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SYSTEM REPRESENTATION AND HANDLING TECHNIQUES

The present invention relates to techniques for representing and handling a system, in
particular for representing and handling a system that can be represented as a
heterogeneous tree and/or graph structure. Such a system may, for example, be a

language such as a computer-programming language, or a portion thereof.

The present invention also relates to techniques for generating an implementation of a
data structure representative of such a system, and further to techniques for handiing
an instance of the system using such an implementation. In the example context of the
system being a computer-programming language, such an instance may be a code

portion expressed in that language.

Such a code portion may be considered to be a structured expression, comprising a set
of interrelated symbols. Techniques embodying the present invention may be
employed to perform analysis and/or manipulation in respect of the code portion. In
this regard, the present invention relates to parsing and compiling techniques and to

metaprogramming techniques.

Languages are one example of a type of system to which embodiments of the present
invention may be applied. Languages are a form of code, and computer-programming
languages are one example of qode that is heavily used in modern-day technical
systems. Although the present invention is hereinafter mainly presented in relation to
computer programs, it will be appreciated that the invention may apply to other types of

code equally (and indeed to systems other than languages).

In general, a language can be considered to be a system of arbitrary symbols and rules
that define how these symbois may be manipulated. That is, languages are not just
sets of symbols. They also contain a grammar, or system of rules, used to manipulate
the symbols. Whilst a set of symbols may be used for expression or communication,
the set of symbols alone is actually relatively inexpressive because there are no clear
or regular relationships between the symbols. Because a language also has a
grammar, one can manipulate its symbols to express clear and regular relationships

between them. A programming language is an artificial language that can be used to
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control the behaviour of a machine, particularly of a computer.  Programming
languages, like human languages, are defined through a use of syntactic and semantic

rules, to determine structure and meaning respectively.

Evaluating code can be a time- and labour-intensive task. Such evaluation may, for
example, include understanding the code, using the code to perform a task, and
manipulating the code to alter it in some way.

One example of an activity that involves code evaluation is metaprogramming. On the
broadest level, metaprogramming can be considered to be (for example) analysing,
manipulating, reconfiguring, improving or simplifying existing program code.
Metaprogramming can also be considered to be the writing of computer programs that
write or manipulate other programs (or themselves) as their data, or that do part of the
work during compile time that is otherwise done at run time. In many cases, this allows
programmers to get more done in the same amount of time as they would take to write
all of the code manually. Metaprogramming usually involves the dynamic execution of
string expressions that contain programming commands. Thus, programs can write

programs.

A metaprogramming procedure typically involves being able to look at, or represent,
program code in a useful and informative way. The evaluation of computer
programming code, for example for the purpose of metaprogramming, normally
involves the task of parsing. Parsing (aiso known as “syntactic analysis”) is the process
of analysing a sequence of tokens (normally extracted from a portion of code) to
determine its grammatical structure with respect to a given formal grammar for the
language concerned. Parsing transforms input text into a data structure, usually a tree,
which is suitable for later processing and which captures the implied hierarchy of the
input code. Lexical analysis creates tokens from a sequence of input characters (i.e.
from the input code) and it is these tokens that are processed by a parser to build a
data structure such as a parse tree or abstract syntax tree for the instance concerned

(i.e. for the code portion).

The most common use of a parser is as a component of a compiler. This parses the

source code of a computer-programming language to create some form of internal
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representation. By way of example, Figure 1 is a schematic diagram that demonstrates
a simplified example of parsing input code written in a particular computer
programming language. In this example, the computer programming language has two

levels of grammar, namely lexical and syntactic.

As can be seen from Figure 1, the first stage of parsing can involve token generation,
or lexical analysis, by which the input character stream of the input code is split into
meaningful symbols defined by a grammar of regular expressions. In the example of
Figure 1, the input code “a + b * ¢" is examined and split into the tokens a, +, b, * and ¢,
each of which is a meaningful symbol in the context of an algebraic expression. The
parser would contain rules to tell it that the characters * and + mark the start of a new
token, so meaningless tokens like “a+” would not be generated. The next stage is
syntactic parsing or syntactic analysis, which is checking that the tokens form an
allowable expression. A result of this stage could be the building of a data structure,
such as the abstract syntax tree shown in Figure 1. A final phase (not shown in Figure
1) could be semantic parsing or analysis, which involves working out the implications of
the expression just validated and taking the appropriate action. In the case of a

compiler, this could involve the generation of object code from the input source code.

An abstract syntax tree is a data structure that emulates a tree structure with a set of
linked nodes. An abstract syntax tree is commonly used to represent the “inherent”
logical structure of a code portion. Such a logical structure is considered “inherent”
because it is ultimately based upon the grammar for the language concermned. For
example, the abstract syntax tree of Figure 1 may be considered to represent the
inherent logical structure of the input code stream of Figure 1, however this structure is
only inherent because of the rules of precedence defined in the grammar for the
language concerned. It is therefore assumed in Figure 1 that the grammar for the
language concerned states that the multiply sign * takes precedence over the addition
sign +. Therefore, based on this grammar, the “inherent” logical structure associates
the operand tokens “b” and “¢c” with the operator token “*”, and similarly associates the

operand token “a” and the combined operand token “b*c” with the operator token “+”,

A node may contain a value or a condition, or represent a separate data structure or a

tree of its own. Each node in a tree has zero or more child nodes, which are below it in
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the tree (by convention, trees of this sort grow downwards). A node that has a child is
called the child’s parent node. The uppermost node in a tree is called the root node.
Being the uppermost node, the root node will generally not have any parents and is the
node at which operations on the tree commonly begin (although some algorithms of
course may begin at other nodes of the tree, for example at the leaf nodes). All other
nodes in the tree can be reached from the root node by following the links between the
nodes. Such links are commonly referred to as edges. Although a tree has only one
root node, other nodes in a tree can be seen as the root node of a subtree rooted at
that node. Nodes at the lowermost level of the tree are called leaf nodes, or terminal
nodes, or simply terminals. Since they are at the lowermost level, they do not have any
children. An internal node (or inner node, or branch node, or non-terminal node, or
simply non-terminal) is any node of a tree (other than the root node) that has child
nodes, and is thus not a leaf node. A subtree is a portion of a tree data structure that

can be viewed as a complete tree in itself.

An abstract syntax tree (AST) may be defined as a finite, labelled, directed tree, where
the internal nodes are labelled by operators, and the leaf nodes represent the operands
of the operators (as is the case in Figure 1). Therefore, the leaves are null operators
and only represent variables or constants. An AST is normally used in a parser as an
intermediate between a parse tree and a data structure, the latter of which is often
used as a compiler or interpreter’s internal representation of a computer program while
it is being optimised and from which code generation is performed. An AST differs
from a parse tree by omitting nodes and edges for syntax rules that do not affect the
semantics of the program. For example, grouping parentheses are normally omitted
from an AST, since the grouping of operands is explicit from the tree structure. This
again can be appreciated from consideration of Figure 1. In Figure 1, the input code
stream could for example have been “a + (b * ¢)", the grouping parentheses making the
rules of precedence clear. The abstract syntax tree for this code stream would
however still be the same as that shown in Figure 1, the intended grouping (or rules of

precedence) being explicit from the tree structure.

It will be appreciated that a tree in the context of the present invention is an example of
a logical structure or a data structure. Typically, each node other than the root node in

such trees has at most one parent node. However, in the context of the present



10

15

20

25

30

WO 2009/106843 PCT/GB2009/000552

5

invention, it will become apparent that such “trees” are employed where some nodes
have more than one parent, such that the structure becomes more like a Directed
Acyclic Graph (DAG) than a tree.  Accordingly, although the present invention is
predominanﬂy described with respect to logical structures and data structures taking
the form of abstract syntax trees, it will be appreciated that structures other than
traditional trees, e.g. graphs, are intended. Trees can be considered to be a special
form of graph. In graph theory, a tree is a connected ‘acyclic graph. DAGs can be
considered to be a generalization of trees in which certain subtrees can be shared by
different parts of the tree. In a tree with many identical subtrees, this can lead to a

drastic decrease in space requirements to store the structure.

It is emphasised that the data structures (e.g. representing abstract syntax trees and/or
graphs) discussed above with reference to Figure 1 are considered to be “instance”
data structures, because they represent instances of the system concerned. The input
code of Figure 1 is an instance of the language in which it is expressed, or, put another

way, it is an expression written in that language.

Systems of the present invention, such as languages, may themselves be represented
by data structures. Those “system” data structures may take the form of abstract
syntax trees and/or graphs. For example, such a “system” data structure for a
language may represent the organisation of components of the language and its rules
of grammar, such that expressions in that language are instances of that data structure

(i.e. “instance” data structures).

Typically, a tool for handling an instance of a system employs an implementation of the
system in order to carry out such handling. For example, such a tool may employ an
implementation of the “system” data structure representative of the system in order to
handle system instances of the system. In the context of a computer-programming
language, the tool may be a parser or compiler and may use an implementation of the
abstract syntax tree representative of the language to handle code portions written in
that language. For example, the tool may generate an “instance” data structure (which
itself may be an abstract syntax tree) representative of the code portion based on the

implementation of the “system” data structure.
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Focussing on computer programs (code portions that are instances of a computer-
programming language), there are a number of different types of AST that can be used
to represent them. The most common type of AST is a heterogeneous tree structure,
where each type of construct in the tree is represented by a specific data structure,
since this provides a compact representation that can have construct-specific

behaviours associated with it. This type of “instance” structure can be implemented by
code that is manually written, but is more typically generated automatically by a
software tool (for example, an AST code generator) that takes a concise description of
a desired logical structure (representative of an implementation of the system, in this
case of the language) as its input and, given a specific candidate code portion also
input to the tool, generates, as its output, means for enabling an “instance” data
structure to be generated based on the “system” logical structure in order to implement
the candidate code portion. In this context, the term implementation may be considered
to refer to the act of enabling an “instance” data structure to be generated based on the
“system” logical structure in order to implement the candidate code portion concerned.

There may also be provided an interface for using the generated data structure.

It has been found that existing tools and techniques for implementing “system” data
structures, and for using the implementation to generate and handle “instance” data
structures representative of instances of the system concerned, suffer from a number
of problems. In particular, it has been found that existing implementations in the field of
computer programming are inflexible, and cause problems for techniques such as
metaprogramming. Those existing tools and techniques have been found to be
complicated to use, and to involve a large degree of time and effort from the
programmer. The technical features of these existing tools and techniques responsible
for these problems will become apparent later herein, nevertheless it is desirable to

solve some or all of such problems.

It is desirable to provide an implementation of a system, such as a computer-
programming language, which enables instances of that system, such as code
portions, to be handled (manipulated, evaluated, analysed, modified, transformed, etc.)

in a flexible and efficient way.
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According to an embodiment of a first aspect of the present invention there is provided
an implementation tool for generating an implementation of a first data structure,
wherein the first data structure comprises a plurality of linked structural components,
and wherein the first data structure represents meaningful components of a given
system and a parent set of interrelationships between those meaningful components,
the tool comprising: first-data-structure input means, operable to receive a said first
data structure, or a description thereof; and processing means operable to generate an
implementation of the received first data structure, the implementation comprising: a
second data structure, or a description thereof, corresponding to said first data
structure, wherein said second data structure is defined by a subset of the parent set
of interrelationships; and implementation rules which allow the parent set of
interrelationships to be enforced during a subsequent processing operation which

utilises said implementation.

Because the second data structure is defined by a subset of the parent set of
interrelationships, the second data structure may have fewer restrictions or rules
associated with it than the first data structure. Thus, an instance of the second data
structure may be more flexibly manipulated than an instance of the first data structure,
in compliance with the data structure concerned. By means of the implementation
rules, it is possible to enforce the parent set of interrelationships when, for example,
handling of instances of the second data structure. The use of the implementation
rules can be separate from manipulation (being one type of handling) of the instance
based on the second data structure. Thus, in cases where the first data structure
would be heavily complex and cause problems (discussed in more detail later)
regarding handling of instances, it can be advantageous to implement the first data
structure with a second data structure in which the complexity is removed to some
extent and expressed (separately) in the accompanying implementation rules.

The implementation may be expressed in code, for example expressed in a computer-
programming language. The first data structure (and, of course, the description thereof)
may be considered to be (or describe) an idealised structure, i.e. representing the
system in an ideal or simplified form. The linked structural components may be
considered to be nodes and links in such a data structure.  The parent set of
interrelationships may be considered to define the inherent logical structure of the

system (for example the grammar of a language, where the system is a language).
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The structural components preferably represent respective meaningful components of

said system.

The system may be any system that may be represented by a heterogeneous abstract
structure, such as an abstract syntax tree or graph. The system may be a language or
a portion of a language, and the language may be a computer-programming language.
Preferably, the first data structure is at least partly a heterogeneous tree structure, such
as an abstract syntax tree, and some or all said structural components are linked
nodes of the tree structure. The first data structure may be at least partly a directed
acyclic graph structure, and some or all of said structural components may be linked

nodes of the graph structure.

Considering a language as the system, the system may comprise a number of
syntactical elements satisfying a set of syntax rules. The nodes may represent the
syntactical elements and the links may represent the syntax rules. The system may be
made up of a number of tokens, and each said syntactical element may be
representative of a group of said tokens or of predetermined combinations of said
tokens. For example, in the case of a computer-programming language, one such
syntactical element may represent a particular set of instructions, and another

syntactical element may represent a subset of those instructions.

The structural components of the first data structure may comprise a root structural
component, a number of first-tier structural components linked directly to the root
structural component, and a number of subsequent-tier structurali components linked
indirectly to the root structural component via one or more other said structural

components.

The links between the structural components of the first data structure may be
representative of paths of inheritance of substitutability but not implementation and
interface between those structural components. The links may in addition be

representative of other relationships, depending on the particular application.
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In object-oriented programming, inheritance is a way to form new classes (ins}ances of
which are called objects) in data structures such as abstract syntax trees using classes
that have already been defined. Such classes may be considered to be nodes or
structural components in the first and second data structures. The new classes, known
as derived classes or inheriting classes, take over (or inherit) attributes and behaviour
of the pre-existing classes, which are referred to as base classes (or ancestor classes).

Such inheritance is intended to help re-use existing code with little or no modification.

An advantage of inheritance is that modules (classes or nodes) with sufficiently similar
interfaces can share a lot of code, reducing the complexity of the program. Inheritance
therefore has another view, a dual, called polymorphism, which describes many pieces

of code being controlled by shared control code.

With this background, when a first node (the inheriting node) inherits substitutability
from a second node (the ancestor node, normally being the parent node of the first
node), the inheriting node may be considered to be a type or subset of the ancestor
node, such that an instance of the first node may be validly substituted for an instance
of the second node. Inheritance of interface may be considered to be the mating up of
interfaces exposed by the ancestor node to those of the inheriting node. Inheritance of
implementation may be considered to be the overriding (replacing) of one or more
methods exposed by the ancestor node with methods of the inheriting node, or of
adding new methods expressed within the inheriting node to those exposed by the

ancestor node.

It is advantageous for links between the structural components of the first data
structure to be representative of paths of inheritance of substitutability but not
implementation and interface between those structural components. By only
considering inheritance of substitutability, only the possible substitution of nodes for
other nodes need be taken into account. In particular, by ignoring implementation and
interface, possible problems with multiple inheritance of implementation and interface

are avoided or overlooked.
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The second data structure preferably has structural components corresponding
respectively to the structural components of the first data structure. Eor example, the
second data structure may have nodes corresponding to the above-mentioned nodes

of the first data structure.

Preferably, the structural components of the second data structure comprise a root
structural component, and the other structural components of the second data structure
are linked directly to the root structural component. Furthermore, the links between the
structural components of the second data structure are preferably representative of
paths of inheritance of substitutability, implementation and interface between those

structural components.

It is advantageous for links between the structural components of the second data
structure to be representative of paths of inheritance of substitutability, implementation
and interface between those structural components. Subsequent processing is based
on this second data structure (which forms part of the implementation), and thus, for an
instance of the second data structure to be properly implemented, the paths of full
inheritance (i.e. of substitutability, implementation and interface) are used to build the
instance nodes. By arranging for the structural components of the second data
structure other than the root structural component to directly inherit from the root
structural component, no issues of multiple inheritance arise. In particular, this is the
case even if the corresponding network of links in the first data structure would cause

multiple inheritance problems if full inheritance were implemented over those links.

Preferably, the implementation rules define rules of substitutability to be enforced in
relation to structural components of the second data structure during a subsequent
processing operation which utilises said implementation in order to establish
compliance with the substitutability relationships represented by the first data structure.
The substitutability relationships represented by the first data structure may be central
to a faithful representation of the system, however those relationships may not be
apparent from the second data structure itself. This may be the case, for example, if
the structural components of the second data structure other than the root structural
component directly inherit from the root structural component, but if a different network
of links (representing substitutability) is present in the first data structure. Accordingly,
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it is advantageous to employ such implementation rules to establish (enforce, or check
for) compliance with the substitutability relationships represented by the first data
structure so that the subsequent processing (for example when handling an instance of

the second data structure) may be faithful (or true) to the system.

Optionally, the first data structure (or, of course, the description thereof) may comprise
further linked structural components representative of a system extension, the system
extension being an extension to said system. The further structural components of the
first data structure may represent respective meaningful components of the system
extension. It will be understood that features of the first data structure may be

represented or defined in the description thereof.

One or more of said further structural components of said first data structure may be
defined as being substitutable for some or all of said other structural components of
said first data structure. it will be appreciated that were the links in the first data
structure to be representative of inheritance of implementation and interface, problems
of multiple inheritance could arise in respect of such further structural components.
However, this problem may be obviated within the second data structure as discussed
above. In particular, the substitutability relationships pertaining to such further
structural components of the first data structure may be represented in relation to the
corresponding structural components of the second data structure by means of the

implementation rules.

The system extension, in the case of the system being a language, could be
considered to be an extension to the language. The extension may be part or all of
another language. For example, in this way one computer-programming language
(such as C++) may be supplemented with desired parts of another such language
(such as Java), and the combined language (the system plus the system extension)

implemented using the tool.

According to an embodiment of a second aspect of the present invention, there is
provided an implementation method of generating an implementation of a first data
structure, wherein the first data structure comprises a plurality of linked structural

components, and wherein the first data structure represents meaningful components of
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a given system and a parent set of interrelationships between those meaningful
components, the method comprising: receiving a said first data structure, or a
description thereof; and generating an implementation of the received first data
structure, the implementation comprising: a second data structure, or a description
thereof, corresponding to said first data structure, wherein said second data structure is
defined by a subset of the parent set of interrelationships; and implementation rules
which allow the parent set of interrelationships to be enforced during a subsequent

processing operation which utilises said implementation.

According to an embodiment of a third aspect of the present invention, there is
provided an implementation computer program which, when executed on a computing
device, causes the computing device to become a tool according to the aforementioned

first aspect of the present invention.

According to an embodiment of a fourth aspect of the present invention, there is
provided an implementation computer program which, when executed on a computing
device, causes the computing device to carry out a method according to the

aforementioned second aspect of the present invention.

According to an embodiment of a fifth aspect of the present invention, there is provided
an instance-handling tool for operating on an instance of the second data structure of
the implementation generated by an implementation tool according to the
aforementioned first aspect of the present invention, the instance-handling tool
comprising: means storing said implementation; and means for operating on a

candidate said instance in dependence upon the implementation.

The candidate instance may comprise instance structural components corresponding
to structural components of the second data structure. That is, the instance structural
components of the candidate instance may be implemented (built, created,

constructed, managed, or handled) by way of the implementation.

The instance-handling tool may further comprise: means for receiving the candidate
instance of said second data structure in an input form in which its instance structural

components and links therebetween are not explicitly expressed; and conversion
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means for converting the received candidate instance into an abstracted form in which

the instance structural components and links therebetween are explicitly expressed.

In the case that the system is a computer-programming language, and the candidate
instance is a code portion expressed in said computer-programming language, the
input form may be considered to be a text-based version of the code portion and the
abstracted form may be considered to be an abstract syntax tree and/or graph version

of said code portion (or a description thereof).

The instance-handling tool may further comprise visualisation means operable to
generate a visual representation of the candidate instance. Such a visual
representation may be an efficient way for a user of the tool to understand the
candidate instance, particularly for enabling the user to interact with the tool to handie
the instance. Such handling may involve manipulating the candidate instance and it
may be desirable to visually monitor such manipulation, The instance-handling tool
may comprise display means for displaying the visual representation to the user.
Preferably, the visualisation means is operable to generate a visual representation of

the candidate instance in the abstracted form.

The instance-handling tool may further comprise manipulation means operable to
manipulate the candidate instance in dependence upon the implementation. Preferably,
the manipulation means is operable to manipulate the candidate instance in its

abstracted form.

Preferably, the manipulation means is operable to verify such manipulation against said
implementation, and to disallow manipulation that is incompliant with the second data
structure and/or the implementation rules. Preferably, the manipuiation means is
operable to allow manipulation that is compliant with the second data structure and the
implementation rules. In this way, the instance-handling tool may enable manipulation
of the candidate instance in compliance with (or whilst remaining true to) the system.
For example, a candidate code portion may be manipulated (in a flexible manner as
discussed above) whilst remaining compliant with the computer-programming language

(with or without language extensions) concerned.
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Such manipulation may comprise augmenting the candidate instance and/or reducing
the candidate instance. For example, the manipulation may comprise adding new
instance structural components to the candidate instance, and/or removing instance
structural components from the candidate instance, and/or replacing instance structural

components in the candidate instance with other such instance structural components.

Such manipulation may comprise annotating, or highlighting in some way, particular
instance structural components of the candidate instance. This may prove useful, in
the case of a candidate code portion expressed in a computer-programming language,
for a programmer. For example, it may be possible to highlight particular parts of the
code portion of interest to the programmer, for example portions containing errors, or

portions open to optimisation.

Such manipulation may comprise performing a predetermined process on part or all of
said candidate instance. For example, the predetermined process may be defined in a
set of actions, such as a computer program, accessible by the instance-handling tool.
The instance-handling tool may have several such predetermined processes at its
disposal, and may selectively employ those processes in dependence upon the

candidate instance itself, or in dependence upon an input from a user of the tool.

The predetermined process may be an optimisation process configured to optimise the
candidate instance for a predetermined purpose. For example, in the case of the
candidate instance being a code portion expressed in a computer-programming
language, the optimisation process may be configured to optimise the code portion to
be executed on a particular type of processor, or combination of processors. As
another example, the optimisation process may be configured to simplify the way in
which a particular process (such as a matrices calculation) is carried out by the code
portion, for example such that resuitant object code for the code portion is considerably

shortened thereby saving processing time and power.

The manipulation means may be operable to perform such manipulation in
dependence upon the instance structural components of the candidate instance. That
is, such manipulation may be performed in several locations within the candidatel

instance, where a particular type of instance structural component is located. The
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manipulation means may be operable to identify a particular type of instance structural
component and to perform such manipulation in dependence upon the identified

instance structural component.

For example, the manipulation means may be configured to identify instance structural
components of the candidate instance that correspond to a said further structural
component of a system extension. In the case that this further structural component is
defined as being substitutable for any other structural component (as mentioned
above), considerable benefits may be achieved. In the case of a code portion
expressed in a computer-programming language, for example, because of the
universal substitutability of such a further structural component, a programmer may be
able to place an entry (being an instance of that further structural component)
anywhere in the code portion without violating the rules of substitutability. In that case,
the programmer can freely and flexibly indicate in the code portion, for example, any

places where optimisation processes (manipulation) should be performed.

Of course, it will be appreciated that the manipulation means may be operable to locate
particular parts of a candidate instance, or patterns within a candidate instance, and to

perform the manipulation at those locations.

Based on the above, it will be appreciated that the candidate instance may include

parts that are attributable to the system extension.

The conversion means of the instance-handling tool may be considered to be first
conversion means, and the instance-handling tool may further comprise second
conversion means operable to convert the candidate instance in said abstracted form
into its corresponding input form. The second conversion means may be operable to
carry out such conversion before or after such manipulation has been performed on the
candidate instance. The instance-handling tool may comprise the second conversion
means but not the first conversion means, and vice versa, depending on its intended
purpose. The instance-handling tool may comprise means operable to output the

candidate instance before or after such manipulation as object code.
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The instance-handling tool may be a parser or a compiler, or any tool that comprises

such a parser or compiler.

According to an embodiment of a sixth aspect of the present invention, there is
provided an instance-handling method of operating on an instance of the second data
structure of the implementation generated by an implementation tooi according to the
aforementioned first aspect of the present invention, the method comprising operating

on a candidate said instance in dependence upon the implementation.

According to an embodiment of a seventh aspect of the present invention, there is
provided an instance-handling computer program which, when executed on a
computing device, causes the computing device to become an instance handling tool

according to the aforementioned fifth aspect of the present invention.

According to an embodiment of an eighth aspect of the present invention, there is
provided an instance-handling computer program which, when executed on a
computing device, causes the computing device to carry out a method according to the

aforementioned sixth aspect of the present invention.

According to an embodiment of a ninth aspect of the present invention, there is
provided a method of extending a system, the method comprising: obtaining a first data
structure, or a description thereof, representative of the system: adapting the first data
structure, or the description thereof, to include further linked structural components
representative of a system extension; and employing an implementation tool according
to the aforementioned first aspect of the present invention to generate an
implementation of the adapted first data structure. In this way, it is possible to extend
such a system in an efficient manner, and on an ad-hoc basis. For example, one
computer-programming language may be extended to include features from another

computer-programming language in this way.

According to an embodiment of a tenth aspect of the present invention, there is
provided a parser or compiler comprising an implementation tool according to the
aforementioned first aspect of the present invention and/or an instance-handling tool

according to the aforementioned fifth aspect of the present invention.
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According to an embodiment of an eleventh aspect of the present invention, there is
provided a computer program produced or adapted by means of an implementation
tool according to the aforementioned first aspect of the present invention and/or an
instance-handling tool according to the aforementioned fifth aspect of the present

invention.

According to an embodiment of a twelfth aspect of the present invention, there is
provided a method of producing or adapting a computer program, comprising: inputting
a candidate computer program to an instance-handling tool according to the
aforementioned fifth aspect of the present invention as the candidate instance, wherein
the system concerned is a computer-programming language in which said candidate
computer program is expressed; employing said instance-handling tool to operate on
said candidate instance; and employing said instance-handling tool to output a
computer program resulting from such operation. The produced or adapted computer

program is the direct product of such a method.

According to an embodiment of a thirteenth aspect of the present invention, there is
provided a computer or network of computers configured to function as an
implementation {ool according to the aforementioned first aspect of the present
invention and/or an instance-handling tool according to the aforementioned fifth aspect

of the present invention.

According to an embodiment of a fourteenth aspect of the present invention, there is
provided an implementation as generated by an implementation tool according to the
aforementioned first aspect of the present invention. Such an implementation may be

in the form of a computer program.

According to an embodiment of a fifteenth aspect of the present invention, there is
provided a computer-readable storage medium storing a computer program according

to any of the aforementioned aspects of the present invention.
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Features of apparatus (tool) aspects may apply equally to method aspects and
computer-program aspects, and to other aspects of the present invention, and vice

versa.

The invention extends to metaprogramming tools, methods and computer programs
comprising respective tools, methods and computer programs according to the

aforementioned aspects of the present invention.

Reference will now be made, by way of example, to the accompanying drawings, in

which:

Figure 1 is a schematic diagram that demonstrates a simplified example of parsing
input code written in a particular computer programming language;

Figure 2 is an example language grammar excerpt;

Figure 3 is an example AST node structure based on Figure 2;

Figure 4 is another example AST node structure based on Figure 2;

Figure 5 is another example AST node structure based on Figure 2; »
Figure 6 is an example AST node structure having an injected Syntax Extension Block:
Figure 7 illustrates one way (first data structure description) to describe the desired’
design from Figure 3;

Figure 8 illustrates the use of multi~type references:;

Figure 9 indicates how wildcard pseudo-inheritance may be expressed in the present
first data structure description scheme;

Figure 10 is an example of an implementation (second data structure) being applied to
the intended logical structure of Figure 3;

Figure 11 is an example of generated accessor functions (for C++);

Figure 12 is another example of generated accessor functions (for C++);

Figure 13 is an example C++ loop using these iterator-model functions;

Figure 14 is an example showing use of a visit() function;

Figure 15 is an example showing use of an enumerate() function;

Figure 16 is a schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a code transformation tool;

Figure 17 is another schematic diagram of a simplified use case for a metacompiler

embodying the present system, in use as part of a code transformation tool;
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Figure 18 is another schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a code transformation tool;

Figure 19 is a schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a code-understanding tool;

Figure 20 is a schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a code-refactoring tool;

Figure 21 is a schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a build-optimisation tool;

Figure 22 is a schematic diagram of a simplified use case for a metacompiler
embodying the present system, in use as part of a code-instrumentation tool;

Figure 23 is another schematic diagram of a simplified use case for a metacompiler

embodying the present system, in use as part of a code-transformation tool.

Embodiments of the present invention relate to a software tool designed for the
purpose of translating a description of a logical structure (a description of a first data
structure) representative of (part of all of) a computer-programming language (with or
without an extension thereto) into an implementation (comprising a corresponding
second data structure and set of implementation rules) useful for handling code
portions written in that language. A modified object-oriented programming model is
provided which produces a definition that more usefully implements the logical
structure of a “system” AST than existing object-oriented models, and also provides
greater representational flexibility than existing AST code generators. Preferred
embodiments of the present invention seek to provide a more elegant and flexible
representation of such a system to provide a better foundation on which to build a
metaprogramming system. Further aspects of the present invention relate to other
methods that build upon the model in order to build a complete AST code-generating

solution.
Consideration of Existing Tools

In order to better understand embodiments of the present invention, existing tools (one
of which is known as TreeCC (http:/mww.southern-storm.com.au/treecc.html)) will be

considered first. As will become apparent, logical-structure description and data-
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structure design form important aspects of the present invention. These correspond to
some extent, for comparison purposes, to the methods of “system” AST generation
employed in such existing tools. Accordingly, the methods of AST generation in
existing tools (with a main focus on those employed in TreeCC) will be considered, to

appreciate their drawbacks.

Although these existing tools are capable of generating a data structure useful for
implementing a logical structure (a “system” AST structure), the resulting
implementation is typically heavily dependent on the object model of the target
programming language, which is not necessarily the most appropriate model to use

when implementing an AST structure.

In this regard, reference is now made to the (simplified) example language grammar
excerpt in Figure 2. Statement, Declaration and Initializer are non-terminals
(non-terminal nodes) and are further broken down into the various forms that each can
take. In the simplified excerpt, a Statement is either one of the two forms of if-then-
else statement, or is an Expression. Similarly, an Initializer is either an

Identifier oran Expression.

This is a fairly common occurrence in language grammars: here, an EXpression can
occur in situations where a Statement is expected and in situations where an

Initializer is expected.

The TreeCC tool allows AST designers to describe the different variations expected for
a non-terminal through a form of inheritance, and indeed, implements this via

inheritance in the language in which the AST is implemented (referred to herein as the

implementation language).

Inheritance in the context of the present invention may be considered to refer to a way
to form child nodes (inheriting nodes) from parent nodes (ancestor nodes) that have
already been defined. The child nodes, known as derived nodes (or derived classes),
take over (or inherit) attributes and behaviour of the parent nodes (pre-existing
classes), which are also referred to as base nodes (or ancestor nodes). Inheritance is

generally intended to help reuse existing code with little or no modification. An
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advantage of inheritance is that nodes with sufficiently similar interfaces can share a lot
of code, reducing the complexity of the required code. With inheritance, it is possible to
allow a child node to re-use code which already exists in a parent node, and this in
commonly referred to as implementation inheritance, the matching up of interfaces for

this purpose being known as interface inheritance.

Returning to the example of TreeCC, and considering the grammar of Figure 2, the use
of inheritance would typically lead to specifying the AST node structure shown in Figure
3. One of the major benefits of specifying an AST structure in the way shown in Figure
3 is that it enables type-checking to be employed. Since a relationship between
Initializer and its derived types (Identifier and Expression) has been
explicitly specified, any implementation of a candidate code portion can involve
ensuring, for example, that nothing other than Identifier and Expression s
used where an Initializer is expected. If the implementation language is
statically-typed, a large part of the type-checking will be provided at compile-time by
the compiler, and if it is dynamically-typed, the code generator can generate code
which checks that the types of objects used match what the AST designer specifies.
The same capability also applies to references from AST nodes to other AST nodes
(e.g. the TypeName node referred to by the Type field of a VariablebDeclaration

node).

Unfortunately, the Expression node as shown in Figure 3 cannot be expressed in
TreeCC. Deriving Expression from both Statement and Initializer is cailed
multiple inheritance and TreeCC does not allow this. This is not an arbitrary decision on
the part of TreeCC:. some implementation languages do not support mulfiple
inheritance and for those that do, multiple inheritance is often a problematic construct

due to potential name collisions and diamond-shaped inheritance trees.

In order to specify the example grammar in TreeCC, therefore, Expression may be
split into two separate node types, e.g. StatementExpression and
InitializerExpression, thus eliminating any need for multiple inheritance, as

shown in Figure 4.
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Although this is a valid solution, it requires more effort on the part of the AST designer,
and may also cause problems when code is added to process expressions. Because
there are now two unrelated expression types, it may be necessary to write separate
processing code for each one, depending on the implementation language. This is far
from ideal, especially when the primary goals of an AST code generator are to reduce

effort and minimise the potential for human error.

Other known AST code generators use a slightly different approach than TreeCC:
rather than specifying different variations within a non-terminal through multiple nodes
related by inheritance, they are expressed directly within the parent node description
itself. They are expressed typically as simple constructs with references to the real
nodes, although they can represent simple nodes directly. The example grammar
would therefore need to be represented with these other known tools as shown in

Figure 5.

The Figure 5 structure is even more complicated than the structures of Figures 3 and 4,
and, depending on how it is implemented in the generated code, can lead to a larger
number of runtime objects being required to represent the same program. Specifying
the Figure 5 structure in the AST description language is also more complicated than
for the Figure 3 and 4 structures, especially if the AST designer wishes to minimise
wastage as much as possible. This structure solves the multiple inheritance problem by
essentially removing the notion of inheritance from the specification altogether, but like

the solution required when using TreeCC, the results are not ideal.

Of the known existing AST code generators, all of them suffer from these problems. A
more ideal solution would allow the structure shown in Figure 2, while eliminating the
problems caused by multiple inheritance. Further problems also arise with existing
solutions when an AST is used in a metaprogramming environment, where flexibility

and ease of manipulation become critical factors.

For example, when metaprogramming, it is often desirable to decorate the “instance”
AST for the particular program (code portion) concerned with constructs specified by
the programmer, rather than the original “system” AST designer. This allows the

programmer to imbue extra meaning upon the program’s representation in a number of
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creative ways, which is a critical element in providing a workable metaprogramming

environment.

One way to provide this flexibility is through attributes, which are cuétom values that
the programmer can attach to existing nodes to add exira meaning o the AST.
Although useful, attributes can only be attached to existing “system” nodes, and can
become cumbersome to use for certain tasks, compared to having specific node types

for these tasks that fully integrate into the “system” tree.

An example of this is a desired metaprogramming construct, which will be referred to
during later description of embodiments of the present invention as a Syntax Extension
Block (SEB). An SEB is essentially a piece of code, typically expressed using a
scripting language, intended to be attached into an “instance” AST directly above a
sub-tree to operate on it. Although an SEB could be attached to an AST as an attribute,

it is simpler and more efficient to represent it as a separate node in this way.

Unfortunately, since it would be desirable to attach an SEB potentially anywhere in an
AST, this would cause problems with type-safety. This can be seen in Figure 6, in
which an SEB node has been injected into the “instance” AST between Expression
#1 and Expression #2, where the LHS reference in Expression #1 was expecting
to refer to a node of type Expression. If the SEB node is not related to (i.e. derived
from) Expression, then the type checking system provided by a statically-typed

language would not allow this.

The problem with this type of construct is that the only way to allow it to occur in a type-
safe manner is to allow an SEB to inherit from every other node type in the “system”

AST design; a rather extreme use of multiple inheritance that would cause serious

problems in existing systems.

Another issue with using existing solutions for metaprogramming (and in general) is
that they provide tree-walking interfaces based on the so-called Visitor Pattern. The
Visitor Pattern is a method whereby a provided piece of code walks over a complex
data structure (like an “instance” AST, or logical structure), typically visiting each node

only once, and calls a user-provided function for each node it visits. Through this
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mechanism, user code can operate on complex data structures without requiring
knowledge of their underlying structure or having to deal with any difficult rules that
may need to be followed in order to perform a valid walk.

Although this is a useful method, it does have some drawbacks. The most obvious one,
from a user's perspective, is that the visitor handling code needs to be passed a
function to call for each node visited (often called a callback). In some languages, this
is straightforward (e.g. languages with “closures” or something similar, such as Lisp
and Ruby), but in other languages (such as C++ and Java), this can be a fairly
laborious, complicated process (typically involving function objects), and it is generally

impossible in such languages to integrate the use of a visitor into surrounding code.

The other major drawback, which is partially refated to the difficulty of integrating a
visitor into surrounding code, is that of control. With a visitor pattern, control of the walk
is entirely in the hands of the visitor code, i.e. it will generally visit all nodes in the
specified data structure until it is finished. Although a visitor mechanism can be
provided with extra terminating/control functions that the user can call in order to
modify the walk process in some way, this generally needs to be done within the
callback function, which may not have enough contextual information to make such a
decision, since it is separate from the code surrounding the invocation of the visit call.
Again, in languages with closure support (or equivalent), this can be a trivial problem to
overcome, but in languages without such support, it generally requires extra
information to be passed into function objects, which can be wasteful and generate

significant extra work for the programmer.

Another issue with using existing solutions is that, when working with an “instance”
AST representation of a program or code portion (including building such a
representation during parsing of the program), it is sometimes useful to be able to re-
use sub-trees and refer to them from more than one place in the structure. It is further
sometimes useful to be able to do so in a manner such that it appears that all such

references “own” the sub-trees in question.

One example of this occurs when using a Generalised LR (GLR) parsing mechanism to ‘

parse a complex language with ambiguities, where an ambiguous element in the input



10

15

20

25

30

WO 2009/106843 PCT/GB2009/000552

25

may cause the parser to effectively split into two parsers, each one with a different
understanding of what that element actually means. When this happens, both parsers
need to be passed the “instance” AST sub-tree already constructed up to that point. If
the logical structure is represented by a standard tree structure, where each node only
has one parent, then the sub-tree must be deep copied (making a copy of all nodes in
the subtree), which can be very expensive if the sub-tree is large. A more efficient
solution would be to allow shallow copies, whereby the sub-tree can be referenced by
more than one parent node with shared ownership semantics (i.e. the sub-tree is

destroyed only when none of the parents references it any longer).

Again, for some implementation languages, this can be achieved without any further
help from the AST code generator; if the implementation language supports garbage
collection, multiple nodes may reference a specific node, with the node only being
destroyed when no more nodes reference it. However, for implementation languages
without garbage collection (such as C++), further steps must be taken to provide this

functionality.

A related issue is the notion of explicit parent references. In a simple “instance” tree
structure, parent nodes reference child nodes, but child nodes do not reference their
parent nodes. Although this simplifies the structure somewhat, it can increase the

amount of programmer effort required to manipulate the tree.

For example: if, while visiting an “instance” AST with the visitor pattern, the callback
function decides to remove the current node (either by itself or along with all its
children), it would require a reference to the parent node in order to remove the
reference from the parent node to the child node. Since this parent reference cannot be
obtained from the child node, such an operation would either be impossible, or would
rely on the visitor mechanism providing functionality that allows the callback function to
obtain a parent reference that the visitor tracks when walking the logical structure.
There are other possible solutions to this when using parentless trees, but these

generally involve extra programmer-effort and various other compromises.

Since known AST code generators generally use a tree structure with no parent links,
and do not appear to provide functionality for obtaining parent links through the visitor
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mechanism, tree manipulation (and hence, metaprogramming) with these solutions can

sometimes be rather cumbersome.

Overview

It has been appreciated by the inventors that previously-considered systems use a
relatively direct translation between a description of the logical structure (AST) of the
programming language (system) concerned, and the implementation of that system in
the form of a data structure. They therefore tend to suffer from a lack of flexibility and
conciseness as a result. This in turn forces users of these solutions to give up some

level of type-safety in order to improve flexibility.

Embodiments of the present invention include a method of generating an
implementation (comprising a second data structure, or a description thereof, and
implementation rules) for describing, representing, and generating a representation of,
a computer-programming fanguage from a concise, flexible description format (of a first
data structure) that also describes the language and that fits naturally with the way
humans think about structures such as languages. Although concentration is placed
on computer-programming languages here, it will be appreciated that the present
invention may apply to other types of language, and indeed to other types of system

that can be represented by a heterogeneous tree/graph structure.

Specifically, embodiments of the present invention allow nodes of the data structures
(“system” AST) to be related to each other through “simulated” multiple inheritance (of
substitutability, but not interface or implementation), and to refer to each other through
multi-type references, providing type-safe construction and manipulation facilities which

operate within a concise, elegant and flexible generated programming interface.

Embodiments of the present invention aim to maximise flexibility, conciseness and
type-safety at the same time. It will become apparent that there is provided a method
for representing highly-flexible nodes which can be placed anywhere in an AST in a
manner which maintains type-safety, an important addition which makes applications

such as metaprogramming more practical.
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There is also provided a tree-walking mechanism, which can be used via a user-
controlled iteration process, rather than via a Visitor pattern-based mechanism that
complicates the programming interface in certain cases and is cumbersome to use with

implementation languages without support for closures.

The method of representation disclosed herein also allows an AST to be represented in
a form similar to a Directed Acyclic Graph (DAG), where each node can be “owned” by
more than one other node, and each node can track back to all the nodes which own it
(its parents). This provides opportunities for efficiencies in AST construction and

manipulation not available with previously-considered purely tree-based solutions.

Detailed description

Embodiments of the present are preferably provided in the form of a software tool that
generates an implementation of a system, in this case of a computer-programming
language. Such embodiments take as an input a description of a first data structure
(*system” AST) which represents the language concerned, and whose links between
nodes represent inheritance of substitutability but not implementation and interface.
Such embodiments generate an implementation of the system therefrom, the
implementation comprising a second data structure (“system” AST) and implementation
rules. In the second data structure, the nodes other than the root node inherit directly
from the root node. The implementation rules specify the substitutability relationships
inherent in the first data structure for use with instances (code portions) of the second
data structure. = Embodiments of the present are also provided in the form of a
software tool (e.g. a parser or compiler) that employs such a generated implementation

to handle instances (code portions) of the second data structure.

For the benefit of further explanation, it will be appreciated that three categories of
programming language are referred to herein. Each category has a different
relevance/significance in the embodiments being presented. The three categories are:

Base Language (BL), Transformation Language (TL), and Framework Implementation

Language (FIL).

The Base Language (BL) is the language in which programs (code) to be handled

(evaluated/analysed/transformed) are expressed. The language C++ is one example
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of a possible BL, however any language that stands to benefit from such handling
(analysis, transformation and extension capabilities) could be employed. Thus, in the
context of the present invention, it will be appreciated that a candidate code portion is

expressed in the BL.

The Transformation Language (TL) is the language in which meta-level program
transformations are expressed (embedded or otherwise). Meta-level program
transformations are discussed later herein, however at this stage they may be
considered to express desired metaprogramming operations. The actual TL chosen is
less important than the functionality it represents. The TL is not actually limited to a
single language, but could be a composite of different languages which may even
include the language used as the BL. The key identifying feature of the TL is that meta-
level programs are expressed in it. For specific cases of the BL, however, using a
different language for the TL is beneficial in terms of expressivity and therefore

productivity.

The Framework Implementation Language (FIL) is the language in which tools
embodying the present invention are mainly written. Such a tool may comprise or have
access to generated libraries and interfaces also expressed in the FIL. The FIL could
for example also be C++. The significance of the FIL relates to the production of tools
or tool add-ons for operating on (handling) candidate code portions (e.g. programs)
expressed in the Bl., and also for generating the implementation of the BL in the first

place.

While it is envisaged that tools could be developed to operate in “unusual”
environments (such as in Java or other virtual machines), performance considerations
make C++ a suitable choice for the FIL in the vast majority of cases. There need not be
any difference between the BL and the FIL. These languages are given different
names herein primarily to avoid confusion when referring to the languages used to
implement the various different functions, tools and processes embodying or used in

embodiments of the present invention.

First data structure description
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The first data structure description (“system” AST description) may be considered to be
a description of the logical structure of the BL, so that instances of the BL (i.e.
candidate code portions) can eventually be handled. Properties of such (AST)
description utilised in embodiments of the present invention allow such a logical
structure to be described via a high-level description that provides the features of
“simulated multiple inheritance of substitutability” and “muilti-type references”, each of
which are considered in greater detail below. These features are then encoded into the
implementation (second data structure and implementation rules) used to implement
the first data structure (in effect to implement the BL) using whatever features are
available in the FIL.

In order to understand the first data structure description (“system” AST description)
employed herein, Figure 7 illustrates one way to describe the desired design from

Figure 3.

A logical-structure node may be one of three types: root, abstract and node. There can
be only one root node (as mentioned above), and it is the node from which all other
nodes must ultimately be derived. An abstract node is a node which can never be
created ~ it simply exists in order for other nodes to inherit from it, and is an analogue
of a grammar non-terminal which primarily lists variant forms. A node of type node is a
real, concrete node which can contain a body describing the contents of the node.
Each type of node is described in the description by beginning a node declaration with

the associated keyword (root, abstract or node).

As shown in the Figure 7 example, there is a single root node called Node and three
abstract nodes called Statement, Declaration and Initializer, which “pseudo-inherit”
from Node. This pseudo-inheritance (explained below) is specified by the < operator.

The abstract nodes match the three nodes of the same name in Figure 3.

Following this, there are four concrete nodes, i.e. nodes of type node, which match the
remaining nodes of the same name in Figure 3. These nodes are called IfThenElse,
VariableDeclaration, |dentifier and Expression. Each of these concrete nodes except
Identifier have bodies in the description of Figure 7 surrounded by braces ({ and }).

Concrete nodes typically have such bodies, but this is not essential.



10

15

20

25

30

WO 2009/106843 PCT/GB2009/000552

30

Of particular interest here is the pseudo-inheritance relationship (explained below)
specified for node Expression. Following the < operator, there is a list of two node
types separated by a comma. This signifies that Expression pseudo-inherits from both
Statement and Initializer. This is to some extent equivalent to the muitiple inheritance
relationship that was not possible to express with the TreeCC tool mentioned earlier.
The reason this is only equivalent to some extent to the multiple inheritance
relationship mentioned above with regard to TreeCC is as follows. In the context of the
present method of first data structure description, a node that is described as being
pseudo-inherited from another node can be used by any references which expect a
node of the parent type, i.e. this pseudo-inheritance relationship merely indicates which
types of node can be substituted for which other types of node (which is referred to
herein as substitutability). This is the intended meaning of the above-mentioned feature
“simulated multiple inheritance of substitutability”. In particular, this relationship does

not indicate inheritance of implementation and interface.

Inside the concrete nodes of Figure 7, there are two types of field declaration. The first
type, denoted by the >> operator, is a child reference, which signifies that the field
references from the present node to another node and that the present node will “own”
that other node when a valid reference is placed in that field. The term on the left of the
>> operator is the name of the field, and the term on the right is the type of node that

can be referenced by this field.

The second type of field declaration, denoted by the : operator, is a data field, which
signifies that the node will contain a piece of data of the specified type. As with the
child reference, the name of the field is on the left of the : operator, and the type of the

field is on the right.

Overlooking the use of the root node, this first data structure (AST) description closely
matches the desired structure shown in Figure 3. Although this is the most natural way
of expressing this structure, it is possible to describe a roughly equivalent structure by

using “multi-type references” (instead of multiple pseudo-inheritance) as shown in

Figure 8.
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Although the description of Figure 8 is structurally different from the description of
Figure 7, it ultimately may result in an implementation that is essentially equivalent in
use. The differences are underlined in Figure 8 for ease of comparison with Figure 7.

In Figure 8, Expression is no longer derived from Statement and Initializer, and extra
terms have been added to three of the child references in two of the nodes. Both the
thenClause and elseClause fields in the IfThenElse node now specify a list of node
types that can be referenced — the Expression node has been specified as well as the
Statement node. A similar modification has been made to the init field of the
VariableDeclaration node. When multiple node types are specified for a child reference
field, this is interpreted to mean that any node type in the list is a valid type to be

referenced by that field.

Therefore, in the Figure 8 example, the use of multiple pseudo-inheritance regarding
node Expression has been removed to specify that it is substitutable for Statement and
Initializer, and instead this substitutability is encoded directly into the child reference
fields. In both cases, an Expression node can be used in all child reference fields

where a Statement or an Initializer node can be used.

From a usability point-of-view, it will be appreciated that the multiple pseudo-
inheritance approach of Figure 7 is more concise and more elegant for this scenario
than the approach of Figure 8 (the multi-type reference approach is overly repetitious).
However, since multi-type references are more specific, they can be very useful for
situations where multiple pseudo-inheritance would be more general than is desired.
Indeed, many language grammars use more specific variant forms in certain cases,
and so the ability to use a similar representation in the description affords the designer
a greater ability to match the structure of the BL grammar, if this is desired.

As mentioned above, pseudo-inheritance in the context of the present description
scheme means a particular type of inheritance, somewhat different to the inheritance
provided by most object-oriented languages. In many languages, inheritance primarily
means that the derived class (e.g. the child node) incorporates the interface and
implementation from the parent class (e.g. the parent node) and (depending on the
programming language) also that the derived class can be used anywhere the parent
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class can be used, and that the derived class can override functions from the parent
class such that the derived class’ versions of the functions are called instead of the
parent's (called pofymorphism). However, in the context of the present invention,
pseudo-inheritance specified in the first data structure description scheme only means
that the derived class can be used in places that the parent class can be used, referred
to herein as substitutability. Derived classes do not inherit any interface or
implementation features from the parent class, nor any ability to service polymorphic
function calls through this relationship. Indeed, as will become apparent below
regarding the generation of implementation code to define a second data structure and
implementation rules as an implementation of the BL, and for use in handling a code
portion expressed in the BL, derived classes in the second data structure do not
actually inherit from the classes of their parent nodes at all in second data structure,
which is a significant factor in allowing the second data structure to support the

simulated multiple inheritance model of the present invention.

One exception to this is the root node, which all other nodes directly inherit from in the
second data structure (as will become apparent later). Inheritance in the second data
structure directly from the root nodes is full traditional inheritance, i.e. inheritance of

substitutability, implementation and interface.

Another significant element in the present logical-structure (AST) description scheme is
that of “owned” and “non-owned” references. The Figure 7 and 8 examples use owned
references (called child references) exclusively. As the name states, a child (owned)
reference is used to specify how a node references its child nodes in the structure. The
presence of child-node references in effect forms the overall logical structure. For
example, the Expression node in the Figure 7 and 8 examples contains two child node
references, called Ihs and rhs. When an expression (i.e. an instance) is constructed at
runtime, these references are used to build expression trees (‘instance” data
structures) where each Expression node can refer to two child Expression nodes, and
so on recursively, until an expression of arbitrary complexity has been formed. Within
this expression tree, each Expression node owns the two child nodes that it references.
By “own’”, it is meant that the parent node controls the lifetime of the child nodes; if the

parent node is deleted, or if its child-reference fields are cleared, the child nodes are
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normally destroyed as well. It is noted though that multi-parenting somewhat
complicates this; multi-parenting is therefore discussed further below.

A non-owned reference is similar to an owned reference, a difference being that the
parent node does not control the lifstime of the referenced node. Indeed, this is not
even a true parent-child relationship, so these references are referred to as link
references. With a link reference, not only does the present parent node not control the
lifetime of the referenced node, it cannot guarantee that the referenced node will
continue to exist as long as it does. The referenced node will be owned by another
parent node, but since that other parent's lifetime could be shorter than that of the

present parent node, so may be its child node’s.

Link references are specified in the present first data structure (AST) description
scheme in a similar fashion to child references, but using the > operator instead of the
>> operator. Link references are especially useful for linking symbol usage points in an
AST to symbol declaration points, but they can be used for a number of other

purposes.

The difference between child and link references is also important when it comes to
walking and manipulating a logical structure (AST). When walking over a logical
structure, link references are ignored, primarily because they do not represent true
child nodes, and will be walked over by iterating through their real parent. When
manipulating a logical structure, link references do not appear in the list of incoming
parent connections to a node, again because they are not true child nodes across such

references.

Another significant element in the present first data structure description scheme
concerns the use of wildcard pseudo-inheritance. Since the scheme allows for arbitrary
use of “simulated” multiple inheritance, i.e. of multipie pseudo-inheritance, a node can
be made to pseudo-inherit from all other nodes, which means that it can be substituted
for any of them in child/link references. Since this is such a useful capability, it has a
dedicated form in the present logical-structure description scheme, as shown in Figure

9.
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As shown in Figure 9, the syntax for a node using wildcard pseudo-inheritance is the
same as for any other node, but with a * symbol specifying what it should pseudo-
inherit from, instead of a list of specific nodes. When a node is specified in this manner,
it is interpreted as if the pseudo-inheritance list had included every other node in the

description. Such a node may be an SEB.
Generating Implementation Code

In order for the principles of embodiments of the present invention to be realised, i.e.
for a candidate code portion written in a particular language (the BL) to be efficiently
handled (understood/analysed/manipulated/augmented, etc.), a representation of the
candidate code portion (an “instance” AST) is generated. In order to generate such an
‘instance” AST, an implementation of the first data structure description above is
employed, and the following concerns this implementation (which, in particular,

comprises a second data structure and implementation rules).

The present invention therefore concerns, at least in part, the generation of such an
implementation (second data structure and implementation rules) from the first data
structure description. In the context of the present invention, such a second data
structure may be considered to have nodes correspondmg respectively to the nodes of
the first data structure (logical structure). In this sense, the two structures may be
considered equivalent to one another, i.e. so that they both represent the BL, albeit in

slightly different ways.

The generation of such an implementation may result in implementation code that
expresses that implementation, i.e. which expresses the second data structure and
implementation rules. In the present embodiment, such implementation code is
expressed in the FIL, and is thus highly dependent on that FIL. The implementation
language (FIL) assumed here is C++, but it will be appreciated that other languages
may be used, for example other statically-typed, object-oriented languages such as
Java. Certain aspects of the present generation may apply to any implementation

language.
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One significant feature of the present implementation code generation is the manner in
which “simulated” multiple inheritance, i.e. multiple pseudo-inheritance, expressed in
the first data structure description is translated into the implementation code to define
the second data structure (and the implementation rules). As stated earlier, the
“inheritance” expressed in the above-discussed first data structure description scheme
is pseudo-inheritance that only models substitutability, and therefore such pseudo-
inheritance between the logical-structure nodes cannot be implemented directly as
normal inheritance between the corresponding nodes of the second data structure via
the links between those nodes using the “normal” inheritance mechanism of the
implementation language (FIL), since most languages attach further meaning to the
notion of inheritance than that implied by pseudo-inheritance, which in turn causes
problems with multiple inheritance. Further, many implementation languages (FILs) do

not support normal multiple inheritance.

This significant feature provided by the present implementation code, which defines the
second data structure for use in implementing the BL, is for nodes in the second data
structure other than the root node to directly inherit from the root data-structure node.
In effect, all nodes (other than the root node) inherit in the normal sense (i.e.
substitutability, implementation and interface) from the root node, and do not inherit
from each other. This only requires single inheritance and also means that the nodes of
the second data structure do not inherit any interface or implementation from each
other. An example of this implementation second data structure being applied to the
intended logical structure of Figure 3 is shown in Figure 10 (which represents the

second data structure in the present example).

As shown in Figure 10, all nodes (other than the root node) inherit from the root node,
Node. Even Expression, which previously pseudo-inherited (in the first data structure
description) from Statement and Initializer, now (in the implementation’s second data
structure) only inherits from Node. All multiple inheritance (of any sort) has been
eliminated from the implementation, or rather from the part of the implementation that is
the second data structure; the multiple pseudo-inheritance relationships expressed in
the first data structure description (i.e. the substitutability) still needs to be represented

somehow for the implementation to be true to the BL and its associated logical

structure.
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Also as shown in Figure 10, the child reference fields of IfThenElse,
VariableDeclaration and Expression all refer to data-structure nodes of type Node (the
root data-structure node type). This change (from the first data structure to the second
data structure) is required because the type system of the implementation language
(FIL) will (in most cases) no longer allow substitutability of Expression for Statement or
Initializer, or for any of the other related nodes, because they are no longer related
(e.g. Expression is not derived from Statement in the second data structure).

The second data structure in Figure 10 can advantageously be supported directly by
most implementation languages (FILs), but is missing certain important elements of the
original, intended logical structure (first data structure) representative of the BL as
described by first data structure description, for example as shown in Figures 7 and 8.
These elements comprise for example the pattern of links between the various nodes
of the first data structure (representing the pseudo-inheritance paths, i.e. inheritance of
substitutability) not present in the pattern of links between the nodes of the
corresponding second data structure. These elements are re-introduced in the
implementation as discussed below by way of the implementation rules, in order to
enable the implementation to be true to the BL, as discussed below.

The present implementation method re-introduces these elements by means of a type-
checking mechanism (the implementation rules) that reflects the type rules (i.e. the
substitutability) specified in the original logical-structure description. This is preferably
carried out by a dynamic type checker, which ensures that all reference fields in the
tree can only be assigned a reference to a node of a compatible type, according to the
simulated multiple inheritance or multiple pseudo-inheritance (Figure 7) and multi-type
reference (Figure 8) rules specified in the first data structure (AST) description.

The process of type-checking is discussed in greater detail below, however at this

stage the considerable benefits of the system are summarised.

The purpose of such type-checking is to maintain type safety. The generated
implementation may be used to build an “instance” AST for a code portion expressed in
the BL. The type-checking of the present system may be carried out during and/or after
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any manipulation or creation of the “instance” AST for the code portion concerned (the
candidate code portion). In this way, at each stage it is possible to ensure that the
“instance” AST is still valid in respect of the BL (i.e. that the rules of substitutability
expressed in the first data structure description and implemented by the
implementation rules are not violated). However, the first data structure can be very
complex in terms of multiple inheritance of substitutability; several nodes can be
defined as being substitutable for any other node in the first data structure. The
implementation allows these rules of substitutability to be preserved by way of the
implementation rules, whilst ensuring that no problems in multiple inheritance occur
because only single inheritance is used in the second data structure from which the
“instance” AST is built. In effect, an SEB (with wildcard pseudo-inheritance) can be
built into the first data structure description relatively easily (see Figure 9), however the
second data structure remains very simple and has only single inheritance
relationships. The complexity of the substitutability relationships is reserved for the
implementation rules, which similarly can be expressed simply.  Accordingly, an
“instance” AST (representing a candidate code portion) can have any number of
instance SEBs within it in any location, since the SEB is defined as being substitutable

for any other type of node.

The type-checking rules used by the preferred type checker are generally as follows.
For all node types listed as valid targets for any given reference field, those types and
any types derived from them as expressed by the pseudo-inheritance and/or multi-type
references in the first data structure description are valid node types to be referenced
by that reference field. For example, if a reference field in the example first data
structure description specifies Initializer as the target type, then references to nodes of
type Initializer, Identifier and Expression in an “instance” AST will pass the type-check,
and all other node types will cause an error (typically handled by an exception handling
mechanism, but this is implementation-dependent). The specific implementation of an
efficient type-checking mechanism that supports these rules is an implementation
detail, but, by way of example, a (hash-based) set per node type, containing all the
node types that are derived from that node type, affords a very efficient solution.

For dynamic type-checking (i.e. at run time, rather than at compile time), access to

fields in a node may be provided via accessor functions, which allows the
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implementation to invoke the type-checking system on the references to ensure that
they are valid. For example, for the Expression node, the accessor functions generated

(for C++) could be as shown in Figure 11.

Looking at Figure 11, the first pair of functions (both called op()) provide access to the
OperatorType field (one for reading, one for writing), which is a data field and not a
reference type. Accessor functions are generated for data fields primarily to keep the

interface uniform across all field types.

The |hs() and rhs() pairs of functions provide access to the two child references called
Ihs and rhs in the corresponding AST description. The versions of these two functions
which take a NodePtr as a parameter are used to set a new value for the associated
field, and the implementation of these functions invokes the type-checker on the

incoming reference fo ensure that it is of a compatible type.

As illustrated in Figure 11, references in the first data structure description are
franslated into pointers in the C++ implementation rules. In the present method, they
are translated into a special type of pointer called a reference-counted smart pointer,
which allows multiple objects to share ownership of another object by counting the
number of objects holding a reference to it. When one of these smart pointers takes a
reference to the object, it increments the reference count, and when it releases its
reference to the object, it decrements the reference count. If the reference count
becomes zero, the object is no longer referred to by any such pointers, and is
destroyed. This mechanism allows any instance node of the second data structure to

be owned by more than one parent, leading towards a graph structure (a DAG).

Although both child reference and link references use smart pointers in the present
method, they actually use two different — but related — smart pointer types. Child
references use a strong pointer, which is the one described above, whereas link
references use a weak pointer. A strong/weak smart pointer scheme requires objects to
have two reference counts: a strong count and a weak count. The strong count is used
to keep the object “alive”, whereas the combination of the strong and weak counts is
used to keep the counts themselves alive. For example, when an object is referenced

by a single strong pointer and a weak pointer, it will have a strong count of 1 and a
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weak count of 1. If the strong pointer releases its reference, the strong count becomes
0 and the object is destroyed, but the counts remain since the total count (strong +
weak) is still 1. If the weak pointer is de-referenced when the object is in this state, it
will yield NULL, rather than a reference to a destroyed object. With this mechanism,
weak pointers can be used to safely refer to objects owned (and destroyed) by other

objects.

The translation from a reference field in the first data structure description to the FIL (in
this example, C++) implementation rules can therefore be fairly direct, with the major
difference in the present example being that they are represented using smart pointers
that have been named NodePir via a C++ typedef declaration. The NodePtr name is
derived from the name of the root node type (Node) with Ptr appended onto the end. All
smart pointers to specific node types are preferably named similarly, although they are
not used directly in the second data structure (since all references translate into
NodePtrs).

Although the preferred form of type-checking added by the implementation to enforce
the description-specific type rules uses a dynamic checking mechanism, certain
implementation languages (including C++) can also provide support for a custom static
type-checking scheme, which could allow programmers to be notified of certain kinds of

type error at compile time rather than at runtime.

For example, the ths and rhs fields in Expression in the present example can only ever
reference nodes of type Expression, since nothing else derives from Expression (in the
present example, at feast). Given this, it is unnecessary to use NodePtr either for
representing the fields, or for the Ihs() and rhs() function pairs — an ExpressionPtr could

be used instead.

However, this is a fairly contrived example, albeit one which can occur in practice. A
more common occurrence would be the thenClause field in ifThenEise, which allows
references to Statement, and (via inheritance) references to IfThenElse and
Expression. Since thenClause can reference more than one type of object, it must be a
NodePtr rather than anything more specific, but the accessor functions can be more

specific. One possible set of accessor functions for thenClause is shown in Figure 12.
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As shown in Figure 12, the read accessor returns a NodePtr, which is no different to
the lhs() and rhs() examples, but there are now three write accessors which take
advantage of C++ function overloading (C++ being a preferred FIL) to provide write
access through these three types of reference and no other type, which can be
checked at compile time by the C++ compiler. The same effect can be achieved with a
single templated function containing a compile time assert on the validity of the
reference type. Not all implementation languages (FILs) provide the facilities required
to achieve this effect and those that do may provide such capabilities in different ways.
Nevertheless, it will be appreciated that static type-checking is not essential ~ it simply
provides an extra layer of assistance to the programmer which may be used where
possible. Incidentally, it is possible to provide a statically type-checked read accessor
in C++, but not via function overloading, since the return type is not used in overload

resolution in C++.

Generally speaking, the presence of wildcard inheritance in a first data structure
description (AST) requires specific support in a particular area of an implementation
code generator for generating the definition of the corresponding data structure. When
a node is declared with wildcard inheritance, it is simply added as a derived type to all
existing nodes in the first data structure description. All other mechanisms in the

implementation code generator remain the same.

It may appear that using wildcard inheritance (with regard to SEBs) will somehow
weaken the type-checking system, but this is not the case. Indeed, even static type-
checking is affected only slightly. Taking the example accessor functions for
thenClause in Figure 12, and assuming a node called Wildcard has been added to the
AST with wildcard inheritance, this merely results in an extra write accessor function for
thenClause that accepts a WildcardPtr. Of course, there will be one such extra function
for every reference field in the second data structure, but it should be clear that static
type-checking siill provides a reasonable level of safety to the programmer.

One method of tree walking used in embodiments of the present invention uses an
iterator model, rather than the Visitor Pattern (which is almost exclusively used by
existing AST code generators). A fundamental difference between the Visitor Pattern



10

15

20

25

30

WO 2009/106843 PCT/GB2009/000552

41

and an iterator model is that the Visitor Pattern assumes control of the walk process,
whereas an iterator model relinquishes control to the user. When using a visitor-pattern
approach, the user calls a visit function and provides a callback function that will be
called by the visitor function for every node it visits. With an iterator, the user creates
an iterator object and writes a loop which queries the iterator for the current node and

tells it to advance on each iteration.

The primary benefits of the iterator-model approach are that the user controls the
iteration process and can refer to local program state as iteration progresses, even with
implementation languages (FILs) which do not provide support for closures (such as
C++ and Java). Although implementation languages that do provide closures have this
property even with a visitor-pattern approach, the present system is aimed at being as
usable as possible for languages without such support.

A simple iterator model for an AST provides the following functions:
 more() - returns true if the iterator has any further nodes to yield.
* node() — returns a reference to the node that the iterator is currently positioned
at.
» next() — advances the iterator to the next node in the walk, as determined by the
specific walk order the iterator supports (ths most commonly being an pre-order

walk).

An example C++ [oop using these functions can be seen in Figure 13. In this example,
stariNode is a reference to the “instance” node from which it is intended to start
iterating from (iteration can begin anywhere in the structure), and Treelterator is a
generated class which provides the iterator functionality. At each iteration, a reference
to the current node is copied into node, where it can then be used by any following

code to operate on the node.

Providing iterator functionality for a heterogeneous tree is somewhat different than
providing visitor-pattern functionality. Although the two mechanisms seem only subtly
different, the iterator approach requires somewhat more effort. When generating visitor
code, a code generator may generate a visit() function for each node, an example of
which is shown in Figure 14. This example shows a pre-order walk implemented via
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recursion. The first thing each visit() function does is call the callback function provided
by the user code, passing it a reference to the current node. It then calls visit()
recursively for each non-null child reference field in the node, which will invoke the
specific visit() functions for the node types referenced by them, and so on, until the

recursion naturally terminates at the leaves of the tree.

Unfortunately, this approach cannot be trivially converted into an iterator scheme in
many implementation languages, because it would require a mechanism to allow the
visit() function to yield to the caller rather than calling a callback. This effect can be
simulated via closures, but since not all implementation languages provide closure

support, it is desirably to use a different mechanism.

A number of ways to provide a workable iteration mechanism are envisaged, but they
generally reduce to the same technique: providing an enumeration mechanism for the
reference fields for each node type. This enumeration mechanism allows, for any node
type, a caller to request the Nth reference field from the node. If such a mechanism is
provided, iterating over a single node simply involves requesting all reference fields
from 0 upwards until the enumerator returns a null reference (or some equivalent error

code).

There are also a number of ways to implement the enumerator mechanism. One
possible way is to provide an enumerate() function for each node type with a case
statement that translates a slot number into a reference io a field reference, an
example of which is given in Figure 15. The present code generator tool does not use

this technique, however, in favour of a data-based enumeration scheme.

The present iteration mechanism may be extended to iterate over an entire “instance”
tree, by employing a stack to record the parent node and reference field to go back to
when recursion on a child node terminates. If explicit parent references are encoded
into the tree, the use of the stack can be removed, which results in a more memory-
efficient iterator. Further extending the iterator to support different walk strategies is
also possible (as it is for the visitor mechanism). The present iterator for example may
provide both a pre-order walk and a post-order walk, as well as a combined pre- and

post-order walk. User code can determine which part of the walk (pre or post) resulted
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in the current node through a helper function, isPost(), which returns true if the current

node’s children have already been walked over.

One advantage of the iterator approach is that it is possible to implement a visitor
mechanism on top of the iterator mechanism for most implementation languages,
whereas the reverse is not generally possible. Indeed, because of this, the present
method (in a preferred form) does not generate visitor support code, because users

may create their own visitors in a few lines of code.

As stated earlier, a tree structure which does not provide explicit parent references in
nodes can be cumbersome to manipulate. Accordingly, the present method of
implementation allows nodes to contain parent references. However, an ability to
perform shallow copying of sub-trees is a desirable quality in an AST representation,
especially when used in combination with a GLR (Generalized Left-to-right Rightmost
derivation) parsing mechanism, but also for efficient manipulation. The two possibilities
do not sit well together: if a node can have more than one parent, and if it can refer to
them directly, it will actually need multiple parent references, rather than just one,
which implies some kind of list or array structure per node, and this is likely to be
signiﬁcantly less efficient than a representation without explicit parent links and multiple
parents. Furthermore, if a node has muliiple parent references, detaching that node

from one of its parents requires a determination of which parent reference to destroy.

The present AST representation deals with these issues with a two-stage solution.
Firstly, since most nodes onfy have one parent, it is possible fo optimise for this case
by using a single parent reference. Secondly, for nodes with multiple parents, it is
possible to re-use the single parent reference to reference a parent list structure that

contains references to the multiple parents for that node.
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Since the use of multiple parents is commonly due to efficiency concerns in the first
place (e.g. shallow copying is much cheaper in terms of storage and computatlon than
deep copying), giving up a little of this efficiency only for cases where this is used is a
reasonable trade-off. It is therefore generally acceptable for a node with multiple
parents to use extra storage and to require more computation to perform a detach

operation.

The overall effect of these additions to the present AST implementation is that the
implemented structure is more like a Directed Acyclic Graph (DAG) than a tree, but
structured in such a way that it maintains many of the efficiencies of a simple tree
structure, while providing graph-like capabilities where required.

Applications

As will now be appreciated, the ability of the present system (the “present system”
being merely one embodiment of the present invention) to implement the described
logical structure (first data structure) by configuring all nodes of the second data
structure (other than the root node) to directly inherit from the root node, and by
implementing a type-checking mechanism to re-introduce the type rules
(implementation rules) specified in the original first data structure description, leads to a
number of advantages in terms of flexibility and robustness.

The present system, and tools incorporating the present system, can employ a method
for describing grammar-independent syntax extensions (referred to above as syntax
extension blocks or SEBs and employing so-called Wildcard inheritance to effect the
capability). This simplifies the integration of new language features into the BL without
the necessity of interfering with the complex language grammar descriptions required
for most modern programming languages. The present system makes significant use of
code generation techniques to simplify the process of building a code analysis and
transformation system for a new programming language. The present system
incorporates a logical-structure description scheme (first data structure description) and
an implementation generator (second data structure and implementation code) that

provide grammar-based constraints on structure (i.e. type-checking is implemented),
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while allowing a controlled degree of flexibility for wildcard grammar elements (such as
syntax extensions or SEBs) which are not derived in any way from the underlying
language grammar of the BL. This is achieved through the techniques of pseudo-
inheritance and multi-type references (i.e. substitutability) discussed in detail above
and incorporated into the implementation.

Accordingly, the present system may be considered to provide a framework, which may
be exploited in an array of tools and other applications useful to the metaprogrammer.
It is possible to express a “system” logical structure (AST) and parser (for example a
GLR parser) for candidate code portions written in the BL (Base Language), from which
such tools (a number of which will be discussed below) can be generated. It becomes
possible to generate metacompiler tools and libraries in the FIL (Framework
Implementation Language) for processing programs (candidate code portions)
expressed in the BL using specifications (i.e. the implementation) of the present
system. It then becomes possible to convert program source code (candidate code
portions) expressed in the BL into an “instance” AST for the BL by means of the above-
mentioned metacompiler tools and libraries. It also becomes possible to analyse and
optionally transform the generated ‘“instance” AST using meta-level programs
expressed in the TL (Transformation Language). It further becomes possible to
convert the modified “instance” AST (abstracted form) back into code in the BL in its
native text form (equivalent to an input form, or some other equally useful form,

depending on the application).

By way of example, Figure 16 is a schematic diagram of a simplified use case for a
metacompiler 10 embodying the present system, in use as a code transformation tool,
where the BL is C++. Accordingly, the metacompiler 10 is equipped with a

transformation engine.

As can be seen from Figure 16, a candidate code portion 15 written in the BL is
provided as an input to the metacompiler 10 along with meta-transformations 20 written
in the TL. The metacompiler 10 is operable to generate AST description code (defining
an “instance” AST) for the candidate code portion 15 and to implement that AST in
accordance with the present system as described in detail above. Accordingly, it is
possible to manipulate the AST for the candidate code portion 15 in accordance with



10

15

20

25

30

WO 2009/106843 PCT/GB2009/000552

46

the input meta-transformations 20, for example based on the location of instance
SEBs.

In order to maintain type safety, the type-checking of the present system may be
carried out during and/or after manipulation of the AST to ensure that the resultant AST

is still valid in respect of the BL.

As indicated in Figure 16 with dotted lines, it will be appreciated that the AST for the
candidate code portion 15 (before, during, and/or after such manipulation) may be
represented 25 in any convenient form for inspection or analysis by external tools,
and/or for viewing by a user. A visualisation layer via GraphViz may for example be
provided for inspection and debugging purposes.

Following the manipulation, the metacompiler 10 is operable to convert the
manipulated “instance” AST into a transformed code portion 30 equivalent to the

manipulated “instance” AST and written in the BL.

In practice, the present system enables the merging of the two forms of input (program
code and meta-level transformations) into a unified representation, allowing both
program code and meta-level transformation programs to coexist within the same

source files. This is shown in Figure 17.

Figure 17 is a schematic diagram of a simplified use case for a metacompiler 10
embodying the present system, in use as a code transformation tool as in Figure 16,

where the BL is C++.

As can be seen from Figure 17, a candidate code portion 15 written in the BL is
provided as an input to the metacompiler 10 along with meta-transformations 20 written
in the TL as in Figure 16. However, in Figure 17 these two inputs are provided to
together in a single combined input 35, i.e. with the meta-transformations 20 embedded

in the candidate code portion 15.

This embedding of extensions is achieved through ‘Syntax Extensions’ or SEBs (as

discussed in detail above). The use of SEBs is a grammar-independent technique for
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embedding language extensions within a pre-existing language syntax. This scheme
allows meta-level transformations written in the TL to be gradually incorporated into
existing source code written in the BL, with a base minimum requirement of zero
deviations from the BL specification. It is envisaged that such a scheme is important for
realistic adoption/uptake within the programming community since unmodified source
code is treated no differently from ‘meta-enhanced’ source code.

Further applications of the system of the present invention are envisaged. Since the
framework provided by embodiments of the present invention has general application,
these applications are intended to demonstrate the general flexibility of the system
whilst providing a number of expected use-cases. The use-cases disclosed herein are

by no means exhaustive.

One application of the system of the present invention is to enable the use of
embedded code transformations (i.e. language enhancements). Figure 18 is a
schematic diagram of a simplified use case for metacompiler 10 embodying the present
system, in use as part of a code transformation tool as in Figures 16 and 17, where the
BL is C++. Because of the use of embedded code transformations, the use case of

Figure 18 is closely similar to the use case of Figure 17.

In Figure 18, the single combined input 35 (i.e. with the meta-transformations 20
embedded in the candidate code portion 15) may be considered to be expressed in a
modified version of C++ (the BL) including transformations expressed in TL which are
performed by the metacompiler 10, which in turn produces a transformed code portion
30 (Native C++ output) written in the BL equivalent to the manipulated AST. The
transformed output can then be dealt with by a traditional C++ compiler 40 to produce

object code 45.

Another application of the system of the present invention is to enable code
understanding. Code understanding requires analysis of the AST and a final
representation for the extracted meaning. Figure 19 is a schematic diagram of a
simplified use case for metacompiler 10 embodying the present system, in use as part
of a code-understanding tool. As in Figure 16, the metacompiler 10 is operable to
generate AST description code for the candidate code portion 15 and to implement that
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AST in accordance with the present system as described in detail above. For the
purpose of code understanding, there are further provided code-understanding tools 50
which can operate on the AST using the metacompiler 10 for this purpose. The final
representation §5 produced following the code understanding process may take any
form, but may include syntax highlighting,  context-sensitive help and
reformatting/shortcut suggestions.

Another application of the system of the present invention is in code refactoring. Code
refactoring requires aspects of code understanding plus a means to transform the
program representation and automatically re-integrate the resulting changes with the
original input, on a relatively broad scale. Figure 20 is a schematic diagram of a
simplified use case for metacompiler 10 embodying the present system, in use as part
of a code-refactoring tool. As in Figure 16, the metacompiler 10 is operable to
generate AST description code for the candidate code portion 15 and to implement that
AST in accordance with the present system as described in detail above.

For the purpose of code refactoring, the benefits of flexible AST representation and
manipulation afforded by the present system are harnessed. Refactoring tools 60 are
operable to make use of the AST produced in the metacompiler 10 to provide a
representation for a user interface 65. Code understanding capabilities as in Figure 19
may be utilised, and the “instance” AST may be manipulated (as in Figures 16 and 17)
to perform such code refactoring. Consequently, following such manipulation, the
metacompiler 10 is operable to covert the manipulated AST into a transformed code
portion 30 written in the BL equivalent to the manipulated AST. Accurate AST source
coordinates and a C++ (BL) source code generator provide the basis for this

functionality. As such, the original candidate code portion 15 is refactored.

The transformed output can then be dealt with by a traditional C++ compiler 40 to
produce object code 45. For simplicity, the candidate code portion 15 and the

transformed code portion 30 are shown in the same box in Figure 20.

Another application of the system of the present invention is in build optimisation. Build
optimisation allows existing code to be refactored at a source code level, such that the

compilation or build cost (in terms of work performed and therefore time taken) for a
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given collection of source files is significantly reduced. This is a variant on code
refactoring (Figure 20) that concentrates on physical project structure rather than
abstract program semantics, although elements of both can be usefully combined.

Figure 21 is a schematic diagram of a simplified use case for metacompiler 10
embodying the present system, in use as part of a build-optimisation tool. It will be
appreciated that Figure 21 is similar to Figure 20, except that the refactoring tools 60
and user interface 65 are replaced with build optimisation tools 70. AST-based source
file relationship information provides a means to safely reorganise project source files

at a very fine level of granularity (sub file level).

Another application of the system of the present invention is as a code instrumentation
tool. Code instrumentation allows existing code to be automatically populated with
code changes or augmentations, which may or may not involve transformations or
annotation embedded within the input source code. Instrumentation scenarios include
debugging, performance profiling and anti-hack technology. This technique relies on
elements of code transformation and to a degree refactoring and source formatting.
The flexible code-generated AST of the present system makes AST inspection,

analysis and modification possible for robust, automated instrumentation.

By way of example, Figure 22 is a schematic diagram of a simplified use case for a
metacompiler 10 embodying the present system, in use as part of a code-
instrumentation tool, where the BL is C++. As can be seen from Figure 22, the
candidate code portion 15 written in the BL is provided as an input to the metacompiler
10. The metacompiler 10 is operable to generate AST description code for the
candidate code portion 15 and to implement that “instance” AST in accordance with the
present system as described in detail above. Accordingly, as before, it is possible to
manipulate the AST for the candidate code portion 15 in accordance with the input

meta-transformations 20.

An instrumentation system 75 is provided as shown in Figure 22 and is operable to
interact with the AST generated in the metacompiler 10 to manipulate the AST as part
of the code-instrumentation process. Following the manipulation, the metacompiler 10
is operable to covert the manipulated AST into a transformed code portion 30 written in
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the BL equivalent to the manipulated AST (as in Figure 16). The transformed output
can then be dealt with by a traditional C++ compiler 40 to produce object code 45.

As will now be appreciated, a number of the above usage cases involve some form of
‘code transformation’, and accordingly such code transformation will be considered

further in reference to Figure 23.

Figure 23 is a schematic diagram of a simplified use case for metacompiler 10
embodying the present system, in use as part of a code transformation tool. Figure 23
is to some extent an expanded version of Figures 17 and 18, with internal components
of the metacompiler 10 indicated and labelled for reference. Accordingly, those
elements of Figure 23 already discussed in reference to Figures 17 and 18 are labelled

in the same way.

The internal components required are to a degree dependent on the application, so not
all such components are required for each usage case. For the purpose of illustration,
the code-transformation scenario makes use of all of the components shown in Figure
23.

Input programs (candidate code portions) 15 expressed in the BL (in this case, in C++),
and possibly augmented with meta-program instances 20 (in this case, a combination
of extended language syntax and arbitrary scripting language) expressed in the TL, are
converted into an AST representation which retains the fidelity of the input program(s).
This is handled by a lexer/parser component 80. The lexer/parser component 80 may
be code generated by other system framework tools. The lexer and parser may be
independent components in terms of function, but they are preferably generated
together as a unit from a single integrated grammar file (comprising the first data
structure description) for the BL. The “instance” AST representation (pre~
transformation) 85 can then be modified by the transformation engine 90, which can
take input from a number of different sources (as exemplified in the above-described
usage cases). In this particular scenario, the input is meta-program code expressed in

the TL, which is also represented separately in the AST.
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The modified AST (post-transformation, or post-manipulation) 95 can then be emitted
in BL form (in this case, by the C++ Syntax Generator component 100), in order to be
treated by a conventional BL compiler 40 or other appropriate development tool. The
AST can be emitted in any other form for storage, inspection/visualisation 25, or
analysis. Typically, the AST is emitted as a graph visualisation for debugging of meta-
programs.

One possible usage case for the present system, for example analogous with that of
Figure 20, is refactoring code written to be processed by a particular processor
arrangement to be processed efficiently by a different processor arrangement. For
example, code written to be processed by a single processor core could be adapted to
be efficiently processed on a dual processor core, for example to take advantage of
parallel processing possibilites. The present system provides an efficient way to

perform such refactoring.

In any of the above aspects, the various features may be implemented in hardware, or
as software modules running on one or more processors. Features of one aspect may

be applied to any of the other aspects.

The invention also provides a computer program or a computer program product for
carrying out any of the methods described herein, and a computer readable medium
having stored thereon a program for carrying out any of the methods described herein.
A computer program embadying the invention may be stored on a computer-readable
medium, or it could, for example, be in the form of a signal such as a downloadable

data signal provided from an Internet website, or it could be in any other form.

As discussed herein the methods described herein may be carried out by a computer
or a network of computers. As one of ordinary skill in the art would inherently
understand, a computer or a network of computers may have one or more processors,
memory and/or storage for storing input data, intermediate data, and output data; and
input and output components, for example interface cards, wired or wireless
communication components, keyboards, and/or display devices. The one or more
processors are generally configured by instructions so as to be operable to perférm

processing, for example processing of methods discussed herein, and to command
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storage and retrieval of data to memory and/or storage, and to command generation of

visual displays on the display.

The present invention may be described by the statements given below. These
statements do not form the claims of the present application. The claims of the present

application commence at page 60.

1. An implementation tool for generating an implementation of a first data structure,
the first data structure representing at least a portion of a computer-programming
language, the language comprising a plurality of syntactical elements satisfying a set of
syntax rules and the first data structure comprising a plurality of linked nodes, such
nodes comprising a root node, a number of first-tier nodes linked directly to the root
node, and a number of subsequent-tier nodes linked indirectly to the root node via one
or more other said nodes, the nodes representing such syntactical elements of the
language and links between the nodes representing such syntax rules, the tool
comprising:

first-data-structure input means operable to receive a said first data structure, or
a description thereof; and

processing means operable to generate an implementation of the first data
structure, the implementation comprising:

a second data structure, or a description thereof, corresponding to said first data
structure, the second data structure comprising nodes corresponding to the nodes of
the first data structure with nodes of the second data structure other than its root node
being linked directly to the roqt node of the second data structure; and

implementation rules which define the syntax rules of the first data structure to be
enforced in relation to nodes of the second data structure during a subsequent
processing operation which utilises said implementation in order to establish

compliance with the syntax rules represented by the first data structure.

2. Animplementation tool according to statement 1, wherein said first data structure

is at least partly a heterogeneous tree structure, such as an abstract syntax tree.

3. An implementation tool according to statement 1 or 2, wherein said first data

structure is at least partly a directed acyclic graph structure.
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4. An implementation tool according to any preceding statement, wherein said
language is made up of a number of tokens, and wherein sach said syntactical element
of the language is representative of a group of said tokens or of predetermined

combinations of said tokens.

5. An implementation tool according to any preceding statement, wherein the links
between the nodes of the first data structure are representative of paths of inheritance
of substitutability but not implementation and interface between those nodes.

6.  An implementation tool according to any preceding statement, wherein the links
between the nodes of the second data structure are representative of paths of

inheritance of substitutability, implementation and interface between those nodes.

7. An implementation tool according to any preceding statement, wherein the
implementation rules define rules of substitutability to be enforced in relation to nodes
of the second data structure during a subsequent processing operation which utilises
said implementation in order to establish compliance with substitutability relationships

represented by the first data structure.

8. An implementation tool according to any preceding statement, wherein the first
data structure comprises further linked nodes representative of a language extension,

the language extension being an extension to said computer-programming language.

9. An implementation according to statement 8, wherein said further nodes of said
first data structure represent respective syntactical elements of said language

extension.

10.  An implementation tool according to statement 8 or 9, wherein one or more of
said further nodes of said received first data structure are defined as being
substitutable for some or all of the other said nodes of the first data structure.

11. An implementation tool according to any of statements 8 to 10, wherein the

implementation rules define rules of substitutability to be enforced in relation to nodes
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of the second data structure corresponding to said one or more further nodes of the
received first data structure during a subsequent processing operation which utilises
said implementation in order to establish compliance with the substitutability
relationships of said one or more further nodes of the first data structure represented
by the first data structure.

12.  An implementation tool according to any of statements 8 to 11, wherein said
language extension is part or all of a language other than said computer-programming

language.

13.  An implementation method of generating an implementation of a first data
structure, the first data structure representing at least a portion of a computer-
programming language, the language comprising a plurality of syntactical elements
satisfying a set of syntax rules and the first data structure comprising a plurality of
linked nodes, such nodes comprising a root node, a number of first-tier nodes linked
directly to the root node, and a number of subsequent-tier nodes linked indirectly to the
root node via one or more other said nodes, the nodes representing such syntactical
elements of the language and links between the nodes representing such syntax rules,
the method comprising:

receiving a said first data structure, or a description thereof; and

generating an implementation of the first data structure, the implementation
comprising:

a second data structure, or a description thereof, corresponding to said first data
structure, the second data structure comprising nodes corresponding to the nodes of
the first data structure with nodes of the second data structure other than its root node
being linked directly to the root node of the second data structure; and

implementation rules which define the syntax rules of the first data structure to be
enforced in relation to nodes of the second data structure during a subsequent
processing operation which utilises said implementation in order to establish
compliance with the syntax rules represented by the first data structure.

14. An implementation computer program which, when executed on a computing

device, causes the computing device to carry out the method according to statement

13.
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18.  An instance-handling tool for operating on an instance of the second data
structure of the implementation generated by the implementation tool of any of
statements 1 to 12, the instance-handling tool comprising:

means storing said implementation; and

means for operating on a candidate said instance in dependence upon the
implementation, the candidate instance comprising instance nodes corresponding to

nodes of the second data structure.

16.  An instance-handling tool according to statement 15, further comprising:

means for receiving the candidate instance of said second data structure in an
input form in which its instance nodes and links therebetween are not explicitly
expressed; and

conversion means for converting the received candidate instance into an
abstracted form in which the instance nodes and links therebetween are explicitly

expressed.

17.  An instance-handling tool according to statement 16, wherein:

said candidate instance is a code portion expressed in said computer-
programming language;

said input form is a text-based version of said code portion; and

said abstracted form is an abstract syntax tree and/or graph version of said code

portion.

18.  An instance-handling tool according to any of statements 15 to 17, further
comprising visualisation means operable to generate a visual representation of the

candidate instance.

19. An instance-handling tool according to statement 18 when read as appended to
at least statement 16, wherein the visualisation means is operable to generate a visual

representation of the candidate instance in said abstracted form.
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20. An instance-handling tool according to any of statements 15 to 19, further
comprising manipulation means operable to manipulate said candidate instance in
dependence upon said implementation.

21.  An instance-handling tool according to statement 20 when read as appended to
statement 16, wherein the manipulation means is operable to manipulate said
candidate instance in said abstracted form.

22. An instance-handling tool according to statement 20 or 21, wherein said
manipulation means is operable to verify such manipulation against said
implementation, and to disallow manipulation that is incompliant with the second data

structure and/or the implementation rules.

23. An instance-handling tool according to statement 22, wherein said manipulation
means is operable to allow manipulation that is compliant with the second data

structure and the implementation rules.

24.  An instance-handling tool according to any of statements 20 to 23, wherein such
manipulation comprises augmenting the candidate instance and/or reducing the

candidate instance.

25.  An instance-handling tool according to any of statements 20 to 24, wherein such

manipulation comprises adding new instance nodes to the candidate instance.

26. An instance-handling tool according to statement 24 or 25, wherein such

manipulation comprises removing instance nodes from the candidate instance.

27.  An instance-handling tool according to any of statements 24 to 26, wherein such
manipulation comprises annotating particular instance nodes of the candidate instance.

28.  An instance-handling tool according to any of statements 20 to 27, wherein such
manipulation comprises performing a predetermined process on part or all of said

candidate instance.
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29. An instance-handling tool according to statement 28, wherein the predetermined
process is defined in a set of actions, such as a computer program, accessible by the

instance-handling tool.

30.  An instance-handling tool according to statement 28 or 29, wherein the
predetermined process is an optimisation process operable to optimise the candidate

instance for a predetermined purpose.

31.  An instance-handling tool according to any of statements 20 to 30, wherein said
manipulation means is operable to perform such manipulation in dependence upon the

instance nodes of the candidate instance.

32. An instance-handling tool according to statement 31, wherein said manipulation
means is operable to identify a particular type of instance node and to perform such

manipulation in dependence upon the identified instance node.

33.  Aninstance-handling tool according to statement 32, wherein:

the implementation and the second data structure are the implementation and the
second data structure as generated by the implementation tool of any of statements 8
to 12; and

the particular type of instance node is an instance node of a said further node of

the language extension.

34.  Aninstance-handling tool according to any of statements 15 to 33, wherein:

the implementation and the second data structure are the implementation and the
second data structure as generated by the implementation tool of any of statements 8
to 12; and

said candidate instance includes parts that are attributable to said language

extension.

35. An instance-handling tool according to any of statements 15 to 34 when read as
appended to at least statement 16, wherein said conversion means are first conversion

means, the instance-handling tool further comprising second conversion means
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operable to convert said candidate instance in said abstracted form into its

corresponding input form.

36. An instance-handling tool according to statement 35 when read as appended to
at least statement 20, wherein the second conversion means are operable to carry out
such conversion before or after such manipulation has been performed on the

candidate instance.

37.  An instance-handling tool according to any of statements 15 to 36 when read as
appended to at least statement 20, wherein:

said candidate instance is a code portion expressed in said computer-
programming language; and

the instance-handling tool comprises means operable to output the candidate

instance as object code before or after such manipulation.

38. An instance-handling tool as claimed in statement 37, being a parser or a

compiler.

39.  An instance-handling method of operating on an instance of the second data
structure of the implementation generated by the implementation tool of any of
statements 1 to 12, the method comprising operating on a candidate said instance in
dependence upon the implementation, the candidate instance comprising instance

nodes corresponding to nodes of the second data structure.

40. An instance-handling computer program which, when executed on a computing
device, causes the computing device to carry out the method of statement 39.

41. A method of extending a computer-programming language, comprising:

obtaining a first data structure, or a description thereof, representative of at least
a portion of the language;

adapting the first data structure, or the description thereof, to include further
linked nodes representative of a language extension; and

employing an implementation tool according to any of statements 8 to 12 to

generate an implementation of the adapted first data structure.
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42. A parser or compiler comprising an implementation tooi according to any of
statements 1 to 12 and/or an instance-handling tool according to any of statements 15
to 38.

43. A method of producing or adapting a computer program, comprising:

inputting to an instance-handling tool according to any of statements 15 to 38 a
candidate computer program expressed in at least the portion of the computer-
programming language as the candidate instance;

employing said instance-handling tool to operate on said candidate instance: and

employing said instance-handling tool to output a computer program resulting
from such operation, the output computer program being such a produced or adapted

computer program.

44, A computer or network of computers configured to function as an implementation
tool according to any of statements 1 to 12 and/or an instance-handling tool according

to any of statements 15 to 38.

45. A metaprogramming tool comprising an implementation tool according to any of
statements 1 to 12 and/or an instance-handling tool according to any of statements 15
to 38.
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CLAIMS:

1. An implementation tool for generating an implementation of a first data structure,
wherein the first data structure comprises a plurality of linked structural components,
and wherein the first data structure represents meaningful components of a given
system and a parent set of interrelationships between those meaningful components,

the tool comprising:
first-data-structure input means, operable to receive a said first data structure, or

a description thereof; and

processing means operable to generate an implementation of the received first
data structure, the implementation comprising:

a second data structure, or a description thereof, corresponding to said first data
structure, wherein said second data structure is defined by a subset of the parent set

of interrelationships; and
implementation rules which allow the parent set of interrelationships to be

enforced during a subsequent processing operation which utilises said implementation.

2. Animplementation tool as claimed in claim 1, wherein said structural components

represent respective meaningful components of said system.

3. An implementation tool as claimed in claim 1 or 2, wherein the system is a

language or a portion of a language.

4.  An implementation tool as claimed in claim 3, wherein the language is a

computer-programming language.

5.  Animplementation tool as claimed in any preceding claim, wherein said first data
structure is at least partly a heterogeneous tree structure, such as an abstract syntax

tree, and wherein some or all said structural components are linked nodes of the tree

structure.

6.  An implementation tool as claimed in claim 5, wherein said first data structure is
at least partly a directed acyclic graph structure, and wherein some or all of said

structural components are linked nodes of the graph structure.
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7. An implementation tool as claimed in claim 5 or 8, wherein said system
comprises a number of syntactical elements satisfying a set of syntax rules, and
wherein said nodes represent the syntactical elements and said links represent the

syntax rules.

8. Animplementation tool as claimed in claim 7, wherein said system is made up of
a number of tokens, and wherein each said syntactical element is representative of a

group of said tokens or of predetermined combinations of said tokens.

9.  Animplementation fool as claimed in any preceding claim, wherein the structural
components of the first data structure comprise a root structural component, a number
of first-tier structural components linked directly to the root structural component, and a
number of subsequent-tier structural components linked indirectly to the root structural

component via one or more other said structural components.

10.  An implementation tool as claimed in any preceding claim, wherein the links
between the structural components of the first data structure are representative of
paths of inheritance of substitutability but not implementation and interface between

those structural components.

11.  An implementation tool as claimed in any preceding claim, wherein said second
data structure has structural components corresponding to the structural components

of the first data structure.

12.  An implementation tool as claimed in any preceding claim when read as
appended to claim 5 or 6, wherein said second data structure has nodes corresponding

to the nodes of the first data structure.

13. An implementation tool as claimed in any preceding claim, wherein the structural
components of the second data structure comprise a root structural component, and
wherein the other structural components of the second data structure are linked directly

to the root structural component.
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14.  An implementation tool as claimed in any preceding claim, wherein the links
between the structural components of the second data structure are representative of
paths of inheritance of substitutability, implementation and interface between those

structural components.

15. An implementation tool as claimed in any preceding claim, wherein the
implementation rules define rules of substitutability to be enforced in relation to
structural components of the second data structure during a subsequent processing
operation which utilises said implementation in order to establish compliance with the
substitutability relationships represented by the first data structure.

16.  An implementation tool as claimed in any preceding claim, wherein the first data
structure comprises further linked structural components and is representative of a

system extension, the system extension being an extension to said system.

17. An implementation tool as claimed in claim 16, wherein said further structural
components of said first data structure represent respective meaningful components of

said system extension.

18.  An implementation fool as claimed in claim 16 or 17, wherein one or more of said
further structural components of said first data structure are defined as being
substitutable for some or all of said other structural components of said first data

structure.

19.  An implementation tool as claimed in any of claims 16 to 18, wherein the
implementation rules define rules of substitutability to be enforced in relation to
structural components of the second data structure corresponding to said one or more
further structural components of the first data structure during a subsequent processing
operation which utilises said implementation in order to establish compliance with the
substitutability relationships of said one or more further structural components of the

first data structure represented by the first data structure.
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20. An implementation tool as claimed in any of claims 16 to 19 when read as
appended to claim 3 or 4, wherein said system extension is an extension to said

fanguage.

21.  An implementation tool as claimed in claim 20, wherein said system extension is

part or all of another language.

22.  An implementation method of generating an implementation of a first data
structure, wherein the first data structure comprises a plurality of linked structural
components, and wherein the first data structure represents meaningful components of
a given system and a parent set of interrelationships between those meaningful
components, the method comprising:

receiving a said first data structure, or a description thereof; and

generating an implementation of the received first data structure, the
implementation comprising:

a second data structure, or a description thereof, corresponding to said first data
structure, wherein said second data structure is defined by a subset of the parent set
of interrelationships; and

implementation rules which allow the parent set of interrelationships to be

enforced during a subsequent processing operation which utilises said implementation.

23. An implementation computer program which, when executed on a computing

device, causes the computing device to carry out the method of claim 22.

24. An instance-handling tool for operating on an instance of the second data
structure of the implementation generated by the implementation tool of any of claims 1
to 21, the instance-handling tool comprising:

means storing said implementation; and

means for operating on a candidate said instance in dependence upon the

implementation.

25. An instance-handling tool as claimed in claim 24, wherein the candidate instance
comprises instance structural components corresponding to structural components of

the second data structure.
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26. An instance-handling tool as claimed in claim 25, wherein the tool further
comprises: '

means for receiving the candidate instance of said second data structure in an
input form in which its instance structural components and links therebetween are not
explicitly expressed; and

conversion means for converting the received candidate instance into an
abstracted form in which the instance structural components and links therebetween

are explicitly expressed.

27. Aninstance-handling tool as claimed in claim 26, wherein:

said system is a computer-programming language;

said candidate instance is a code portion expressed in said computer-
programming fanguage;

said input form is a text-based version of said code portion; and

said abstracted form is an abstract syntax tree and/or graph version of said code

portion.

28. Aninstance-handling tool as claimed in any of claims 24 to 27, further comprising
visualisation means operable to generate a visual representation of the candidate

instance.

29. An instance-handling tool as claimed in claim 28 when read as appended to at
least claim 26, wherein the visualisation means is operable to generate a visual

representation of the candidate instance in said abstracted form.

30. Aninstance-handling tool as claimed in any of claims 24 to 29, further comprising
manipulation means operable to manipulate said candidate instance in dependence

upon said implementation.

31. An instance-handling tool as claimed in claim 30 when read as appended to
claim 26, wherein the manipulation means is operable to manipulate said candidate

instance in said abstracted form.
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32. An instance-handling tool as claimed in claim 30 or 31, wherein said manipulation
means Iis operable to verify such manipulation against said implementation, and to
disallow manipulation that is incompliant with the second data structure and/or the

implementation rules.

33. An instance-handling tool as claimed in claim 32, wherein said manipulation
means is operable to allow manipulation that is compliant with the second data

structure and the implementation rules.

34. An instance-handling tool as claimed in any of claims 30 to 33, wherein such
manipulation comprises augmenting the candidate instance and/or reducing the

candidate instance.

35. An instance-handling tool as claimed in any of claims 30 to 34 when read as
appended to claim 25, wherein such manipulation comprises adding new instance

structural components to the candidate instance.

36. Aninstance-handling tool as claimed in claim 34 or 35 when read as appended to
claim 25, wherein such manipulation comprises removing instance structural

components from the candidate instance.

37. An instance-handling too!l as claimed in any of claims 34 to 36 when read as
appended to at least claim 25, wherein such manipulation comprises annotating

particular instance structural components of the candidate instance.

38. An instance-handling tool as claimed in any of claims 30 to 37, wherein such
manipulation comprises performing a predetermined process on part -or all of said

candidate instance.

39. An instance-handling tool as claimed in claim 38, wherein the predetermined
process is defined in a set of actions, such as a computer program, accessible by the

instance-handling tool.
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40. An instance-handling tool as claimed in claim 38 or 39, wherein the
predetermined process is an optimisation process operable to optimise the candidate

instance for a predetermined purpose.

41.  An instance-handling tool as claimed in any of claims 30 to 40 when read as
appended to at least claim 25, wherein said manipulation means is operable to perform
such manipulation in dependence upon the instance structural components of the

candidate instance.

42.  An instance-handling tool as claimed in claim 41, wherein said manipulation
means is operable to identify a particular type of instance structural component and to
perform such manipulation in dependence upon the identified instance structural

component.

43. Aninstance-handling tool as claimed in claim 42, wherein:

the implementation and second data structure are the implementation and
second data structure as generated by the implementation tool of any of claims 16 to
21; and

the particular type of instance structural component is an instance structural
component of a said further structural component of the system extension.

44.  An instance-handling tool as claimed in any of claims 24 to 43, wherein:

the implementation and second data siructure are the implementation and
second data structure as generated by the implementation tool of any of claims 16 to
21; and

said candidate instance includes parts that are attributable to said system

extension.

45.  An instance-handling tool as claimed in any of claims 24 to 44 when read as
appended to at least claim 26, wherein said conversion means are first conversion
means, the instance-handling tool further comprising second conversion means
operable to convert said candidate instance in said abstracted form into its

corresponding input form.
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46.  An instance-handling tool as claimed in claim 45 when read as appended to at
least claim 30, wherein the second conversion means are operable to carry out such
conversion before or after such manipulation has been performed on the candidate

instance.

47. An instance-handling tool as claimed in any of claims 24 to 46 when read as
appended to at least claim 30, wherein:

said system is a computer-programming language;

said candidate instance is a code portion expressed in said computer-
programming language; and

the instance-handling tool comprises means operable to output the candidate

instance before or after such manipulation as object code.
48.  An instance-handling tool as claimed in claim 47, being a parser or a compiler.

49. An instance-handling method of operating on an instance of the second data
structure of the implementation generated by the implementation tool of any of claims 1
to 21, the method comprising operating on a candidate said instance in dependence

upon the implementation.

50.  An instance-handling computer program which, when executed on a computing
device, causes the computing device to carry out the method of claim 49.

51. A method of extending a system, comprising:

obtaining a first data structure, or a description thereof, representative of the
system;

adapting the first data structure, or the description thereof, to include further
linked structural components representative of a system extension; and

employing an implementation tool as claimed in any of claims 16 to 21 fo
generate an implementation of the adapted first data structure.

52. A parser or compiler comprising an implementation tool as claimed in any of

claims 1 to 21 and/or an instance-handling tool as claimed in any of claims 24 to 48.
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53. A computer program produced or adapted by means of an implementation tool as
claimed in any of claims 1 to 21 and/ar an instance-handling tool as claimed in any of

claims 24 to 48.

54. A method of producing or adapting a computer program, comprising:

inputting a candidate computer program to an instance-handling tool as claimed
in any of claims 24 to 48 as the candidate instance, wherein the system concerned is a
computer-programming language in which said candidate computer program is
expressed;

employing said instance-handling tool to operate on said candidate instance; and

employing said instance-handling tool to output a computer program resulting

from such operation.

55. A computer or network of computers configured to function as an implementation
tool as claimed in any of claims 1 to 21 and/or an instance-handling tool as claimed in

any of claims 24 to 48.

56. A metaprogramming tool comprising an implementation tool as claimed in any of

claims 1 to 21 and/or an instance-handling tool as claimed in any of claims 24 to 48.

57. A tool, method, computer program, computer or network of computers
substantially as hereinbefore described with reference to the accompanying drawings.
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root Node;

abstract Statement < Node;
abstract Declaration < Node;
abstract Initializer < Node;

node IfThenElse < Statement
{

@condition >> Expression;
@thenClause >> Statement;
@elseClause >> Statement;

}

node VarilableDeclaration < Declaration

{
@type >> TypeName;
@name >> Identifier;
@init >> Initializer;

}

node Identifier < Initializer;

node Expression < Statement , Initializer

{
@op : OperatorType;
@lhs >> Expression;
@rhs >> Expression;

}
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abstract Declaration < Node;
abstract Initializer < Node;

node IfThenElse < Statement

{
@condition >> Expression;
@thenClause >> Statemént. Expression;
@elseClause >> Statement. Expression;

}

node VariableDeclaration < Declaration

{
@type >> TypeName;
@name >> Identifier;
@init >> Initializer. Expression;

}

node Identifier < Node;

node Expression < Node
{
@op : OperatorType;
@lhs >> Expression;
@rhs >> Expression;

}
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for(Treelterator iter = startNode;
iter.more();iter.next ())

{

NodePtr node = iter.node();

//Use ‘node’ to operate on the current node.

}
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void IfThenElse::visit(Callback callback)

{
callback(this);

if(condition) visit(condition);
if (thenClause) visit (thenClause);
if (elseClause) visit(elseClause);

}

FIG. 14

SUBSTITUTE SHEET (RULE 26)



WO 2009/106843 PCT/GB2009/000552

15/23

NodePtr * IfThenElse::enumerate(int slot)
{
switch(slot)
{
case 0:
return &condition;
case 1:
return &thenClause;
case 2:
return &elseClause;
default:
return NULL;
}
}
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