@) -

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 :

GOGF 15/40 Al

(11) International Publication Number:

(43) International Publication Date:

WO 89/12277

14 December 1989 (14.12.89)

PCT/US89/02336
30 May 1989 (30.05.89)

(21) International Application Number:

(22) International Filing Date:

(30) Priority data:

178,110 31 May 1988 (31.05.88) US

(71) Applicant: EXTENDED SYSTEMS, INC. [US/US}; P.O.
Box 4937, Boise, ID 83711 (US).

(72) Inventors: WIMER, Ted, L. ; 2400 Hubbard Road, Kuna,
ID 83634 (US). JOPSON, Charles ; 1405 Grant Road,
Boise, 1D 83706 (US).

(74) Agent: HAUGHEY, Paul, C.; Townsend and Townsend,
One Market Plaza, 2000 Steuart Tower, San Francisco,
CA 94105 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE
(European patent), BF (OAPI patent), BG, BJ (OAPI
patent), BR, CF (OAPI patent), CG (OAPI patent), CH,
CH (European patent), CM (OAPI patent), DE, DE
(European patent), DK, FI, FR (European patent), GA
(OAPI patent), GB, GB (European patent), HU, IT (Eu-
ropean patent), JP, KP, KR, LK, LU, LU (European pa-
tent), MC, MG, ML (OAPI patent), MR (OAPI patent),
MW, NL, NL (European patent), NOQ, RO, 8D, SE, SE
(European patent), SN (OAPI patent), SU, TD (OAPI
patent), TG (OAPI patent).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: HIGH SPEED RELATIONAL DATA BASE PROCESSOR

HoST
COMPUTER

L\
'S

d

AN PROGESSOR
+RAN+
l PGM_STORAGE I

(57) Abstract

The present invention is a data base information engine subsystem which examines data on the fly as it is retrieved froma |

J

10
/
/ 28
PAGE
22 | WAPPER o
MEMORY RELATIONAL
EXPANDER PROCESSOR
DISK INT

[
Il

STORAGE
(DISK)

mass storage device (i.e., disk), and before storing it in memory, to select only the specified elements of data required by the host
computer according to criteria set forth by the host computer. A page mapper circuit separates the host command processing
from the data access processing for the command. The instruction set used by the information engine subsystem contains optimiz-
ing algorithms to parse and reorder the required operation to be most efficient (with respect to time). The information engine sub- |
system also contains a high speed processor which is a special purpose processor designed and optimized for data retrieval while |
doing operations on the data at high speed. :

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front bages of pamphlets publishing international

applications under the PCT.

AT Austria FI Finland ML Mali

AU Australia FR France MR Mauritania
BB Barbados GA Gabon MW Malawi

BE Belgium GB United Kingdom NL Netherlands
BF - Burkina Fasso HU Hungary NO Norway

BG Bulgaria IT Taly RO Romania

BJ Benin JP Japan SD Sudan

BR Brazi KP Democratic People’s Republic SE Sweden

CF Central African Republic of Korea : N Senegal

CG Congo KR Republic of Korea SJ Soviet Union
CH Switzerland u Liechtenstein TD Chad

CM Cameroon LK Srlanka TG Togo

DE Germany, Federal Repubhc of W Luxembourg US Unted States of America
DK Denmark MC Monaco

ES Spain MG Madagascar

-

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

HIGH SPEED RELATIONAL DATA BASE PROCESSOR

The Appendix contains a description of the
instruction formats and register assignments of the

high speed processor of the present invention.

BACKGROUND

The present invention relates to data servers
or data base managers which retrieve data from a mass
storage device at a high rate of speed and provide the
data to a host computer.

Data base management refers to the storage
and retrieval of data in a manner transparent to a host
computer user. Such management systems are typically
done in software. The host computer which uses a data
base manager can be anything from a mainframe to a
personal computer in a network.

Personal computers in a network are being
used to perform functions previously done by a
mainframe, and have access to large databases due to
the decreasing costs of memory. At the same time, such
personal computers typically have limited input/output
(1/0) bandwidth, which means that large amounts of data
require a significant amount of time to be loaded into
the personal computer. The use of networks with
personal computers increases the performance problem
since all the data is funneled through the same link.
This network bandwidth limitation causes contention
problems among the users. Accordingly, it is desirable
to have some sort of data base management which
retrieves the data at high speed and delivers only
relevant data to the host computer.

The major types of data base management
systems are (1) hierarchal, (2) network, and (3)
relational. The first two types of data base
management systems require predefined indexing of the

WO 89/12277 ' : PCT/US89/02336

- 10

15

20

25

30

35

data base so that the data desired can be determined
from the index without the need for examinihg all
elements of data. Such indexing systems are required
because of the limited speed with which data can be
retrieved and_examined; For a relational data base,
all of the data must be examined.)

The "relational data base" concept starts
with a logical data model. This model depibts the data
in a manner which is consistent with the way we want to
view dats. The model makes the logical view
independent of the physical storage environment. The
data structure is simply a table with rows of data
(records) and columns which define the domains or
fields within the rows, and no predefined indices are
necessary. Since no predefined indices are used, the
relationships among data items desired by a user do not
have to be anticipated when the data base is assembled.
Instead, a user can form the relationships desired at
the time a query of the data base is made. The
following example table (Tl) of data shows this
relational model:

Inventory Unit Monthly
Part Number Quantity - Cost : Usage
3405-0001- 12 : 6.40 42
3406-0001 300 T 1.20 200
3406-0002 122 .43 _ 200
3406-0004 6 , 9.22 14

The most widely accepted access language for
the relational model data base is SQL (Structured Query
Language), which is used here as an example. It has
many optional clauses which give it power with the
relational data model. The most simple form is:

SELECT <1list of columns>

FROM <list of tables>

WHERE <information criteria (boolean
expressions)> :

Using this statement only the rows. in the
table which meet the "where" criteria in the "select"

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

columns are collected (returned to the requestor). For
example, using the table, Tl, above: .

SELECT <part numbers>
FROM <T1>
WHERE <inventory quantity is less than
monthly use>
The data returned would be:

3405-0001

3406-0002

3406-0004

The inherent problem with relational data
base access is speed. Since there are no linkage or
index paths through the data all records (rows) must be
examined to see if the select criteria is met.

The relational data base method, like other
data base methods, is administered by a data base
manager (or data server) which interfaces between a
host computer user's program and the stored data. The
host computer program requests specific data from the
data base manager. (I.e. the data items from the data
base which correspond to the given relationship). The
data base manager receives the high level request and
prepares the data to satisfy the request.

A software data base manager which executes
in the host processor retrieves data from a hard disk
and puts the data into a random access memory for use
by the user's program. The user program tells the data
base program what data fields are needed, and the data
base program retrieves these fields from the disk and
loads them into the random access memory for use by the
user program using the host processor at its standard,
slower speed.

Some data base manager facilities utilize a
separate independent processor. Early versions of this
type system were standard processors running standard
software for data retrieval. In these systems the data
base management function is split between the host

processor and the data server. The data server sent

‘WO 89/12277 - ' PCT/US89/02336

10

15

20

30

35

4

ali data to the host and the hoétvprogram provided the
data base access algorithms to select the desired data.
Later versions of the data base managers
utilizing separate processors have moved the data base
access algorithms into the separate processor} In
theée systems the data base proéessor is a processor
just like the host processor such that the'same 7
software data base management program can be executed
in both. In this fechniqﬁe data is retrieved from a

~disk at high speed and stored in random access memory.

The data in the random access memory is then examined
by fhe processor of the'data server to determine the
appropriate portidns to send on to the host computer,
via the network 1link. 7

| _ Because of the time required for storing the
data in random access memory, doing the comparison, and
restoring the desired data, indexing is beneficial to
all of ﬁheSg data base management techniques.

Typically, a general purpose computer is used

for a data server. Such a general purpose

microprocessor will have a data and address bus coupled
to an external memory for both storing data and storing
a pfogram which will run the microprocessor. The same
bus is used for both fetching instructions from memory
and for doing operations dictated by that instruction
which require data or addresses to travel over a bus.
Accordingly, some form of bus arbitration is needed.
The processing of data is slowed by the time
reQuired to fetch and decode instructions. - In order to
speed the instruction fetch time, a next instruction is
typically fetched before the current instruction is
decoded to give an instruction "pipeline", with the
next instruction entering the pipe before the current
instruction leaves the pipe. This will speed operation
in the usual case where the next instruction fetched is
determined by simply incrementing a program counter,
but will be a wasted fetch where the decoded current

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

instruction contains a jump to another location for the
next instruction.

A jump is typically done by loading a jump
(or branch) address into a program counter in response
to a jump instruction. The next instruction is stored
in a push-down stack of registers so that it can be
saved upon a return from the subroutine which the
program is jumping to. In addition, the push-down
stack can be used to store any constants which are in
general purpose registers used by the processor, since
these constants may be lost by the use of the registers
by the subroutine.

SUMMARY OF THE INVENTION

The present invention is a data base
information engine subsystem which examines data on the
fly as it is retrieved from a mass storage device
(i.e., disk), and before storing it in memory, to
select only the specified elements of data required by
the host computer according to criteria set forth by
the host computer. A page mapper circuit separates the
host command processing from the data access processing
for the command. The instruction set used by the
information engine subsystem contains optimizing
algorithms to parse and reorder the required operation
to be most efficient (with‘respect to time). The
information engine subsystem also contains a high speed
processor which is a special purpose processor designed
and optimized for data retrieval while doing operations
on the data at high speed.

The high speed processor contains an
arithmetic logic unit (ALU) which has an input coupled
to the disk interface. Data pulled off the disk is
first processed through the ALU for comparison or other
functions to determine if the data should be stored in
main memory. If the data meets the selection criteria
as implemented by the control of the ALU, the output of

the ALU is provided to a large random access main

WO 89/12277 ° ’ , 7 PCT/US89/02336

10

15

20

25

30

35

memory. The data retrieved from the disk is thus

directed through the ALU before it can be stored in
main memory. VThis'structure'eliminates the need to
store all data in main memory first, and then do the
required comparisoh'or other functions to select the

~desired data. Instead, this comparison and other

selection criteria are performed in real time as the
data is pulled off of the disk.

The high speed processor uses a unique four
bus, three memory érchitecture. In addition to the
interface to the'main, data storage memory, there is a
separafe,instructioh storage memory and a command
storage memory. A dedicated instruction fetch bus
couples the,insfruétidﬁ sforage memory to an
instruction regisfer. A dedicated data soufce bus
provides external aata to the ALU and data from the

~ hard disk to the ALU. A data destination bus provides

the output of the ALUrto the external, main mémory*and
to internal registers. fFinally, a command fetch/store
bus couples the command mémory between the destination

data bus and the source datarbus. This structure

'allows instruction fetches to be done in parallel with

- the execution of an instruction which requires the use

of a source data bus and/or therdestination data bus.
The architecture provides for dynamic
generation in real time of the next instruction's
address. This is done by a logic circuit which
receives information from both the current instruction
and machine branch conditions from other parts of the
processor. No instruction counter (whiéh creates the
next instruction address by incrementing) is used.
Because of'the'dedicated nature of the processor as a
data retriever, the instruction set uses a straight
line code system which uses branches, but not
subroutines whichrmust return to a starting address.
At the completion of all brahches,rthe program simply
restérts for the next field of data. Accordingly, no
séving'of a return address is needed for a jump or

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

branch, thus eliminating the need for a stack. In
addition, pipelining is not necessary because of the
immediate determination of the next instruction's
address. Also, enough registers are provided for
dedicated purposes to eliminate the need for saving
constants in a register stack.

The page mapper separates the main processor
bus from the large memory, disk storage bus. This
allows query processing set-up to be independent of the
data accessing. In a multi-user system, this allows
operation overlap. The high speed processor stores the
selected disk data into the page mapper's memory.

The page mapper circuit, in addition to
interfacing the slow, narrow bus of the main processor
with a high speed, wide bus used by the high-speed
processor, remaps pages of logical address space onto
pages of real address space memory. This allows a very
large memory space to be used efficiently by a
processor which intrinsically has a very limited

" address space. This remapping is done by segmenting

the memory into regions accessed by programmable page
registers. This way a limited number of hardware
registers can remap segments of memory, transforming a
processor's limited address space into segments of a
much larger memory space.

For the implementation of the present
invention for a relational data base using SQL, an
instruction set is used with optimizing algorithms
which parse and reorder the required operations. These
algorithms reorder the primitive operations of a query
command into a sequence which reduces the overall
amount of data being examined as quickly as possible.

For a fuller understanding of the nature and
advantages of the invention, reference should be made
to the ensuing detailed description taken in

conjunction with the accompanying drawings.

WO 89/12277 - - - . PCT/US89/02336

10

15

20

25

- 30

35

BRIEF DESCRIPTION OF THE DRAWINGS

- Figure 1 is an overall block diagram of an
information engine subsystem according to the present
invention coupled to a host computer;

' Fignre 2 is a schematic diagram showing the
selection of data fields according to the present
inventioﬁ: 7 V 7, .)

7 Figure 3 is a high level block diagram of the
high speed relational processor of the present

invention;

Figure 4 is a more detailed block diagram of
the processor of Figure 3; and
Figure 5 is a block diagram of the page

mapper circuit of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figure 1 shows an information engine
subsystem 10 according to the present invention. A

standard microprocessor system 12 includes a processor

- with its own random access memory (RAM) and program

storage memory 14 and standard I/O ports 16. These are

- coupled via a bus 18 to a host computer. Processor

system 12 receives data requests from the host

computer, and parses and executes these requests.

- Among the functions performed are determining the

authority for the operation, the locality of the data

- base necessary, the referential requirements, the

memory/cache management, the lower level relational
operations necessary‘to cqmplete the task, the data
dictionary accesses required, the controls necessary to
allow shared data concurrency and recovery
requirements. -

A page mapper circuit 20 is coupled to
microprocessor system 12 via a bus 22. Page mapper 20
is also coupled to a wide, high speed bus 24 which is
coupled to a very large memory 26. |

A high speed processor 28 examines data as it
is pulled off of a disk 30 on a bus 32 and provides the
selected data to memorf 26. Thus, not all of the data

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

pulled off of disk 30 is applied into memory 26, but
only the data which meets the selection criteria. The
data stored in memory 26 can then be provided to be
host through buses 24, 22 and 18.

The present invention can be used for many
different types of data base systems, but has
particular efficiency with a relational data base. The
formation of a relational data base and the operation
of the present invention on such a data base is shown
in the diagram of Fig. 2. The data base consists of a
table 34 having rows numbered 1-N corresponding to
individual records and columns 36, 38, 40, 42 and 44
corresponding to different fields in a particular
record. In the example shown, the first field 36
contains the name of an employee, the second field 38
contains the department to which that employee is
assigned, the third field 40 sets forth the pay of that
employee, the fourth field 42 sets forth the hire date
of that employee and the last field 44 sets forth the
number of dependents of that employee. This table is
then stored in an area 46 on a disk 48.

In one example, a host computer may desire to
find the names of all employees (and their departments)
who have fewer than three children. This request is
sent to main processor 12 of Fig. 1 which parses the
request accordingly and identifies the location of
area 46. This information is sent to high speed
processor 28, which pulls the data from area 46 off in
sequential form as a series of fields 50. This data is
then sent through high speed relational processor 52
which compares the field 44 of each record to the
number 3 and passes on only those records in which the
number of dependent children is fewer than three. 1In
addition, in this example, only the name and
department fields of those records are passed on and
stored in memory 26 in an area 54 shown in Fig. 2.

One possible format of the high level
function used would read as follows:

WO 89/12277 - - : : ' PCT/US89/02336

10

15

20

25

30

35

10

Select: Name and Department
From: Table
Where: Dependents less than 3.
. The particular manipulation commands for each
record would be as follows:
Save'(Name)
Save (Department)
Skip (Pay)
. Skip (Hire)
Compare (Dependents less than 3) No Save.
Figure 3 is a block diagram of high speed
relational processor 28 of Fig. 1. Large memory 26 is
accessed by wide, high speed bus 24. The high speed
processor uses a bit slice processor 56 which includes
an ALU 58. For the data path between the ALU and the

large memory, the input to the ALU is provided on a

source bus 60 from large memory 26 and the ALU output
is provided on a destination bus 62 to large memory 26
through bus 24. The commands containing the criteria
for the data selection are loaded into a command memory
64 from source bus 60, through processor 56 and
destination bus 62 to an input portion 66 of a commsnd
bus having an output portion 68. _

A hard disk 70 is accessed by a disk
controller 72 which receives control commands on a
bus 74 from destination bus 62 and provides data from
disk 70 to source bus 60 en a intermediate isolation
bus 76. Thus, the data from'disk 70 travels through
disk controller 22, bus 76 and source bus 62, ALU 58
and processor 56. The approbriate operations are
performed on the data and the selected data is then
provided on'destination_bus 62 to large memory 26.
Data can be transferred from the ALU to the disk on
bus 62, isolation bus 74 and disk controller 72. 1In
addition, various control and data registers 73 can be
accessed by the ALU or provided to the ALU through

source bus 60 and destination bus 62.

WO 89/12277 PCT/US89/02336

10

15

20

30

35

11

The instructions which execute the commands
of command memory 64 are stored in a separate
instruction memory 78, which is preferably a read only
memory (ROM). These instructions are provided to an
instruction register 80 which provides control lines 82
to processor 56. In addition, certain bits 84 are
provided to instruction address generation logic 86.
Logic 86 generates the next instruction address on an
instruction fetch bus 88 from inputs 84 as well as
control inputs 90 from processor 56 and external
conditions on inputs 92.

Figure 4 shows the circuit of Fig. 3 in more
detail. As discussed with reference to Fig. 3,
commands are entered via source data bus 60, through
processor 56 and destination bus 62 to command memory
64. The program in ROM 78 is used to provide the
command memory address through register 104 such that
commands may be loaded into command memory 64. The
commands and other data from bus 24 pass through a
latch 94 since bus 24 is asynchronous with respect to
data bus 60. The output of latch 94 is then supplied
to a register 96. Register 96 has a counterpart 98 for
outputs to bus 24 from bus 62. Although two registers
96 and 98 are used, they could be replaced with a
single, tri-state register. Two registers are shown as
a matter of design choice. Similarly, two LMD (Local
Memory Data) registers 100 and 102 are shown, but could
be embodied as a single register for coupling buses 60
and 62 to command memory 64. The command memory
address register 104 supplies the addresses to command
memory 64 from bus 60.

Commands are fetched from command memory 64
into LMD register 102 by appropriate control signals
from instruction latch 80. Instruction latch 80 is
shown in five forms, labeled 80(1), 80(2), 80(3),
80(4), and 80(5). All of these designations refer to a
single instruction latch which has control lines to
different elements hard-wired. The particular elements

WO 89/12277 e g PCT/US89/02336

10

15

20

25

30

35

22

enabled depend upon the format of the instruction and
are shown by the five configurations of Fig. 4. Format
bits 106 and 108 are decoded to provide the appropriate
enabling control signals by the decode circuitry (not
shown). Additional format bits 110, 112, 114 and 116
may be used as well if bits 106 and 108 contain the
designation "11". These five formats are described in
more detail in the Appendix attached hereto.

~ As can be seen, for format 3, which is used
for fetching and storing data, a fetch and store signal
are generated'and supplied'to command memory 64. In
addition, a memory latch decode circuit 118 provides
signals LLO, LL1, LL2 and LL3. Signal LL3 is provided
to the command memory while the remaining signals are

'provided to memory page select registers 120, 122

and 124. These registers select the appropriate page
(or area) of memory in which the data is stored. The
lower level bits for choosing the appfopriate location -
in each page (or area) of memory are generated by a
register 126 which is enabled by any of signals LLO,
LL1 or LLZ. '

The format 5 instruction is used for long
distance branches, and provides bits for next address

- generation on lines 128 to next address generétion

logic 86.-

' The format 4 instruction is used to load a
constant into an ECR (External Constant Register)
register 130 on line 132. This constant can then be
accessed on the next instruétion cycle via source
bus 60. |

Thé format 2 instruction is used for masking,
comparing, complimenting,,incrementiﬁg, etc. A
constant field from this instruction is supplied
directly to ALU 58 on line 134.

Finally, the format 1 instruction is used for
general purpose, two register operations for comparing,
subtracting, ANDing, ORing etc. Bits are provided for
next address geheration on lines 136, 138,7140 and 142.

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

13

Bits are also provided to an A register decode circuit
144 and a B/D register decode circuit 146. These
decode circuits select the appropriate registers to be
enabled to supply their data to ALU 58 in bit slice
processor 56. The B/D register decode circuitry 146

. also selects the appropriate register to be enabled to

receive the data from ALU 58 in processor 56.

Data is accessed from hard disk 70 by an SCSI
disk controller 72 which receives control signals from
an SCR (SCSI Control Register) register 148. Data to
be written onto the disk is first held in an SDR
register 150, while data read off the disk is held in
an SDR register 152. As can be seen, data read off the
disk must pass from controller 72 along bus 154 to SDR
register 152, to source data bus 60, through ALU 58 to
destination bus 62. From there, the data can pass
through register 98, latch 94 and bus 24 to memory 26.
The data from the disk must thus pass through bit slice
processor 56 in order to reach the large memory 26.

Next address generation logic 86 is shown as
containing an instruction address latch 156 which
provides an address on bus 158 to instruction
memory 78. Instruction address latch 156 receives its
bits from a register 160. Although a latch 156 and
register 160 are shown for sake of understanding, in
actual implementation only a single latch or register
need be used, or some combination thereof. As can be
seen, register 160 receives inputs directly from
instruction latch 80 and, for two of the bits, from one
of a series of AND-gates which are activated by decode
logic gates 162 and 164. These logic gates decode bits
140 and 142 from the instruction latch. The output of
decoders 162 and 164 either provide a noninverted or
inverted direct signal to register 160 or enable one of
a series of AND-gates which are coupled to receive
control signals from elsewhere in the circuit. For
instance, a carry signal from ALU 58 is provided to one
AND-gate and a D-Bus Zero signal, indicating that the

WO 89/12277 - ' PCT/US89/02336

10

15

20

25

30

35

14

results of the ALU operation,arerall 0, is supplied.
The combination of carry and D-Bus Zero signals are
enocugh to tell whether two numbers being compared are
the same, or one is'greater or lesser than the other.

' Other signals shown include LMDl and LMD2
from LMD registér'loz which allow four different branch
possibilities from a command stored in LMD register

'102. A SCDMA signal from SCSI disk controller 72 is

used for another branch condition and signal SCINT
provides an alert for an abnormal condition detected by

~ SCSI disk controller 72. Another signal is the RAM OK

signal from memory arbitration register 166. This

- register is used because of the asynchronous quality of

bus 24 which requires a signal indicating when latches
94 and 120-126 have been strobed to memory.

‘The circuit of Fig. 4 also includes a number
of general purpose registers 168 and bit slice
processor 56 includes internairregisters 170. The
internal registers 170 are used for housekeeping to
store constants and keep'counters. Bit slice processor
56 was chosen for the embodiment of Fig. 4 because it
contained ALU 58. 1Internal registers 170 are not

necessary for the design of Fig. 4, and external

- registers could be used with a dedicated ALU.

As can be seen, the processor desigh of
Fig. 4 differs from standard'processors in a number of
ways. This is possible because of the special
capabilities of the processdr in Fig. 4 of retrieving
data in accordance to criteria as supplied by commands
stored in command memory 64. For ekample, next address
generation logic 86 does not contain a program counter.
Registers 160 and latch 156 perform this function
instead, and generate the next instruction address at

7 the samé time that the instruction in instruction latch

80 is being executed. This spéeds up the instruction
fetch operation and is possible not only because of the
next address generation circuit but the use of a

separate instruction fetéh bus 158 which does not have

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

15

to contend with arbitration on a common bus as in the
prior art since separate source and destination buses
60 and 62 are used.

Direct branching without the need to store a
return address, constants and a stack pointer is
possible since the nature of the data retrieval does
not require a return from a branch, but simply the
branching down various paths to the end for each data
field. The program then starts over at the beginning
for a new instruction sequence. Accordingly, there is
no stack or stack pointer used in the present
invention.

Figure 5 is a block diagram showing the
operation of the page mapper of the present invention.
The page mapper uses a register file 200 which is
coupled between high speed bus 24 and a standard
bus 202 which is coupled to a main processor board 204
and to the host computer (not shown). Main processor
board 204 contains the main processor along with its
associated memory 14 as shown in Fig. 1.

A data bus 206 interconnects buses 202
and 24. An address bus 208 also interconnects
buses 202 and 24 with 8 bits from address bus 208 being
converted into 12 bits by register file 200.

When processor board 204 desires to interface
with a portion of large memory 26, it generates the 12
bits for each memory location corresponding to the
area, or page, of memory and loads these 12 bit values
into register file 200 via data bus 206. Thereafter, a
memory access is performed by providing the addresses
on bus 208 with 8 bits of the address being converted
into 12 bits by selecting the appropriate register in
register file 200. After a series of operations is
completed and main processor 204 desires to interface
with a different area of memory, a different set of
values are written into register file 200. The memory
associated with main processor 204 will store the 12

bit remapping values used for the previous page of

WO 89/12277 e , PCT/US89/02336.

10

15

20

25

30

35

16

memory, or will store an algorifhm for generating those
12 bit wvalues.

Thus, the 20 bit address can be mapped into

a 24 bit address dynamically. This provides an

advantage over prior art virtual memory mechanisms in
which the software detected extra bits in an address
and had to process an algorithm to determine where to
go for the data in the midst of a data access attempt.
This algorithm would be triggered by a page fault

mechanism. The present invention eliminates the need

for such a page fault mechanism and its triggering of a

recovery algorithm.

" The page mapper (remapper) allows a very

-large memory with a wide address bus to be accessed by

a narrow address bus. Register file 200 converts an
8 bit window address into a 12 bit address for access
td physical storage, The 8 bit code selects a 12 bit
register which provides its data output to the address
bus as 12 bits of address.

During setup, main processor 204 writes a
12 bit pattern at the location selected by the 8 bit
address. This establishes therwinddw—to—physical

storage relationship. In operation, the upper 8 bits

of the address select a register location which causes
the 12 bit pattern to be read and sent on to select the
physical memory page.

Figuré'Sralso shows an arbiter 210 which
arbitrates who has access to memory 26 between high
speed processor 28 and main processor 204. When either
of the processors desires access to memory, it sends a
request to arbiter 210, which then enables a tri-state
transceiver coupling the processor to a bus. The
arbiter will multiplex between the two processors,
allowing each to process 2 bytes at a time.

The system is synchronous because the élock
for main processor 204 is provided for the rest of the

system, including high speed processor 28.

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

17

The present invention also speeds up the
accessing of data where multiple passes of the data
through the ALU are required. The first pass is done
on the fly as data is accessed from the disk and
processed through the ALU according to a first criteria
before putting the data into main memory. The second
pass is then done by selecting the data from main
memory, passing it through the ALU with the second
criteria and restoring it in another part of main
memory for transfer to the host computer.

As will be understood by those familiar with
the art, the present invention may be embodied in other
specific forms without departing from the spirit or
essential characteristics thereof. For example,
instead of using five formats for instruction latch 80,
a larger latch could be used with different dedicated
fields in the latch. In the page mapper circuit, a
different number of addresses or data lines could be
used. The technique of the present invention is
described with respect to a hard disk, but could be
used with any source of data, such as a data channel
from another processor or network. In addition, the
AND-gates of the next address generation logic could be
replaced with NAND gates or other logic configurations
could be used. Accordingly, the disclosure of the
preferred embodiments of the present invention is
intended to be illustrative, but not limiting, of the
scope of the invention which is set forth in the

following claims.

WO 89/12277 -~~~ ' : 7 7 PCT/US89/02336
1€

APPENDIX

HiGH SPEED PROCESSOR MICRO-INSTRUCTION FORMATS

FORMAT 1:
E E N|N C|F
X{ ca | cx .OP |X|CB/D| [B{D|0|0O| CV E|C|CH |CL
T (4)] (3)] |)T (4] (4) | |X|N[(3)]|(3)

- General Purpose, two register operations for comparing,
subtracting, and'ing, or'ing, etc. Next address selection
is generated from 9 bits (512 addresses). The CH and Cl
each contribute one bit to the next address, 4-way branching .
is selected on externally sensed conditions as specified by
the CH and CL field decodes. The CV field and the CX field
also contribute to the next address generation.

The A-bus entry for the ALU operation is selected via the Ca
field. The EXT modifier bit for the CA field is reversed
from the CB/D field register selection. The EXT for CA is

set to 0 for external registers. The EXT for CB/D is set to
1 for external registers.

The B-bus source register selection also selects the D-bus
(destination bus) via the CB/D field. The NB and ND bits
modify the use of the CB/D field decode. TIf NB=1, the CB/D
decode will not select the any B-bus source register. ND=1
means to suppress the CB/D decode from selecting any
destination. Regardless of NB or ND, any ALU operation is

completed and conditions set depending on the result (D=0
and CARRY) are still set.

The ALU operation is specified by the OP field. The CEX
and FCN fields are used to specify how to use prior "saved
carry-out" conditions and how to save the current result.

NOTE:

Can't select CA and CB both from the external set of
registers since they both use the direct data input on
the bit-slice. Can set the CA and CD both to external
registers if the B-bus is suppressed (NB=1).

WO 89/12277 PCT/US89/02336

19
FORMAT 2:
E NIN C|F
CK OP |X|CB/D| |B|D|O|1| CV E|C|CH |CL
(8) (3)|T| (4) (4) | |XIN](3)](3)

General purpose, one register with constant field emit for
masking, comparing, complementing, incrementing, etc. The
upper 8 bits of the constant field are set to 0.

Next

address generation uses 6 bits (64 words) the CL, CH

and CV fields. The 4-way branch selected by up to 2
external conditions.

NOTE:

If the constant is in the low half (with the high half
set to zero) and you want it in the high half, can set
it to the BSR (byte swap register) using this
instruction, and when it gets used it will come out
with the low half zero and the high half with the
constant.

Can set a constant into an external register if NB=1.
(Since the data emit must use the source bus). Must
move the constant to an internal register if want to
do 'OR' or 'AND' with an external register.

WO 89/12277 : N PCT/US89/02336

FORMAT 3:
F| INT | EXT | |N|N| clF
/| caltL |o| | op |1{cB/D| |B|D|1|0| cv | |E|c|cu |cL
St (4)](2)] (3) - (4) (4) XINI(3)}(3)

This instruction is for fetching and storing data from/to
memory. The address generation is derived from only 6 bits
(64 addresses) from the CL and CH 4-way results plus the CV.

The LL bits determine which memory the operation is for. 1If
the LL bits = 3 (binary 11), the local ram is accessed. The
data accessed in local memory is via the LMD register.

If the LL = 0, 1 or 2 system memory is accessed. The system
memory access address is made up of two registers: the 6
bit DAR-HI (Data Address Register) and the 16 bit DAR-IO.
There are 3 DAR-HI registers which are destination-only

registers. The system memory data is accessed via the SMO
and the SM1 registers. ' '

The DAR-LO comes from register (external) selected by the
CB/D decode in the instruction. The value of the register
prior to the ALU OP is used as the DAR-LO. The value after

the ALU OP is stored back into the CB/D register unless
ND=1. '

The LL field determines which DAR-HI register to use. The
F/S bit determines whether the memory access is for fetch or
store. (F/S=1 means fetch).

The ALU operation is executed. Typically the ALU will want
to increment the CB/D register for the next memory access.
Any constant (other than l) used to increment will be in the
CA decode (which must specify an internal register).

A system memory fetch or store does two 16 bit words at a
time. The low order word is always written to an even word
memory location. DAR-LO bit 0 is PC bus address bit 2.
RAMOK is a CL branch bit used to determine memory access
status. It must be active before using this command or

accessing the data registers, since it takes several clock
cycles to access the system memory.

For local ram access there is DAR-IO only and it is an 11
bit address. The data is accessed on a 16 bit word basis.
On reads, the data is available in the local data register

IMD for the next instruction.
NOTE:

This requires CB/D to be external register in order to
have access tO'the DAR.

WO 89/12277 PCT/US89/02336

21

FORMAT 4:

RXH RXL 1j1j1}1| CV 0|0|CH |CL
(8) (8) (4) (3)](3)

This instruction loads the 16 bit constant (RXH||RHL) into
the ECR register (EXT#8). The value can be accessed on the
following instruction cycle. The next address generation
uses only 6 bits (64 addresses).

Format decode is augmented by the CEX and FCN fields in
combination with the other format bits being all 1's.

FORMAT 5:

cX 00000000 1{1|1|1] ¢V 0|1|CH |CL
(8) (4) (3)1(3)

This instruction is used to make LONG distance branches,
since it is the only instruction format with access to all
16384 instruction addresses. It uses 14 bits for next
address generation CL, CH, CV and CX.

WO 89/12277 °

PCT/US89/02336
22
HIGH SPEED PROCESSOR DECODES ASSIGNMENT
ca CB Ccb ALU

Decode - Reg - __Req Reg OP CH CL
0 GPO IRO IRO + 0- 0
1l GP1 IRl IR1 1 1

2 GP2 IR2 IR2 - RAMOK

3 BSR IR3 IR3 / SCINT SCDMA
4 SMO IR4 IR4 . LMBR9 LMBRS
5 SM1 IR5 IR5 ? GP1BO GPOBO
6 SDR IR6 IR6 @ CARRY

7 LMD IR7 IR7 $ CAPTC DBUSO
8 ECR IRS8 IR8 ’

9 IR9 1IRS

A IRA IRA

B IRB IRB

c IRC IRC

D IRD IRD

E IRE IRE

F IRF IRF
10 IRO GPO GPO
11 IR1 GPl GP1
12 IR2 GP2 GP2
13 IR3 BSR BSR
14 IR4 SMO SMO
15 IRS SM1 SM1
16 IR6 SDR - SDR
17 IR6 LMD IMD
18 IR8 ECR LLo
19 IRS LL1
1A IRA LL2 -
1B IRB SCR
1C IRC ,
1D IRD
1E IRE
1F IRF

WO 89/12277

PCT/US89/02336

23

HIGH SPEED PROCESSOR REGISTER ASSIGNMENTS

External Source Registers:

GPO
GPl
GP2
BSR

SMO
SM1
SDR
IMD
ECR

WNHHO

0 3o UL

General purpose register

General purpose register

General purpose register

Byte swap register (store contents into reg

and when read back the bytes are swapped)

System memory data 0; Low order, even word
System memory data 1; High order, odd word

SCSI data register (two bytes in stream sequence)
Local memory data (branch on bits 9 & 8)
Constant from FORMAT 4 instructions (16 bits)

External Destination Registers:

GPO
GP1
GP2
BSR
SMO
SM1
SDR
IMD
LLO
LLl1l
LL2
SCR

W wwwnnnunn
[ad
(o,

.
.

.
.

General purpose register
General purpose redgister
General purpose register
Byte swap register (see above)
System memory data O
System memory data 1
SCSI data register
Local memory data
LIL=0 DAR-HI register
LL=1 DAR-HI register
LI=2 DAR-HI register
SCSI control register

HIGH SPEED PROCESSOR CARRY HANDLING BITS

FCN FUNCTYION

Carry-in forced to 0

Carry-in forced to 1, capture carry-out

Carry-in forced to 0, capture carry-out

Carry-in from old carry-out, capture new
carry-out

HORFrOo

WO 89/12277

PCT/US89/02336

24
Detail (Field Ievel) Commands:
COUNT
L1
-CM=0 CM=1
00 = Save Append
01 = Compare & Save Delete
10 = Compare Nosave Insert -
11 = Skip : Reorder
CM (Command Modifier) . .
COE (Compare "Or-Equal" Modifier)
COE=0 COE=1
00 = Less Than Less than or equal
01 = Greater Than Greater than or equal
10 = Equal x (equal)
11 = n.a. n.a.
Store Offset Detail Store Offset with respect
to Record Start Location
Compare Data If Save or Skip, No Field Here

1f Compare, these are the bytes .
to compare with the disk data

(If odd count, low byte = 00)

WO 89/12277 PCT/US89/02336

25

HIGH SPEED PROCESSOR REGISTER ASSIGNMENTS

External Source Registers:

GPO = 0 : General purpose register
GP1 = 1 : General purpose register
GP2 = 2 : General purpose register
BSR = 3 Byte swap register (store contents into reg
and when read back the bytes are swapped)
SMO = 4 : System memory data 0:; Low order, even word
SM1 = 5 : System memory data 1; High order, odd word
SDR = 6 : SCSI data register (two bytes in stream segquence)
IMD = 7 Local memory data (branch on bits 9 & 8)
ECR = 8 Constant from FORMAT 4 instructions (16 bits)

External Destination Registers:

GPO = 0 : General purpose register
GPl1 = 1 : General purpose register
GP2 = 2 : General purpose register
BSR = 3 : Byte swap register (see above)
SMO = 4 : System memory data 0

SM1 = 15 : System memory data 1
SDR = 16 : SCSI data register

IMD = 17 : Local memory data

LLO = 18 : LL=0 DAR-HI register
LLl1 = 19 : LIL=1 DAR-HI register
LL2 = 1A : LL=2 DAR-HI register
SCR = 1B : SCSI control register

HIGH SPEED PROCESSOR CARRY HANDLING BITS

FCN FUNCTION
0 Carry-in forced to 0
1 Carry-in forced to 1, capture carry-out
0 Carry-in forced to 0, capture carry-out
1 Carry-in from old carry-out, capture new
carry-out

WO 89/12277 : : - PCT/US89/02336
26

FORMAT 4:

RXH RXL 1{1{1|1| CV | |0|O|CH |CL
(8) (8) (4) 1 (3)] (3)]

This instruction loads the 16 bit constant (RXH||RHL) into
the ECR register (EXT#8). The value can be accessed on the
- following instruction cycle. The next address generation
uses only 6 bits (64 addresses). : :

Format decode is augmented by the CEX and FCN fields in
combination with the other format bits being all 1's.

 FORMAT 5:
cx 00000000 | [1]1|1|1| v | |o|1|cH |cL
(8) | @ @@

This instruction is used to make LONG distance branches,
since it is the only instruction format with access to all
16384 instruction addresses. It uses 14 bits for next
address generation- CL, CH, CV and CX.

WO 89/12277 PCT/US89/02336

FORMAT 2:
E N|N . C|F
CK OP |X|CB/D| [B|D|0O|1| CV E|C|CH |CL
(8) (3)|T} (4) (4)| | XIN|(3)](3)

General purpose, one register with constant field emit for
masking, comparing, complementing, incrementing, etc. The
upper 8 bits of the constant field are set to 0.

Next

address generation uses 6 bits (64 wordé) the CL, CH

and CV fields. The 4-way branch selected by up to 2
external conditions.

NOTE:

If the constant is in the low half (with the high half
set to zero) and you want it in the high half, can set
it to the BSR (byte swap register) using this
instruction, and when it gets used it will come out
with the low half zero and the high half with the
constant.

Can set a constant into an external register if NB=1.
(Since the data emit must use the source bus). Must
move the constant to an internal register if want to
do 'OR' or 'AND' with an external register.

WO 89/12277

Detail (Field level) Commands:

COUNT

CM=0

00 = Save
01 Compare & Save

10 = Compare Nosave
11 = Skip

CM (Command Modifier)

PCT/US89/02336

CM=1
Append .
- Delete
Insert
Reorder

COE (Compare “Or-Equal“ Modifier)

COE=0
00 = Less Than
01l = Greater Than

COE=1 ,
Less than or equal
Greater than or equal

10 = Equal X . (equal)
11 = n.a. . n.a.
Store Offset Detail Store Offset with respect
- to Record Start Location
Compare Data If Save or Skip, No Field Here

If Compare, these are the bytes
to compare with the disk data

(If odd count, low byte = 00)

WO 89/12277 PCT/US89/02336

10

15

20

30

35

What Is Claimed Is:

1. A system for interfacing with a host
computer to retrieve selected data from a data source
according to criteria determined by said host computer,
comprising:

a random access memory;
an interface coupled to said data
source; and
a processor including:
an arithmetic logic unit (ALU),
a source data bus coupling said
interface to an input of said arithmetic logic
unit,
means for manipulating data with
said ALU according to said criteria to determine
said selected data, and
a destination data bus coupling an
output of said arithmetic logic unit to said
random access memory, such that data from said
data source must pass through said ALU to

reach said random access memory.

2. The system of claim 1 wherein said data

source is a hard disk.

3. The system of claim 1 further

comprising:

a command memory for storing said
criteria;

an instruction storage memory;

an instruction register;

an instruction fetch bus coupling said
instruction storage memory to said instruction
register; and

a command memory bus coupling said
command memory between said destination data bus and

said source data bus;

wo89/12277 -+ - | PCT/US89/02336

10

15

20

25

30

35

30

such that instruction fetches using said
instruction fetch bus are done in parallel with the

- execution of an instruction in said instruction

register which requires the use of said source data bus

and/or séid destination data bus.

4. The system of claim 3 further comprising
a plurality of data lines coupled between an output of
said instruction register and an input of said

arithmetic logic unit for providing data directly from

said instruction register to said arithmetic logic

unit.

5. The system of claim 3 further

" comprising:

a decoding circuit having inputs coupled
to outputs of said instruction register; and
' a plurality of page map memory registers
having enable inputs coupled to outputs of said
decoding circuit, and outputs coupled to address

different sections of said random access memory.

6. The system of claim 3 further comprising
an external constant register having inputs coupled to
outputs of said insttuction register for storing a
constant from one instruction for use with another
instruction. '

7. ,The'system of claim 3 further comprising
a disk control register having inputs coupled to
outputs of said instruction register and outputs
coupled to control the operation of said data source
interface.

8. The system of claim 1 further
comprising:

an instruction storage memory:;

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

31

an instruction register; and

logic means, having an input coupled to
receive at least one bit from said instruction register
and at least one bit from another register in said
processor, for providing a next instruction address to
said instruction storage memory, so that a next
instruction fetch occurs simultaneously with the
execution of a current instruction in said instruction

register.

9. The system of claim 1 further comprising
a plurality of page map memory registers having inputs
coupled to said means for manipulating and outputs
coupled to address different sections of said random

access memory.

10. The system of claim 1 further
comprising:

an information bus coupled between said
interface and said random access memory;

a main processor for breaking down said
criteria from said host computer into subcriteria for
said first mentioned processor;

a main processor bus coupling said host
computer to said main processor, said main processor
bus having a smaller number of bits than said
information bus;

a page mapper data bus coupling said
main processor bus to said information bus;

‘ a page mapper address bus coupling said
main microprocessor bus to said information bus; and

a page mapper memory having data inputs
coupled to said page mapper data bus, address inputs
coupled to a portion of the bits of said page mapper
address bus, and outputs for a larger number of bits
than said portion of address bits coupled to said

information bus.

WO 89/12277 -

10

15

20

25

30

35

32

, 11. A relational processor for interfacing
with a host computer to retrieve selected data from a
data source through a data source interface according
to criteria determined by said host computer, said
selected data being stored in a random access memory,
comprising: a
' a command memory for storing said
criteria; , _ '

- an instruction storage memory:
an arithmetic logic unit;

_ a source data bus coupling said data
source interface to an,ihput of said arithmétic logic
unit; ' , ,

- & destination data bus coupling an
output of said arithmetic logic unit to said random
access memory; ,

an instruction register;'

an instruction fetch bus coupling said
instruction storage memory to said instruction
register; and

a command mehory bus coupling said
command memory between said destination data bus and
said source data bus, such that instruction fetches
using said instruction fetch bus are done in parallel
with the execution of an instruction in said
instruction register which requires the use of said
'source data bus and/or said destination data bus.

12. A relational processor for interfacing
with a host computer to retrieve selected dafa from a
data source through a data source interface according
to criteria determined by said host computer, said
selected data being stored in a random access memory,
comprising: ' 7

- as command memory for storing said
criteria; '
an instruction storage memory:;

an afithmetic logic unit;

PCT/US89/02336

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

an
93

a source data bus coupling said data
source interface to an input of said arithmetic logic
units;

a destination data bus coupling an
output of said arithmetic logic unit to said random
access memory;

an instruction register;

an instruction fetch bus coupling said
instruction storage memory to said instruction
register;

a command memory bus coupling said
command memory between said destination data bus and
said source data bus; and

logic means, having an input coupled to
receive at least one bit from said instruction register
and at least one bit from another register in said
processor, for providing a next instruction address to
said instruction storage memory, so that a next
instruction fetch occurs simultaneously with the
execution of a current instruction in said instruction

register.

13. The processor of claim 12 wherein said
arithmetic logic unit is embedded in a bit-slice

processor.

14. A relational processor for interfacing

with a host computer to retrieve selected data from a
data source through a data source interface according
to criteria determined by said host computer,
comprising:

an instruction storage memory:

an instruction register; and

logic means, having an input coupled to
receive at least one bit from said instruction régister
and at least one bit from another register in said
processor, for providing a next instruction address to

said instruction storage memory, so that a next

WO 89/12277 - | | | | PCT/US89/02336

10

15

20 .

25

30

35

. 54

instruction fetch occurs simultaneously with the

execution of a current instruction in said instruction
register.

15. The processor of claim 14 wherein said
logic means includes decode logic coupled to decode a
plurality of bits from said instruction register and

provide enable signals and means, having enable inputs

coupled to receive said enable signals, for providing
next address control signals from other parts of said
processor to produce said next instruction address.

16. The processor of claim 15 wherein said
means for producing next address control signals
comprises a plufality of AND-gates, each AND gate
having one input coupled to receive said enable signal.

17. The processor of claim 16 wherein a
second input of one of said AND-gates is a carry signal
from said arithmetic logic unit.

18. The processor of claim 16 further
comprising a command register and at least one data
line coupling an output of at least one bit of said

‘command register to a second input of one df said

AND-gates.

19. The processor of claim 16 further
comprising means for indicating when an output of said
arithmetic logic unit is 0, said means for indicating
having an output coupled to a second input of one of
said AND-gates.

20. A system for interfacing with a host
computer to retrieve selected data from a data source

according to criteria determined by said host computer,
comprising:

WO 89/12277 PCT/US89/02336

10

15

20

25

30

35

n

-
3.

“

a main processor for breaking down said
criteria from said host computer into subcriteria;

a main processor bus coupling said host
computer to said main processor;

an information bus having a larger
number of bits than said main processor bus;

a random access memory coupled to said
information bus;

a data access processor coupled to said
information bus for retrieving selected data from said
data source according to said subcriteria;

a page mapper data bus coupling said
main processor bus to said information bus;

a page mapper address bus coupling said
main processor bus to said information bus; and

a window remapping memory having data
inputs coupled to said page mapper data bus, address
inputs coupled to a portion of the bits of said page
mapper address bus, and outputs of a number of bits
greater than said portion of bits coupled to said
information bus to provide the remainder of the bits of

said page mapper address bus.

21. The system of claim 20 further
comprising an arbiter for controlling access to said
random access memory between said main processor and

said data access processor.

22. The system of claim 20 wherein said

window remapping memory comprises a register file.

WO 89/12277 : ' PCT/US89/02336

36
23. A method for retrieving selected data
from a data source according to criteria determined by
a host computer using a separate processor having an
arithmeticrlogic unit (ALU) and placing said data in a
5 main memory, comprising the steps: ’

providing data from said data source to
said ALU without first storlng said data:
manipulating said data with said ALU

- according to said criteria to determine said selected
10 data; and '

_ storing said selected data in said main
memory.

15

20

25

30

35

PCT/US89/02336

WO 89/12277

1/5

(NSIQ)
JVHOLS
SSVN

0g/ @

1

]

]!

” N3ISAS H0SSIIOUAOUIIN GUVANVLS

1N ¥SI0
w__@wzw_u%%A EINIC |
03348 7| _AMMOA3H
MW be W3ddVW | 22
HOlH Bddh
7 NOISNYaX3 ;
62 AHOWIN 02

9

]

&

40553004d NIVW

[

|

|

L[3ovH0LS Wod
| +NVY+

|

|

9\, AW
0/1 015

H31NdK0I
1SOH

A

R

SUBSTITUTE SHEET

WO 89/12277 PCT/US89/02336

2/5

/36 /38 /40 ,’42 /44
_ NAME | DEPT | PAY | HIRE IDEPENDENTS

£ PO

34

(FIND NAMES OF ALL EMPLOYEES (& THEIR DEPT)
WHO HAVE FEWER THAN 3 CHILOREN.

)

|a—— RECORD #|———==f=——RECORD #2 ———e=ja— RECORD #3 ——--

O~ [NTDTPIH [Del NIDTPTH [De[NTD[PIH[

RECEIVE STATION

52~ Wi ity
(00t
FOR EAGHY 01 SKIP (PAY)
ﬂ RECORD| ™ Sxip (HIRE)
| 10 CPP (DEPENDENTS <3) NO SAVE

54
™\ NAME| DEPT

3

A SMALLER TABLE WHICH ONLY INCLUDES
» THE FIELDS SELECTED ON THE CRITERIA THAT

DEPENDENTS IS LESS THAN 3.

7

SELECT AANE. MND DEPT | This 15 THE Wik LEVEL FUNCTION
DEPENDENTS < 3 [v

Fle.-2.

SUBSTITUTE sweer

PCT/US89/02336

WO 89/12277

3/5

£

92/ >

AYOW3INW
SSIV

HOONVY
9V

29 SN8 VIVO_ NOLLVNILSIO L.V
99 bl
S30HN0S H0SS 000 &. i
s W o | 224 ravm (¥510)
LS onvie) | L33 | ysio” o
— ¢l u’ 0L
954 85 b9 & 911
26 06 83 Tl
%0 Sng VIVO 39408
\/
. ow\
51901 N39 00V
HISN 1NN |
987 934 HISNI
08/ Aw
w AHOWIN
m 308 YISNE A ooy 1sn

~~be

Y

SUBSTITUTE SHEET

PCT/US89/02336

WO 89/12277

4/5

HIV ']
SSuaav
NOLEDTRILSNI

A

SNd NOILYNIIS3a

VHOIS < {UITI041N0)

1M0S

¥SI0 QIVHCY. oy
Sng 1595 33

SdilD
¥SI0 1595 N 7

%0 WY
JH0IS

K134
991

T04INOD

LS WHINI g
0l ~]

29/

3

0034 0w (530 ¥a5) [530 409
o 9 os’]| ey azwc
i WIN

I AHONIN jvm_ — — 94V

0437 SNG-0 8 g A4

I > Y 3 b/

” T L e _M_.m_u.m_s Tz ¥
S [‘o [Yest oo %°[[gz o1 ||
CIWY TN 20A1 ; =
| il L v Yz-om 2
) i SNg VIV 30405) MM
ANy | %M be12=

27 |

]
dw {
__ Y
I S | I

___) NOUDnYISNI

AONIN
8L

NOLLONYISNI

1 NOLLONYISNI ¢ IVWHOJ NOLLOMMISNI € IVWHOY N

OLLIMYISNI & IVWHOS NOL

SN G IviiO4

| _IVAYO04 WOH4 INJHI4I0 SINIWIYHINOIY
JHVMQUVH JHL KINO MOHS SFOVMI.S-2 SIVNHO4 :310N

SUBSTITUTE SHEET

PCT/US89/02336

WO 89/12277

5/5

L IE

(quvod
40553004d

NIVH

0l

$02~ \MW

SN
SS3YAQY 118 & SNg QUVONVLS
Sng vIva 116 9I < g 2027 7S 3

S11g 02 -
s1g 21 N PR ETEIRED)
e iyl (C——
sugg | MOGNIM
002/
y3Liguy ng mmmm(
1A S5 NIVHOG
S ong vIved h-90z (Y43ddVH 39vd
E 4510 150
D — @ siigal-t
T —
sz LI
SSa0Y 117 NS4 &
Sng viva :ELA va? ”v Sng (33dS HIH
Eoﬂwﬁ_ WIW| | WIK| [WIK| | WK kg
033dS HOH | 9 99

8¢

AOWIN 30UV

SUBSTITUTE SHEET

“*

INTERNATIONAL SEARCH REPORT

International, Application No. PCT/US89/02336

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) &

GO6F 15/40
364/200

IPC(4):
U.S. CL:

According to International Patent Classification (IPC) or to both National Classification and IPC

. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System

Classification Symbols

U.s. 364/200, 900

"MSFILE"

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fields Searched &

Il. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Retevant to Claim No. '3

see Fig.

2 and col. 7,

Category * Citation of Document, 11 with indication, where appropriate, of the relevant passages 12
A US, A, 4,506,326 (SHAW ET AL.) 19 March 1-13, 16-23
1985, see ABSTRACT.
AIP Us, A, 4,811,207 (HIKITA ET AL.) 7 March 1-13, 16-23
1989, see ABSTRACT and Fig. IlA.
Y UsS, A, 3,936,804 (BACHMAN) 3 February 1976, |14, 15

lines 35-53.

¢ Special categories of cited documents: 10

“A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason {(as specified)

“O" document referring to an oral disclosure, use, exhibition or
other means

“p" document published prior to the international filing date but
later than the priority date claimed

“T" {ater document published after the international filing date
or prionity date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step

“y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

“&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

29 AUGUST 1989

Date of Mailing of this International Search Report

0 30CT 1383

International Searching Authority

ISA/US

Signature of Authorized Officer
e Jlites - b

Ve~ Ol — "/ﬁ:,//'z'l;,\
Florin Munteanu-Rampic

Form PCTASA/210 (second sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

