

(21) Application No 8530371

(22) Date of filing 10 Dec 1985

(71) Applicants
Rhoden Partners Limited

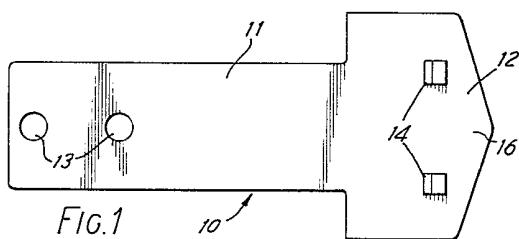
(Incorporated in United Kingdom)

231 The Vale, Acton, London W3 7QU

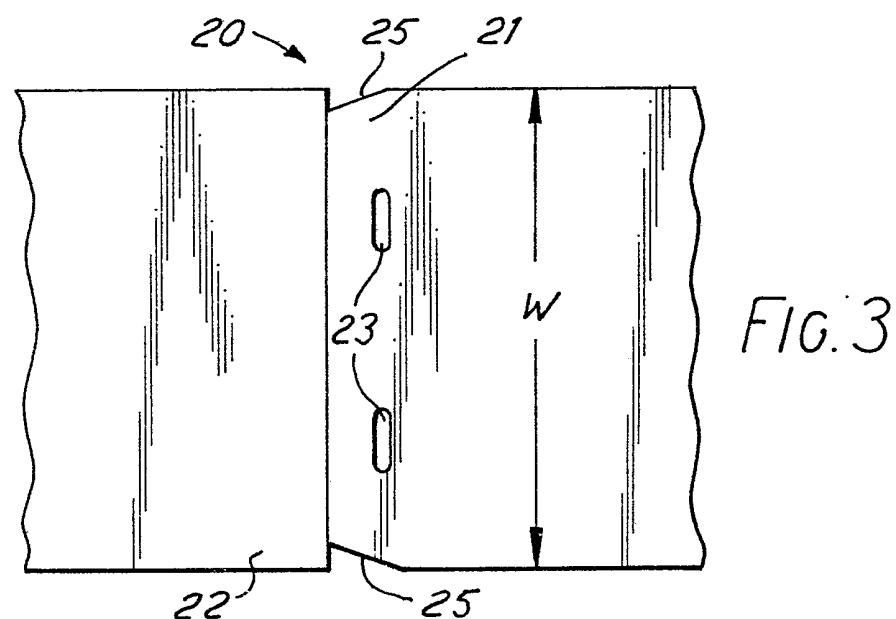
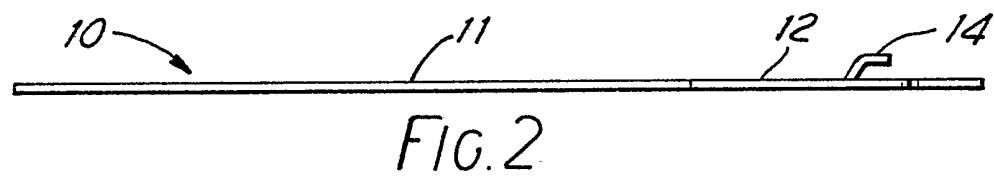
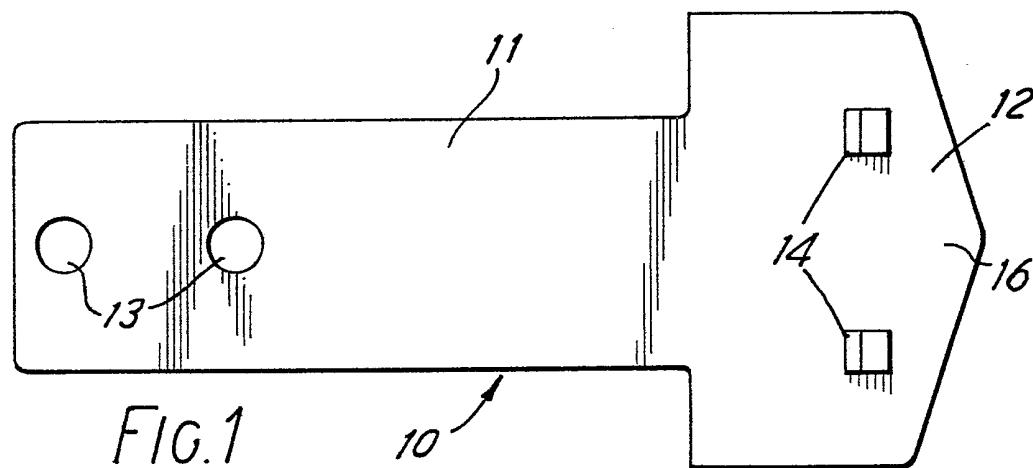
(72) Inventor:
Vasant Janardan Shend'ge

(74) Agent and/or Address for Service
J. F. Williams & Co., 34 Tavistock Street, London WC2E 7PB

(51) INT CL⁴
A42B 1/22


(52) Domestic classification (Edition I)
A3V 11C10 11N

(56) Documents cited
None




(58) Field of search
A3V
Selected US specifications from IPC sub-class A42B

(54) Insertion tool

(57) A flap 21 is inserted in a similarly shaped and sized tubular opening 22 with the aid of a tool 10. Slots 23 are engaged by hooks 14 on the tool and the tool is inserted into opening 22 thus entraining flap 21 therewith. Upon withdrawal of the tool, the hooks automatically disengage from the slots so that flap 21 remains within opening 22. As described flap 21 and tubular opening 22 constitute opposite ends of the head band of a disposable paper hat.

1/1

SPECIFICATION

Insertion members

5 The present invention relates to an insertion member and a method of use therof, and more particularly to its use in the insertion of a flap into a tubular opening.

Disposable paper hats are widely worn by staff in the food retail trade. One such hat comprises a first paper member in the form of a strip which is arranged to be shaped generally into a circle to fit around the head. A second paper member in the form of a sheet of thinner material is connected to the inner circumference of the first paper member to cover the top of the head. The strip formed by the first paper member is acutally of double thickness and comprises a flattened tube.

During assembly of the hat, one necessary step is to insert one end of the flattened tube into the other. At present, although the other manufacturing steps are performed automatically, this step is performed manually by human operators.

It is first necessary to open one of the ends of the flattened tube; this is generally done by blowing on it. The other (still flat) end of the tube is then inserted into the opened end; this is a difficult operation since the two ends are of the same size. Also moving the flat end inside the open end meets with a certain frictional resistance. Accordingly this step is time-consuming and involves expensive labour costs.

The present invention seeks to overcome or reduce the above disadvantages.

Of course, it would be possible for the tube ends to be assembled by permanently attaching them to each other (e.g. by glueing or stapling) but the ends are required to be slidable in use so that the size of the hat (i.e. the circumference of the first paper member) can be adjusted to fit the wearer's head.

According to a first aspect of the present invention there is provided a method of inserting a first member into an open end of a tubular member comprising providing the first member with first engagement means, introducing a tool comprising a head portion having a width less than or equal to the width of the tubular member and second engagement means, inter-engaging the first and second engagement means to form a one-way drive connection, inserting the head portion into the open end and moving it along and within the tubular member entraining the first member therewith, and withdrawing the tool and disengaging the first and second engagement means.

The first engagement means may be constituted by one or more holes in the first member, preferably two slots. The second engagement means may be constituted by one or more projections on the head portion of the tool, preferably two hook members spaced apart by the same distance as the slots.

The tubular member is preferably substantially flattened, in which case the tool is substantially planar and the first member is a flap preferably of substantially the same width as the flattened tubular member. In

a preferred arrangement, the flap constitutes the other end of the flattened tubular member. Preferably the corners at the end of the flap are slightly tapered.

The tubular member is preferably arranged to form the circumferential member of a disposable paper hat.

According to a second aspect of the present invention, there is provided the combination of a hat and an associated tool, the hat comprising a circumferential strip comprising a substantially flattened tubular member having an open end and an end forming a flap, the flap having first engagement means, and the tool being substantially planar and

70 having a head portion having a width less than or equal to the width of the flattened tubular member and second engagement means which form a one-way drive connection with the first engagement means.

According to a third aspect of the present invention, 80 there is provided a tool for inserting a flap into the open end of a substantially flattened tubular member, the tool being substantially planar and comprising a head portion having the shape of an arrow-head and having one or more projecting one-way engagement

85 means.

According to a fourth aspect of the invention there is provided a hat having a circumferential strip in the form of a substantially flattened tubular member, one end of the tubular member being provided with one or 90 more through holes.

A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, of which:

Fig. 1 shows a plan view of an insertion tool for use 95 in a method in accordance with the present invention;

Fig. 2 shows a side view of the tool of Fig. 1; and

Fig. 3 shows a flap member about to be inserted into a substantially flattened tubular opening in accordance with a method in accordance with the present 100 invention.

Referring to the drawings, Figs 1 and 2 show an insertion tool 10. The tool comprises a shank portion 11 and a shaped head portion 12. The nose 16 of the head portion 12 is shaped like an arrow-head. Shank 105 portion 12 has two laterally-spaced hook members 14. The tool is of a stiffer material than the paper, preferably of metal, and hook members 14 are conveniently stamped out of the material of the head portion.

110 Fig. 3 shows part of a paper hat of the disposable type used in the catering and other food-handling trades, or in other fields where hygiene is important. Such hats are well-known. Fig. 3 shows the ends of the circumferential strip 20 intended to go around the 115 head of the wearer. Strip 20 is formed from a single thickness strip having a width approximately equal to 2 w which is folded longitudinally along lines located at approximately one quarter and three quarters of the width of the strip. Thus strip 20 is of double thickness

120 and in the form of a flattened tube; the ends forming the gap at the back of the strip (not shown) may overlap and may be secured together, e.g. by glueing, if required. Strip 20 is of width w.

Once end 21 of the strip 20 is maintained flat to form

a flap member and is provided with two collinear slots 23, of which the centres are separated by the same distance as the centres of hook members 14. The corners 25 of end 21 are slightly tapered.

5 The other end 22 of the strip 20 is arranged to be opened out slightly to form a tubular opening and to permit insertion of end 21.

In use hook members 14 are inserted in slots 23.

10 Tool 10 is arranged generally parallel with the ends 21, 22 and head portion 12 is pushed into the open end 22. At the same time hook members 14 push the edges of slots 23. When slots 23 have been moved the required distance within end 22, the tool is then withdrawn. Hook members 14 disengage automatically from slots

15 23 and the end 21 remains where it is.

The advantage of the above-described arrangement is that it permits both easy insertion of end 21 into end 22 and easy movement of end 21 once within end 22. The arrow-head shape of nose 16 permits quick and

20 guided entry of end 21 into end 22, and the tapering of the corners 25 assists in this. The positive drive of hook members 14 against the edges of slots 23 readily overcomes the frictional resistance between the portions of the paper strip.

25 The tool 10 may be operated manually; the rate at which operations can be performed by an operator is substantially increased. Alternatively and more advantageously, the process can be automated, eg by attaching tool 10 by means of holes 13 to a reciprocating arm and providing an automatic handling device for the paper hats.

Various modifications may be made to the above-described arrangement.

For example alternative one-way drive connections 35 may be provided between the tool 10 and the end 21 of the hat. The tool may have slots and the end 21 of the strip, if of sufficiently stiff material, may be provided with suitable engaging projections.

The material of strip 20 may be other than paper, eg 40 card or plastics material.

Flap 21 may be of single thickness.

The arrangement may be used elsewhere than in connection with hats. It may be employed wherever it is required to insert a flap member into an opening of 45 similar size.

CLAIMS:

1. A method of inserting a first member into an open end of a tubular member comprising providing the first member with first engagement means, 50 introducing a tool comprising a head portion having a width less than or equal to the width of the tubular member and second engagement means, inter-engaging the first and second engagement means to form a one-way drive connection, inserting the head portion into the open end and moving it along and within the tubular member entraining the first member therewith, and withdrawing the tool and disengaging the first and second engagement means.

2. A method according to Claim 1, wherein the first 60 engagement means comprises one or more slots and the second engagement means comprises an equal number of projections.

3. A method according to Claim 1, wherein the tubular member is substantially flattened, the tool is 65 substantially planar and the first member is consti-

tuted by a flap.

4. A method according to Claim 3, wherein the flap is of substantially the same width as the flattened tubular member.

70 5. A method according to Claim 3 or 4, wherein the corners of the flap are tapered.

6. A method according to any one of Claims 3 to 5, wherein the flap constitutes the other end of the flattened tubular member.

75 7. A method according to Claim 6, wherein the flattened tubular member constitutes a circumferential member of a hat.

8. A method according to any preceding claim, wherein the head portion of the tool is of arrow-head 80 shape.

9. A method according to any preceding claim, wherein the tool is operated manually.

10. A Method according to any of claims 1 to 8, wherein the tool is operated by a machine.

85 11. A method of inserting a first member into an open end of a tubular member substantially as herein described with reference to the accompanying drawings.

12. The combination of a hat and an associated 90 tool, the hat comprising a circumferential strip comprising a substantially flattened tubular member having an open end and an end forming a flap, the flap having first engagement means, and the tool being substantially planar and having a head portion having

95 a width less than or equal to the width of the flattened tubular member and second engagement means which form a one-way drive connection with the first engagement means.

13. The combination of Claim 12, wherein the first 100 engagement means comprises one or more slots and the second engagement means comprises an equal number of projections.

14. The combination of a hat and an associated tool substantially as herein described with reference 105 to the accompanying drawings.

15. A tool for inserting a flap into the open end of a substantially flattened tubular member, the tool being substantially planar and comprising, a head portion having the shape of an arrow-head and having one or 110 more projections one-way engagement means.

16. A tool substantially as herein described with reference to Figs 1 and 2 of the accompanying drawings.

17. A hat having a circumferential strip in the form 115 of a substantially flattened tubular member, one end of the tubular member being provided with one or more through holes.

18. A hat according to Claim 17, wherein said end is tapered.

120 19. A hat substantially as herein described with reference to Fig. 3 of the accompanying drawings.