filesystem and reclaim those areas for additional data
storage capacity. Also, the storage system can identify the types of data stored by the host filesystem and manage data storage
based on the data types, such as selecting a storage layout and/or an encoding scheme for the data based on the data type.

woO 2007/128005 A3 I D00 DA A 0 00 A RA 0 0 R0

CA 02651757 2008-10-31

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [#

International Bureau

(43) International Publication Date
8 November 2007 (08.11.2007)

(51) International Patent Classification:
GO6F 3/06 (2006.01) GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2007/068139

3 May 2007 (03.05.2007)
English

(22) International Filing Date:
(25) Filing Language:

(26) Publication Language: English
(30) Priority Data:

60/797,127 3 May 2006 (03.05.2006) US

(71) Applicant (for all designated States except US): DATA
ROBOTICS INCORPORATED [US/US]; 1881 Land-
ings Drive, Mountain View, CA 94043 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TERRY, Julian,
M. [GB/US]; 1639 Bonita Avenue, Mountain View, CA
94040 (US). CLARKSON, Neil, A. [GB/GB]; 2 The
Wintermeres, 13 Stuart Road, Newbury, Berks RG14 6QX
(GB). BARRALL, Geoflrey, S. [GB/US]; 5642 Steven’s
Creek Blvd., Apt. 607, Cupertino, CA 95014 (US).

(10) International Publication Number

WO 2007/128005 A3

(74) Agents: SUNSTEIN, Bruce, D. et al.; Bromberg & Sun-
stein, LLP, 125 Summer Street, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EL, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: FILESYSTEM-AWARE BLOCK STORAGE SYSTEM, APPARATUS, AND METHOD

2710

2712

Host OS — -

Host filesystem

2721 f |

Host OS
Data
Structures

Data
Structures

Filesystem
Aware
Storage
Controller

Storage
Controller
Data

Structures

IHH%%IH%HHI'

2724

2720

(57) Abstract: A filesystem-aware storage system
locates and analyzes host filesystem data structures
in order to determine storage usage of the host
filesystem. To this end, the storage system might
locate an operating system partition, parse the
operating system partition to locate its data structures,
and parse the operating system data structures to
locate the host filesystem data structures. The storage
system manages data storage based on the storage
usage of the host file system. The storage system
can use the storage usage information to identify
storage areas that are no longer being used by the
host filesystem and reclaim those areas for additional
data storage capacity. Also, the storage system can
identify the types of data stored by the host filesystem
and manage data storage based on the data types,
such as selecting a storage layout and/or an encoding
scheme for the data based on the data type.

CA 02651757 2008-10-31

WO 2007/128005 A3 IHILHVA!H FR A AOD ATN 101 00 SO 0 A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

(88) Date of publication of the international search report:
24 January 2003

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

FILESYSTEM-AWARE BLOCK STORAGE
SYSTEM, APPARATUS, AND METHOD

Priority
This PCT application claims priority from United States Provisional Patent
5 Application No. 60/797,127 entitled Filesystem-Aware Block Storage System,

Apparatus, and Method filed on May 3, 2006 i the names of Juhan M. Terry, Neil A.
Clarkson, and Geoffrey S. Barrall.

This application 1s also related to United States Patent Application No.

11/267,938 entitled Dynamically Expandable and Contractible Fault-Tolerant
10 Storage System Permitting Variously Sized Storage Devices and Method filed on

November 4, 2005 i the name of Geofirey S. Barrall, which claims priority from United
States Provisional Patent Application No. 60/625,495 filed on November 5, 2004 and
from United States Provisional Patent Application No. 60/718,768 filed on September 20,
2005.

15 All of the above patent applications are hereby mcorporated herem by reference mn

thewr entireties.

Technical Field and Background Art

The present imnvention relates to digital data storage systems and methods, and
more particularly to those providing fault-tolerant storage.

20 It 1s known 1 the prior art to provide redundant disk storage m a pattern
according to any one of various RAID (Redundant Array of Independent Disks)
protocols. Typically disk arrays using a RAID pattern are complex structures that require
management by experienced mformation technologists. Moreover in many array designs
using a RAID pattern, if the disk drives in the array are of non-uniform capacities, the

25 design may be unable to use any capacity on the drive that exceeds the capacity of the
smallest drive 1n the array.

One problem with a standard RAID system 1s that 1t 1s possible for disc-surface
corruption to occur on an mirequently used area of the disk array. In the event that

another drive fails, 1t 1s not always possible to determime that corruption has occurred. In

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

such a case, the corrupted data may be propagated and preserved when the RAID array
rebuilds the failed drive.

In many storage systems, a spare storage device will be mamtamed n a ready
state so that 1t can be used m the event another storage device fails. Such a spare storage
5 device 1s often referred to as a “hot spare.” The hot spare 1s not used to store data during
normal operation of the storage system. When an active storage device fails, the failed
storage device 1s logically replaced by the hot spare, and data 1s moved or otherwise
recreated onto the hot spare. When the failed storage device 1s repaired or replaced, the
data 1s typically moved or otherwise recreated onto the (re-)activated storage device, and
10 the hot spare 1s brought offlme so that 1t 1s ready to be used m the event of another
fallure. Mamtenance of a hot spare disk 1s generally complex, and so 1s generally
handled by a skilled administrator. A hot spare disk also represents an added expense.

Generally speaking, when the host filesystem writes a block of data to the storage
system, the storage system allocates a storage block for the data and updates 1ts data

15 structures to mdicate that the storage block 1s m use. From that poimnt on, the storage
system considers the storage block to be mn use, even 1f the host filesystem subsequently
ceases 1o use 1ts block.

The host filesystem generally uses a bitmap to track its used disk blocks. Shortly
after volume creation, the bitmap will generally indicate that most blocks are free,

20 typically by having all bits clear. As the filesystem 1s used, the host filesystem will
allocate blocks solely through use of 1ts free block bitmap.

When the host filesystem releases some blocks back to 1ts free pool, it simply
clears the corresponding bits 1n its free block bitmap. On the storage system, this 1s
manifested as a write to a cluster that happens to contain part of the host’s free block

25 bitmap, and possibly a write to a journal file; almost certamly no mput/output (I/0) to the
actual cluster being freed itself. If the host filesystem were running 1n an enhanced
security mode, there might be I/0 to the freed block due to overwriting of the current on-
disk data by the host so as to reduce the chance of the stale cluster contents bemg
readable by an attacker, but there 1s no way to identify such writes as being part of a

30 deletion process. Thus, the storage device has no way to distinguish a block that the host

filesystem has 1mn use from one that 1t previously used and has subsequently marked free.

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

This mability of the storage system to identity freed blocks can lead to a number
of negative consequences. For example, the storage system could significantly over-

report the amount of storage bemg used and could prematurely run out of storage space.

Summary of the Invention

5 In accordance with one aspect of the mnvention there 1s provided a method of
storing data m by a block-level storage system that stores data under control of a host
filesystem. The method mmvolves locating host filesystem data structures stored for the
host filesystem 1n the block-level storage system; analyzing the host filesystem data
structures to 1dentify a data type associated with the data to be stored; and storing the data

10 using a storage scheme selected based on the data type, whereby data having different
data types can be stored usmg different storage schemes selected based on the data types.

In accordance with another aspect of the mvention there 1s provided a block-level
storage system that stores data under control of a host filesystem. The system comprises
a block-level storage m which host filesystem data structures are stored for the host

15 filesystem and a storage controller operably coupled to the block-level storage for
locating the host filesystem data structures stored in the block-level storage, analyzing the
host filesystem data structures to 1dentify a data type associated with the data to be stored,
and stormg the data using a storage scheme selected based on the data type, whereby data
having different data types can be stored usmg different storage schemes selected based

20 on the data types.

In various alternative embodiments, the data may be stored using a storage layout
and/or an encoding scheme selected based on the data type. For example, frequently
accessed data may be stored so as to provide enhanced accessibility (e.g., 1n an
uncompressed form and m sequential storage), while infrequently access data may be

25 stored so as to provide enhanced storage efficiency (e.g., using data compression and/or
non-sequential storage). Additionally or alternatively, the data may compressed and/or
encrypted depending on the data type.

In various alternative embodiments, the host filesystem data structures may be
located by mamtaming a partition table; parsing the partition table to locate an operating

30 system partition; parsing the operating system partition to identity the operating system

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

and locate operating system data structures; and parsing the operatmg system data

structures to 1dentify the host filesystem and locate the host filesystem data structures.

The operating system data structures may include a superblock, m which case parsing the

operatimg system data structures may include parsing the superblock. The host filesystem
5 data structures may be parsed by making a working copy of a host filesystem data

structure and parsing the working copy.

Brief Description of the Drawings

The foregomg features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying

10 drawings, in which:

Fig. 1 1s an illustration of an embodiment of the mvention i which an object 1s
parsed mto a series of chunks for storage.

Fig. 2 1llustrates m the same embodiment how a pattern for fault-tolerant storage
for a chunk may be dynamically changed as a result of the addition of more storage.

15 Fig. 3 illustrates m a further embodmment of the mvention the storage of chunks 1n
differing fault-tolerant patterns on a storage system constructed using different sized
storage devices.

Fig. 4 illustrates another embodiment of the mvention mn which mdicator states
are used to warn of metficient storage use and low levels of fault tolerance.

20 Fig. 5 1s a block diagram of functional modules used 1n the storage, retrieval and
re-layout of data in accordance with an embodiment of the mvention.

Fig. 6 shows an example m which muroring 1s used m an array containing more
than two drives.
Fig. 7 shows some exemplary zones using different layout schemes to store their

25 data.

Fig. 8 shows a lookup table for implementing sparse volumes.
Fig. 9 shows status indicators for an exemplary array having available storage
space and operating m a fault-tolerant manner, 1n accordance with an exemplary

embodmment of the present invention.

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

Fig. 10 shows status mndicators for an exemplary array that does not have enough
space to mamtam redundant data storage and more space must be added, i accordance
with an exemplary embodiment of the present mnvention.

Fig. 11 shows status mdicators for an exemplary array that would be unable to

5 mamtain redundant data in the event of a failure, m accordance with an exemplary
embodmment of the present invention.

Fig. 12 shows status mmdicators for an exemplary array in which a storage device
has failed, in accordance with an exemplary embodiment of the present mnvention. Slots
B, C, and D are populated with storage devices.

10 Fig. 13 shows a module hierarchy representing the different sofiware layers of an
exemplary embodmment and how they relate to one another.

Fig. 14 shows how a cluster access table 1s used to access a data clusters i a
Zone, m accordance with an exemplary embodiment of the present mmvention.

FIG. 15 shows a journal table update i accordance with an exemplary

15 embodmment of the present invention.

Fig. 16 shows drive layout 1 accordance with an exemplary embodiment of the
ivention.

Fig. 17 demonstrates the layout of Zone 0 and how other zones are referenced, m
accordance with an exemplary embodiment of the mmvention.

20 Fig. 18 demonstrates read error handling m accordance with an exemplary
embodmment of the mvention.

Fig. 19 demonstrates write error handling mm accordance with an exemplary
embodmment of the mvention.

Fig. 20 1s a logic flow diagram demonstrating backup of a bad Region by the

25 Error Manager 1 accordance with an exemplary embodiment of the mvention.

Fig. 21 1s a schematic block diagram showing the relevant components of a
storage array 1 accordance with an exemplary embodiment of the present mvention.

Fig. 22 1s a logic flow diagram showing exemplary logic for managing a virtual

hot spare i accordance with an exemplary embodiment of the present invention.

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

Fig. 23 1s a logic flow diagram showing exemplary logic for determining a re-
layout scenario for each possible disk failure, as m block 2102 of Fig. 22, m accordance
with an exemplary embodiment of the present mnvention.

Fig. 24 1s a logic flow diagram showing exemplary logic for mvoking the virtual

5 hot spare functionality in accordance with an exemplary embodiment of the present
ivention.

Fig. 25 1s a logic flow diagram showing exemplary logic for automatically
reconfigurmg the one or more remaimmg drives to restore fault tolerance for the data, as
in block 2306 of Fig. 24, 1n accordance with an exemplary embodiment of the present

10 mvention.

Fig. 26 1s a logic flow diagram showing exemplary logic for upgrading a storage
device, m accordance with an exemplary embodimment of the present invention.

FIG. 27 1s a conceptual block diagram of a computer system m accordance with
an exemplary embodiment of the present mvention.

15 FIG. 28 1s high-level logic flow diagram for the filesystem-aware storage
controller, in accordance with an exemplary embodimment of the present imvention.

FIG. 29 1s a logic flow diagram for locatmg the host filesystem data structures,
accordance with an exemplary embodiment of the present immvention.

FIG. 30 1s a logic tlow diagram for reclaiming unused storage space, n

20 accordance with an exemplary embodiment of the present mvention.

FIG. 31 1s a logic flow diagram for managing storage of the user data based on the
data types, 1 accordance with an exemplary embodmment of the present mvention.

FIG. 32 1s a schematic block diagram showing the relevant components of a
scavenger, 1 accordance with an exemplary embodiment of the present mvention.

25 FIG. 33 1s pseudo code for locating the host filesystem bitmaps, m accordance
with an exemplary embodiment of the present mnvention.

FIG. 34 1s high-level pseudo code for the BBUM, m accordance with an
exemplary embodiment of the present mmvention.

FIG. 35 1s high-level pseudo code for synchronous processing of an LBA 0 update

30 creatmg a new partition, m accordance with an exemplary embodiment of the present

mvention.

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

FIG. 36 1s high-level pseudo code for synchronous processing of an LBA 0 update
(re)formatting a partition, i accordance with an exemplary embodiment of the present

imvention.

FIG. 37 1s high-level pseudo code for synchronous processing of an LBA 0 update
5 deleting a partition, n accordance with an exemplary embodiment of the present
ivention.
FIG. 38 1s high-level pseudo code for the asynchronous task, m accordance with

an exemplary embodiment of the present mvention.

Detailed Description of Specific Embodiments

10 Definitions. As used m this description and the accompanying clamms, the

following terms shall have the meanings indicated, unless the context otherwise requires:

A “chunk” of an object 1s an abstract slice of an object, made independently of
any physical storage bemg used, and 1s typically a fixed number of contiguous bytes of
the object.

15 A fault-tolerant “pattern” for data storage 1s the particular which by data 1s
distributed redundantly over one or more storage devices, and may be, among other
things, murroring (e.g., m a manner analogous to RAID1), striping (e.g., m a manner
analogous to RAIDS), RAID6, dual parity, diagonal Parity, Low Density Parity Check
codes, turbo codes, or other redundancy scheme or combmation of redundancy schemes.

20 A hash number for a given chunk 1s “unique” when the given chunk produces a
hash number that generally will differ from the hash number for any other chunk, except
when the other chunk has data content 1dentical to the given chunk. That 1s, two chunks
will generally have different hash numbers whenever their content 1s non-identical. As
described m further detail below, the term “unique™ 1s used m this context to cover a hash

25 number that 1s generated from a hash function occasionally producing a common hash
number for chunks that are non-identical because hash functions are not generally perfect
at producing different numbers for different chunks.

A “Region” 1s a set of contiguous physical blocks on a storage medium (e.g., hard

drive).

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

A “Zone” 1s composed of two or more Regions. The Regions that make up a
Zone are generally not required to be contiguous. In an exemplary embodiment as
described below, a Zone stores the equivalent of 1GB of data or control information.

A “Cluster” 1s the umt s1ze within Zones and represents a unit of compression

5 (discussed below). In an exemplary embodiment as described below, a Cluster 1s 4KB
(1.e., eight 512-byte sectors) and essentially equates to a Chunk.

A “Redundant set” 1s a set of sectors/clusters that provides redundancy for a set of
data.

“Backing up a Region” involves copymg the contents of one Region to another

10 Region.

A “first pan” and a “second pair” of storage devices may mclude a common
storage device.

A “first plurality” and a “second plurality” of storage devices may mclude one or
more common storage devices.

15 A “first arrangement™ and a “second arrangement” or “different arrangement” of
storage devices may mclude one or more common storage devices.

In embodiments of the present mvention, a filesystem-aware storage system
analyzes host filesystem data structures in order to determine storage usage of the host
filesystem. For example, the block storage device may parse the host filesystem data

20 structures to determine such things as used blocks, unused blocks, and data types. The
block storage device manages the physical storage based on the storage usage of the host
filesystem.

Such a filesystem-aware block storage device can make mtelligent decisions
regarding the physical storage of data. For example, the filesystem-aware block storage

25 device can 1dentify blocks that have been released by the host filesystem and reuse the
released blocks 1 order to effectively extend the data storage capacity of the system.
Such reuse of released blocks, which may be referred to heremafter as “scavenging” or
“oarbage collection,” may be particularly useful in implementing virtual storage, where
the host filesystem 1s configured with more storage than the actual physical storage

30 capacity. The filesystem-aware block storage device can also 1dentify the data types of

objects stored by the filesystem and store the objects usimng different storage schemes

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

based on the data types (e.g., frequently accessed data can be stored uncompressed and m
sequential blocks, while mfrequently accessed data can be stored compressed and/or m
non-sequential blocks; different encoding schemes such as data compression and
encryption can be applied to different objects based on the data types).

5 The filesystem-aware block storage device will generally support a predetermined
set of filesystems for which 1t “understands” the inner workings sufficiently to locate and
utilize the underlymg data structures (e.g., free block bitmaps). In order to determine the
filesystem type (e.g., NTFS, FAT, ReiserFS, ext3), the filesystem-aware block storage
device typically parses a partition table to locate the operating system (OS) partition and

10 then parses the OS partition to locate the host filesystem’s superblock and thereby
identify the filesystem type. Once the filesystem type 1s known, the filesystem-aware
block storage device can parse the superblock to find the free block bitmaps for the host
filesystem, and can then parse the free block bitmaps to 1dentify used and unused blocks.

In order to detect changes to the data structures (e.g., free block bitmaps) over

15 tmme, the filesystem-aware block storage device may periodically make a copy of the data
structure (e.g., in a private, non-redundant zone) and later compare the currently active
version of the data structure with the earher-made copy to detect changes. For example,
any bitmap entries transitioning from allocated to free can be 1dentified, allowing the
garbage collection operation to be accurately directed to clusters that are good candidates

20 for reclamation. As each bitmap cluster 1s processed, the historical copy can be replaced
with the current copy to mamtam a rolling history of bitmap operations. Over time the
copy of the free block bitmap may become a patchwork of temporally disjomt clusters,
but since the current copy 1s used to locate free entries, this should not cause any
problems.

25 Exemplary embodiments are described heremafter with reference to a storage
array system.

Fig. 1 1s an illustration of an embodiment of the mvention i which an object, in
this example, a file, 1s parsed mto a series of chunks for storage. Initially the file 11 1s
passed mto the storage sofiware where 1t 1s designated as an object 12 and allocated a

30 umque object 1dentification number, m this case, #007. A new entry 131 1s made nto the

object table 13 to represent the allocation for this new object. The object 1s now parsed

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

into “chunks” of data 121, 122, and 123, which are fixed-length segments of the object.
Each chunk 1s passed through a hashing algorithm, which returns a unique hash number
for the chunk. This algorithm can later be apphied to a retrieved chunk and the result
compared with the origimal hash to ensure the retried chunk 1s the same as that stored.
5 The hash numbers for each chunk are stored m the object table 13 m the entry row for the
object 132 so that later the complete object can be retrieved by collection of the chunks.
Also in Fig. 1, the chunk hashes are now compared with existing entries i the
chunk table 14. Any hash that matches an existing entry 141 1s already stored and so no
action 1s taken (1.e., the data 1s not stored again, leading to automatic compression of the
10 objects). A new hash (one which has no corresponding entry i the chunk table 14) 1s
entered mto the chunk table 141. The data m the chunk 1s then stored on the available
storage devices 151, 152, and 153 1n the most etficient manner for fault-tolerant storage.
This approach may lead to the chunk data’s bemg stored, for example, m a murrored
fashion on a storage system comprised of one or two devices or parity striped on a system
15 with more than two storage devices. This data will be stored on the storage devices at
physical locations 1511, 1521, and 1531, and these locations and the number of locations
will be stored m the chunk table columns 143 and 142 so that all physical parts of a
chunk may later be located and retrieved.
Fig. 2 1llustrates m the same embodiment how a pattern for fault-tolerant storage
20 for a chunk may be dynamically changed as a result of the addition of more storage. In
particular, Fig. 2 shows how a chunk physically stored on the storage devices may be laid
out m a new pattern once additional storage 1s added to the overall system. In Fig. 2(a),
the storage system comprises two storage devices 221 and 222 and the chunk data 1s
physically mirrored onto the two storage devices at locations 2211 and 2221 to provide
25 fault tolerance. In Figure 2(b) a third storage device 223 1s added, and 1t become possible
to store the chunk 1 a parity striped manner, a pattern which 1s more storage etficient
than the murrored pattern. The chunk 1s laid out 1n this new pattern m three physical
locations 2311, 2321, and 2331, taking a much lower proportion of the available storage.

The chunk table 21 1s updated to show the new layout 1s 1n three locations 212 and also
30 the new chunk physical locations 2311, 2321, and 2331 are recorded 213.

10

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

Fig. 3 shows a mature storage system, i accordance with an embodiment of the
present mvention, which has been functioning for some time. This illustrates how chunks
may be physically stored over time on storage devices with varying storage capacities.
The figure shows a storage system comprised of a 40GB storage device 31, an 80GB

5 storage device 32 and a 120GB storage device 33. Imitially chunks are stored 1 a fault
tolerant stripe pattern 34 until the 40GB storage device 31 became full. Then, due to lack
of storage space, new data 1s stored m a mnrored pattern 36 on the available space on the
80GB 32 and the 120GB 33 storage devices. Once the 80GB storage device 32 1s full,
then new data 1s laid out m a smgle disk fault tolerant pattern 37. Even though the storage

10 devices comprise a single pool for storing data, the data itself, as stored m the chunks, has
been stored m a variety of distinct patterns.

Fig. 4 illustrates another embodiment of the mvention i which mdicator states
are used to warn of methicient storage use and low levels of fault tolerance. In Fig. 4(a),
all three storage devices 41, 42, and 43 have free space and the mdicator light 44 1s green

15 to show data 1s bemg stored m an efficient and fault-tolerant manner. In Fig. 4 (b) the
40GB storage device 41 has become full, and thus new data can be stored only on the two
storage devices 42 and 43 with remaming free space i a mrrrored pattern 46. In order to
show the data 1s still fully redundant but not efficiently stored, the mdicator light 44 has
turned amber. In Fig. 4 (¢), only the 120GB storage device 43 has free space remaimnimng

20 and so all new data can be stored only mm a murrored pattern on this one device 43.
Because the fault-tolerance 1s less robust and the system 1s critically short of space, the
indicator hight 44 turns red to mdicate the addition of more storage 1s necessary.

In one alternative embodmment, an mdicator 1s provided for each drive/slot m the
array, for example, m the form of a three-color hight (e.g., green, yellow, red). In one

25 particular embodmment, the lights are used to hght the whole front of a disk carrier with a
glowing effect. The hights are controlled to mdicate not only the overall status of the
system, but also which drive/slot requires attention (if any). Each three-color light can be
placed m at least four states, specifically off, green, yellow, red. The hight for a particular
slot may be placed 1n the off state 1f the slot 1s empty and the system 1s operating with

30 sufficient storage and redundancy so that no drive need be mstalled m the slot. The light

for a particular slot may be placed 1n the green state 1f the corresponding drive 1s

11

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

sutficient and need not be replaced. The hight for a particular slot may be placed n the
yellow state 1f system operation 1s degraded such that replacement of the corresponding
drive with a larger drive 1s recommended. The hight for a particular slot may be placed n
the red state 1f the corresponding drive must be imnstalled or replaced. Additional states
5 could be mdicated as needed or desired, for example, by flashing the light between on
and off states or flashing the hght between two different colors (e.g., flash between red
and green after a drive has been replaced and re-layout of data 1s in progress). Additional
details of an exemplary embodiment are described below.
Of course, other indication techniques can be used to mdicate both system status

10 and drive/slot status. For example, a smgle LCD display could be used to mndicate system
status and, 1f needed, a slot number that requires attention. Also, other types of mdicators
(e.g., a smgle status mdicator for the system (e.g., green/yellow/red) along with either a
slot indicator or a hght for each slot) could be used.

Fig. 5 1s a block diagram of functional modules used 1n the storage, retrieval and

15 re-layout of data mn accordance with an embodiment of the imnvention, such as discussed
above m connections with Figs. 1-3. The entry and exiat point for communication are the
object mterface 511 for passing objects to the system for storage or retrieving objects, the
block mterface 312, which makes the storage system appear to be one large storage
device, and the CIFS mterface 513, which makes the storage system appear to be a

20 Wmdows file system. When these mterfaces require the storage of data, the data 1s passed
to the Chunk Parser 52, which performs the break up of the data imnto chunks and creates
an mitial entry mto the object table 512 (as discussed above i connection with Fig. 1).
These chunks are then passed to the hash code generator 33, which creates the associated
hash codes for each chunk and enters these mto the object table so the chunks associated

25 with each object are listed 312 (as discussed above i connection with m Fig. 1). The
chunk hash numbers are compared with the entries i the chunk table 531. Where a match
1s found, the new chunk 1s discarded, as it will be 1dentical to a chunk already stored mn
the storage system. If the chunk 1s new, a new entry for 1t 1s made in the chunk table 331,
and the hashed chunk 1s passed to the physical storage manager 34. The physical storage

30 manager stores the chunk m the most efficient pattern possible on the available storage

devices 871, 572, and §73 and makes a corresponding entry m the chunk table 531 to

12

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

show where the physical storage of the chunk has occurred so that the contents of the

chunk can be retrieved later 312 (as discussed above 1 connection with Fig. 1).

The retrieval of data m Fig. 5 by the object 511, block 512 or CIFS 3513 mterface

1s performed by a request to the retrieval manager 36, which consults the object table 521
5 to determuine which chunks comprise the object and then requests these chunks from the
physical storage manager 34. The physical storage manager 34 consults the chunk table
331 to determine where the requested chunks are stored and then retrieves them and
passes the completed data (object) back to the retrieval manager §6, which returns the
data to the requesting mterface. Also ncluded mn Fig. 5 1s the fault tolerant manager
10 (FTL) 85§, which constantly scans the chunk table to determine 1f chunks are stored m the
most efficient manner possible. (This may change as storage devices 371, 872, and 573
are added and removed.) If a chunk 1s not stored m the most efficient manner possible,
then the FTL will request the physical storage manager 54 to create a new layout pattern
for the chunk and update the chunk table 331. This way all data contimues to remain
15 stored i the most efficient manner possible for the number of storage devices comprising
the array (as discussed above 1in connection with Figs. 2 and 3).
The following provides additional details of an exemplary embodiment of the

present mvention.

20 Data Layout Scheme - Zones
Among other things, a Zone has the effect of hiding redundancy and disk re-
layout from the actual data being stored on the disk. Zones allow additional layout
methods to be added and changed without affecting the user of the zone.
The storage array lays out data on the disk m virtual sections called Zones. A
25 Zonme stores a given and fixed amount of data (for example 1 G Bytes). A zone may
reside on a smgle disk or span across one or more drives. The physical layout of a Zone
provides redundancy 1n the form specified for that zone.
Fig. 6 shows an example m which muroring 1s used m an array containing more
than two drives. Fig. 7 shows some example zones using different layout schemes to
30 store theiwr data. The diagram assumes a zone stores 1GB of data. Note the following

points:

13

CA 02651757 2008-10-31

WO 2007/128005 PCT/US2007/068139
1) A zone that spans multiple drives does not necessarily use the same offset mto
the drive across the set.
11) A sigle drive mirror requires 2G of storage to store 1G of data

10

15

20

25

111) A dual drive mirror requures 2G of storage to store 1G of data.

1v) A 3 drive stripe requires 1.5G of storage to store 1G of data.

V) A 4 drive stripe requires 1.33G of storage to store 1G of data.

V1) Zone A, zone B etc. are arbitrary zone names. In a real implementation each

zone would be 1dentified by a unique number.

vi)) Although immphed by the diagram, zones are not necessarily contiguous on a

disk (see regions later).

vi1) There 1s no techmcal reason why murroring 1s restricted to 2 drives. For

example, in a 3 drive system 1 copy of the data could be stored on 1 drive and

half of the murored data could be stored on each of the other two drives.

Likewise, data could be mirrored across three drives, with half the data on

each of two drives and half of the murror on the other two drives.

Data Layout Scheme - Regions

Each disk 1s splhit into a set of equal-sized Regions. The si1ze of a Region 1s much

smaller than a Zone and a Zone 1s constructed from one or more regions from one or

more disks. For efficient use of disk space, the size of a Region 1s typically a common

factor of the different Zone sizes and the different number of disks supported by the

array. In an exemplary embodmment, Regions are 1/12 the data size of a Zone. The

followimg table lists the number of Regions/Zone and the number of Regions/disk for

various layouts, m accordance with an exemplary embodiment of the mvention.

Layout Method | Number of regions/zone | Number of regions/disk
1 drive mirror 24 24

2 drive mirror 24 12

3 dr1ve stripe 18 6

4 drive stripe 16 4

14

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

Individual Regions can be marked as used, free or bad. When a Zone 1s created, a
set of free Regions from the appropriate disks are selected and logged 1n a table. These
Regions can be m any arbitrary order and need not be contiguous on the disk. When data

5 1s written to or read from a Zone, the access 1s redirected to the appropriate Region.
Among other things, this allows data re-layout to occur m a flexible and efficient manner.
Over time, the different sized Zones will likely cause fragmentation to occur, leaving
many disk areas too small to hold a complete Zone. By using the appropriate Region
s1ze, all gaps left by fragmentation will be at least one Region m size, allowing easy reuse

10 ofthese small gaps with out having to de-fragment the whole disk.

Data Layout Scheme - Re-Layout

In order to facilitate mmplementation, a fixed sequence of expansion and

15 contraction may be enforced. For example, 1f two drives are suddenly added, the
expansion of a zone may go through an mtermediate expansion as though one dnive was
added before a second expansion 1s performed to mcorporate the second drive.
Alternatively, expansion and contraction mmvolving multiple drives may be handled
atomically, without an mtermediate step.

20 Before any re-layout occurs, the required space must be available. This should be
calculated before starting the re-layout to ensure that unnecessary re-layout does not

OCCULI.

Data Layout Scheme - Drive Expansion
25 The following describes the general process of expanding from single drive

muroring to dual drive mirroring 1 accordance with an exemplary embodiment of the

ivention:
1) Assuming single drive muror has data ‘A’ and muror ‘B’
1) Allocate 12 regions on drive to expand zone on to ‘C’
30 111) Copy murror ‘B’ to region set ‘C’

15

CA 02651757 2008-10-31

WO 2007/128005 PCT/US2007/068139
1v) Any writes made to data already copied must be murrored to the appropnate
place m ‘C’
V) When copy 1s complete, update zone table with new layout type and replace

pomters to ‘B’ with pomters to ‘C”

5 V1) Mark the regions that make-up ‘B’ as free.

The following describes the general process of expanding from dual drive
muroring to triple drive striping with parity m accordance with an exemplary
embodmment of the mvention:

10 1) Assume one drive has data ‘A’ and a second drive has mirror ‘B’
1) Allocate 6 regions on third drive for parity mformation ‘C’
111) Calculate parity mformation using first 6 regions of ‘A’ and the second 6
regions of ‘B’
1v) Place parity mformation in ‘C’
15 V) Any writes made to data already processed must be parity’d to the
appropnate place n ‘C’
V1) When copy 1s complete, update zone table with new layout type point table
to first half of ‘A’, second half of ‘B’ and ‘C’
vi) Mark second half of ‘A’ and first halt of ‘B’ as free.

20
The following describes the general process of expanding from triple drive stripmg
to quad drive striping with parity mm accordance with an exemplary embodiment of the
ivention:
1) Assume one drive has data ‘A’, a second drive has data ‘B’ and a third has
25 parity ‘P’
1) Allocate four regions on a fourth drive for strip data ‘C’
111) Copy last two regions of ‘A’ to the first two regions of ‘C’
1v) Copy first two regions of ‘B’ to last to regions of ‘C’
V) Allocate four regions on parity drive ‘D’
30 V1) Calculate panty mformation using first four regions of A, C and the last

four regions of B

16

WO 2007/128005
Vi)
Vil1)
IX)
5
X)

10

15

20

CA 02651757 2008-10-31

Place parity mformation in ‘D’

PCT/US2007/068139

Any writes made to data already processed must be parity’d to the

appropnate place m ‘D’

Update zone table with new layout type and point table to first four regions

of ‘A’, ‘C’, second four regions of ‘B’ and ‘D’

Mark last two regions of ‘A’ and first two regions of ‘B’ as free.

Data Layout Scheme - Drive Contraction

Drive contraction takes place when a disk 1s erther removed or fails. In such a

case, the array contracts the data to get all zones back mto a redundant state 1f possible.

Drive contraction 1s shghtly more complex than expansion as there are more choices to

make. However, transitions between layout methods happen in a similar way to

expansion, but i reverse. Keeping the amount of data to be reproduced to a mmimum

allows redundancy to be achieved as quickly as possible. Drive contraction generally

precedes one zone at a time while space 1s available until all zones are re-layed out.

Generally speaking, only data which resides on the removed or failed disk will be rebuailt.

Choosing how to contract

The following table describes a decision tree for each zone that needs to be re-laid

out, in accordance with an exemplary embodiment of the present mvention:

Zone type

missing data

Condition

Action

Any

No Space available for zone

re-layout

Leave zone 1n degraded state until new

disk added or removed disk 1s

replaced.

Single drive

miror

Data mconsistent

Lock down system and wait for reset

or for the missing drive to be replaced

Dual Drive

1 disk left mn system

Convert to single drive murror

17

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

Mirror Space only available on drive

that contains remaming data

2 or 3 disks left mn system with | Reconstruct mirror on another drive

space 1s available

3 Dnive 2 disks left in system with Convert to 2 drive murroring

Stripmg space available
3 disks left in system with Reconstruct missmg stripe segment on
space available the third drive

4 Drive 3 disks left m system with Convert to 3 drive stripmg

Stripmg space available

The following describes the general process of contracting from dual drive

muroring to single drive mirroring m accordance with an exemplary embodmment of the

ivention:
5 1) Assuming single drive mirror has data ‘A’ and mussing murror ‘B’ or visa
versa
11) Allocate 12 regions on the drive that contams ‘A’ as ‘C’

111) Copy data ‘A’ to region set ‘C’

1v) Any writes made to data already copied must be mirrored to the appropriate
10 place m ‘C’

V) When copy 1s complete, update zone table with new layout type and replace

pointers to ‘B’ with pomters to ‘C”

The following describes the general process of contracting from triple drive stripe
15 to dual drive mirror (missing parity) m accordance with an exemplary embodiment of the
invention:
1) Assuming that stripe consists of data blocks ‘A’, ‘B’ and ‘C’ on different
drives. Parity ‘C’ 1s missing.
11) Define ‘A’ as contaming the first half of the zone and ‘B’ as the second half of
20 the zone.

111) Allocate 6 regions ‘D’ on the ‘A’ drive and 6 regions ‘E’ on the ‘B’ drive

18

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

1v) Copy ‘A’ to ‘E’.
V) Copy ‘B’ to *D’
V1) Any writes made to data already copied must be mirrored to the appropriate
place m ‘D’ and ‘E’
5 vi)) When copy 1s complete, update zone table with new layout type and set
pointers to ‘A’/’D’ and ‘E’/’B’

The following describes the general process of contracting from triple drive stripe
to dual drive murror (missing data) i accordance with an exemplary embodiment of the
10 mvention:
1) Assuming that stripe consists of data blocks ‘A’, ‘B’ and ‘C’ on different
drives. Data ‘C’ 1s missing.
11) Define ‘A’ as contaming the first half of the zone and ‘C’ as the second half of
the zone.
15 111) Allocate 6 regions ‘D’ on the ‘A’ drive and 12 regions ‘E’ on the ‘B’ drive
1v) Copy ‘A’ to the first half of ‘E’
V) Reconstruct missing data from ‘A’ and ‘B’. Write data to ‘D’
V1) Copy ‘D’ to second half of ‘E’.
vi)) Any writes made to data already copied must be murored to the appropriate
20 place m ‘D’ and ‘E’
vi1l) When copy 1s complete, update zone table with new layout type and set
pointers to ‘A’/’D’ and ‘E’

1X) Mark ‘B’ regions as free.

25 The following describes the general process of contractmg from quad drive stripe
to triple drive stripe (missing parity) m accordance with an exemplary embodiment of the
ivention:

1) Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Parity ‘D’ 1s missing.

30 11) Define ‘A’ as contaming the first third, ‘B’ as the second third and ‘C’ as the

third third of the zone

19

CA 02651757 2008-10-31
WO 2007/1280035 PCT/US2007/068139

111) Allocate 2 regions ‘G’ on the ‘A’ drive, 2 regions ‘E’ on the ‘C’ drive and 6
regions ‘F’ on the ‘B’ drive.

1v) Copy first half of ‘B’ to ‘G’

V) Copy second half of ‘B’ to ‘E’

5 V1) Construct parity from ‘A’/’G’ and ‘E’/’C’ and write to ‘F’

vi)) Any writes made to data already copied must be murored to the appropriate
place m ‘G’, ‘E’ and ‘F’

vi1) When copy 1s complete, update zone table with new layout type and set
pointers to ‘A’/’G’, ‘E’/’C’ and ‘F

10 1X) Mark ‘B’ regions as free.

The following describes the general process of contracting from quad drive stripe
to triple drive stripe (first 1/3 missing) i accordance with an exemplary embodiment of
the mvention:

15 1) Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Data ‘A’ 1s missmg.
1) Define ‘A’ as containing the 1¥ third, ‘B’ as the 2™ third and ‘C’ as the 3™
third of the zone and ‘D’ as the partty.
111) Allocate 4 regions ‘E’ on the ‘B’ drive, 2 regions ‘F’ on the ‘C’ drive and 6
20 reg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>