United States Patent

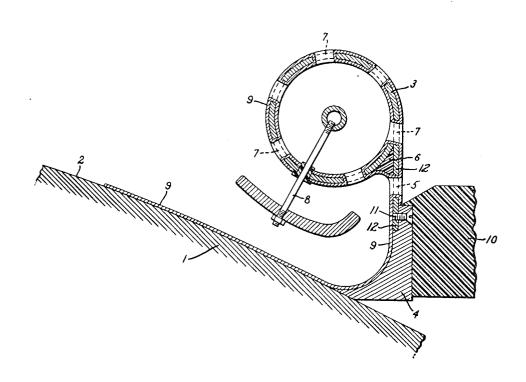
Schmidt

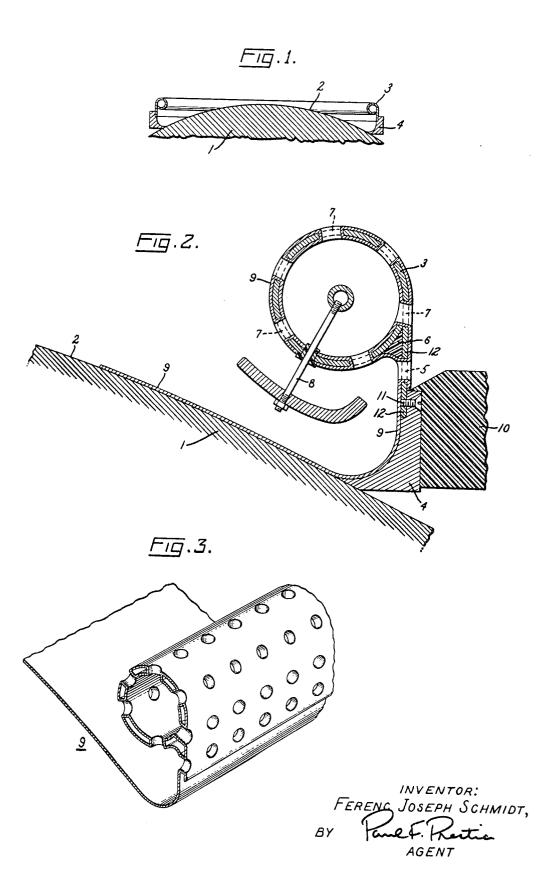
[15] **3,669,849**

[45] **June 13, 1972**

[54] COMPLEXLY SHAPED ARTICLES FORMED BY DEPOSITION PROCESSES								
[72]	Inventor:	Ferenc J. Schmidt, Ardmore, Pa.						
[73]	Assignee:	General Electric Co	mpany					
[22]	Filed:	Oct. 16, 1969						
[21]	Appl. No.:	871,008						
Related U.S. Application Data								
[62]	Division of Ser. No. 604,799, Dec. 27, 1966, Pat. No. 3,515,662.							
[52]	U.S. Cl		204 /11, 204/7, 204/9, 204/19					
			, C23b 7/06, C23b 5/48					
[58]	Field of Sea	rch	204/7, 19, 9, 11					
[56] References Cited								
UNITED STATES PATENTS								
1,872,221 8/193		2 Bart204/7						

2,425,022	8/1947	Bart204/19
3,091,578	5/1963	Hetherington204/19
3,378,469	4/1968	Jochim204/7
2,024,521	12/1935	Harrison204/9


Primary Examiner—John H. Mack Assistant Examiner—T. Tufariello


Attorney—Paul F. Prestia, Allen E. Amgott, Henry W. Kaufmann, Melvin M. Goldenberg, Frank L. Neuhauser and Oscar B. Waddell

[57] ABSTRACT

Perforations in the recessed area of a surface mold are provided to produce smooth, even, relatively stress-free deposition on the recessed area. Fusible fillets may also be used to form rigid bridges over parts of the recessed area. A specific product is an integrally formed, rigidly supported, relatively stress-free electroplated mirror.

2 Claims, 3 Drawing Figures

COMPLEXLY SHAPED ARTICLES FORMED BY **DEPOSITION PROCESSES**

This application is a division of my application Ser. No. 604,799, filed Dec. 27, 1966, now U.S. Pat. No. 3,515,662.

INTRODUCTION

This invention relates to surface molds for forming complexly shaped articles by deposition processes and to means for facilitating deposition in recessed areas of these molds. In particular, this invention relates to molds for producing electroplated, optically smooth, mirror surfaces with integral toroidal supports therefor and to the stress-free, integrally-supported mirrors thus produced.

Formation of articles by deposition onto a form or surface mold is quite common. If the mold includes small depressions, indentations, etc., generally referred to herein as recessed areas, it is often difficult to achieve uniform deposition in these recessed areas. There are a number of possible causes recessed area which closes off the recessed area from further deposition and results in little or no deposition taking place in the recessed area itself. The bridge of deposition material thus formed, since it is formed randomly and without a support surface, is generally not strong enough to contribute to the 25 strength of the article formed. A second problem is that if the deposition process involves the evolution of a gas, the evolved gas collects in the recessed areas of the mold without being able to escape. This inhibits further deposition in these areas by interfering with the availability of the depositing material to 30 the recessed areas. Fluid stagnation may also occur in that part of the depositing material which is trapped in the recessed areas of the mold. Deposition in these areas may therefore also be limited by depletion of the depositing material in the recessed areas. Finally, if the recessed area is located at the 35 juncture of two distinct parts of the mold or article to be formed, where these two parts, when formed, are ultimately of different thickness or rigidity, the article formed includes a substantial amount of inherent stress at this juncture. Such is required in the article formed, such as large electroplated mirrors.

OBJECTS OF THE INVENTION

With a view to these problems, it is a primary object of the 45present invention to provide a mold surface having a recessed area with a means for facilitating deposition in the recessed агеа

Another object of this invention is to provide a means whereby stress-free sheet-like articles may be formed with integral and rigidly attached supporting members therefor.

Still another object of this invention is to provide means for forming complexly shaped articles by deposition processes.

One other object of this invention is to provide an electroplated, relatively stress-free, mirror and a rigidly attached, circumferentially disposed, integrally formed, toroidal support therefor.

BRIEF SUMMARY OF THE INVENTION

These and other objects are met, in accordance with one embodiment of the present invention, by a surface mold, with recessed areas therein, having perforations in these recessed areas, and also having a fusible fillet occupying portions of the space surrounded by the recessed areas. In the preferred form 65 of the present invention, integrally formed, toroidally supported, electroplated mirrors are provided, using as the mold surface, an optically smooth mandrel connected to a perforated, fusible, toroidal member, circumferentially disposed near the other edge of the mandrel, through a perforated mold 70 surface which provides a continuous curved surface from the optically smooth mandrel to the toroidal member. In addition, a fusible fillet is disposed in portions of the recession at the juncture of the flat connecting surface and the toroidal member.

DETAILED DESCRIPTION OF THE INVENTION

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, this invention may be better understood from the following description, taken in conjunction with the following drawings, in which:

FIG. 1 depicts, in cross-section, an electroform for producing relatively stress-free electroplated mirrors with integrally formed, toroidal supports;

FIG. 2 is a detailed cross-sectional view of a part of the electroform shown in FIG. 1; and

FIG. 3 is cut-away view of a part of the electroplated mirror and integrally formed support therefor formed using the 15 device shown in FIGS. 1 and 2.

Referring more specifically to FIG. 1, there is shown a metallic mandrel 1 having an optically smooth surface 2 for electroplating large, concave mirror surfaces. In order to provide rigid, stress-free support for a mirror electroplated on for this. One example is premature deposition across the 20 metallic mandrel 1, a fusible perforated, toroidal member 3 circumferentially disposed around the edge of of the mandrel 1 is provided along with a gutter member 4 which abuts both the metallic mandrel 1 and toroidal member 3 and on which a connecting surface between the deposit on the mandrel 1 and toroidal member 3 is formed. These elements are seen in more detail in FIG. 2.

> In order to provide an even, smooth, rigid, deposit in the recessed area formed by the metallic mandrel 1, the toroidal member 3 and the gutter member 4, perforations 5 are provided at intervals in the recessed area. These are shown in FIG. 2, as is a fusible fillet 6 located at the very tip of the recessed area. Other features include additional perforations 7 in the toroidal member 3, and an electrode extension 8 for providing relatively well distributed electrical stress in the enclosed and recessed areas of the electroform. The electroplate 9 formed on this mold is also shown in FIG. 2, as is a shield 10 over the outer surface of the gutter member 4 and a bolt 11, which secures the gutter member 4 to the toroidal member 3.

In FIG. 3, the electroplate is shown after it has been stress is a particular problem where a high degree of precision 40 removed from the electroform shown in FIGS. 1 and 2, and after the fusible, perforated, toroidal member and the fusible fillet have been melted out.

> While it has been found, in accordance with the present invention, that the perforations 5 are necessary to permit escape of evolved gases and circulation of electrolyte material through the recessed area, the remaining perforations 7 in the toroidal member 3 serve a useful function also. In particular, these additional perforations reduce the weight of the overall structure. Notwithstanding this, the structure is supported by 50 the optimum shape, namely a torus. Further, the support is rigid but the structure is free of stresses caused by the mating of separate members, and particularly those induced by mating of separate members formed of dissimilar materials. Finally, and most importantly, stress induced by uneven plat-

While it is clear that this concept may be used to form, in a single step, a stress-free toroidally supported electroplated mirror, using for example nickel or aluminum electroplating baths, it is equally clear that the concept may be useful in a variety of other applications in which articles having complex shapes are formed by deposition processes onto a mold surface, particularly one having recessed areas. Good deposition within the recessed areas is facilitated by the present invention and rigid bridge supports across the recess area may be provided to enhance the quality of the final article.

While the present invention has been described with reference to particular embodiments thereof for purposes of clarity and convenience, it should be understood that numerous modifications may be made by those skilled in the art without departing from the invention's true spirit and scope. Therefore the appended claims are intended to cover all such equivalent variations as come within the true spirit and scope of the present invention.

What I claim as new and desire to secure by Letters Patent 75 of the United States is:

1. A	rela	atively stress	free electr	ronlated ar	ticle com	nricina o
ralative	der 1	arge, thin, sh	and like -	opiace a	acie com	ibrising a
tropiate	ea :	rigidly attac	ned tubul	ar support	therefor	wherein
said sh	reet	-like portion	n is round	l and said	support	therefor
forms	а	perforated	toroidal	member	circumfe	erentially
						•

disposed at the edge of said round sheet-like portion.

2. An electroplated article, such as that recited in claim 1, wherein said sheet-like portion is a relatively stress-free, optically smooth, mirror surface.